blob: c926698040e0dad67df08b34012f9bfb6a111d7a [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001#ifndef __KVM_HOST_H
2#define __KVM_HOST_H
3
4/*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9#include <linux/types.h>
10#include <linux/hardirq.h>
11#include <linux/list.h>
12#include <linux/mutex.h>
13#include <linux/spinlock.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/bug.h>
17#include <linux/mm.h>
18#include <linux/mmu_notifier.h>
19#include <linux/preempt.h>
20#include <linux/msi.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/rcupdate.h>
24#include <linux/ratelimit.h>
25#include <linux/err.h>
26#include <linux/irqflags.h>
27#include <linux/context_tracking.h>
28#include <linux/irqbypass.h>
29#include <linux/swait.h>
30#include <linux/refcount.h>
31#include <asm/signal.h>
32
33#include <linux/kvm.h>
34#include <linux/kvm_para.h>
35
36#include <linux/kvm_types.h>
37
38#include <asm/kvm_host.h>
39
40#ifndef KVM_MAX_VCPU_ID
41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42#endif
43
44/*
45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46 * in kvm, other bits are visible for userspace which are defined in
47 * include/linux/kvm_h.
48 */
49#define KVM_MEMSLOT_INVALID (1UL << 16)
50
51/* Two fragments for cross MMIO pages. */
52#define KVM_MAX_MMIO_FRAGMENTS 2
53
54#ifndef KVM_ADDRESS_SPACE_NUM
55#define KVM_ADDRESS_SPACE_NUM 1
56#endif
57
58/*
59 * For the normal pfn, the highest 12 bits should be zero,
60 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
61 * mask bit 63 to indicate the noslot pfn.
62 */
63#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
64#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
65#define KVM_PFN_NOSLOT (0x1ULL << 63)
66
67#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
68#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
69#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
70
71/*
72 * error pfns indicate that the gfn is in slot but faild to
73 * translate it to pfn on host.
74 */
75static inline bool is_error_pfn(kvm_pfn_t pfn)
76{
77 return !!(pfn & KVM_PFN_ERR_MASK);
78}
79
80/*
81 * error_noslot pfns indicate that the gfn can not be
82 * translated to pfn - it is not in slot or failed to
83 * translate it to pfn.
84 */
85static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
86{
87 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
88}
89
90/* noslot pfn indicates that the gfn is not in slot. */
91static inline bool is_noslot_pfn(kvm_pfn_t pfn)
92{
93 return pfn == KVM_PFN_NOSLOT;
94}
95
96/*
97 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
98 * provide own defines and kvm_is_error_hva
99 */
100#ifndef KVM_HVA_ERR_BAD
101
102#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
103#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
104
105static inline bool kvm_is_error_hva(unsigned long addr)
106{
107 return addr >= PAGE_OFFSET;
108}
109
110#endif
111
112#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
113
114static inline bool is_error_page(struct page *page)
115{
116 return IS_ERR(page);
117}
118
119#define KVM_REQUEST_MASK GENMASK(7,0)
120#define KVM_REQUEST_NO_WAKEUP BIT(8)
121#define KVM_REQUEST_WAIT BIT(9)
122/*
123 * Architecture-independent vcpu->requests bit members
124 * Bits 4-7 are reserved for more arch-independent bits.
125 */
126#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
127#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128#define KVM_REQ_PENDING_TIMER 2
129#define KVM_REQ_UNHALT 3
130#define KVM_REQUEST_ARCH_BASE 8
131
132#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
133 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
134 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
135})
136#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
137
138#define KVM_USERSPACE_IRQ_SOURCE_ID 0
139#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
140
141extern struct kmem_cache *kvm_vcpu_cache;
142
143extern spinlock_t kvm_lock;
144extern struct list_head vm_list;
145
146struct kvm_io_range {
147 gpa_t addr;
148 int len;
149 struct kvm_io_device *dev;
150};
151
152#define NR_IOBUS_DEVS 1000
153
154struct kvm_io_bus {
155 int dev_count;
156 int ioeventfd_count;
157 struct kvm_io_range range[];
158};
159
160enum kvm_bus {
161 KVM_MMIO_BUS,
162 KVM_PIO_BUS,
163 KVM_VIRTIO_CCW_NOTIFY_BUS,
164 KVM_FAST_MMIO_BUS,
165 KVM_NR_BUSES
166};
167
168int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
169 int len, const void *val);
170int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
171 gpa_t addr, int len, const void *val, long cookie);
172int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
173 int len, void *val);
174int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
175 int len, struct kvm_io_device *dev);
176void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
177 struct kvm_io_device *dev);
178struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
179 gpa_t addr);
180
181#ifdef CONFIG_KVM_ASYNC_PF
182struct kvm_async_pf {
183 struct work_struct work;
184 struct list_head link;
185 struct list_head queue;
186 struct kvm_vcpu *vcpu;
187 struct mm_struct *mm;
188 gva_t gva;
189 unsigned long addr;
190 struct kvm_arch_async_pf arch;
191 bool wakeup_all;
192};
193
194void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
195void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
196int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
197 struct kvm_arch_async_pf *arch);
198int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
199#endif
200
201enum {
202 OUTSIDE_GUEST_MODE,
203 IN_GUEST_MODE,
204 EXITING_GUEST_MODE,
205 READING_SHADOW_PAGE_TABLES,
206};
207
208/*
209 * Sometimes a large or cross-page mmio needs to be broken up into separate
210 * exits for userspace servicing.
211 */
212struct kvm_mmio_fragment {
213 gpa_t gpa;
214 void *data;
215 unsigned len;
216};
217
218struct kvm_vcpu {
219 struct kvm *kvm;
220#ifdef CONFIG_PREEMPT_NOTIFIERS
221 struct preempt_notifier preempt_notifier;
222#endif
223 int cpu;
224 int vcpu_id;
225 int srcu_idx;
226 int mode;
227 u64 requests;
228 unsigned long guest_debug;
229
230 int pre_pcpu;
231 struct list_head blocked_vcpu_list;
232
233 struct mutex mutex;
234 struct kvm_run *run;
235
236 int guest_xcr0_loaded;
237 struct swait_queue_head wq;
238 struct pid __rcu *pid;
239 int sigset_active;
240 sigset_t sigset;
241 struct kvm_vcpu_stat stat;
242 unsigned int halt_poll_ns;
243 bool valid_wakeup;
244
245#ifdef CONFIG_HAS_IOMEM
246 int mmio_needed;
247 int mmio_read_completed;
248 int mmio_is_write;
249 int mmio_cur_fragment;
250 int mmio_nr_fragments;
251 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
252#endif
253
254#ifdef CONFIG_KVM_ASYNC_PF
255 struct {
256 u32 queued;
257 struct list_head queue;
258 struct list_head done;
259 spinlock_t lock;
260 } async_pf;
261#endif
262
263#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
264 /*
265 * Cpu relax intercept or pause loop exit optimization
266 * in_spin_loop: set when a vcpu does a pause loop exit
267 * or cpu relax intercepted.
268 * dy_eligible: indicates whether vcpu is eligible for directed yield.
269 */
270 struct {
271 bool in_spin_loop;
272 bool dy_eligible;
273 } spin_loop;
274#endif
275 bool preempted;
276 struct kvm_vcpu_arch arch;
277 struct dentry *debugfs_dentry;
278};
279
280static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
281{
282 /*
283 * The memory barrier ensures a previous write to vcpu->requests cannot
284 * be reordered with the read of vcpu->mode. It pairs with the general
285 * memory barrier following the write of vcpu->mode in VCPU RUN.
286 */
287 smp_mb__before_atomic();
288 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
289}
290
291/*
292 * Some of the bitops functions do not support too long bitmaps.
293 * This number must be determined not to exceed such limits.
294 */
295#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
296
297struct kvm_memory_slot {
298 gfn_t base_gfn;
299 unsigned long npages;
300 unsigned long *dirty_bitmap;
301 struct kvm_arch_memory_slot arch;
302 unsigned long userspace_addr;
303 u32 flags;
304 short id;
305};
306
307static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
308{
309 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
310}
311
312static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
313{
314 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
315
316 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
317}
318
319struct kvm_s390_adapter_int {
320 u64 ind_addr;
321 u64 summary_addr;
322 u64 ind_offset;
323 u32 summary_offset;
324 u32 adapter_id;
325};
326
327struct kvm_hv_sint {
328 u32 vcpu;
329 u32 sint;
330};
331
332struct kvm_kernel_irq_routing_entry {
333 u32 gsi;
334 u32 type;
335 int (*set)(struct kvm_kernel_irq_routing_entry *e,
336 struct kvm *kvm, int irq_source_id, int level,
337 bool line_status);
338 union {
339 struct {
340 unsigned irqchip;
341 unsigned pin;
342 } irqchip;
343 struct {
344 u32 address_lo;
345 u32 address_hi;
346 u32 data;
347 u32 flags;
348 u32 devid;
349 } msi;
350 struct kvm_s390_adapter_int adapter;
351 struct kvm_hv_sint hv_sint;
352 };
353 struct hlist_node link;
354};
355
356#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
357struct kvm_irq_routing_table {
358 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
359 u32 nr_rt_entries;
360 /*
361 * Array indexed by gsi. Each entry contains list of irq chips
362 * the gsi is connected to.
363 */
364 struct hlist_head map[0];
365};
366#endif
367
368#ifndef KVM_PRIVATE_MEM_SLOTS
369#define KVM_PRIVATE_MEM_SLOTS 0
370#endif
371
372#ifndef KVM_MEM_SLOTS_NUM
373#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
374#endif
375
376#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
377static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
378{
379 return 0;
380}
381#endif
382
383/*
384 * Note:
385 * memslots are not sorted by id anymore, please use id_to_memslot()
386 * to get the memslot by its id.
387 */
388struct kvm_memslots {
389 u64 generation;
390 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
391 /* The mapping table from slot id to the index in memslots[]. */
392 short id_to_index[KVM_MEM_SLOTS_NUM];
393 atomic_t lru_slot;
394 int used_slots;
395};
396
397struct kvm {
398 spinlock_t mmu_lock;
399 struct mutex slots_lock;
400 struct mm_struct *mm; /* userspace tied to this vm */
401 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
402 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
403
404 /*
405 * created_vcpus is protected by kvm->lock, and is incremented
406 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
407 * incremented after storing the kvm_vcpu pointer in vcpus,
408 * and is accessed atomically.
409 */
410 atomic_t online_vcpus;
411 int created_vcpus;
412 int last_boosted_vcpu;
413 struct list_head vm_list;
414 struct mutex lock;
415 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
416#ifdef CONFIG_HAVE_KVM_EVENTFD
417 struct {
418 spinlock_t lock;
419 struct list_head items;
420 struct list_head resampler_list;
421 struct mutex resampler_lock;
422 } irqfds;
423 struct list_head ioeventfds;
424#endif
425 struct kvm_vm_stat stat;
426 struct kvm_arch arch;
427 refcount_t users_count;
428#ifdef CONFIG_KVM_MMIO
429 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
430 spinlock_t ring_lock;
431 struct list_head coalesced_zones;
432#endif
433
434 struct mutex irq_lock;
435#ifdef CONFIG_HAVE_KVM_IRQCHIP
436 /*
437 * Update side is protected by irq_lock.
438 */
439 struct kvm_irq_routing_table __rcu *irq_routing;
440#endif
441#ifdef CONFIG_HAVE_KVM_IRQFD
442 struct hlist_head irq_ack_notifier_list;
443#endif
444
445#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
446 struct mmu_notifier mmu_notifier;
447 unsigned long mmu_notifier_seq;
448 long mmu_notifier_count;
449#endif
450 long tlbs_dirty;
451 struct list_head devices;
452 struct dentry *debugfs_dentry;
453 struct kvm_stat_data **debugfs_stat_data;
454 struct srcu_struct srcu;
455 struct srcu_struct irq_srcu;
456 pid_t userspace_pid;
457};
458
459#define kvm_err(fmt, ...) \
460 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
461#define kvm_info(fmt, ...) \
462 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
463#define kvm_debug(fmt, ...) \
464 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
465#define kvm_debug_ratelimited(fmt, ...) \
466 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
467 ## __VA_ARGS__)
468#define kvm_pr_unimpl(fmt, ...) \
469 pr_err_ratelimited("kvm [%i]: " fmt, \
470 task_tgid_nr(current), ## __VA_ARGS__)
471
472/* The guest did something we don't support. */
473#define vcpu_unimpl(vcpu, fmt, ...) \
474 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
475 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
476
477#define vcpu_debug(vcpu, fmt, ...) \
478 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
479#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
480 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
481 ## __VA_ARGS__)
482#define vcpu_err(vcpu, fmt, ...) \
483 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
484
485static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
486{
487 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
488 lockdep_is_held(&kvm->slots_lock) ||
489 !refcount_read(&kvm->users_count));
490}
491
492static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
493{
494 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case
495 * the caller has read kvm->online_vcpus before (as is the case
496 * for kvm_for_each_vcpu, for example).
497 */
498 smp_rmb();
499 return kvm->vcpus[i];
500}
501
502#define kvm_for_each_vcpu(idx, vcpup, kvm) \
503 for (idx = 0; \
504 idx < atomic_read(&kvm->online_vcpus) && \
505 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
506 idx++)
507
508static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
509{
510 struct kvm_vcpu *vcpu = NULL;
511 int i;
512
513 if (id < 0)
514 return NULL;
515 if (id < KVM_MAX_VCPUS)
516 vcpu = kvm_get_vcpu(kvm, id);
517 if (vcpu && vcpu->vcpu_id == id)
518 return vcpu;
519 kvm_for_each_vcpu(i, vcpu, kvm)
520 if (vcpu->vcpu_id == id)
521 return vcpu;
522 return NULL;
523}
524
525static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
526{
527 struct kvm_vcpu *tmp;
528 int idx;
529
530 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
531 if (tmp == vcpu)
532 return idx;
533 BUG();
534}
535
536#define kvm_for_each_memslot(memslot, slots) \
537 for (memslot = &slots->memslots[0]; \
538 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
539 memslot++)
540
541int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
542void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
543
544void vcpu_load(struct kvm_vcpu *vcpu);
545void vcpu_put(struct kvm_vcpu *vcpu);
546
547#ifdef __KVM_HAVE_IOAPIC
548void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
549void kvm_arch_post_irq_routing_update(struct kvm *kvm);
550#else
551static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
552{
553}
554static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
555{
556}
557#endif
558
559#ifdef CONFIG_HAVE_KVM_IRQFD
560int kvm_irqfd_init(void);
561void kvm_irqfd_exit(void);
562#else
563static inline int kvm_irqfd_init(void)
564{
565 return 0;
566}
567
568static inline void kvm_irqfd_exit(void)
569{
570}
571#endif
572int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
573 struct module *module);
574void kvm_exit(void);
575
576void kvm_get_kvm(struct kvm *kvm);
577void kvm_put_kvm(struct kvm *kvm);
578
579static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
580{
581 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
582 lockdep_is_held(&kvm->slots_lock) ||
583 !refcount_read(&kvm->users_count));
584}
585
586static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
587{
588 return __kvm_memslots(kvm, 0);
589}
590
591static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
592{
593 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
594
595 return __kvm_memslots(vcpu->kvm, as_id);
596}
597
598static inline struct kvm_memory_slot *
599id_to_memslot(struct kvm_memslots *slots, int id)
600{
601 int index = slots->id_to_index[id];
602 struct kvm_memory_slot *slot;
603
604 slot = &slots->memslots[index];
605
606 WARN_ON(slot->id != id);
607 return slot;
608}
609
610/*
611 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
612 * - create a new memory slot
613 * - delete an existing memory slot
614 * - modify an existing memory slot
615 * -- move it in the guest physical memory space
616 * -- just change its flags
617 *
618 * Since flags can be changed by some of these operations, the following
619 * differentiation is the best we can do for __kvm_set_memory_region():
620 */
621enum kvm_mr_change {
622 KVM_MR_CREATE,
623 KVM_MR_DELETE,
624 KVM_MR_MOVE,
625 KVM_MR_FLAGS_ONLY,
626};
627
628int kvm_set_memory_region(struct kvm *kvm,
629 const struct kvm_userspace_memory_region *mem);
630int __kvm_set_memory_region(struct kvm *kvm,
631 const struct kvm_userspace_memory_region *mem);
632void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
633 struct kvm_memory_slot *dont);
634int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
635 unsigned long npages);
636void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots);
637int kvm_arch_prepare_memory_region(struct kvm *kvm,
638 struct kvm_memory_slot *memslot,
639 const struct kvm_userspace_memory_region *mem,
640 enum kvm_mr_change change);
641void kvm_arch_commit_memory_region(struct kvm *kvm,
642 const struct kvm_userspace_memory_region *mem,
643 const struct kvm_memory_slot *old,
644 const struct kvm_memory_slot *new,
645 enum kvm_mr_change change);
646bool kvm_largepages_enabled(void);
647void kvm_disable_largepages(void);
648/* flush all memory translations */
649void kvm_arch_flush_shadow_all(struct kvm *kvm);
650/* flush memory translations pointing to 'slot' */
651void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
652 struct kvm_memory_slot *slot);
653
654int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
655 struct page **pages, int nr_pages);
656
657struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
658unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
659unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
660unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
661unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
662 bool *writable);
663void kvm_release_page_clean(struct page *page);
664void kvm_release_page_dirty(struct page *page);
665void kvm_set_page_accessed(struct page *page);
666
667kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
668kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
669kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
670 bool *writable);
671kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
672kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
673kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
674 bool atomic, bool *async, bool write_fault,
675 bool *writable);
676
677void kvm_release_pfn_clean(kvm_pfn_t pfn);
678void kvm_release_pfn_dirty(kvm_pfn_t pfn);
679void kvm_set_pfn_dirty(kvm_pfn_t pfn);
680void kvm_set_pfn_accessed(kvm_pfn_t pfn);
681void kvm_get_pfn(kvm_pfn_t pfn);
682
683int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
684 int len);
685int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
686 unsigned long len);
687int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
688int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
689 void *data, unsigned long len);
690int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
691 int offset, int len);
692int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
693 unsigned long len);
694int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
695 void *data, unsigned long len);
696int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
697 void *data, int offset, unsigned long len);
698int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
699 gpa_t gpa, unsigned long len);
700int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
701int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
702struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
703bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
704unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
705void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
706
707struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
708struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
709kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
710kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
711struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
712unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
713unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
714int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
715 int len);
716int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
717 unsigned long len);
718int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
719 unsigned long len);
720int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
721 int offset, int len);
722int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
723 unsigned long len);
724void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
725
726void kvm_sigset_activate(struct kvm_vcpu *vcpu);
727void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
728
729void kvm_vcpu_block(struct kvm_vcpu *vcpu);
730void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
731void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
732bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
733void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
734int kvm_vcpu_yield_to(struct kvm_vcpu *target);
735void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
736
737void kvm_flush_remote_tlbs(struct kvm *kvm);
738void kvm_reload_remote_mmus(struct kvm *kvm);
739
740bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
741 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
742bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
743
744long kvm_arch_dev_ioctl(struct file *filp,
745 unsigned int ioctl, unsigned long arg);
746long kvm_arch_vcpu_ioctl(struct file *filp,
747 unsigned int ioctl, unsigned long arg);
748vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
749
750int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
751
752int kvm_get_dirty_log(struct kvm *kvm,
753 struct kvm_dirty_log *log, int *is_dirty);
754
755int kvm_get_dirty_log_protect(struct kvm *kvm,
756 struct kvm_dirty_log *log, bool *is_dirty);
757
758void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
759 struct kvm_memory_slot *slot,
760 gfn_t gfn_offset,
761 unsigned long mask);
762
763int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
764 struct kvm_dirty_log *log);
765
766int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
767 bool line_status);
768long kvm_arch_vm_ioctl(struct file *filp,
769 unsigned int ioctl, unsigned long arg);
770
771int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
772int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
773
774int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
775 struct kvm_translation *tr);
776
777int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
778int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
779int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
780 struct kvm_sregs *sregs);
781int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
782 struct kvm_sregs *sregs);
783int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
784 struct kvm_mp_state *mp_state);
785int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
786 struct kvm_mp_state *mp_state);
787int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
788 struct kvm_guest_debug *dbg);
789int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
790
791int kvm_arch_init(void *opaque);
792void kvm_arch_exit(void);
793
794int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
795void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
796
797void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
798
799void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
800void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
801void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
802struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
803int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
804void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
805void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
806
807bool kvm_arch_has_vcpu_debugfs(void);
808int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
809
810int kvm_arch_hardware_enable(void);
811void kvm_arch_hardware_disable(void);
812int kvm_arch_hardware_setup(void);
813void kvm_arch_hardware_unsetup(void);
814void kvm_arch_check_processor_compat(void *rtn);
815int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
816bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
817int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
818
819#ifndef __KVM_HAVE_ARCH_VM_ALLOC
820/*
821 * All architectures that want to use vzalloc currently also
822 * need their own kvm_arch_alloc_vm implementation.
823 */
824static inline struct kvm *kvm_arch_alloc_vm(void)
825{
826 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
827}
828
829static inline void kvm_arch_free_vm(struct kvm *kvm)
830{
831 kfree(kvm);
832}
833#endif
834
835#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
836static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
837{
838 return -ENOTSUPP;
839}
840#endif
841
842#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
843void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
844void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
845bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
846#else
847static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
848{
849}
850
851static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
852{
853}
854
855static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
856{
857 return false;
858}
859#endif
860#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
861void kvm_arch_start_assignment(struct kvm *kvm);
862void kvm_arch_end_assignment(struct kvm *kvm);
863bool kvm_arch_has_assigned_device(struct kvm *kvm);
864#else
865static inline void kvm_arch_start_assignment(struct kvm *kvm)
866{
867}
868
869static inline void kvm_arch_end_assignment(struct kvm *kvm)
870{
871}
872
873static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
874{
875 return false;
876}
877#endif
878
879static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
880{
881#ifdef __KVM_HAVE_ARCH_WQP
882 return vcpu->arch.wqp;
883#else
884 return &vcpu->wq;
885#endif
886}
887
888#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
889/*
890 * returns true if the virtual interrupt controller is initialized and
891 * ready to accept virtual IRQ. On some architectures the virtual interrupt
892 * controller is dynamically instantiated and this is not always true.
893 */
894bool kvm_arch_intc_initialized(struct kvm *kvm);
895#else
896static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
897{
898 return true;
899}
900#endif
901
902int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
903void kvm_arch_destroy_vm(struct kvm *kvm);
904void kvm_arch_sync_events(struct kvm *kvm);
905
906int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
907void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
908
909bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
910
911struct kvm_irq_ack_notifier {
912 struct hlist_node link;
913 unsigned gsi;
914 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
915};
916
917int kvm_irq_map_gsi(struct kvm *kvm,
918 struct kvm_kernel_irq_routing_entry *entries, int gsi);
919int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
920
921int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
922 bool line_status);
923int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
924 int irq_source_id, int level, bool line_status);
925int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
926 struct kvm *kvm, int irq_source_id,
927 int level, bool line_status);
928bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
929void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
930void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
931void kvm_register_irq_ack_notifier(struct kvm *kvm,
932 struct kvm_irq_ack_notifier *kian);
933void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
934 struct kvm_irq_ack_notifier *kian);
935int kvm_request_irq_source_id(struct kvm *kvm);
936void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
937
938/*
939 * search_memslots() and __gfn_to_memslot() are here because they are
940 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
941 * gfn_to_memslot() itself isn't here as an inline because that would
942 * bloat other code too much.
943 */
944static inline struct kvm_memory_slot *
945search_memslots(struct kvm_memslots *slots, gfn_t gfn)
946{
947 int start = 0, end = slots->used_slots;
948 int slot = atomic_read(&slots->lru_slot);
949 struct kvm_memory_slot *memslots = slots->memslots;
950
951 if (gfn >= memslots[slot].base_gfn &&
952 gfn < memslots[slot].base_gfn + memslots[slot].npages)
953 return &memslots[slot];
954
955 while (start < end) {
956 slot = start + (end - start) / 2;
957
958 if (gfn >= memslots[slot].base_gfn)
959 end = slot;
960 else
961 start = slot + 1;
962 }
963
964 if (gfn >= memslots[start].base_gfn &&
965 gfn < memslots[start].base_gfn + memslots[start].npages) {
966 atomic_set(&slots->lru_slot, start);
967 return &memslots[start];
968 }
969
970 return NULL;
971}
972
973static inline struct kvm_memory_slot *
974__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
975{
976 return search_memslots(slots, gfn);
977}
978
979static inline unsigned long
980__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
981{
982 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
983}
984
985static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
986{
987 return gfn_to_memslot(kvm, gfn)->id;
988}
989
990static inline gfn_t
991hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
992{
993 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
994
995 return slot->base_gfn + gfn_offset;
996}
997
998static inline gpa_t gfn_to_gpa(gfn_t gfn)
999{
1000 return (gpa_t)gfn << PAGE_SHIFT;
1001}
1002
1003static inline gfn_t gpa_to_gfn(gpa_t gpa)
1004{
1005 return (gfn_t)(gpa >> PAGE_SHIFT);
1006}
1007
1008static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1009{
1010 return (hpa_t)pfn << PAGE_SHIFT;
1011}
1012
1013static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1014 gpa_t gpa)
1015{
1016 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1017}
1018
1019static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1020{
1021 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1022
1023 return kvm_is_error_hva(hva);
1024}
1025
1026enum kvm_stat_kind {
1027 KVM_STAT_VM,
1028 KVM_STAT_VCPU,
1029};
1030
1031struct kvm_stat_data {
1032 int offset;
1033 struct kvm *kvm;
1034};
1035
1036struct kvm_stats_debugfs_item {
1037 const char *name;
1038 int offset;
1039 enum kvm_stat_kind kind;
1040};
1041extern struct kvm_stats_debugfs_item debugfs_entries[];
1042extern struct dentry *kvm_debugfs_dir;
1043
1044#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1045static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1046{
1047 if (unlikely(kvm->mmu_notifier_count))
1048 return 1;
1049 /*
1050 * Ensure the read of mmu_notifier_count happens before the read
1051 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1052 * mmu_notifier_invalidate_range_end to make sure that the caller
1053 * either sees the old (non-zero) value of mmu_notifier_count or
1054 * the new (incremented) value of mmu_notifier_seq.
1055 * PowerPC Book3s HV KVM calls this under a per-page lock
1056 * rather than under kvm->mmu_lock, for scalability, so
1057 * can't rely on kvm->mmu_lock to keep things ordered.
1058 */
1059 smp_rmb();
1060 if (kvm->mmu_notifier_seq != mmu_seq)
1061 return 1;
1062 return 0;
1063}
1064#endif
1065
1066#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1067
1068#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1069
1070bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1071int kvm_set_irq_routing(struct kvm *kvm,
1072 const struct kvm_irq_routing_entry *entries,
1073 unsigned nr,
1074 unsigned flags);
1075int kvm_set_routing_entry(struct kvm *kvm,
1076 struct kvm_kernel_irq_routing_entry *e,
1077 const struct kvm_irq_routing_entry *ue);
1078void kvm_free_irq_routing(struct kvm *kvm);
1079
1080#else
1081
1082static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1083
1084#endif
1085
1086int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1087
1088#ifdef CONFIG_HAVE_KVM_EVENTFD
1089
1090void kvm_eventfd_init(struct kvm *kvm);
1091int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1092
1093#ifdef CONFIG_HAVE_KVM_IRQFD
1094int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1095void kvm_irqfd_release(struct kvm *kvm);
1096void kvm_irq_routing_update(struct kvm *);
1097#else
1098static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1099{
1100 return -EINVAL;
1101}
1102
1103static inline void kvm_irqfd_release(struct kvm *kvm) {}
1104#endif
1105
1106#else
1107
1108static inline void kvm_eventfd_init(struct kvm *kvm) {}
1109
1110static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1111{
1112 return -EINVAL;
1113}
1114
1115static inline void kvm_irqfd_release(struct kvm *kvm) {}
1116
1117#ifdef CONFIG_HAVE_KVM_IRQCHIP
1118static inline void kvm_irq_routing_update(struct kvm *kvm)
1119{
1120}
1121#endif
1122
1123static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1124{
1125 return -ENOSYS;
1126}
1127
1128#endif /* CONFIG_HAVE_KVM_EVENTFD */
1129
1130void kvm_arch_irq_routing_update(struct kvm *kvm);
1131
1132static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1133{
1134 /*
1135 * Ensure the rest of the request is published to kvm_check_request's
1136 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1137 */
1138 smp_wmb();
1139 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1140}
1141
1142static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1143{
1144 return READ_ONCE(vcpu->requests);
1145}
1146
1147static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1148{
1149 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1150}
1151
1152static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1153{
1154 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1155}
1156
1157static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1158{
1159 if (kvm_test_request(req, vcpu)) {
1160 kvm_clear_request(req, vcpu);
1161
1162 /*
1163 * Ensure the rest of the request is visible to kvm_check_request's
1164 * caller. Paired with the smp_wmb in kvm_make_request.
1165 */
1166 smp_mb__after_atomic();
1167 return true;
1168 } else {
1169 return false;
1170 }
1171}
1172
1173extern bool kvm_rebooting;
1174
1175extern unsigned int halt_poll_ns;
1176extern unsigned int halt_poll_ns_grow;
1177extern unsigned int halt_poll_ns_shrink;
1178
1179struct kvm_device {
1180 struct kvm_device_ops *ops;
1181 struct kvm *kvm;
1182 void *private;
1183 struct list_head vm_node;
1184};
1185
1186/* create, destroy, and name are mandatory */
1187struct kvm_device_ops {
1188 const char *name;
1189
1190 /*
1191 * create is called holding kvm->lock and any operations not suitable
1192 * to do while holding the lock should be deferred to init (see
1193 * below).
1194 */
1195 int (*create)(struct kvm_device *dev, u32 type);
1196
1197 /*
1198 * init is called after create if create is successful and is called
1199 * outside of holding kvm->lock.
1200 */
1201 void (*init)(struct kvm_device *dev);
1202
1203 /*
1204 * Destroy is responsible for freeing dev.
1205 *
1206 * Destroy may be called before or after destructors are called
1207 * on emulated I/O regions, depending on whether a reference is
1208 * held by a vcpu or other kvm component that gets destroyed
1209 * after the emulated I/O.
1210 */
1211 void (*destroy)(struct kvm_device *dev);
1212
1213 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1214 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1215 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1216 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1217 unsigned long arg);
1218};
1219
1220void kvm_device_get(struct kvm_device *dev);
1221void kvm_device_put(struct kvm_device *dev);
1222struct kvm_device *kvm_device_from_filp(struct file *filp);
1223int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1224void kvm_unregister_device_ops(u32 type);
1225
1226extern struct kvm_device_ops kvm_mpic_ops;
1227extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1228extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1229
1230#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1231
1232static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1233{
1234 vcpu->spin_loop.in_spin_loop = val;
1235}
1236static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1237{
1238 vcpu->spin_loop.dy_eligible = val;
1239}
1240
1241#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1242
1243static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1244{
1245}
1246
1247static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1248{
1249}
1250#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1251
1252#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1253bool kvm_arch_has_irq_bypass(void);
1254int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1255 struct irq_bypass_producer *);
1256void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1257 struct irq_bypass_producer *);
1258void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1259void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1260int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1261 uint32_t guest_irq, bool set);
1262#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1263
1264#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1265/* If we wakeup during the poll time, was it a sucessful poll? */
1266static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1267{
1268 return vcpu->valid_wakeup;
1269}
1270
1271#else
1272static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1273{
1274 return true;
1275}
1276#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1277
1278#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1279long kvm_arch_vcpu_async_ioctl(struct file *filp,
1280 unsigned int ioctl, unsigned long arg);
1281#else
1282static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1283 unsigned int ioctl,
1284 unsigned long arg)
1285{
1286 return -ENOIOCTLCMD;
1287}
1288#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1289
1290int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1291 unsigned long start, unsigned long end, bool blockable);
1292
1293#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1294int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1295#else
1296static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1297{
1298 return 0;
1299}
1300#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1301
1302#endif