Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/mm.h> |
| 3 | #include <linux/highmem.h> |
| 4 | #include <linux/sched.h> |
| 5 | #include <linux/hugetlb.h> |
| 6 | |
| 7 | static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| 8 | struct mm_walk *walk) |
| 9 | { |
| 10 | pte_t *pte; |
| 11 | int err = 0; |
| 12 | |
| 13 | pte = pte_offset_map(pmd, addr); |
| 14 | for (;;) { |
| 15 | err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk); |
| 16 | if (err) |
| 17 | break; |
| 18 | addr += PAGE_SIZE; |
| 19 | if (addr == end) |
| 20 | break; |
| 21 | pte++; |
| 22 | } |
| 23 | |
| 24 | pte_unmap(pte); |
| 25 | return err; |
| 26 | } |
| 27 | |
| 28 | static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, |
| 29 | struct mm_walk *walk) |
| 30 | { |
| 31 | pmd_t *pmd; |
| 32 | unsigned long next; |
| 33 | int err = 0; |
| 34 | |
| 35 | pmd = pmd_offset(pud, addr); |
| 36 | do { |
| 37 | again: |
| 38 | next = pmd_addr_end(addr, end); |
| 39 | if (pmd_none(*pmd) || !walk->vma) { |
| 40 | if (walk->pte_hole) |
| 41 | err = walk->pte_hole(addr, next, walk); |
| 42 | if (err) |
| 43 | break; |
| 44 | continue; |
| 45 | } |
| 46 | /* |
| 47 | * This implies that each ->pmd_entry() handler |
| 48 | * needs to know about pmd_trans_huge() pmds |
| 49 | */ |
| 50 | if (walk->pmd_entry) |
| 51 | err = walk->pmd_entry(pmd, addr, next, walk); |
| 52 | if (err) |
| 53 | break; |
| 54 | |
| 55 | /* |
| 56 | * Check this here so we only break down trans_huge |
| 57 | * pages when we _need_ to |
| 58 | */ |
| 59 | if (!walk->pte_entry) |
| 60 | continue; |
| 61 | |
| 62 | split_huge_pmd(walk->vma, pmd, addr); |
| 63 | if (pmd_trans_unstable(pmd)) |
| 64 | goto again; |
| 65 | err = walk_pte_range(pmd, addr, next, walk); |
| 66 | if (err) |
| 67 | break; |
| 68 | } while (pmd++, addr = next, addr != end); |
| 69 | |
| 70 | return err; |
| 71 | } |
| 72 | |
| 73 | static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, |
| 74 | struct mm_walk *walk) |
| 75 | { |
| 76 | pud_t *pud; |
| 77 | unsigned long next; |
| 78 | int err = 0; |
| 79 | |
| 80 | pud = pud_offset(p4d, addr); |
| 81 | do { |
| 82 | again: |
| 83 | next = pud_addr_end(addr, end); |
| 84 | if (pud_none(*pud) || !walk->vma) { |
| 85 | if (walk->pte_hole) |
| 86 | err = walk->pte_hole(addr, next, walk); |
| 87 | if (err) |
| 88 | break; |
| 89 | continue; |
| 90 | } |
| 91 | |
| 92 | if (walk->pud_entry) { |
| 93 | spinlock_t *ptl = pud_trans_huge_lock(pud, walk->vma); |
| 94 | |
| 95 | if (ptl) { |
| 96 | err = walk->pud_entry(pud, addr, next, walk); |
| 97 | spin_unlock(ptl); |
| 98 | if (err) |
| 99 | break; |
| 100 | continue; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | split_huge_pud(walk->vma, pud, addr); |
| 105 | if (pud_none(*pud)) |
| 106 | goto again; |
| 107 | |
| 108 | if (walk->pmd_entry || walk->pte_entry) |
| 109 | err = walk_pmd_range(pud, addr, next, walk); |
| 110 | if (err) |
| 111 | break; |
| 112 | } while (pud++, addr = next, addr != end); |
| 113 | |
| 114 | return err; |
| 115 | } |
| 116 | |
| 117 | static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, |
| 118 | struct mm_walk *walk) |
| 119 | { |
| 120 | p4d_t *p4d; |
| 121 | unsigned long next; |
| 122 | int err = 0; |
| 123 | |
| 124 | p4d = p4d_offset(pgd, addr); |
| 125 | do { |
| 126 | next = p4d_addr_end(addr, end); |
| 127 | if (p4d_none_or_clear_bad(p4d)) { |
| 128 | if (walk->pte_hole) |
| 129 | err = walk->pte_hole(addr, next, walk); |
| 130 | if (err) |
| 131 | break; |
| 132 | continue; |
| 133 | } |
| 134 | if (walk->pmd_entry || walk->pte_entry) |
| 135 | err = walk_pud_range(p4d, addr, next, walk); |
| 136 | if (err) |
| 137 | break; |
| 138 | } while (p4d++, addr = next, addr != end); |
| 139 | |
| 140 | return err; |
| 141 | } |
| 142 | |
| 143 | static int walk_pgd_range(unsigned long addr, unsigned long end, |
| 144 | struct mm_walk *walk) |
| 145 | { |
| 146 | pgd_t *pgd; |
| 147 | unsigned long next; |
| 148 | int err = 0; |
| 149 | |
| 150 | pgd = pgd_offset(walk->mm, addr); |
| 151 | do { |
| 152 | next = pgd_addr_end(addr, end); |
| 153 | if (pgd_none_or_clear_bad(pgd)) { |
| 154 | if (walk->pte_hole) |
| 155 | err = walk->pte_hole(addr, next, walk); |
| 156 | if (err) |
| 157 | break; |
| 158 | continue; |
| 159 | } |
| 160 | if (walk->pmd_entry || walk->pte_entry) |
| 161 | err = walk_p4d_range(pgd, addr, next, walk); |
| 162 | if (err) |
| 163 | break; |
| 164 | } while (pgd++, addr = next, addr != end); |
| 165 | |
| 166 | return err; |
| 167 | } |
| 168 | |
| 169 | #ifdef CONFIG_HUGETLB_PAGE |
| 170 | static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, |
| 171 | unsigned long end) |
| 172 | { |
| 173 | unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); |
| 174 | return boundary < end ? boundary : end; |
| 175 | } |
| 176 | |
| 177 | static int walk_hugetlb_range(unsigned long addr, unsigned long end, |
| 178 | struct mm_walk *walk) |
| 179 | { |
| 180 | struct vm_area_struct *vma = walk->vma; |
| 181 | struct hstate *h = hstate_vma(vma); |
| 182 | unsigned long next; |
| 183 | unsigned long hmask = huge_page_mask(h); |
| 184 | unsigned long sz = huge_page_size(h); |
| 185 | pte_t *pte; |
| 186 | int err = 0; |
| 187 | |
| 188 | do { |
| 189 | next = hugetlb_entry_end(h, addr, end); |
| 190 | pte = huge_pte_offset(walk->mm, addr & hmask, sz); |
| 191 | |
| 192 | if (pte) |
| 193 | err = walk->hugetlb_entry(pte, hmask, addr, next, walk); |
| 194 | else if (walk->pte_hole) |
| 195 | err = walk->pte_hole(addr, next, walk); |
| 196 | |
| 197 | if (err) |
| 198 | break; |
| 199 | } while (addr = next, addr != end); |
| 200 | |
| 201 | return err; |
| 202 | } |
| 203 | |
| 204 | #else /* CONFIG_HUGETLB_PAGE */ |
| 205 | static int walk_hugetlb_range(unsigned long addr, unsigned long end, |
| 206 | struct mm_walk *walk) |
| 207 | { |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | #endif /* CONFIG_HUGETLB_PAGE */ |
| 212 | |
| 213 | /* |
| 214 | * Decide whether we really walk over the current vma on [@start, @end) |
| 215 | * or skip it via the returned value. Return 0 if we do walk over the |
| 216 | * current vma, and return 1 if we skip the vma. Negative values means |
| 217 | * error, where we abort the current walk. |
| 218 | */ |
| 219 | static int walk_page_test(unsigned long start, unsigned long end, |
| 220 | struct mm_walk *walk) |
| 221 | { |
| 222 | struct vm_area_struct *vma = walk->vma; |
| 223 | |
| 224 | if (walk->test_walk) |
| 225 | return walk->test_walk(start, end, walk); |
| 226 | |
| 227 | /* |
| 228 | * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP |
| 229 | * range, so we don't walk over it as we do for normal vmas. However, |
| 230 | * Some callers are interested in handling hole range and they don't |
| 231 | * want to just ignore any single address range. Such users certainly |
| 232 | * define their ->pte_hole() callbacks, so let's delegate them to handle |
| 233 | * vma(VM_PFNMAP). |
| 234 | */ |
| 235 | if (vma->vm_flags & VM_PFNMAP) { |
| 236 | int err = 1; |
| 237 | if (walk->pte_hole) |
| 238 | err = walk->pte_hole(start, end, walk); |
| 239 | return err ? err : 1; |
| 240 | } |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | static int __walk_page_range(unsigned long start, unsigned long end, |
| 245 | struct mm_walk *walk) |
| 246 | { |
| 247 | int err = 0; |
| 248 | struct vm_area_struct *vma = walk->vma; |
| 249 | |
| 250 | if (vma && is_vm_hugetlb_page(vma)) { |
| 251 | if (walk->hugetlb_entry) |
| 252 | err = walk_hugetlb_range(start, end, walk); |
| 253 | } else |
| 254 | err = walk_pgd_range(start, end, walk); |
| 255 | |
| 256 | return err; |
| 257 | } |
| 258 | |
| 259 | /** |
| 260 | * walk_page_range - walk page table with caller specific callbacks |
| 261 | * @start: start address of the virtual address range |
| 262 | * @end: end address of the virtual address range |
| 263 | * @walk: mm_walk structure defining the callbacks and the target address space |
| 264 | * |
| 265 | * Recursively walk the page table tree of the process represented by @walk->mm |
| 266 | * within the virtual address range [@start, @end). During walking, we can do |
| 267 | * some caller-specific works for each entry, by setting up pmd_entry(), |
| 268 | * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these |
| 269 | * callbacks, the associated entries/pages are just ignored. |
| 270 | * The return values of these callbacks are commonly defined like below: |
| 271 | * |
| 272 | * - 0 : succeeded to handle the current entry, and if you don't reach the |
| 273 | * end address yet, continue to walk. |
| 274 | * - >0 : succeeded to handle the current entry, and return to the caller |
| 275 | * with caller specific value. |
| 276 | * - <0 : failed to handle the current entry, and return to the caller |
| 277 | * with error code. |
| 278 | * |
| 279 | * Before starting to walk page table, some callers want to check whether |
| 280 | * they really want to walk over the current vma, typically by checking |
| 281 | * its vm_flags. walk_page_test() and @walk->test_walk() are used for this |
| 282 | * purpose. |
| 283 | * |
| 284 | * struct mm_walk keeps current values of some common data like vma and pmd, |
| 285 | * which are useful for the access from callbacks. If you want to pass some |
| 286 | * caller-specific data to callbacks, @walk->private should be helpful. |
| 287 | * |
| 288 | * Locking: |
| 289 | * Callers of walk_page_range() and walk_page_vma() should hold |
| 290 | * @walk->mm->mmap_sem, because these function traverse vma list and/or |
| 291 | * access to vma's data. |
| 292 | */ |
| 293 | int walk_page_range(unsigned long start, unsigned long end, |
| 294 | struct mm_walk *walk) |
| 295 | { |
| 296 | int err = 0; |
| 297 | unsigned long next; |
| 298 | struct vm_area_struct *vma; |
| 299 | |
| 300 | if (start >= end) |
| 301 | return -EINVAL; |
| 302 | |
| 303 | if (!walk->mm) |
| 304 | return -EINVAL; |
| 305 | |
| 306 | VM_BUG_ON_MM(!rwsem_is_locked(&walk->mm->mmap_sem), walk->mm); |
| 307 | |
| 308 | vma = find_vma(walk->mm, start); |
| 309 | do { |
| 310 | if (!vma) { /* after the last vma */ |
| 311 | walk->vma = NULL; |
| 312 | next = end; |
| 313 | } else if (start < vma->vm_start) { /* outside vma */ |
| 314 | walk->vma = NULL; |
| 315 | next = min(end, vma->vm_start); |
| 316 | } else { /* inside vma */ |
| 317 | walk->vma = vma; |
| 318 | next = min(end, vma->vm_end); |
| 319 | vma = vma->vm_next; |
| 320 | |
| 321 | err = walk_page_test(start, next, walk); |
| 322 | if (err > 0) { |
| 323 | /* |
| 324 | * positive return values are purely for |
| 325 | * controlling the pagewalk, so should never |
| 326 | * be passed to the callers. |
| 327 | */ |
| 328 | err = 0; |
| 329 | continue; |
| 330 | } |
| 331 | if (err < 0) |
| 332 | break; |
| 333 | } |
| 334 | if (walk->vma || walk->pte_hole) |
| 335 | err = __walk_page_range(start, next, walk); |
| 336 | if (err) |
| 337 | break; |
| 338 | } while (start = next, start < end); |
| 339 | return err; |
| 340 | } |
| 341 | |
| 342 | int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk) |
| 343 | { |
| 344 | int err; |
| 345 | |
| 346 | if (!walk->mm) |
| 347 | return -EINVAL; |
| 348 | |
| 349 | VM_BUG_ON(!rwsem_is_locked(&walk->mm->mmap_sem)); |
| 350 | VM_BUG_ON(!vma); |
| 351 | walk->vma = vma; |
| 352 | err = walk_page_test(vma->vm_start, vma->vm_end, walk); |
| 353 | if (err > 0) |
| 354 | return 0; |
| 355 | if (err < 0) |
| 356 | return err; |
| 357 | return __walk_page_range(vma->vm_start, vma->vm_end, walk); |
| 358 | } |