Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * include/linux/ktime.h |
| 3 | * |
| 4 | * ktime_t - nanosecond-resolution time format. |
| 5 | * |
| 6 | * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> |
| 7 | * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar |
| 8 | * |
| 9 | * data type definitions, declarations, prototypes and macros. |
| 10 | * |
| 11 | * Started by: Thomas Gleixner and Ingo Molnar |
| 12 | * |
| 13 | * Credits: |
| 14 | * |
| 15 | * Roman Zippel provided the ideas and primary code snippets of |
| 16 | * the ktime_t union and further simplifications of the original |
| 17 | * code. |
| 18 | * |
| 19 | * For licencing details see kernel-base/COPYING |
| 20 | */ |
| 21 | #ifndef _LINUX_KTIME_H |
| 22 | #define _LINUX_KTIME_H |
| 23 | |
| 24 | #include <linux/time.h> |
| 25 | #include <linux/jiffies.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 26 | #include <asm/bug.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 27 | |
| 28 | /* Nanosecond scalar representation for kernel time values */ |
| 29 | typedef s64 ktime_t; |
| 30 | |
| 31 | /** |
| 32 | * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value |
| 33 | * @secs: seconds to set |
| 34 | * @nsecs: nanoseconds to set |
| 35 | * |
| 36 | * Return: The ktime_t representation of the value. |
| 37 | */ |
| 38 | static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) |
| 39 | { |
| 40 | if (unlikely(secs >= KTIME_SEC_MAX)) |
| 41 | return KTIME_MAX; |
| 42 | |
| 43 | return secs * NSEC_PER_SEC + (s64)nsecs; |
| 44 | } |
| 45 | |
| 46 | /* Subtract two ktime_t variables. rem = lhs -rhs: */ |
| 47 | #define ktime_sub(lhs, rhs) ((lhs) - (rhs)) |
| 48 | |
| 49 | /* Add two ktime_t variables. res = lhs + rhs: */ |
| 50 | #define ktime_add(lhs, rhs) ((lhs) + (rhs)) |
| 51 | |
| 52 | /* |
| 53 | * Same as ktime_add(), but avoids undefined behaviour on overflow; however, |
| 54 | * this means that you must check the result for overflow yourself. |
| 55 | */ |
| 56 | #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs)) |
| 57 | |
| 58 | /* |
| 59 | * Add a ktime_t variable and a scalar nanosecond value. |
| 60 | * res = kt + nsval: |
| 61 | */ |
| 62 | #define ktime_add_ns(kt, nsval) ((kt) + (nsval)) |
| 63 | |
| 64 | /* |
| 65 | * Subtract a scalar nanosecod from a ktime_t variable |
| 66 | * res = kt - nsval: |
| 67 | */ |
| 68 | #define ktime_sub_ns(kt, nsval) ((kt) - (nsval)) |
| 69 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 70 | /* convert a timespec64 to ktime_t format: */ |
| 71 | static inline ktime_t timespec64_to_ktime(struct timespec64 ts) |
| 72 | { |
| 73 | return ktime_set(ts.tv_sec, ts.tv_nsec); |
| 74 | } |
| 75 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 76 | /* Map the ktime_t to timespec conversion to ns_to_timespec function */ |
| 77 | #define ktime_to_timespec64(kt) ns_to_timespec64((kt)) |
| 78 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 79 | /* Convert ktime_t to nanoseconds */ |
| 80 | static inline s64 ktime_to_ns(const ktime_t kt) |
| 81 | { |
| 82 | return kt; |
| 83 | } |
| 84 | |
| 85 | /** |
| 86 | * ktime_compare - Compares two ktime_t variables for less, greater or equal |
| 87 | * @cmp1: comparable1 |
| 88 | * @cmp2: comparable2 |
| 89 | * |
| 90 | * Return: ... |
| 91 | * cmp1 < cmp2: return <0 |
| 92 | * cmp1 == cmp2: return 0 |
| 93 | * cmp1 > cmp2: return >0 |
| 94 | */ |
| 95 | static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) |
| 96 | { |
| 97 | if (cmp1 < cmp2) |
| 98 | return -1; |
| 99 | if (cmp1 > cmp2) |
| 100 | return 1; |
| 101 | return 0; |
| 102 | } |
| 103 | |
| 104 | /** |
| 105 | * ktime_after - Compare if a ktime_t value is bigger than another one. |
| 106 | * @cmp1: comparable1 |
| 107 | * @cmp2: comparable2 |
| 108 | * |
| 109 | * Return: true if cmp1 happened after cmp2. |
| 110 | */ |
| 111 | static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) |
| 112 | { |
| 113 | return ktime_compare(cmp1, cmp2) > 0; |
| 114 | } |
| 115 | |
| 116 | /** |
| 117 | * ktime_before - Compare if a ktime_t value is smaller than another one. |
| 118 | * @cmp1: comparable1 |
| 119 | * @cmp2: comparable2 |
| 120 | * |
| 121 | * Return: true if cmp1 happened before cmp2. |
| 122 | */ |
| 123 | static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) |
| 124 | { |
| 125 | return ktime_compare(cmp1, cmp2) < 0; |
| 126 | } |
| 127 | |
| 128 | #if BITS_PER_LONG < 64 |
| 129 | extern s64 __ktime_divns(const ktime_t kt, s64 div); |
| 130 | static inline s64 ktime_divns(const ktime_t kt, s64 div) |
| 131 | { |
| 132 | /* |
| 133 | * Negative divisors could cause an inf loop, |
| 134 | * so bug out here. |
| 135 | */ |
| 136 | BUG_ON(div < 0); |
| 137 | if (__builtin_constant_p(div) && !(div >> 32)) { |
| 138 | s64 ns = kt; |
| 139 | u64 tmp = ns < 0 ? -ns : ns; |
| 140 | |
| 141 | do_div(tmp, div); |
| 142 | return ns < 0 ? -tmp : tmp; |
| 143 | } else { |
| 144 | return __ktime_divns(kt, div); |
| 145 | } |
| 146 | } |
| 147 | #else /* BITS_PER_LONG < 64 */ |
| 148 | static inline s64 ktime_divns(const ktime_t kt, s64 div) |
| 149 | { |
| 150 | /* |
| 151 | * 32-bit implementation cannot handle negative divisors, |
| 152 | * so catch them on 64bit as well. |
| 153 | */ |
| 154 | WARN_ON(div < 0); |
| 155 | return kt / div; |
| 156 | } |
| 157 | #endif |
| 158 | |
| 159 | static inline s64 ktime_to_us(const ktime_t kt) |
| 160 | { |
| 161 | return ktime_divns(kt, NSEC_PER_USEC); |
| 162 | } |
| 163 | |
| 164 | static inline s64 ktime_to_ms(const ktime_t kt) |
| 165 | { |
| 166 | return ktime_divns(kt, NSEC_PER_MSEC); |
| 167 | } |
| 168 | |
| 169 | static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) |
| 170 | { |
| 171 | return ktime_to_us(ktime_sub(later, earlier)); |
| 172 | } |
| 173 | |
| 174 | static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) |
| 175 | { |
| 176 | return ktime_to_ms(ktime_sub(later, earlier)); |
| 177 | } |
| 178 | |
| 179 | static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) |
| 180 | { |
| 181 | return ktime_add_ns(kt, usec * NSEC_PER_USEC); |
| 182 | } |
| 183 | |
| 184 | static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) |
| 185 | { |
| 186 | return ktime_add_ns(kt, msec * NSEC_PER_MSEC); |
| 187 | } |
| 188 | |
| 189 | static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) |
| 190 | { |
| 191 | return ktime_sub_ns(kt, usec * NSEC_PER_USEC); |
| 192 | } |
| 193 | |
| 194 | static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) |
| 195 | { |
| 196 | return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); |
| 197 | } |
| 198 | |
| 199 | extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); |
| 200 | |
| 201 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 202 | * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 |
| 203 | * format only if the variable contains data |
| 204 | * @kt: the ktime_t variable to convert |
| 205 | * @ts: the timespec variable to store the result in |
| 206 | * |
| 207 | * Return: %true if there was a successful conversion, %false if kt was 0. |
| 208 | */ |
| 209 | static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, |
| 210 | struct timespec64 *ts) |
| 211 | { |
| 212 | if (kt) { |
| 213 | *ts = ktime_to_timespec64(kt); |
| 214 | return true; |
| 215 | } else { |
| 216 | return false; |
| 217 | } |
| 218 | } |
| 219 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 220 | #include <vdso/ktime.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 221 | |
| 222 | static inline ktime_t ns_to_ktime(u64 ns) |
| 223 | { |
| 224 | return ns; |
| 225 | } |
| 226 | |
| 227 | static inline ktime_t ms_to_ktime(u64 ms) |
| 228 | { |
| 229 | return ms * NSEC_PER_MSEC; |
| 230 | } |
| 231 | |
| 232 | # include <linux/timekeeping.h> |
| 233 | # include <linux/timekeeping32.h> |
| 234 | |
| 235 | #endif |