Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/fs.h> |
| 7 | #include <linux/pagemap.h> |
| 8 | #include <linux/time.h> |
| 9 | #include <linux/init.h> |
| 10 | #include <linux/string.h> |
| 11 | #include <linux/backing-dev.h> |
| 12 | #include <linux/falloc.h> |
| 13 | #include <linux/writeback.h> |
| 14 | #include <linux/compat.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/btrfs.h> |
| 17 | #include <linux/uio.h> |
| 18 | #include <linux/iversion.h> |
| 19 | #include "ctree.h" |
| 20 | #include "disk-io.h" |
| 21 | #include "transaction.h" |
| 22 | #include "btrfs_inode.h" |
| 23 | #include "print-tree.h" |
| 24 | #include "tree-log.h" |
| 25 | #include "locking.h" |
| 26 | #include "volumes.h" |
| 27 | #include "qgroup.h" |
| 28 | #include "compression.h" |
| 29 | |
| 30 | static struct kmem_cache *btrfs_inode_defrag_cachep; |
| 31 | /* |
| 32 | * when auto defrag is enabled we |
| 33 | * queue up these defrag structs to remember which |
| 34 | * inodes need defragging passes |
| 35 | */ |
| 36 | struct inode_defrag { |
| 37 | struct rb_node rb_node; |
| 38 | /* objectid */ |
| 39 | u64 ino; |
| 40 | /* |
| 41 | * transid where the defrag was added, we search for |
| 42 | * extents newer than this |
| 43 | */ |
| 44 | u64 transid; |
| 45 | |
| 46 | /* root objectid */ |
| 47 | u64 root; |
| 48 | |
| 49 | /* last offset we were able to defrag */ |
| 50 | u64 last_offset; |
| 51 | |
| 52 | /* if we've wrapped around back to zero once already */ |
| 53 | int cycled; |
| 54 | }; |
| 55 | |
| 56 | static int __compare_inode_defrag(struct inode_defrag *defrag1, |
| 57 | struct inode_defrag *defrag2) |
| 58 | { |
| 59 | if (defrag1->root > defrag2->root) |
| 60 | return 1; |
| 61 | else if (defrag1->root < defrag2->root) |
| 62 | return -1; |
| 63 | else if (defrag1->ino > defrag2->ino) |
| 64 | return 1; |
| 65 | else if (defrag1->ino < defrag2->ino) |
| 66 | return -1; |
| 67 | else |
| 68 | return 0; |
| 69 | } |
| 70 | |
| 71 | /* pop a record for an inode into the defrag tree. The lock |
| 72 | * must be held already |
| 73 | * |
| 74 | * If you're inserting a record for an older transid than an |
| 75 | * existing record, the transid already in the tree is lowered |
| 76 | * |
| 77 | * If an existing record is found the defrag item you |
| 78 | * pass in is freed |
| 79 | */ |
| 80 | static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, |
| 81 | struct inode_defrag *defrag) |
| 82 | { |
| 83 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 84 | struct inode_defrag *entry; |
| 85 | struct rb_node **p; |
| 86 | struct rb_node *parent = NULL; |
| 87 | int ret; |
| 88 | |
| 89 | p = &fs_info->defrag_inodes.rb_node; |
| 90 | while (*p) { |
| 91 | parent = *p; |
| 92 | entry = rb_entry(parent, struct inode_defrag, rb_node); |
| 93 | |
| 94 | ret = __compare_inode_defrag(defrag, entry); |
| 95 | if (ret < 0) |
| 96 | p = &parent->rb_left; |
| 97 | else if (ret > 0) |
| 98 | p = &parent->rb_right; |
| 99 | else { |
| 100 | /* if we're reinserting an entry for |
| 101 | * an old defrag run, make sure to |
| 102 | * lower the transid of our existing record |
| 103 | */ |
| 104 | if (defrag->transid < entry->transid) |
| 105 | entry->transid = defrag->transid; |
| 106 | if (defrag->last_offset > entry->last_offset) |
| 107 | entry->last_offset = defrag->last_offset; |
| 108 | return -EEXIST; |
| 109 | } |
| 110 | } |
| 111 | set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); |
| 112 | rb_link_node(&defrag->rb_node, parent, p); |
| 113 | rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); |
| 114 | return 0; |
| 115 | } |
| 116 | |
| 117 | static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) |
| 118 | { |
| 119 | if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) |
| 120 | return 0; |
| 121 | |
| 122 | if (btrfs_fs_closing(fs_info)) |
| 123 | return 0; |
| 124 | |
| 125 | return 1; |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * insert a defrag record for this inode if auto defrag is |
| 130 | * enabled |
| 131 | */ |
| 132 | int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, |
| 133 | struct btrfs_inode *inode) |
| 134 | { |
| 135 | struct btrfs_root *root = inode->root; |
| 136 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 137 | struct inode_defrag *defrag; |
| 138 | u64 transid; |
| 139 | int ret; |
| 140 | |
| 141 | if (!__need_auto_defrag(fs_info)) |
| 142 | return 0; |
| 143 | |
| 144 | if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) |
| 145 | return 0; |
| 146 | |
| 147 | if (trans) |
| 148 | transid = trans->transid; |
| 149 | else |
| 150 | transid = inode->root->last_trans; |
| 151 | |
| 152 | defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); |
| 153 | if (!defrag) |
| 154 | return -ENOMEM; |
| 155 | |
| 156 | defrag->ino = btrfs_ino(inode); |
| 157 | defrag->transid = transid; |
| 158 | defrag->root = root->root_key.objectid; |
| 159 | |
| 160 | spin_lock(&fs_info->defrag_inodes_lock); |
| 161 | if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { |
| 162 | /* |
| 163 | * If we set IN_DEFRAG flag and evict the inode from memory, |
| 164 | * and then re-read this inode, this new inode doesn't have |
| 165 | * IN_DEFRAG flag. At the case, we may find the existed defrag. |
| 166 | */ |
| 167 | ret = __btrfs_add_inode_defrag(inode, defrag); |
| 168 | if (ret) |
| 169 | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| 170 | } else { |
| 171 | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| 172 | } |
| 173 | spin_unlock(&fs_info->defrag_inodes_lock); |
| 174 | return 0; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * Requeue the defrag object. If there is a defrag object that points to |
| 179 | * the same inode in the tree, we will merge them together (by |
| 180 | * __btrfs_add_inode_defrag()) and free the one that we want to requeue. |
| 181 | */ |
| 182 | static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, |
| 183 | struct inode_defrag *defrag) |
| 184 | { |
| 185 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 186 | int ret; |
| 187 | |
| 188 | if (!__need_auto_defrag(fs_info)) |
| 189 | goto out; |
| 190 | |
| 191 | /* |
| 192 | * Here we don't check the IN_DEFRAG flag, because we need merge |
| 193 | * them together. |
| 194 | */ |
| 195 | spin_lock(&fs_info->defrag_inodes_lock); |
| 196 | ret = __btrfs_add_inode_defrag(inode, defrag); |
| 197 | spin_unlock(&fs_info->defrag_inodes_lock); |
| 198 | if (ret) |
| 199 | goto out; |
| 200 | return; |
| 201 | out: |
| 202 | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * pick the defragable inode that we want, if it doesn't exist, we will get |
| 207 | * the next one. |
| 208 | */ |
| 209 | static struct inode_defrag * |
| 210 | btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) |
| 211 | { |
| 212 | struct inode_defrag *entry = NULL; |
| 213 | struct inode_defrag tmp; |
| 214 | struct rb_node *p; |
| 215 | struct rb_node *parent = NULL; |
| 216 | int ret; |
| 217 | |
| 218 | tmp.ino = ino; |
| 219 | tmp.root = root; |
| 220 | |
| 221 | spin_lock(&fs_info->defrag_inodes_lock); |
| 222 | p = fs_info->defrag_inodes.rb_node; |
| 223 | while (p) { |
| 224 | parent = p; |
| 225 | entry = rb_entry(parent, struct inode_defrag, rb_node); |
| 226 | |
| 227 | ret = __compare_inode_defrag(&tmp, entry); |
| 228 | if (ret < 0) |
| 229 | p = parent->rb_left; |
| 230 | else if (ret > 0) |
| 231 | p = parent->rb_right; |
| 232 | else |
| 233 | goto out; |
| 234 | } |
| 235 | |
| 236 | if (parent && __compare_inode_defrag(&tmp, entry) > 0) { |
| 237 | parent = rb_next(parent); |
| 238 | if (parent) |
| 239 | entry = rb_entry(parent, struct inode_defrag, rb_node); |
| 240 | else |
| 241 | entry = NULL; |
| 242 | } |
| 243 | out: |
| 244 | if (entry) |
| 245 | rb_erase(parent, &fs_info->defrag_inodes); |
| 246 | spin_unlock(&fs_info->defrag_inodes_lock); |
| 247 | return entry; |
| 248 | } |
| 249 | |
| 250 | void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) |
| 251 | { |
| 252 | struct inode_defrag *defrag; |
| 253 | struct rb_node *node; |
| 254 | |
| 255 | spin_lock(&fs_info->defrag_inodes_lock); |
| 256 | node = rb_first(&fs_info->defrag_inodes); |
| 257 | while (node) { |
| 258 | rb_erase(node, &fs_info->defrag_inodes); |
| 259 | defrag = rb_entry(node, struct inode_defrag, rb_node); |
| 260 | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| 261 | |
| 262 | cond_resched_lock(&fs_info->defrag_inodes_lock); |
| 263 | |
| 264 | node = rb_first(&fs_info->defrag_inodes); |
| 265 | } |
| 266 | spin_unlock(&fs_info->defrag_inodes_lock); |
| 267 | } |
| 268 | |
| 269 | #define BTRFS_DEFRAG_BATCH 1024 |
| 270 | |
| 271 | static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, |
| 272 | struct inode_defrag *defrag) |
| 273 | { |
| 274 | struct btrfs_root *inode_root; |
| 275 | struct inode *inode; |
| 276 | struct btrfs_key key; |
| 277 | struct btrfs_ioctl_defrag_range_args range; |
| 278 | int num_defrag; |
| 279 | int index; |
| 280 | int ret; |
| 281 | |
| 282 | /* get the inode */ |
| 283 | key.objectid = defrag->root; |
| 284 | key.type = BTRFS_ROOT_ITEM_KEY; |
| 285 | key.offset = (u64)-1; |
| 286 | |
| 287 | index = srcu_read_lock(&fs_info->subvol_srcu); |
| 288 | |
| 289 | inode_root = btrfs_read_fs_root_no_name(fs_info, &key); |
| 290 | if (IS_ERR(inode_root)) { |
| 291 | ret = PTR_ERR(inode_root); |
| 292 | goto cleanup; |
| 293 | } |
| 294 | |
| 295 | key.objectid = defrag->ino; |
| 296 | key.type = BTRFS_INODE_ITEM_KEY; |
| 297 | key.offset = 0; |
| 298 | inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); |
| 299 | if (IS_ERR(inode)) { |
| 300 | ret = PTR_ERR(inode); |
| 301 | goto cleanup; |
| 302 | } |
| 303 | srcu_read_unlock(&fs_info->subvol_srcu, index); |
| 304 | |
| 305 | /* do a chunk of defrag */ |
| 306 | clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); |
| 307 | memset(&range, 0, sizeof(range)); |
| 308 | range.len = (u64)-1; |
| 309 | range.start = defrag->last_offset; |
| 310 | |
| 311 | sb_start_write(fs_info->sb); |
| 312 | num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, |
| 313 | BTRFS_DEFRAG_BATCH); |
| 314 | sb_end_write(fs_info->sb); |
| 315 | /* |
| 316 | * if we filled the whole defrag batch, there |
| 317 | * must be more work to do. Queue this defrag |
| 318 | * again |
| 319 | */ |
| 320 | if (num_defrag == BTRFS_DEFRAG_BATCH) { |
| 321 | defrag->last_offset = range.start; |
| 322 | btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); |
| 323 | } else if (defrag->last_offset && !defrag->cycled) { |
| 324 | /* |
| 325 | * we didn't fill our defrag batch, but |
| 326 | * we didn't start at zero. Make sure we loop |
| 327 | * around to the start of the file. |
| 328 | */ |
| 329 | defrag->last_offset = 0; |
| 330 | defrag->cycled = 1; |
| 331 | btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); |
| 332 | } else { |
| 333 | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| 334 | } |
| 335 | |
| 336 | iput(inode); |
| 337 | return 0; |
| 338 | cleanup: |
| 339 | srcu_read_unlock(&fs_info->subvol_srcu, index); |
| 340 | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| 341 | return ret; |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * run through the list of inodes in the FS that need |
| 346 | * defragging |
| 347 | */ |
| 348 | int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) |
| 349 | { |
| 350 | struct inode_defrag *defrag; |
| 351 | u64 first_ino = 0; |
| 352 | u64 root_objectid = 0; |
| 353 | |
| 354 | atomic_inc(&fs_info->defrag_running); |
| 355 | while (1) { |
| 356 | /* Pause the auto defragger. */ |
| 357 | if (test_bit(BTRFS_FS_STATE_REMOUNTING, |
| 358 | &fs_info->fs_state)) |
| 359 | break; |
| 360 | |
| 361 | if (!__need_auto_defrag(fs_info)) |
| 362 | break; |
| 363 | |
| 364 | /* find an inode to defrag */ |
| 365 | defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, |
| 366 | first_ino); |
| 367 | if (!defrag) { |
| 368 | if (root_objectid || first_ino) { |
| 369 | root_objectid = 0; |
| 370 | first_ino = 0; |
| 371 | continue; |
| 372 | } else { |
| 373 | break; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | first_ino = defrag->ino + 1; |
| 378 | root_objectid = defrag->root; |
| 379 | |
| 380 | __btrfs_run_defrag_inode(fs_info, defrag); |
| 381 | } |
| 382 | atomic_dec(&fs_info->defrag_running); |
| 383 | |
| 384 | /* |
| 385 | * during unmount, we use the transaction_wait queue to |
| 386 | * wait for the defragger to stop |
| 387 | */ |
| 388 | wake_up(&fs_info->transaction_wait); |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | /* simple helper to fault in pages and copy. This should go away |
| 393 | * and be replaced with calls into generic code. |
| 394 | */ |
| 395 | static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, |
| 396 | struct page **prepared_pages, |
| 397 | struct iov_iter *i) |
| 398 | { |
| 399 | size_t copied = 0; |
| 400 | size_t total_copied = 0; |
| 401 | int pg = 0; |
| 402 | int offset = pos & (PAGE_SIZE - 1); |
| 403 | |
| 404 | while (write_bytes > 0) { |
| 405 | size_t count = min_t(size_t, |
| 406 | PAGE_SIZE - offset, write_bytes); |
| 407 | struct page *page = prepared_pages[pg]; |
| 408 | /* |
| 409 | * Copy data from userspace to the current page |
| 410 | */ |
| 411 | copied = iov_iter_copy_from_user_atomic(page, i, offset, count); |
| 412 | |
| 413 | /* Flush processor's dcache for this page */ |
| 414 | flush_dcache_page(page); |
| 415 | |
| 416 | /* |
| 417 | * if we get a partial write, we can end up with |
| 418 | * partially up to date pages. These add |
| 419 | * a lot of complexity, so make sure they don't |
| 420 | * happen by forcing this copy to be retried. |
| 421 | * |
| 422 | * The rest of the btrfs_file_write code will fall |
| 423 | * back to page at a time copies after we return 0. |
| 424 | */ |
| 425 | if (!PageUptodate(page) && copied < count) |
| 426 | copied = 0; |
| 427 | |
| 428 | iov_iter_advance(i, copied); |
| 429 | write_bytes -= copied; |
| 430 | total_copied += copied; |
| 431 | |
| 432 | /* Return to btrfs_file_write_iter to fault page */ |
| 433 | if (unlikely(copied == 0)) |
| 434 | break; |
| 435 | |
| 436 | if (copied < PAGE_SIZE - offset) { |
| 437 | offset += copied; |
| 438 | } else { |
| 439 | pg++; |
| 440 | offset = 0; |
| 441 | } |
| 442 | } |
| 443 | return total_copied; |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * unlocks pages after btrfs_file_write is done with them |
| 448 | */ |
| 449 | static void btrfs_drop_pages(struct page **pages, size_t num_pages) |
| 450 | { |
| 451 | size_t i; |
| 452 | for (i = 0; i < num_pages; i++) { |
| 453 | /* page checked is some magic around finding pages that |
| 454 | * have been modified without going through btrfs_set_page_dirty |
| 455 | * clear it here. There should be no need to mark the pages |
| 456 | * accessed as prepare_pages should have marked them accessed |
| 457 | * in prepare_pages via find_or_create_page() |
| 458 | */ |
| 459 | ClearPageChecked(pages[i]); |
| 460 | unlock_page(pages[i]); |
| 461 | put_page(pages[i]); |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, |
| 466 | const u64 start, |
| 467 | const u64 len, |
| 468 | struct extent_state **cached_state) |
| 469 | { |
| 470 | u64 search_start = start; |
| 471 | const u64 end = start + len - 1; |
| 472 | |
| 473 | while (search_start < end) { |
| 474 | const u64 search_len = end - search_start + 1; |
| 475 | struct extent_map *em; |
| 476 | u64 em_len; |
| 477 | int ret = 0; |
| 478 | |
| 479 | em = btrfs_get_extent(inode, NULL, 0, search_start, |
| 480 | search_len, 0); |
| 481 | if (IS_ERR(em)) |
| 482 | return PTR_ERR(em); |
| 483 | |
| 484 | if (em->block_start != EXTENT_MAP_HOLE) |
| 485 | goto next; |
| 486 | |
| 487 | em_len = em->len; |
| 488 | if (em->start < search_start) |
| 489 | em_len -= search_start - em->start; |
| 490 | if (em_len > search_len) |
| 491 | em_len = search_len; |
| 492 | |
| 493 | ret = set_extent_bit(&inode->io_tree, search_start, |
| 494 | search_start + em_len - 1, |
| 495 | EXTENT_DELALLOC_NEW, |
| 496 | NULL, cached_state, GFP_NOFS); |
| 497 | next: |
| 498 | search_start = extent_map_end(em); |
| 499 | free_extent_map(em); |
| 500 | if (ret) |
| 501 | return ret; |
| 502 | } |
| 503 | return 0; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * after copy_from_user, pages need to be dirtied and we need to make |
| 508 | * sure holes are created between the current EOF and the start of |
| 509 | * any next extents (if required). |
| 510 | * |
| 511 | * this also makes the decision about creating an inline extent vs |
| 512 | * doing real data extents, marking pages dirty and delalloc as required. |
| 513 | */ |
| 514 | int btrfs_dirty_pages(struct inode *inode, struct page **pages, |
| 515 | size_t num_pages, loff_t pos, size_t write_bytes, |
| 516 | struct extent_state **cached) |
| 517 | { |
| 518 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 519 | int err = 0; |
| 520 | int i; |
| 521 | u64 num_bytes; |
| 522 | u64 start_pos; |
| 523 | u64 end_of_last_block; |
| 524 | u64 end_pos = pos + write_bytes; |
| 525 | loff_t isize = i_size_read(inode); |
| 526 | unsigned int extra_bits = 0; |
| 527 | |
| 528 | start_pos = pos & ~((u64) fs_info->sectorsize - 1); |
| 529 | num_bytes = round_up(write_bytes + pos - start_pos, |
| 530 | fs_info->sectorsize); |
| 531 | |
| 532 | end_of_last_block = start_pos + num_bytes - 1; |
| 533 | |
| 534 | /* |
| 535 | * The pages may have already been dirty, clear out old accounting so |
| 536 | * we can set things up properly |
| 537 | */ |
| 538 | clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, |
| 539 | EXTENT_DIRTY | EXTENT_DELALLOC | |
| 540 | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached); |
| 541 | |
| 542 | if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { |
| 543 | if (start_pos >= isize && |
| 544 | !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { |
| 545 | /* |
| 546 | * There can't be any extents following eof in this case |
| 547 | * so just set the delalloc new bit for the range |
| 548 | * directly. |
| 549 | */ |
| 550 | extra_bits |= EXTENT_DELALLOC_NEW; |
| 551 | } else { |
| 552 | err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), |
| 553 | start_pos, |
| 554 | num_bytes, cached); |
| 555 | if (err) |
| 556 | return err; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, |
| 561 | extra_bits, cached, 0); |
| 562 | if (err) |
| 563 | return err; |
| 564 | |
| 565 | for (i = 0; i < num_pages; i++) { |
| 566 | struct page *p = pages[i]; |
| 567 | SetPageUptodate(p); |
| 568 | ClearPageChecked(p); |
| 569 | set_page_dirty(p); |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * we've only changed i_size in ram, and we haven't updated |
| 574 | * the disk i_size. There is no need to log the inode |
| 575 | * at this time. |
| 576 | */ |
| 577 | if (end_pos > isize) |
| 578 | i_size_write(inode, end_pos); |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * this drops all the extents in the cache that intersect the range |
| 584 | * [start, end]. Existing extents are split as required. |
| 585 | */ |
| 586 | void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, |
| 587 | int skip_pinned) |
| 588 | { |
| 589 | struct extent_map *em; |
| 590 | struct extent_map *split = NULL; |
| 591 | struct extent_map *split2 = NULL; |
| 592 | struct extent_map_tree *em_tree = &inode->extent_tree; |
| 593 | u64 len = end - start + 1; |
| 594 | u64 gen; |
| 595 | int ret; |
| 596 | int testend = 1; |
| 597 | unsigned long flags; |
| 598 | int compressed = 0; |
| 599 | bool modified; |
| 600 | |
| 601 | WARN_ON(end < start); |
| 602 | if (end == (u64)-1) { |
| 603 | len = (u64)-1; |
| 604 | testend = 0; |
| 605 | } |
| 606 | while (1) { |
| 607 | int no_splits = 0; |
| 608 | |
| 609 | modified = false; |
| 610 | if (!split) |
| 611 | split = alloc_extent_map(); |
| 612 | if (!split2) |
| 613 | split2 = alloc_extent_map(); |
| 614 | if (!split || !split2) |
| 615 | no_splits = 1; |
| 616 | |
| 617 | write_lock(&em_tree->lock); |
| 618 | em = lookup_extent_mapping(em_tree, start, len); |
| 619 | if (!em) { |
| 620 | write_unlock(&em_tree->lock); |
| 621 | break; |
| 622 | } |
| 623 | flags = em->flags; |
| 624 | gen = em->generation; |
| 625 | if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { |
| 626 | if (testend && em->start + em->len >= start + len) { |
| 627 | free_extent_map(em); |
| 628 | write_unlock(&em_tree->lock); |
| 629 | break; |
| 630 | } |
| 631 | start = em->start + em->len; |
| 632 | if (testend) |
| 633 | len = start + len - (em->start + em->len); |
| 634 | free_extent_map(em); |
| 635 | write_unlock(&em_tree->lock); |
| 636 | continue; |
| 637 | } |
| 638 | compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); |
| 639 | clear_bit(EXTENT_FLAG_PINNED, &em->flags); |
| 640 | clear_bit(EXTENT_FLAG_LOGGING, &flags); |
| 641 | modified = !list_empty(&em->list); |
| 642 | if (no_splits) |
| 643 | goto next; |
| 644 | |
| 645 | if (em->start < start) { |
| 646 | split->start = em->start; |
| 647 | split->len = start - em->start; |
| 648 | |
| 649 | if (em->block_start < EXTENT_MAP_LAST_BYTE) { |
| 650 | split->orig_start = em->orig_start; |
| 651 | split->block_start = em->block_start; |
| 652 | |
| 653 | if (compressed) |
| 654 | split->block_len = em->block_len; |
| 655 | else |
| 656 | split->block_len = split->len; |
| 657 | split->orig_block_len = max(split->block_len, |
| 658 | em->orig_block_len); |
| 659 | split->ram_bytes = em->ram_bytes; |
| 660 | } else { |
| 661 | split->orig_start = split->start; |
| 662 | split->block_len = 0; |
| 663 | split->block_start = em->block_start; |
| 664 | split->orig_block_len = 0; |
| 665 | split->ram_bytes = split->len; |
| 666 | } |
| 667 | |
| 668 | split->generation = gen; |
| 669 | split->bdev = em->bdev; |
| 670 | split->flags = flags; |
| 671 | split->compress_type = em->compress_type; |
| 672 | replace_extent_mapping(em_tree, em, split, modified); |
| 673 | free_extent_map(split); |
| 674 | split = split2; |
| 675 | split2 = NULL; |
| 676 | } |
| 677 | if (testend && em->start + em->len > start + len) { |
| 678 | u64 diff = start + len - em->start; |
| 679 | |
| 680 | split->start = start + len; |
| 681 | split->len = em->start + em->len - (start + len); |
| 682 | split->bdev = em->bdev; |
| 683 | split->flags = flags; |
| 684 | split->compress_type = em->compress_type; |
| 685 | split->generation = gen; |
| 686 | |
| 687 | if (em->block_start < EXTENT_MAP_LAST_BYTE) { |
| 688 | split->orig_block_len = max(em->block_len, |
| 689 | em->orig_block_len); |
| 690 | |
| 691 | split->ram_bytes = em->ram_bytes; |
| 692 | if (compressed) { |
| 693 | split->block_len = em->block_len; |
| 694 | split->block_start = em->block_start; |
| 695 | split->orig_start = em->orig_start; |
| 696 | } else { |
| 697 | split->block_len = split->len; |
| 698 | split->block_start = em->block_start |
| 699 | + diff; |
| 700 | split->orig_start = em->orig_start; |
| 701 | } |
| 702 | } else { |
| 703 | split->ram_bytes = split->len; |
| 704 | split->orig_start = split->start; |
| 705 | split->block_len = 0; |
| 706 | split->block_start = em->block_start; |
| 707 | split->orig_block_len = 0; |
| 708 | } |
| 709 | |
| 710 | if (extent_map_in_tree(em)) { |
| 711 | replace_extent_mapping(em_tree, em, split, |
| 712 | modified); |
| 713 | } else { |
| 714 | ret = add_extent_mapping(em_tree, split, |
| 715 | modified); |
| 716 | ASSERT(ret == 0); /* Logic error */ |
| 717 | } |
| 718 | free_extent_map(split); |
| 719 | split = NULL; |
| 720 | } |
| 721 | next: |
| 722 | if (extent_map_in_tree(em)) |
| 723 | remove_extent_mapping(em_tree, em); |
| 724 | write_unlock(&em_tree->lock); |
| 725 | |
| 726 | /* once for us */ |
| 727 | free_extent_map(em); |
| 728 | /* once for the tree*/ |
| 729 | free_extent_map(em); |
| 730 | } |
| 731 | if (split) |
| 732 | free_extent_map(split); |
| 733 | if (split2) |
| 734 | free_extent_map(split2); |
| 735 | } |
| 736 | |
| 737 | /* |
| 738 | * this is very complex, but the basic idea is to drop all extents |
| 739 | * in the range start - end. hint_block is filled in with a block number |
| 740 | * that would be a good hint to the block allocator for this file. |
| 741 | * |
| 742 | * If an extent intersects the range but is not entirely inside the range |
| 743 | * it is either truncated or split. Anything entirely inside the range |
| 744 | * is deleted from the tree. |
| 745 | */ |
| 746 | int __btrfs_drop_extents(struct btrfs_trans_handle *trans, |
| 747 | struct btrfs_root *root, struct inode *inode, |
| 748 | struct btrfs_path *path, u64 start, u64 end, |
| 749 | u64 *drop_end, int drop_cache, |
| 750 | int replace_extent, |
| 751 | u32 extent_item_size, |
| 752 | int *key_inserted) |
| 753 | { |
| 754 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 755 | struct extent_buffer *leaf; |
| 756 | struct btrfs_file_extent_item *fi; |
| 757 | struct btrfs_key key; |
| 758 | struct btrfs_key new_key; |
| 759 | u64 ino = btrfs_ino(BTRFS_I(inode)); |
| 760 | u64 search_start = start; |
| 761 | u64 disk_bytenr = 0; |
| 762 | u64 num_bytes = 0; |
| 763 | u64 extent_offset = 0; |
| 764 | u64 extent_end = 0; |
| 765 | u64 last_end = start; |
| 766 | int del_nr = 0; |
| 767 | int del_slot = 0; |
| 768 | int extent_type; |
| 769 | int recow; |
| 770 | int ret; |
| 771 | int modify_tree = -1; |
| 772 | int update_refs; |
| 773 | int found = 0; |
| 774 | int leafs_visited = 0; |
| 775 | |
| 776 | if (drop_cache) |
| 777 | btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); |
| 778 | |
| 779 | if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) |
| 780 | modify_tree = 0; |
| 781 | |
| 782 | update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || |
| 783 | root == fs_info->tree_root); |
| 784 | while (1) { |
| 785 | recow = 0; |
| 786 | ret = btrfs_lookup_file_extent(trans, root, path, ino, |
| 787 | search_start, modify_tree); |
| 788 | if (ret < 0) |
| 789 | break; |
| 790 | if (ret > 0 && path->slots[0] > 0 && search_start == start) { |
| 791 | leaf = path->nodes[0]; |
| 792 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); |
| 793 | if (key.objectid == ino && |
| 794 | key.type == BTRFS_EXTENT_DATA_KEY) |
| 795 | path->slots[0]--; |
| 796 | } |
| 797 | ret = 0; |
| 798 | leafs_visited++; |
| 799 | next_slot: |
| 800 | leaf = path->nodes[0]; |
| 801 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| 802 | BUG_ON(del_nr > 0); |
| 803 | ret = btrfs_next_leaf(root, path); |
| 804 | if (ret < 0) |
| 805 | break; |
| 806 | if (ret > 0) { |
| 807 | ret = 0; |
| 808 | break; |
| 809 | } |
| 810 | leafs_visited++; |
| 811 | leaf = path->nodes[0]; |
| 812 | recow = 1; |
| 813 | } |
| 814 | |
| 815 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 816 | |
| 817 | if (key.objectid > ino) |
| 818 | break; |
| 819 | if (WARN_ON_ONCE(key.objectid < ino) || |
| 820 | key.type < BTRFS_EXTENT_DATA_KEY) { |
| 821 | ASSERT(del_nr == 0); |
| 822 | path->slots[0]++; |
| 823 | goto next_slot; |
| 824 | } |
| 825 | if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) |
| 826 | break; |
| 827 | |
| 828 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 829 | struct btrfs_file_extent_item); |
| 830 | extent_type = btrfs_file_extent_type(leaf, fi); |
| 831 | |
| 832 | if (extent_type == BTRFS_FILE_EXTENT_REG || |
| 833 | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| 834 | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| 835 | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| 836 | extent_offset = btrfs_file_extent_offset(leaf, fi); |
| 837 | extent_end = key.offset + |
| 838 | btrfs_file_extent_num_bytes(leaf, fi); |
| 839 | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| 840 | extent_end = key.offset + |
| 841 | btrfs_file_extent_ram_bytes(leaf, fi); |
| 842 | } else { |
| 843 | /* can't happen */ |
| 844 | BUG(); |
| 845 | } |
| 846 | |
| 847 | /* |
| 848 | * Don't skip extent items representing 0 byte lengths. They |
| 849 | * used to be created (bug) if while punching holes we hit |
| 850 | * -ENOSPC condition. So if we find one here, just ensure we |
| 851 | * delete it, otherwise we would insert a new file extent item |
| 852 | * with the same key (offset) as that 0 bytes length file |
| 853 | * extent item in the call to setup_items_for_insert() later |
| 854 | * in this function. |
| 855 | */ |
| 856 | if (extent_end == key.offset && extent_end >= search_start) { |
| 857 | last_end = extent_end; |
| 858 | goto delete_extent_item; |
| 859 | } |
| 860 | |
| 861 | if (extent_end <= search_start) { |
| 862 | path->slots[0]++; |
| 863 | goto next_slot; |
| 864 | } |
| 865 | |
| 866 | found = 1; |
| 867 | search_start = max(key.offset, start); |
| 868 | if (recow || !modify_tree) { |
| 869 | modify_tree = -1; |
| 870 | btrfs_release_path(path); |
| 871 | continue; |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * | - range to drop - | |
| 876 | * | -------- extent -------- | |
| 877 | */ |
| 878 | if (start > key.offset && end < extent_end) { |
| 879 | BUG_ON(del_nr > 0); |
| 880 | if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| 881 | ret = -EOPNOTSUPP; |
| 882 | break; |
| 883 | } |
| 884 | |
| 885 | memcpy(&new_key, &key, sizeof(new_key)); |
| 886 | new_key.offset = start; |
| 887 | ret = btrfs_duplicate_item(trans, root, path, |
| 888 | &new_key); |
| 889 | if (ret == -EAGAIN) { |
| 890 | btrfs_release_path(path); |
| 891 | continue; |
| 892 | } |
| 893 | if (ret < 0) |
| 894 | break; |
| 895 | |
| 896 | leaf = path->nodes[0]; |
| 897 | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, |
| 898 | struct btrfs_file_extent_item); |
| 899 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 900 | start - key.offset); |
| 901 | |
| 902 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 903 | struct btrfs_file_extent_item); |
| 904 | |
| 905 | extent_offset += start - key.offset; |
| 906 | btrfs_set_file_extent_offset(leaf, fi, extent_offset); |
| 907 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 908 | extent_end - start); |
| 909 | btrfs_mark_buffer_dirty(leaf); |
| 910 | |
| 911 | if (update_refs && disk_bytenr > 0) { |
| 912 | ret = btrfs_inc_extent_ref(trans, root, |
| 913 | disk_bytenr, num_bytes, 0, |
| 914 | root->root_key.objectid, |
| 915 | new_key.objectid, |
| 916 | start - extent_offset); |
| 917 | BUG_ON(ret); /* -ENOMEM */ |
| 918 | } |
| 919 | key.offset = start; |
| 920 | } |
| 921 | /* |
| 922 | * From here on out we will have actually dropped something, so |
| 923 | * last_end can be updated. |
| 924 | */ |
| 925 | last_end = extent_end; |
| 926 | |
| 927 | /* |
| 928 | * | ---- range to drop ----- | |
| 929 | * | -------- extent -------- | |
| 930 | */ |
| 931 | if (start <= key.offset && end < extent_end) { |
| 932 | if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| 933 | ret = -EOPNOTSUPP; |
| 934 | break; |
| 935 | } |
| 936 | |
| 937 | memcpy(&new_key, &key, sizeof(new_key)); |
| 938 | new_key.offset = end; |
| 939 | btrfs_set_item_key_safe(fs_info, path, &new_key); |
| 940 | |
| 941 | extent_offset += end - key.offset; |
| 942 | btrfs_set_file_extent_offset(leaf, fi, extent_offset); |
| 943 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 944 | extent_end - end); |
| 945 | btrfs_mark_buffer_dirty(leaf); |
| 946 | if (update_refs && disk_bytenr > 0) |
| 947 | inode_sub_bytes(inode, end - key.offset); |
| 948 | break; |
| 949 | } |
| 950 | |
| 951 | search_start = extent_end; |
| 952 | /* |
| 953 | * | ---- range to drop ----- | |
| 954 | * | -------- extent -------- | |
| 955 | */ |
| 956 | if (start > key.offset && end >= extent_end) { |
| 957 | BUG_ON(del_nr > 0); |
| 958 | if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| 959 | ret = -EOPNOTSUPP; |
| 960 | break; |
| 961 | } |
| 962 | |
| 963 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 964 | start - key.offset); |
| 965 | btrfs_mark_buffer_dirty(leaf); |
| 966 | if (update_refs && disk_bytenr > 0) |
| 967 | inode_sub_bytes(inode, extent_end - start); |
| 968 | if (end == extent_end) |
| 969 | break; |
| 970 | |
| 971 | path->slots[0]++; |
| 972 | goto next_slot; |
| 973 | } |
| 974 | |
| 975 | /* |
| 976 | * | ---- range to drop ----- | |
| 977 | * | ------ extent ------ | |
| 978 | */ |
| 979 | if (start <= key.offset && end >= extent_end) { |
| 980 | delete_extent_item: |
| 981 | if (del_nr == 0) { |
| 982 | del_slot = path->slots[0]; |
| 983 | del_nr = 1; |
| 984 | } else { |
| 985 | BUG_ON(del_slot + del_nr != path->slots[0]); |
| 986 | del_nr++; |
| 987 | } |
| 988 | |
| 989 | if (update_refs && |
| 990 | extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| 991 | inode_sub_bytes(inode, |
| 992 | extent_end - key.offset); |
| 993 | extent_end = ALIGN(extent_end, |
| 994 | fs_info->sectorsize); |
| 995 | } else if (update_refs && disk_bytenr > 0) { |
| 996 | ret = btrfs_free_extent(trans, root, |
| 997 | disk_bytenr, num_bytes, 0, |
| 998 | root->root_key.objectid, |
| 999 | key.objectid, key.offset - |
| 1000 | extent_offset); |
| 1001 | BUG_ON(ret); /* -ENOMEM */ |
| 1002 | inode_sub_bytes(inode, |
| 1003 | extent_end - key.offset); |
| 1004 | } |
| 1005 | |
| 1006 | if (end == extent_end) |
| 1007 | break; |
| 1008 | |
| 1009 | if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { |
| 1010 | path->slots[0]++; |
| 1011 | goto next_slot; |
| 1012 | } |
| 1013 | |
| 1014 | ret = btrfs_del_items(trans, root, path, del_slot, |
| 1015 | del_nr); |
| 1016 | if (ret) { |
| 1017 | btrfs_abort_transaction(trans, ret); |
| 1018 | break; |
| 1019 | } |
| 1020 | |
| 1021 | del_nr = 0; |
| 1022 | del_slot = 0; |
| 1023 | |
| 1024 | btrfs_release_path(path); |
| 1025 | continue; |
| 1026 | } |
| 1027 | |
| 1028 | BUG_ON(1); |
| 1029 | } |
| 1030 | |
| 1031 | if (!ret && del_nr > 0) { |
| 1032 | /* |
| 1033 | * Set path->slots[0] to first slot, so that after the delete |
| 1034 | * if items are move off from our leaf to its immediate left or |
| 1035 | * right neighbor leafs, we end up with a correct and adjusted |
| 1036 | * path->slots[0] for our insertion (if replace_extent != 0). |
| 1037 | */ |
| 1038 | path->slots[0] = del_slot; |
| 1039 | ret = btrfs_del_items(trans, root, path, del_slot, del_nr); |
| 1040 | if (ret) |
| 1041 | btrfs_abort_transaction(trans, ret); |
| 1042 | } |
| 1043 | |
| 1044 | leaf = path->nodes[0]; |
| 1045 | /* |
| 1046 | * If btrfs_del_items() was called, it might have deleted a leaf, in |
| 1047 | * which case it unlocked our path, so check path->locks[0] matches a |
| 1048 | * write lock. |
| 1049 | */ |
| 1050 | if (!ret && replace_extent && leafs_visited == 1 && |
| 1051 | (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || |
| 1052 | path->locks[0] == BTRFS_WRITE_LOCK) && |
| 1053 | btrfs_leaf_free_space(fs_info, leaf) >= |
| 1054 | sizeof(struct btrfs_item) + extent_item_size) { |
| 1055 | |
| 1056 | key.objectid = ino; |
| 1057 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 1058 | key.offset = start; |
| 1059 | if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { |
| 1060 | struct btrfs_key slot_key; |
| 1061 | |
| 1062 | btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); |
| 1063 | if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) |
| 1064 | path->slots[0]++; |
| 1065 | } |
| 1066 | setup_items_for_insert(root, path, &key, |
| 1067 | &extent_item_size, |
| 1068 | extent_item_size, |
| 1069 | sizeof(struct btrfs_item) + |
| 1070 | extent_item_size, 1); |
| 1071 | *key_inserted = 1; |
| 1072 | } |
| 1073 | |
| 1074 | if (!replace_extent || !(*key_inserted)) |
| 1075 | btrfs_release_path(path); |
| 1076 | if (drop_end) |
| 1077 | *drop_end = found ? min(end, last_end) : end; |
| 1078 | return ret; |
| 1079 | } |
| 1080 | |
| 1081 | int btrfs_drop_extents(struct btrfs_trans_handle *trans, |
| 1082 | struct btrfs_root *root, struct inode *inode, u64 start, |
| 1083 | u64 end, int drop_cache) |
| 1084 | { |
| 1085 | struct btrfs_path *path; |
| 1086 | int ret; |
| 1087 | |
| 1088 | path = btrfs_alloc_path(); |
| 1089 | if (!path) |
| 1090 | return -ENOMEM; |
| 1091 | ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, |
| 1092 | drop_cache, 0, 0, NULL); |
| 1093 | btrfs_free_path(path); |
| 1094 | return ret; |
| 1095 | } |
| 1096 | |
| 1097 | static int extent_mergeable(struct extent_buffer *leaf, int slot, |
| 1098 | u64 objectid, u64 bytenr, u64 orig_offset, |
| 1099 | u64 *start, u64 *end) |
| 1100 | { |
| 1101 | struct btrfs_file_extent_item *fi; |
| 1102 | struct btrfs_key key; |
| 1103 | u64 extent_end; |
| 1104 | |
| 1105 | if (slot < 0 || slot >= btrfs_header_nritems(leaf)) |
| 1106 | return 0; |
| 1107 | |
| 1108 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 1109 | if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) |
| 1110 | return 0; |
| 1111 | |
| 1112 | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| 1113 | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || |
| 1114 | btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || |
| 1115 | btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || |
| 1116 | btrfs_file_extent_compression(leaf, fi) || |
| 1117 | btrfs_file_extent_encryption(leaf, fi) || |
| 1118 | btrfs_file_extent_other_encoding(leaf, fi)) |
| 1119 | return 0; |
| 1120 | |
| 1121 | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); |
| 1122 | if ((*start && *start != key.offset) || (*end && *end != extent_end)) |
| 1123 | return 0; |
| 1124 | |
| 1125 | *start = key.offset; |
| 1126 | *end = extent_end; |
| 1127 | return 1; |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | * Mark extent in the range start - end as written. |
| 1132 | * |
| 1133 | * This changes extent type from 'pre-allocated' to 'regular'. If only |
| 1134 | * part of extent is marked as written, the extent will be split into |
| 1135 | * two or three. |
| 1136 | */ |
| 1137 | int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, |
| 1138 | struct btrfs_inode *inode, u64 start, u64 end) |
| 1139 | { |
| 1140 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 1141 | struct btrfs_root *root = inode->root; |
| 1142 | struct extent_buffer *leaf; |
| 1143 | struct btrfs_path *path; |
| 1144 | struct btrfs_file_extent_item *fi; |
| 1145 | struct btrfs_key key; |
| 1146 | struct btrfs_key new_key; |
| 1147 | u64 bytenr; |
| 1148 | u64 num_bytes; |
| 1149 | u64 extent_end; |
| 1150 | u64 orig_offset; |
| 1151 | u64 other_start; |
| 1152 | u64 other_end; |
| 1153 | u64 split; |
| 1154 | int del_nr = 0; |
| 1155 | int del_slot = 0; |
| 1156 | int recow; |
| 1157 | int ret; |
| 1158 | u64 ino = btrfs_ino(inode); |
| 1159 | |
| 1160 | path = btrfs_alloc_path(); |
| 1161 | if (!path) |
| 1162 | return -ENOMEM; |
| 1163 | again: |
| 1164 | recow = 0; |
| 1165 | split = start; |
| 1166 | key.objectid = ino; |
| 1167 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 1168 | key.offset = split; |
| 1169 | |
| 1170 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 1171 | if (ret < 0) |
| 1172 | goto out; |
| 1173 | if (ret > 0 && path->slots[0] > 0) |
| 1174 | path->slots[0]--; |
| 1175 | |
| 1176 | leaf = path->nodes[0]; |
| 1177 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 1178 | if (key.objectid != ino || |
| 1179 | key.type != BTRFS_EXTENT_DATA_KEY) { |
| 1180 | ret = -EINVAL; |
| 1181 | btrfs_abort_transaction(trans, ret); |
| 1182 | goto out; |
| 1183 | } |
| 1184 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 1185 | struct btrfs_file_extent_item); |
| 1186 | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { |
| 1187 | ret = -EINVAL; |
| 1188 | btrfs_abort_transaction(trans, ret); |
| 1189 | goto out; |
| 1190 | } |
| 1191 | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); |
| 1192 | if (key.offset > start || extent_end < end) { |
| 1193 | ret = -EINVAL; |
| 1194 | btrfs_abort_transaction(trans, ret); |
| 1195 | goto out; |
| 1196 | } |
| 1197 | |
| 1198 | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| 1199 | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| 1200 | orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); |
| 1201 | memcpy(&new_key, &key, sizeof(new_key)); |
| 1202 | |
| 1203 | if (start == key.offset && end < extent_end) { |
| 1204 | other_start = 0; |
| 1205 | other_end = start; |
| 1206 | if (extent_mergeable(leaf, path->slots[0] - 1, |
| 1207 | ino, bytenr, orig_offset, |
| 1208 | &other_start, &other_end)) { |
| 1209 | new_key.offset = end; |
| 1210 | btrfs_set_item_key_safe(fs_info, path, &new_key); |
| 1211 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 1212 | struct btrfs_file_extent_item); |
| 1213 | btrfs_set_file_extent_generation(leaf, fi, |
| 1214 | trans->transid); |
| 1215 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 1216 | extent_end - end); |
| 1217 | btrfs_set_file_extent_offset(leaf, fi, |
| 1218 | end - orig_offset); |
| 1219 | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, |
| 1220 | struct btrfs_file_extent_item); |
| 1221 | btrfs_set_file_extent_generation(leaf, fi, |
| 1222 | trans->transid); |
| 1223 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 1224 | end - other_start); |
| 1225 | btrfs_mark_buffer_dirty(leaf); |
| 1226 | goto out; |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | if (start > key.offset && end == extent_end) { |
| 1231 | other_start = end; |
| 1232 | other_end = 0; |
| 1233 | if (extent_mergeable(leaf, path->slots[0] + 1, |
| 1234 | ino, bytenr, orig_offset, |
| 1235 | &other_start, &other_end)) { |
| 1236 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 1237 | struct btrfs_file_extent_item); |
| 1238 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 1239 | start - key.offset); |
| 1240 | btrfs_set_file_extent_generation(leaf, fi, |
| 1241 | trans->transid); |
| 1242 | path->slots[0]++; |
| 1243 | new_key.offset = start; |
| 1244 | btrfs_set_item_key_safe(fs_info, path, &new_key); |
| 1245 | |
| 1246 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 1247 | struct btrfs_file_extent_item); |
| 1248 | btrfs_set_file_extent_generation(leaf, fi, |
| 1249 | trans->transid); |
| 1250 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 1251 | other_end - start); |
| 1252 | btrfs_set_file_extent_offset(leaf, fi, |
| 1253 | start - orig_offset); |
| 1254 | btrfs_mark_buffer_dirty(leaf); |
| 1255 | goto out; |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | while (start > key.offset || end < extent_end) { |
| 1260 | if (key.offset == start) |
| 1261 | split = end; |
| 1262 | |
| 1263 | new_key.offset = split; |
| 1264 | ret = btrfs_duplicate_item(trans, root, path, &new_key); |
| 1265 | if (ret == -EAGAIN) { |
| 1266 | btrfs_release_path(path); |
| 1267 | goto again; |
| 1268 | } |
| 1269 | if (ret < 0) { |
| 1270 | btrfs_abort_transaction(trans, ret); |
| 1271 | goto out; |
| 1272 | } |
| 1273 | |
| 1274 | leaf = path->nodes[0]; |
| 1275 | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, |
| 1276 | struct btrfs_file_extent_item); |
| 1277 | btrfs_set_file_extent_generation(leaf, fi, trans->transid); |
| 1278 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 1279 | split - key.offset); |
| 1280 | |
| 1281 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 1282 | struct btrfs_file_extent_item); |
| 1283 | |
| 1284 | btrfs_set_file_extent_generation(leaf, fi, trans->transid); |
| 1285 | btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); |
| 1286 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 1287 | extent_end - split); |
| 1288 | btrfs_mark_buffer_dirty(leaf); |
| 1289 | |
| 1290 | ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, |
| 1291 | 0, root->root_key.objectid, |
| 1292 | ino, orig_offset); |
| 1293 | if (ret) { |
| 1294 | btrfs_abort_transaction(trans, ret); |
| 1295 | goto out; |
| 1296 | } |
| 1297 | |
| 1298 | if (split == start) { |
| 1299 | key.offset = start; |
| 1300 | } else { |
| 1301 | if (start != key.offset) { |
| 1302 | ret = -EINVAL; |
| 1303 | btrfs_abort_transaction(trans, ret); |
| 1304 | goto out; |
| 1305 | } |
| 1306 | path->slots[0]--; |
| 1307 | extent_end = end; |
| 1308 | } |
| 1309 | recow = 1; |
| 1310 | } |
| 1311 | |
| 1312 | other_start = end; |
| 1313 | other_end = 0; |
| 1314 | if (extent_mergeable(leaf, path->slots[0] + 1, |
| 1315 | ino, bytenr, orig_offset, |
| 1316 | &other_start, &other_end)) { |
| 1317 | if (recow) { |
| 1318 | btrfs_release_path(path); |
| 1319 | goto again; |
| 1320 | } |
| 1321 | extent_end = other_end; |
| 1322 | del_slot = path->slots[0] + 1; |
| 1323 | del_nr++; |
| 1324 | ret = btrfs_free_extent(trans, root, bytenr, num_bytes, |
| 1325 | 0, root->root_key.objectid, |
| 1326 | ino, orig_offset); |
| 1327 | if (ret) { |
| 1328 | btrfs_abort_transaction(trans, ret); |
| 1329 | goto out; |
| 1330 | } |
| 1331 | } |
| 1332 | other_start = 0; |
| 1333 | other_end = start; |
| 1334 | if (extent_mergeable(leaf, path->slots[0] - 1, |
| 1335 | ino, bytenr, orig_offset, |
| 1336 | &other_start, &other_end)) { |
| 1337 | if (recow) { |
| 1338 | btrfs_release_path(path); |
| 1339 | goto again; |
| 1340 | } |
| 1341 | key.offset = other_start; |
| 1342 | del_slot = path->slots[0]; |
| 1343 | del_nr++; |
| 1344 | ret = btrfs_free_extent(trans, root, bytenr, num_bytes, |
| 1345 | 0, root->root_key.objectid, |
| 1346 | ino, orig_offset); |
| 1347 | if (ret) { |
| 1348 | btrfs_abort_transaction(trans, ret); |
| 1349 | goto out; |
| 1350 | } |
| 1351 | } |
| 1352 | if (del_nr == 0) { |
| 1353 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 1354 | struct btrfs_file_extent_item); |
| 1355 | btrfs_set_file_extent_type(leaf, fi, |
| 1356 | BTRFS_FILE_EXTENT_REG); |
| 1357 | btrfs_set_file_extent_generation(leaf, fi, trans->transid); |
| 1358 | btrfs_mark_buffer_dirty(leaf); |
| 1359 | } else { |
| 1360 | fi = btrfs_item_ptr(leaf, del_slot - 1, |
| 1361 | struct btrfs_file_extent_item); |
| 1362 | btrfs_set_file_extent_type(leaf, fi, |
| 1363 | BTRFS_FILE_EXTENT_REG); |
| 1364 | btrfs_set_file_extent_generation(leaf, fi, trans->transid); |
| 1365 | btrfs_set_file_extent_num_bytes(leaf, fi, |
| 1366 | extent_end - key.offset); |
| 1367 | btrfs_mark_buffer_dirty(leaf); |
| 1368 | |
| 1369 | ret = btrfs_del_items(trans, root, path, del_slot, del_nr); |
| 1370 | if (ret < 0) { |
| 1371 | btrfs_abort_transaction(trans, ret); |
| 1372 | goto out; |
| 1373 | } |
| 1374 | } |
| 1375 | out: |
| 1376 | btrfs_free_path(path); |
| 1377 | return 0; |
| 1378 | } |
| 1379 | |
| 1380 | /* |
| 1381 | * on error we return an unlocked page and the error value |
| 1382 | * on success we return a locked page and 0 |
| 1383 | */ |
| 1384 | static int prepare_uptodate_page(struct inode *inode, |
| 1385 | struct page *page, u64 pos, |
| 1386 | bool force_uptodate) |
| 1387 | { |
| 1388 | int ret = 0; |
| 1389 | |
| 1390 | if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && |
| 1391 | !PageUptodate(page)) { |
| 1392 | ret = btrfs_readpage(NULL, page); |
| 1393 | if (ret) |
| 1394 | return ret; |
| 1395 | lock_page(page); |
| 1396 | if (!PageUptodate(page)) { |
| 1397 | unlock_page(page); |
| 1398 | return -EIO; |
| 1399 | } |
| 1400 | if (page->mapping != inode->i_mapping) { |
| 1401 | unlock_page(page); |
| 1402 | return -EAGAIN; |
| 1403 | } |
| 1404 | } |
| 1405 | return 0; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * this just gets pages into the page cache and locks them down. |
| 1410 | */ |
| 1411 | static noinline int prepare_pages(struct inode *inode, struct page **pages, |
| 1412 | size_t num_pages, loff_t pos, |
| 1413 | size_t write_bytes, bool force_uptodate) |
| 1414 | { |
| 1415 | int i; |
| 1416 | unsigned long index = pos >> PAGE_SHIFT; |
| 1417 | gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); |
| 1418 | int err = 0; |
| 1419 | int faili; |
| 1420 | |
| 1421 | for (i = 0; i < num_pages; i++) { |
| 1422 | again: |
| 1423 | pages[i] = find_or_create_page(inode->i_mapping, index + i, |
| 1424 | mask | __GFP_WRITE); |
| 1425 | if (!pages[i]) { |
| 1426 | faili = i - 1; |
| 1427 | err = -ENOMEM; |
| 1428 | goto fail; |
| 1429 | } |
| 1430 | |
| 1431 | if (i == 0) |
| 1432 | err = prepare_uptodate_page(inode, pages[i], pos, |
| 1433 | force_uptodate); |
| 1434 | if (!err && i == num_pages - 1) |
| 1435 | err = prepare_uptodate_page(inode, pages[i], |
| 1436 | pos + write_bytes, false); |
| 1437 | if (err) { |
| 1438 | put_page(pages[i]); |
| 1439 | if (err == -EAGAIN) { |
| 1440 | err = 0; |
| 1441 | goto again; |
| 1442 | } |
| 1443 | faili = i - 1; |
| 1444 | goto fail; |
| 1445 | } |
| 1446 | wait_on_page_writeback(pages[i]); |
| 1447 | } |
| 1448 | |
| 1449 | return 0; |
| 1450 | fail: |
| 1451 | while (faili >= 0) { |
| 1452 | unlock_page(pages[faili]); |
| 1453 | put_page(pages[faili]); |
| 1454 | faili--; |
| 1455 | } |
| 1456 | return err; |
| 1457 | |
| 1458 | } |
| 1459 | |
| 1460 | /* |
| 1461 | * This function locks the extent and properly waits for data=ordered extents |
| 1462 | * to finish before allowing the pages to be modified if need. |
| 1463 | * |
| 1464 | * The return value: |
| 1465 | * 1 - the extent is locked |
| 1466 | * 0 - the extent is not locked, and everything is OK |
| 1467 | * -EAGAIN - need re-prepare the pages |
| 1468 | * the other < 0 number - Something wrong happens |
| 1469 | */ |
| 1470 | static noinline int |
| 1471 | lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, |
| 1472 | size_t num_pages, loff_t pos, |
| 1473 | size_t write_bytes, |
| 1474 | u64 *lockstart, u64 *lockend, |
| 1475 | struct extent_state **cached_state) |
| 1476 | { |
| 1477 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 1478 | u64 start_pos; |
| 1479 | u64 last_pos; |
| 1480 | int i; |
| 1481 | int ret = 0; |
| 1482 | |
| 1483 | start_pos = round_down(pos, fs_info->sectorsize); |
| 1484 | last_pos = start_pos |
| 1485 | + round_up(pos + write_bytes - start_pos, |
| 1486 | fs_info->sectorsize) - 1; |
| 1487 | |
| 1488 | if (start_pos < inode->vfs_inode.i_size) { |
| 1489 | struct btrfs_ordered_extent *ordered; |
| 1490 | |
| 1491 | lock_extent_bits(&inode->io_tree, start_pos, last_pos, |
| 1492 | cached_state); |
| 1493 | ordered = btrfs_lookup_ordered_range(inode, start_pos, |
| 1494 | last_pos - start_pos + 1); |
| 1495 | if (ordered && |
| 1496 | ordered->file_offset + ordered->len > start_pos && |
| 1497 | ordered->file_offset <= last_pos) { |
| 1498 | unlock_extent_cached(&inode->io_tree, start_pos, |
| 1499 | last_pos, cached_state); |
| 1500 | for (i = 0; i < num_pages; i++) { |
| 1501 | unlock_page(pages[i]); |
| 1502 | put_page(pages[i]); |
| 1503 | } |
| 1504 | btrfs_start_ordered_extent(&inode->vfs_inode, |
| 1505 | ordered, 1); |
| 1506 | btrfs_put_ordered_extent(ordered); |
| 1507 | return -EAGAIN; |
| 1508 | } |
| 1509 | if (ordered) |
| 1510 | btrfs_put_ordered_extent(ordered); |
| 1511 | |
| 1512 | *lockstart = start_pos; |
| 1513 | *lockend = last_pos; |
| 1514 | ret = 1; |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * It's possible the pages are dirty right now, but we don't want |
| 1519 | * to clean them yet because copy_from_user may catch a page fault |
| 1520 | * and we might have to fall back to one page at a time. If that |
| 1521 | * happens, we'll unlock these pages and we'd have a window where |
| 1522 | * reclaim could sneak in and drop the once-dirty page on the floor |
| 1523 | * without writing it. |
| 1524 | * |
| 1525 | * We have the pages locked and the extent range locked, so there's |
| 1526 | * no way someone can start IO on any dirty pages in this range. |
| 1527 | * |
| 1528 | * We'll call btrfs_dirty_pages() later on, and that will flip around |
| 1529 | * delalloc bits and dirty the pages as required. |
| 1530 | */ |
| 1531 | for (i = 0; i < num_pages; i++) { |
| 1532 | set_page_extent_mapped(pages[i]); |
| 1533 | WARN_ON(!PageLocked(pages[i])); |
| 1534 | } |
| 1535 | |
| 1536 | return ret; |
| 1537 | } |
| 1538 | |
| 1539 | static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, |
| 1540 | size_t *write_bytes) |
| 1541 | { |
| 1542 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 1543 | struct btrfs_root *root = inode->root; |
| 1544 | struct btrfs_ordered_extent *ordered; |
| 1545 | u64 lockstart, lockend; |
| 1546 | u64 num_bytes; |
| 1547 | int ret; |
| 1548 | |
| 1549 | ret = btrfs_start_write_no_snapshotting(root); |
| 1550 | if (!ret) |
| 1551 | return -ENOSPC; |
| 1552 | |
| 1553 | lockstart = round_down(pos, fs_info->sectorsize); |
| 1554 | lockend = round_up(pos + *write_bytes, |
| 1555 | fs_info->sectorsize) - 1; |
| 1556 | |
| 1557 | while (1) { |
| 1558 | lock_extent(&inode->io_tree, lockstart, lockend); |
| 1559 | ordered = btrfs_lookup_ordered_range(inode, lockstart, |
| 1560 | lockend - lockstart + 1); |
| 1561 | if (!ordered) { |
| 1562 | break; |
| 1563 | } |
| 1564 | unlock_extent(&inode->io_tree, lockstart, lockend); |
| 1565 | btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); |
| 1566 | btrfs_put_ordered_extent(ordered); |
| 1567 | } |
| 1568 | |
| 1569 | num_bytes = lockend - lockstart + 1; |
| 1570 | ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, |
| 1571 | NULL, NULL, NULL); |
| 1572 | if (ret <= 0) { |
| 1573 | ret = 0; |
| 1574 | btrfs_end_write_no_snapshotting(root); |
| 1575 | } else { |
| 1576 | *write_bytes = min_t(size_t, *write_bytes , |
| 1577 | num_bytes - pos + lockstart); |
| 1578 | } |
| 1579 | |
| 1580 | unlock_extent(&inode->io_tree, lockstart, lockend); |
| 1581 | |
| 1582 | return ret; |
| 1583 | } |
| 1584 | |
| 1585 | static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, |
| 1586 | struct iov_iter *i) |
| 1587 | { |
| 1588 | struct file *file = iocb->ki_filp; |
| 1589 | loff_t pos = iocb->ki_pos; |
| 1590 | struct inode *inode = file_inode(file); |
| 1591 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 1592 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 1593 | struct page **pages = NULL; |
| 1594 | struct extent_state *cached_state = NULL; |
| 1595 | struct extent_changeset *data_reserved = NULL; |
| 1596 | u64 release_bytes = 0; |
| 1597 | u64 lockstart; |
| 1598 | u64 lockend; |
| 1599 | size_t num_written = 0; |
| 1600 | int nrptrs; |
| 1601 | int ret = 0; |
| 1602 | bool only_release_metadata = false; |
| 1603 | bool force_page_uptodate = false; |
| 1604 | |
| 1605 | nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), |
| 1606 | PAGE_SIZE / (sizeof(struct page *))); |
| 1607 | nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); |
| 1608 | nrptrs = max(nrptrs, 8); |
| 1609 | pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); |
| 1610 | if (!pages) |
| 1611 | return -ENOMEM; |
| 1612 | |
| 1613 | while (iov_iter_count(i) > 0) { |
| 1614 | size_t offset = pos & (PAGE_SIZE - 1); |
| 1615 | size_t sector_offset; |
| 1616 | size_t write_bytes = min(iov_iter_count(i), |
| 1617 | nrptrs * (size_t)PAGE_SIZE - |
| 1618 | offset); |
| 1619 | size_t num_pages = DIV_ROUND_UP(write_bytes + offset, |
| 1620 | PAGE_SIZE); |
| 1621 | size_t reserve_bytes; |
| 1622 | size_t dirty_pages; |
| 1623 | size_t copied; |
| 1624 | size_t dirty_sectors; |
| 1625 | size_t num_sectors; |
| 1626 | int extents_locked; |
| 1627 | |
| 1628 | WARN_ON(num_pages > nrptrs); |
| 1629 | |
| 1630 | /* |
| 1631 | * Fault pages before locking them in prepare_pages |
| 1632 | * to avoid recursive lock |
| 1633 | */ |
| 1634 | if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { |
| 1635 | ret = -EFAULT; |
| 1636 | break; |
| 1637 | } |
| 1638 | |
| 1639 | sector_offset = pos & (fs_info->sectorsize - 1); |
| 1640 | reserve_bytes = round_up(write_bytes + sector_offset, |
| 1641 | fs_info->sectorsize); |
| 1642 | |
| 1643 | extent_changeset_release(data_reserved); |
| 1644 | ret = btrfs_check_data_free_space(inode, &data_reserved, pos, |
| 1645 | write_bytes); |
| 1646 | if (ret < 0) { |
| 1647 | if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | |
| 1648 | BTRFS_INODE_PREALLOC)) && |
| 1649 | check_can_nocow(BTRFS_I(inode), pos, |
| 1650 | &write_bytes) > 0) { |
| 1651 | /* |
| 1652 | * For nodata cow case, no need to reserve |
| 1653 | * data space. |
| 1654 | */ |
| 1655 | only_release_metadata = true; |
| 1656 | /* |
| 1657 | * our prealloc extent may be smaller than |
| 1658 | * write_bytes, so scale down. |
| 1659 | */ |
| 1660 | num_pages = DIV_ROUND_UP(write_bytes + offset, |
| 1661 | PAGE_SIZE); |
| 1662 | reserve_bytes = round_up(write_bytes + |
| 1663 | sector_offset, |
| 1664 | fs_info->sectorsize); |
| 1665 | } else { |
| 1666 | break; |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | WARN_ON(reserve_bytes == 0); |
| 1671 | ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), |
| 1672 | reserve_bytes); |
| 1673 | if (ret) { |
| 1674 | if (!only_release_metadata) |
| 1675 | btrfs_free_reserved_data_space(inode, |
| 1676 | data_reserved, pos, |
| 1677 | write_bytes); |
| 1678 | else |
| 1679 | btrfs_end_write_no_snapshotting(root); |
| 1680 | break; |
| 1681 | } |
| 1682 | |
| 1683 | release_bytes = reserve_bytes; |
| 1684 | again: |
| 1685 | /* |
| 1686 | * This is going to setup the pages array with the number of |
| 1687 | * pages we want, so we don't really need to worry about the |
| 1688 | * contents of pages from loop to loop |
| 1689 | */ |
| 1690 | ret = prepare_pages(inode, pages, num_pages, |
| 1691 | pos, write_bytes, |
| 1692 | force_page_uptodate); |
| 1693 | if (ret) { |
| 1694 | btrfs_delalloc_release_extents(BTRFS_I(inode), |
| 1695 | reserve_bytes, true); |
| 1696 | break; |
| 1697 | } |
| 1698 | |
| 1699 | extents_locked = lock_and_cleanup_extent_if_need( |
| 1700 | BTRFS_I(inode), pages, |
| 1701 | num_pages, pos, write_bytes, &lockstart, |
| 1702 | &lockend, &cached_state); |
| 1703 | if (extents_locked < 0) { |
| 1704 | if (extents_locked == -EAGAIN) |
| 1705 | goto again; |
| 1706 | btrfs_delalloc_release_extents(BTRFS_I(inode), |
| 1707 | reserve_bytes, true); |
| 1708 | ret = extents_locked; |
| 1709 | break; |
| 1710 | } |
| 1711 | |
| 1712 | copied = btrfs_copy_from_user(pos, write_bytes, pages, i); |
| 1713 | |
| 1714 | num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); |
| 1715 | dirty_sectors = round_up(copied + sector_offset, |
| 1716 | fs_info->sectorsize); |
| 1717 | dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); |
| 1718 | |
| 1719 | /* |
| 1720 | * if we have trouble faulting in the pages, fall |
| 1721 | * back to one page at a time |
| 1722 | */ |
| 1723 | if (copied < write_bytes) |
| 1724 | nrptrs = 1; |
| 1725 | |
| 1726 | if (copied == 0) { |
| 1727 | force_page_uptodate = true; |
| 1728 | dirty_sectors = 0; |
| 1729 | dirty_pages = 0; |
| 1730 | } else { |
| 1731 | force_page_uptodate = false; |
| 1732 | dirty_pages = DIV_ROUND_UP(copied + offset, |
| 1733 | PAGE_SIZE); |
| 1734 | } |
| 1735 | |
| 1736 | if (num_sectors > dirty_sectors) { |
| 1737 | /* release everything except the sectors we dirtied */ |
| 1738 | release_bytes -= dirty_sectors << |
| 1739 | fs_info->sb->s_blocksize_bits; |
| 1740 | if (only_release_metadata) { |
| 1741 | btrfs_delalloc_release_metadata(BTRFS_I(inode), |
| 1742 | release_bytes, true); |
| 1743 | } else { |
| 1744 | u64 __pos; |
| 1745 | |
| 1746 | __pos = round_down(pos, |
| 1747 | fs_info->sectorsize) + |
| 1748 | (dirty_pages << PAGE_SHIFT); |
| 1749 | btrfs_delalloc_release_space(inode, |
| 1750 | data_reserved, __pos, |
| 1751 | release_bytes, true); |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | release_bytes = round_up(copied + sector_offset, |
| 1756 | fs_info->sectorsize); |
| 1757 | |
| 1758 | if (copied > 0) |
| 1759 | ret = btrfs_dirty_pages(inode, pages, dirty_pages, |
| 1760 | pos, copied, &cached_state); |
| 1761 | if (extents_locked) |
| 1762 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, |
| 1763 | lockstart, lockend, &cached_state); |
| 1764 | btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, |
| 1765 | true); |
| 1766 | if (ret) { |
| 1767 | btrfs_drop_pages(pages, num_pages); |
| 1768 | break; |
| 1769 | } |
| 1770 | |
| 1771 | release_bytes = 0; |
| 1772 | if (only_release_metadata) |
| 1773 | btrfs_end_write_no_snapshotting(root); |
| 1774 | |
| 1775 | if (only_release_metadata && copied > 0) { |
| 1776 | lockstart = round_down(pos, |
| 1777 | fs_info->sectorsize); |
| 1778 | lockend = round_up(pos + copied, |
| 1779 | fs_info->sectorsize) - 1; |
| 1780 | |
| 1781 | set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, |
| 1782 | lockend, EXTENT_NORESERVE, NULL, |
| 1783 | NULL, GFP_NOFS); |
| 1784 | only_release_metadata = false; |
| 1785 | } |
| 1786 | |
| 1787 | btrfs_drop_pages(pages, num_pages); |
| 1788 | |
| 1789 | cond_resched(); |
| 1790 | |
| 1791 | balance_dirty_pages_ratelimited(inode->i_mapping); |
| 1792 | if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) |
| 1793 | btrfs_btree_balance_dirty(fs_info); |
| 1794 | |
| 1795 | pos += copied; |
| 1796 | num_written += copied; |
| 1797 | } |
| 1798 | |
| 1799 | kfree(pages); |
| 1800 | |
| 1801 | if (release_bytes) { |
| 1802 | if (only_release_metadata) { |
| 1803 | btrfs_end_write_no_snapshotting(root); |
| 1804 | btrfs_delalloc_release_metadata(BTRFS_I(inode), |
| 1805 | release_bytes, true); |
| 1806 | } else { |
| 1807 | btrfs_delalloc_release_space(inode, data_reserved, |
| 1808 | round_down(pos, fs_info->sectorsize), |
| 1809 | release_bytes, true); |
| 1810 | } |
| 1811 | } |
| 1812 | |
| 1813 | extent_changeset_free(data_reserved); |
| 1814 | return num_written ? num_written : ret; |
| 1815 | } |
| 1816 | |
| 1817 | static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) |
| 1818 | { |
| 1819 | struct file *file = iocb->ki_filp; |
| 1820 | struct inode *inode = file_inode(file); |
| 1821 | loff_t pos; |
| 1822 | ssize_t written; |
| 1823 | ssize_t written_buffered; |
| 1824 | loff_t endbyte; |
| 1825 | int err; |
| 1826 | |
| 1827 | written = generic_file_direct_write(iocb, from); |
| 1828 | |
| 1829 | if (written < 0 || !iov_iter_count(from)) |
| 1830 | return written; |
| 1831 | |
| 1832 | pos = iocb->ki_pos; |
| 1833 | written_buffered = btrfs_buffered_write(iocb, from); |
| 1834 | if (written_buffered < 0) { |
| 1835 | err = written_buffered; |
| 1836 | goto out; |
| 1837 | } |
| 1838 | /* |
| 1839 | * Ensure all data is persisted. We want the next direct IO read to be |
| 1840 | * able to read what was just written. |
| 1841 | */ |
| 1842 | endbyte = pos + written_buffered - 1; |
| 1843 | err = btrfs_fdatawrite_range(inode, pos, endbyte); |
| 1844 | if (err) |
| 1845 | goto out; |
| 1846 | err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); |
| 1847 | if (err) |
| 1848 | goto out; |
| 1849 | written += written_buffered; |
| 1850 | iocb->ki_pos = pos + written_buffered; |
| 1851 | invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, |
| 1852 | endbyte >> PAGE_SHIFT); |
| 1853 | out: |
| 1854 | return written ? written : err; |
| 1855 | } |
| 1856 | |
| 1857 | static void update_time_for_write(struct inode *inode) |
| 1858 | { |
| 1859 | struct timespec64 now; |
| 1860 | |
| 1861 | if (IS_NOCMTIME(inode)) |
| 1862 | return; |
| 1863 | |
| 1864 | now = current_time(inode); |
| 1865 | if (!timespec64_equal(&inode->i_mtime, &now)) |
| 1866 | inode->i_mtime = now; |
| 1867 | |
| 1868 | if (!timespec64_equal(&inode->i_ctime, &now)) |
| 1869 | inode->i_ctime = now; |
| 1870 | |
| 1871 | if (IS_I_VERSION(inode)) |
| 1872 | inode_inc_iversion(inode); |
| 1873 | } |
| 1874 | |
| 1875 | static ssize_t btrfs_file_write_iter(struct kiocb *iocb, |
| 1876 | struct iov_iter *from) |
| 1877 | { |
| 1878 | struct file *file = iocb->ki_filp; |
| 1879 | struct inode *inode = file_inode(file); |
| 1880 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 1881 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 1882 | u64 start_pos; |
| 1883 | u64 end_pos; |
| 1884 | ssize_t num_written = 0; |
| 1885 | bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); |
| 1886 | ssize_t err; |
| 1887 | loff_t pos; |
| 1888 | size_t count = iov_iter_count(from); |
| 1889 | loff_t oldsize; |
| 1890 | int clean_page = 0; |
| 1891 | |
| 1892 | if (!(iocb->ki_flags & IOCB_DIRECT) && |
| 1893 | (iocb->ki_flags & IOCB_NOWAIT)) |
| 1894 | return -EOPNOTSUPP; |
| 1895 | |
| 1896 | if (!inode_trylock(inode)) { |
| 1897 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 1898 | return -EAGAIN; |
| 1899 | inode_lock(inode); |
| 1900 | } |
| 1901 | |
| 1902 | err = generic_write_checks(iocb, from); |
| 1903 | if (err <= 0) { |
| 1904 | inode_unlock(inode); |
| 1905 | return err; |
| 1906 | } |
| 1907 | |
| 1908 | pos = iocb->ki_pos; |
| 1909 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 1910 | /* |
| 1911 | * We will allocate space in case nodatacow is not set, |
| 1912 | * so bail |
| 1913 | */ |
| 1914 | if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | |
| 1915 | BTRFS_INODE_PREALLOC)) || |
| 1916 | check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { |
| 1917 | inode_unlock(inode); |
| 1918 | return -EAGAIN; |
| 1919 | } |
| 1920 | } |
| 1921 | |
| 1922 | current->backing_dev_info = inode_to_bdi(inode); |
| 1923 | err = file_remove_privs(file); |
| 1924 | if (err) { |
| 1925 | inode_unlock(inode); |
| 1926 | goto out; |
| 1927 | } |
| 1928 | |
| 1929 | /* |
| 1930 | * If BTRFS flips readonly due to some impossible error |
| 1931 | * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), |
| 1932 | * although we have opened a file as writable, we have |
| 1933 | * to stop this write operation to ensure FS consistency. |
| 1934 | */ |
| 1935 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { |
| 1936 | inode_unlock(inode); |
| 1937 | err = -EROFS; |
| 1938 | goto out; |
| 1939 | } |
| 1940 | |
| 1941 | /* |
| 1942 | * We reserve space for updating the inode when we reserve space for the |
| 1943 | * extent we are going to write, so we will enospc out there. We don't |
| 1944 | * need to start yet another transaction to update the inode as we will |
| 1945 | * update the inode when we finish writing whatever data we write. |
| 1946 | */ |
| 1947 | update_time_for_write(inode); |
| 1948 | |
| 1949 | start_pos = round_down(pos, fs_info->sectorsize); |
| 1950 | oldsize = i_size_read(inode); |
| 1951 | if (start_pos > oldsize) { |
| 1952 | /* Expand hole size to cover write data, preventing empty gap */ |
| 1953 | end_pos = round_up(pos + count, |
| 1954 | fs_info->sectorsize); |
| 1955 | err = btrfs_cont_expand(inode, oldsize, end_pos); |
| 1956 | if (err) { |
| 1957 | inode_unlock(inode); |
| 1958 | goto out; |
| 1959 | } |
| 1960 | if (start_pos > round_up(oldsize, fs_info->sectorsize)) |
| 1961 | clean_page = 1; |
| 1962 | } |
| 1963 | |
| 1964 | if (sync) |
| 1965 | atomic_inc(&BTRFS_I(inode)->sync_writers); |
| 1966 | |
| 1967 | if (iocb->ki_flags & IOCB_DIRECT) { |
| 1968 | num_written = __btrfs_direct_write(iocb, from); |
| 1969 | } else { |
| 1970 | num_written = btrfs_buffered_write(iocb, from); |
| 1971 | if (num_written > 0) |
| 1972 | iocb->ki_pos = pos + num_written; |
| 1973 | if (clean_page) |
| 1974 | pagecache_isize_extended(inode, oldsize, |
| 1975 | i_size_read(inode)); |
| 1976 | } |
| 1977 | |
| 1978 | inode_unlock(inode); |
| 1979 | |
| 1980 | /* |
| 1981 | * We also have to set last_sub_trans to the current log transid, |
| 1982 | * otherwise subsequent syncs to a file that's been synced in this |
| 1983 | * transaction will appear to have already occurred. |
| 1984 | */ |
| 1985 | spin_lock(&BTRFS_I(inode)->lock); |
| 1986 | BTRFS_I(inode)->last_sub_trans = root->log_transid; |
| 1987 | spin_unlock(&BTRFS_I(inode)->lock); |
| 1988 | if (num_written > 0) |
| 1989 | num_written = generic_write_sync(iocb, num_written); |
| 1990 | |
| 1991 | if (sync) |
| 1992 | atomic_dec(&BTRFS_I(inode)->sync_writers); |
| 1993 | out: |
| 1994 | current->backing_dev_info = NULL; |
| 1995 | return num_written ? num_written : err; |
| 1996 | } |
| 1997 | |
| 1998 | int btrfs_release_file(struct inode *inode, struct file *filp) |
| 1999 | { |
| 2000 | struct btrfs_file_private *private = filp->private_data; |
| 2001 | |
| 2002 | if (private && private->filldir_buf) |
| 2003 | kfree(private->filldir_buf); |
| 2004 | kfree(private); |
| 2005 | filp->private_data = NULL; |
| 2006 | |
| 2007 | /* |
| 2008 | * ordered_data_close is set by settattr when we are about to truncate |
| 2009 | * a file from a non-zero size to a zero size. This tries to |
| 2010 | * flush down new bytes that may have been written if the |
| 2011 | * application were using truncate to replace a file in place. |
| 2012 | */ |
| 2013 | if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, |
| 2014 | &BTRFS_I(inode)->runtime_flags)) |
| 2015 | filemap_flush(inode->i_mapping); |
| 2016 | return 0; |
| 2017 | } |
| 2018 | |
| 2019 | static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) |
| 2020 | { |
| 2021 | int ret; |
| 2022 | struct blk_plug plug; |
| 2023 | |
| 2024 | /* |
| 2025 | * This is only called in fsync, which would do synchronous writes, so |
| 2026 | * a plug can merge adjacent IOs as much as possible. Esp. in case of |
| 2027 | * multiple disks using raid profile, a large IO can be split to |
| 2028 | * several segments of stripe length (currently 64K). |
| 2029 | */ |
| 2030 | blk_start_plug(&plug); |
| 2031 | atomic_inc(&BTRFS_I(inode)->sync_writers); |
| 2032 | ret = btrfs_fdatawrite_range(inode, start, end); |
| 2033 | atomic_dec(&BTRFS_I(inode)->sync_writers); |
| 2034 | blk_finish_plug(&plug); |
| 2035 | |
| 2036 | return ret; |
| 2037 | } |
| 2038 | |
| 2039 | /* |
| 2040 | * fsync call for both files and directories. This logs the inode into |
| 2041 | * the tree log instead of forcing full commits whenever possible. |
| 2042 | * |
| 2043 | * It needs to call filemap_fdatawait so that all ordered extent updates are |
| 2044 | * in the metadata btree are up to date for copying to the log. |
| 2045 | * |
| 2046 | * It drops the inode mutex before doing the tree log commit. This is an |
| 2047 | * important optimization for directories because holding the mutex prevents |
| 2048 | * new operations on the dir while we write to disk. |
| 2049 | */ |
| 2050 | int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) |
| 2051 | { |
| 2052 | struct dentry *dentry = file_dentry(file); |
| 2053 | struct inode *inode = d_inode(dentry); |
| 2054 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 2055 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 2056 | struct btrfs_trans_handle *trans; |
| 2057 | struct btrfs_log_ctx ctx; |
| 2058 | int ret = 0, err; |
| 2059 | u64 len; |
| 2060 | |
| 2061 | /* |
| 2062 | * The range length can be represented by u64, we have to do the typecasts |
| 2063 | * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() |
| 2064 | */ |
| 2065 | len = (u64)end - (u64)start + 1; |
| 2066 | trace_btrfs_sync_file(file, datasync); |
| 2067 | |
| 2068 | btrfs_init_log_ctx(&ctx, inode); |
| 2069 | |
| 2070 | /* |
| 2071 | * We write the dirty pages in the range and wait until they complete |
| 2072 | * out of the ->i_mutex. If so, we can flush the dirty pages by |
| 2073 | * multi-task, and make the performance up. See |
| 2074 | * btrfs_wait_ordered_range for an explanation of the ASYNC check. |
| 2075 | */ |
| 2076 | ret = start_ordered_ops(inode, start, end); |
| 2077 | if (ret) |
| 2078 | goto out; |
| 2079 | |
| 2080 | inode_lock(inode); |
| 2081 | |
| 2082 | /* |
| 2083 | * We take the dio_sem here because the tree log stuff can race with |
| 2084 | * lockless dio writes and get an extent map logged for an extent we |
| 2085 | * never waited on. We need it this high up for lockdep reasons. |
| 2086 | */ |
| 2087 | down_write(&BTRFS_I(inode)->dio_sem); |
| 2088 | |
| 2089 | atomic_inc(&root->log_batch); |
| 2090 | |
| 2091 | /* |
| 2092 | * Before we acquired the inode's lock, someone may have dirtied more |
| 2093 | * pages in the target range. We need to make sure that writeback for |
| 2094 | * any such pages does not start while we are logging the inode, because |
| 2095 | * if it does, any of the following might happen when we are not doing a |
| 2096 | * full inode sync: |
| 2097 | * |
| 2098 | * 1) We log an extent after its writeback finishes but before its |
| 2099 | * checksums are added to the csum tree, leading to -EIO errors |
| 2100 | * when attempting to read the extent after a log replay. |
| 2101 | * |
| 2102 | * 2) We can end up logging an extent before its writeback finishes. |
| 2103 | * Therefore after the log replay we will have a file extent item |
| 2104 | * pointing to an unwritten extent (and no data checksums as well). |
| 2105 | * |
| 2106 | * So trigger writeback for any eventual new dirty pages and then we |
| 2107 | * wait for all ordered extents to complete below. |
| 2108 | */ |
| 2109 | ret = start_ordered_ops(inode, start, end); |
| 2110 | if (ret) { |
| 2111 | inode_unlock(inode); |
| 2112 | goto out; |
| 2113 | } |
| 2114 | |
| 2115 | /* |
| 2116 | * We have to do this here to avoid the priority inversion of waiting on |
| 2117 | * IO of a lower priority task while holding a transaciton open. |
| 2118 | */ |
| 2119 | ret = btrfs_wait_ordered_range(inode, start, len); |
| 2120 | if (ret) { |
| 2121 | up_write(&BTRFS_I(inode)->dio_sem); |
| 2122 | inode_unlock(inode); |
| 2123 | goto out; |
| 2124 | } |
| 2125 | atomic_inc(&root->log_batch); |
| 2126 | |
| 2127 | smp_mb(); |
| 2128 | if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || |
| 2129 | BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { |
| 2130 | /* |
| 2131 | * We've had everything committed since the last time we were |
| 2132 | * modified so clear this flag in case it was set for whatever |
| 2133 | * reason, it's no longer relevant. |
| 2134 | */ |
| 2135 | clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| 2136 | &BTRFS_I(inode)->runtime_flags); |
| 2137 | /* |
| 2138 | * An ordered extent might have started before and completed |
| 2139 | * already with io errors, in which case the inode was not |
| 2140 | * updated and we end up here. So check the inode's mapping |
| 2141 | * for any errors that might have happened since we last |
| 2142 | * checked called fsync. |
| 2143 | */ |
| 2144 | ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); |
| 2145 | up_write(&BTRFS_I(inode)->dio_sem); |
| 2146 | inode_unlock(inode); |
| 2147 | goto out; |
| 2148 | } |
| 2149 | |
| 2150 | /* |
| 2151 | * We use start here because we will need to wait on the IO to complete |
| 2152 | * in btrfs_sync_log, which could require joining a transaction (for |
| 2153 | * example checking cross references in the nocow path). If we use join |
| 2154 | * here we could get into a situation where we're waiting on IO to |
| 2155 | * happen that is blocked on a transaction trying to commit. With start |
| 2156 | * we inc the extwriter counter, so we wait for all extwriters to exit |
| 2157 | * before we start blocking join'ers. This comment is to keep somebody |
| 2158 | * from thinking they are super smart and changing this to |
| 2159 | * btrfs_join_transaction *cough*Josef*cough*. |
| 2160 | */ |
| 2161 | trans = btrfs_start_transaction(root, 0); |
| 2162 | if (IS_ERR(trans)) { |
| 2163 | ret = PTR_ERR(trans); |
| 2164 | up_write(&BTRFS_I(inode)->dio_sem); |
| 2165 | inode_unlock(inode); |
| 2166 | goto out; |
| 2167 | } |
| 2168 | trans->sync = true; |
| 2169 | |
| 2170 | ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); |
| 2171 | if (ret < 0) { |
| 2172 | /* Fallthrough and commit/free transaction. */ |
| 2173 | ret = 1; |
| 2174 | } |
| 2175 | |
| 2176 | /* we've logged all the items and now have a consistent |
| 2177 | * version of the file in the log. It is possible that |
| 2178 | * someone will come in and modify the file, but that's |
| 2179 | * fine because the log is consistent on disk, and we |
| 2180 | * have references to all of the file's extents |
| 2181 | * |
| 2182 | * It is possible that someone will come in and log the |
| 2183 | * file again, but that will end up using the synchronization |
| 2184 | * inside btrfs_sync_log to keep things safe. |
| 2185 | */ |
| 2186 | up_write(&BTRFS_I(inode)->dio_sem); |
| 2187 | inode_unlock(inode); |
| 2188 | |
| 2189 | /* |
| 2190 | * If any of the ordered extents had an error, just return it to user |
| 2191 | * space, so that the application knows some writes didn't succeed and |
| 2192 | * can take proper action (retry for e.g.). Blindly committing the |
| 2193 | * transaction in this case, would fool userspace that everything was |
| 2194 | * successful. And we also want to make sure our log doesn't contain |
| 2195 | * file extent items pointing to extents that weren't fully written to - |
| 2196 | * just like in the non fast fsync path, where we check for the ordered |
| 2197 | * operation's error flag before writing to the log tree and return -EIO |
| 2198 | * if any of them had this flag set (btrfs_wait_ordered_range) - |
| 2199 | * therefore we need to check for errors in the ordered operations, |
| 2200 | * which are indicated by ctx.io_err. |
| 2201 | */ |
| 2202 | if (ctx.io_err) { |
| 2203 | btrfs_end_transaction(trans); |
| 2204 | ret = ctx.io_err; |
| 2205 | goto out; |
| 2206 | } |
| 2207 | |
| 2208 | if (ret != BTRFS_NO_LOG_SYNC) { |
| 2209 | if (!ret) { |
| 2210 | ret = btrfs_sync_log(trans, root, &ctx); |
| 2211 | if (!ret) { |
| 2212 | ret = btrfs_end_transaction(trans); |
| 2213 | goto out; |
| 2214 | } |
| 2215 | } |
| 2216 | ret = btrfs_commit_transaction(trans); |
| 2217 | } else { |
| 2218 | ret = btrfs_end_transaction(trans); |
| 2219 | } |
| 2220 | out: |
| 2221 | ASSERT(list_empty(&ctx.list)); |
| 2222 | err = file_check_and_advance_wb_err(file); |
| 2223 | if (!ret) |
| 2224 | ret = err; |
| 2225 | return ret > 0 ? -EIO : ret; |
| 2226 | } |
| 2227 | |
| 2228 | static const struct vm_operations_struct btrfs_file_vm_ops = { |
| 2229 | .fault = filemap_fault, |
| 2230 | .map_pages = filemap_map_pages, |
| 2231 | .page_mkwrite = btrfs_page_mkwrite, |
| 2232 | }; |
| 2233 | |
| 2234 | static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) |
| 2235 | { |
| 2236 | struct address_space *mapping = filp->f_mapping; |
| 2237 | |
| 2238 | if (!mapping->a_ops->readpage) |
| 2239 | return -ENOEXEC; |
| 2240 | |
| 2241 | file_accessed(filp); |
| 2242 | vma->vm_ops = &btrfs_file_vm_ops; |
| 2243 | |
| 2244 | return 0; |
| 2245 | } |
| 2246 | |
| 2247 | static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, |
| 2248 | int slot, u64 start, u64 end) |
| 2249 | { |
| 2250 | struct btrfs_file_extent_item *fi; |
| 2251 | struct btrfs_key key; |
| 2252 | |
| 2253 | if (slot < 0 || slot >= btrfs_header_nritems(leaf)) |
| 2254 | return 0; |
| 2255 | |
| 2256 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 2257 | if (key.objectid != btrfs_ino(inode) || |
| 2258 | key.type != BTRFS_EXTENT_DATA_KEY) |
| 2259 | return 0; |
| 2260 | |
| 2261 | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| 2262 | |
| 2263 | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) |
| 2264 | return 0; |
| 2265 | |
| 2266 | if (btrfs_file_extent_disk_bytenr(leaf, fi)) |
| 2267 | return 0; |
| 2268 | |
| 2269 | if (key.offset == end) |
| 2270 | return 1; |
| 2271 | if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) |
| 2272 | return 1; |
| 2273 | return 0; |
| 2274 | } |
| 2275 | |
| 2276 | static int fill_holes(struct btrfs_trans_handle *trans, |
| 2277 | struct btrfs_inode *inode, |
| 2278 | struct btrfs_path *path, u64 offset, u64 end) |
| 2279 | { |
| 2280 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2281 | struct btrfs_root *root = inode->root; |
| 2282 | struct extent_buffer *leaf; |
| 2283 | struct btrfs_file_extent_item *fi; |
| 2284 | struct extent_map *hole_em; |
| 2285 | struct extent_map_tree *em_tree = &inode->extent_tree; |
| 2286 | struct btrfs_key key; |
| 2287 | int ret; |
| 2288 | |
| 2289 | if (btrfs_fs_incompat(fs_info, NO_HOLES)) |
| 2290 | goto out; |
| 2291 | |
| 2292 | key.objectid = btrfs_ino(inode); |
| 2293 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 2294 | key.offset = offset; |
| 2295 | |
| 2296 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| 2297 | if (ret <= 0) { |
| 2298 | /* |
| 2299 | * We should have dropped this offset, so if we find it then |
| 2300 | * something has gone horribly wrong. |
| 2301 | */ |
| 2302 | if (ret == 0) |
| 2303 | ret = -EINVAL; |
| 2304 | return ret; |
| 2305 | } |
| 2306 | |
| 2307 | leaf = path->nodes[0]; |
| 2308 | if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { |
| 2309 | u64 num_bytes; |
| 2310 | |
| 2311 | path->slots[0]--; |
| 2312 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 2313 | struct btrfs_file_extent_item); |
| 2314 | num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + |
| 2315 | end - offset; |
| 2316 | btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); |
| 2317 | btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); |
| 2318 | btrfs_set_file_extent_offset(leaf, fi, 0); |
| 2319 | btrfs_mark_buffer_dirty(leaf); |
| 2320 | goto out; |
| 2321 | } |
| 2322 | |
| 2323 | if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { |
| 2324 | u64 num_bytes; |
| 2325 | |
| 2326 | key.offset = offset; |
| 2327 | btrfs_set_item_key_safe(fs_info, path, &key); |
| 2328 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 2329 | struct btrfs_file_extent_item); |
| 2330 | num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - |
| 2331 | offset; |
| 2332 | btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); |
| 2333 | btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); |
| 2334 | btrfs_set_file_extent_offset(leaf, fi, 0); |
| 2335 | btrfs_mark_buffer_dirty(leaf); |
| 2336 | goto out; |
| 2337 | } |
| 2338 | btrfs_release_path(path); |
| 2339 | |
| 2340 | ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), |
| 2341 | offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); |
| 2342 | if (ret) |
| 2343 | return ret; |
| 2344 | |
| 2345 | out: |
| 2346 | btrfs_release_path(path); |
| 2347 | |
| 2348 | hole_em = alloc_extent_map(); |
| 2349 | if (!hole_em) { |
| 2350 | btrfs_drop_extent_cache(inode, offset, end - 1, 0); |
| 2351 | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); |
| 2352 | } else { |
| 2353 | hole_em->start = offset; |
| 2354 | hole_em->len = end - offset; |
| 2355 | hole_em->ram_bytes = hole_em->len; |
| 2356 | hole_em->orig_start = offset; |
| 2357 | |
| 2358 | hole_em->block_start = EXTENT_MAP_HOLE; |
| 2359 | hole_em->block_len = 0; |
| 2360 | hole_em->orig_block_len = 0; |
| 2361 | hole_em->bdev = fs_info->fs_devices->latest_bdev; |
| 2362 | hole_em->compress_type = BTRFS_COMPRESS_NONE; |
| 2363 | hole_em->generation = trans->transid; |
| 2364 | |
| 2365 | do { |
| 2366 | btrfs_drop_extent_cache(inode, offset, end - 1, 0); |
| 2367 | write_lock(&em_tree->lock); |
| 2368 | ret = add_extent_mapping(em_tree, hole_em, 1); |
| 2369 | write_unlock(&em_tree->lock); |
| 2370 | } while (ret == -EEXIST); |
| 2371 | free_extent_map(hole_em); |
| 2372 | if (ret) |
| 2373 | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| 2374 | &inode->runtime_flags); |
| 2375 | } |
| 2376 | |
| 2377 | return 0; |
| 2378 | } |
| 2379 | |
| 2380 | /* |
| 2381 | * Find a hole extent on given inode and change start/len to the end of hole |
| 2382 | * extent.(hole/vacuum extent whose em->start <= start && |
| 2383 | * em->start + em->len > start) |
| 2384 | * When a hole extent is found, return 1 and modify start/len. |
| 2385 | */ |
| 2386 | static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) |
| 2387 | { |
| 2388 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 2389 | struct extent_map *em; |
| 2390 | int ret = 0; |
| 2391 | |
| 2392 | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, |
| 2393 | round_down(*start, fs_info->sectorsize), |
| 2394 | round_up(*len, fs_info->sectorsize), 0); |
| 2395 | if (IS_ERR(em)) |
| 2396 | return PTR_ERR(em); |
| 2397 | |
| 2398 | /* Hole or vacuum extent(only exists in no-hole mode) */ |
| 2399 | if (em->block_start == EXTENT_MAP_HOLE) { |
| 2400 | ret = 1; |
| 2401 | *len = em->start + em->len > *start + *len ? |
| 2402 | 0 : *start + *len - em->start - em->len; |
| 2403 | *start = em->start + em->len; |
| 2404 | } |
| 2405 | free_extent_map(em); |
| 2406 | return ret; |
| 2407 | } |
| 2408 | |
| 2409 | static int btrfs_punch_hole_lock_range(struct inode *inode, |
| 2410 | const u64 lockstart, |
| 2411 | const u64 lockend, |
| 2412 | struct extent_state **cached_state) |
| 2413 | { |
| 2414 | while (1) { |
| 2415 | struct btrfs_ordered_extent *ordered; |
| 2416 | int ret; |
| 2417 | |
| 2418 | truncate_pagecache_range(inode, lockstart, lockend); |
| 2419 | |
| 2420 | lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| 2421 | cached_state); |
| 2422 | ordered = btrfs_lookup_first_ordered_extent(inode, lockend); |
| 2423 | |
| 2424 | /* |
| 2425 | * We need to make sure we have no ordered extents in this range |
| 2426 | * and nobody raced in and read a page in this range, if we did |
| 2427 | * we need to try again. |
| 2428 | */ |
| 2429 | if ((!ordered || |
| 2430 | (ordered->file_offset + ordered->len <= lockstart || |
| 2431 | ordered->file_offset > lockend)) && |
| 2432 | !filemap_range_has_page(inode->i_mapping, |
| 2433 | lockstart, lockend)) { |
| 2434 | if (ordered) |
| 2435 | btrfs_put_ordered_extent(ordered); |
| 2436 | break; |
| 2437 | } |
| 2438 | if (ordered) |
| 2439 | btrfs_put_ordered_extent(ordered); |
| 2440 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, |
| 2441 | lockend, cached_state); |
| 2442 | ret = btrfs_wait_ordered_range(inode, lockstart, |
| 2443 | lockend - lockstart + 1); |
| 2444 | if (ret) |
| 2445 | return ret; |
| 2446 | } |
| 2447 | return 0; |
| 2448 | } |
| 2449 | |
| 2450 | static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) |
| 2451 | { |
| 2452 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 2453 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 2454 | struct extent_state *cached_state = NULL; |
| 2455 | struct btrfs_path *path; |
| 2456 | struct btrfs_block_rsv *rsv; |
| 2457 | struct btrfs_trans_handle *trans; |
| 2458 | u64 lockstart; |
| 2459 | u64 lockend; |
| 2460 | u64 tail_start; |
| 2461 | u64 tail_len; |
| 2462 | u64 orig_start = offset; |
| 2463 | u64 cur_offset; |
| 2464 | u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); |
| 2465 | u64 drop_end; |
| 2466 | int ret = 0; |
| 2467 | int err = 0; |
| 2468 | unsigned int rsv_count; |
| 2469 | bool same_block; |
| 2470 | bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); |
| 2471 | u64 ino_size; |
| 2472 | bool truncated_block = false; |
| 2473 | bool updated_inode = false; |
| 2474 | |
| 2475 | ret = btrfs_wait_ordered_range(inode, offset, len); |
| 2476 | if (ret) |
| 2477 | return ret; |
| 2478 | |
| 2479 | inode_lock(inode); |
| 2480 | ino_size = round_up(inode->i_size, fs_info->sectorsize); |
| 2481 | ret = find_first_non_hole(inode, &offset, &len); |
| 2482 | if (ret < 0) |
| 2483 | goto out_only_mutex; |
| 2484 | if (ret && !len) { |
| 2485 | /* Already in a large hole */ |
| 2486 | ret = 0; |
| 2487 | goto out_only_mutex; |
| 2488 | } |
| 2489 | |
| 2490 | lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); |
| 2491 | lockend = round_down(offset + len, |
| 2492 | btrfs_inode_sectorsize(inode)) - 1; |
| 2493 | same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) |
| 2494 | == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); |
| 2495 | /* |
| 2496 | * We needn't truncate any block which is beyond the end of the file |
| 2497 | * because we are sure there is no data there. |
| 2498 | */ |
| 2499 | /* |
| 2500 | * Only do this if we are in the same block and we aren't doing the |
| 2501 | * entire block. |
| 2502 | */ |
| 2503 | if (same_block && len < fs_info->sectorsize) { |
| 2504 | if (offset < ino_size) { |
| 2505 | truncated_block = true; |
| 2506 | ret = btrfs_truncate_block(inode, offset, len, 0); |
| 2507 | } else { |
| 2508 | ret = 0; |
| 2509 | } |
| 2510 | goto out_only_mutex; |
| 2511 | } |
| 2512 | |
| 2513 | /* zero back part of the first block */ |
| 2514 | if (offset < ino_size) { |
| 2515 | truncated_block = true; |
| 2516 | ret = btrfs_truncate_block(inode, offset, 0, 0); |
| 2517 | if (ret) { |
| 2518 | inode_unlock(inode); |
| 2519 | return ret; |
| 2520 | } |
| 2521 | } |
| 2522 | |
| 2523 | /* Check the aligned pages after the first unaligned page, |
| 2524 | * if offset != orig_start, which means the first unaligned page |
| 2525 | * including several following pages are already in holes, |
| 2526 | * the extra check can be skipped */ |
| 2527 | if (offset == orig_start) { |
| 2528 | /* after truncate page, check hole again */ |
| 2529 | len = offset + len - lockstart; |
| 2530 | offset = lockstart; |
| 2531 | ret = find_first_non_hole(inode, &offset, &len); |
| 2532 | if (ret < 0) |
| 2533 | goto out_only_mutex; |
| 2534 | if (ret && !len) { |
| 2535 | ret = 0; |
| 2536 | goto out_only_mutex; |
| 2537 | } |
| 2538 | lockstart = offset; |
| 2539 | } |
| 2540 | |
| 2541 | /* Check the tail unaligned part is in a hole */ |
| 2542 | tail_start = lockend + 1; |
| 2543 | tail_len = offset + len - tail_start; |
| 2544 | if (tail_len) { |
| 2545 | ret = find_first_non_hole(inode, &tail_start, &tail_len); |
| 2546 | if (unlikely(ret < 0)) |
| 2547 | goto out_only_mutex; |
| 2548 | if (!ret) { |
| 2549 | /* zero the front end of the last page */ |
| 2550 | if (tail_start + tail_len < ino_size) { |
| 2551 | truncated_block = true; |
| 2552 | ret = btrfs_truncate_block(inode, |
| 2553 | tail_start + tail_len, |
| 2554 | 0, 1); |
| 2555 | if (ret) |
| 2556 | goto out_only_mutex; |
| 2557 | } |
| 2558 | } |
| 2559 | } |
| 2560 | |
| 2561 | if (lockend < lockstart) { |
| 2562 | ret = 0; |
| 2563 | goto out_only_mutex; |
| 2564 | } |
| 2565 | |
| 2566 | ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, |
| 2567 | &cached_state); |
| 2568 | if (ret) { |
| 2569 | inode_unlock(inode); |
| 2570 | goto out_only_mutex; |
| 2571 | } |
| 2572 | |
| 2573 | path = btrfs_alloc_path(); |
| 2574 | if (!path) { |
| 2575 | ret = -ENOMEM; |
| 2576 | goto out; |
| 2577 | } |
| 2578 | |
| 2579 | rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); |
| 2580 | if (!rsv) { |
| 2581 | ret = -ENOMEM; |
| 2582 | goto out_free; |
| 2583 | } |
| 2584 | rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); |
| 2585 | rsv->failfast = 1; |
| 2586 | |
| 2587 | /* |
| 2588 | * 1 - update the inode |
| 2589 | * 1 - removing the extents in the range |
| 2590 | * 1 - adding the hole extent if no_holes isn't set |
| 2591 | */ |
| 2592 | rsv_count = no_holes ? 2 : 3; |
| 2593 | trans = btrfs_start_transaction(root, rsv_count); |
| 2594 | if (IS_ERR(trans)) { |
| 2595 | err = PTR_ERR(trans); |
| 2596 | goto out_free; |
| 2597 | } |
| 2598 | |
| 2599 | ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, |
| 2600 | min_size, 0); |
| 2601 | BUG_ON(ret); |
| 2602 | trans->block_rsv = rsv; |
| 2603 | |
| 2604 | cur_offset = lockstart; |
| 2605 | len = lockend - cur_offset; |
| 2606 | while (cur_offset < lockend) { |
| 2607 | ret = __btrfs_drop_extents(trans, root, inode, path, |
| 2608 | cur_offset, lockend + 1, |
| 2609 | &drop_end, 1, 0, 0, NULL); |
| 2610 | if (ret != -ENOSPC) |
| 2611 | break; |
| 2612 | |
| 2613 | trans->block_rsv = &fs_info->trans_block_rsv; |
| 2614 | |
| 2615 | if (cur_offset < drop_end && cur_offset < ino_size) { |
| 2616 | ret = fill_holes(trans, BTRFS_I(inode), path, |
| 2617 | cur_offset, drop_end); |
| 2618 | if (ret) { |
| 2619 | /* |
| 2620 | * If we failed then we didn't insert our hole |
| 2621 | * entries for the area we dropped, so now the |
| 2622 | * fs is corrupted, so we must abort the |
| 2623 | * transaction. |
| 2624 | */ |
| 2625 | btrfs_abort_transaction(trans, ret); |
| 2626 | err = ret; |
| 2627 | break; |
| 2628 | } |
| 2629 | } |
| 2630 | |
| 2631 | cur_offset = drop_end; |
| 2632 | |
| 2633 | ret = btrfs_update_inode(trans, root, inode); |
| 2634 | if (ret) { |
| 2635 | err = ret; |
| 2636 | break; |
| 2637 | } |
| 2638 | |
| 2639 | btrfs_end_transaction(trans); |
| 2640 | btrfs_btree_balance_dirty(fs_info); |
| 2641 | |
| 2642 | trans = btrfs_start_transaction(root, rsv_count); |
| 2643 | if (IS_ERR(trans)) { |
| 2644 | ret = PTR_ERR(trans); |
| 2645 | trans = NULL; |
| 2646 | break; |
| 2647 | } |
| 2648 | |
| 2649 | ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, |
| 2650 | rsv, min_size, 0); |
| 2651 | BUG_ON(ret); /* shouldn't happen */ |
| 2652 | trans->block_rsv = rsv; |
| 2653 | |
| 2654 | ret = find_first_non_hole(inode, &cur_offset, &len); |
| 2655 | if (unlikely(ret < 0)) |
| 2656 | break; |
| 2657 | if (ret && !len) { |
| 2658 | ret = 0; |
| 2659 | break; |
| 2660 | } |
| 2661 | } |
| 2662 | |
| 2663 | if (ret) { |
| 2664 | err = ret; |
| 2665 | goto out_trans; |
| 2666 | } |
| 2667 | |
| 2668 | trans->block_rsv = &fs_info->trans_block_rsv; |
| 2669 | /* |
| 2670 | * If we are using the NO_HOLES feature we might have had already an |
| 2671 | * hole that overlaps a part of the region [lockstart, lockend] and |
| 2672 | * ends at (or beyond) lockend. Since we have no file extent items to |
| 2673 | * represent holes, drop_end can be less than lockend and so we must |
| 2674 | * make sure we have an extent map representing the existing hole (the |
| 2675 | * call to __btrfs_drop_extents() might have dropped the existing extent |
| 2676 | * map representing the existing hole), otherwise the fast fsync path |
| 2677 | * will not record the existence of the hole region |
| 2678 | * [existing_hole_start, lockend]. |
| 2679 | */ |
| 2680 | if (drop_end <= lockend) |
| 2681 | drop_end = lockend + 1; |
| 2682 | /* |
| 2683 | * Don't insert file hole extent item if it's for a range beyond eof |
| 2684 | * (because it's useless) or if it represents a 0 bytes range (when |
| 2685 | * cur_offset == drop_end). |
| 2686 | */ |
| 2687 | if (cur_offset < ino_size && cur_offset < drop_end) { |
| 2688 | ret = fill_holes(trans, BTRFS_I(inode), path, |
| 2689 | cur_offset, drop_end); |
| 2690 | if (ret) { |
| 2691 | /* Same comment as above. */ |
| 2692 | btrfs_abort_transaction(trans, ret); |
| 2693 | err = ret; |
| 2694 | goto out_trans; |
| 2695 | } |
| 2696 | } |
| 2697 | |
| 2698 | out_trans: |
| 2699 | if (!trans) |
| 2700 | goto out_free; |
| 2701 | |
| 2702 | inode_inc_iversion(inode); |
| 2703 | inode->i_mtime = inode->i_ctime = current_time(inode); |
| 2704 | |
| 2705 | trans->block_rsv = &fs_info->trans_block_rsv; |
| 2706 | ret = btrfs_update_inode(trans, root, inode); |
| 2707 | updated_inode = true; |
| 2708 | btrfs_end_transaction(trans); |
| 2709 | btrfs_btree_balance_dirty(fs_info); |
| 2710 | out_free: |
| 2711 | btrfs_free_path(path); |
| 2712 | btrfs_free_block_rsv(fs_info, rsv); |
| 2713 | out: |
| 2714 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| 2715 | &cached_state); |
| 2716 | out_only_mutex: |
| 2717 | if (!updated_inode && truncated_block && !ret && !err) { |
| 2718 | /* |
| 2719 | * If we only end up zeroing part of a page, we still need to |
| 2720 | * update the inode item, so that all the time fields are |
| 2721 | * updated as well as the necessary btrfs inode in memory fields |
| 2722 | * for detecting, at fsync time, if the inode isn't yet in the |
| 2723 | * log tree or it's there but not up to date. |
| 2724 | */ |
| 2725 | trans = btrfs_start_transaction(root, 1); |
| 2726 | if (IS_ERR(trans)) { |
| 2727 | err = PTR_ERR(trans); |
| 2728 | } else { |
| 2729 | err = btrfs_update_inode(trans, root, inode); |
| 2730 | ret = btrfs_end_transaction(trans); |
| 2731 | } |
| 2732 | } |
| 2733 | inode_unlock(inode); |
| 2734 | if (ret && !err) |
| 2735 | err = ret; |
| 2736 | return err; |
| 2737 | } |
| 2738 | |
| 2739 | /* Helper structure to record which range is already reserved */ |
| 2740 | struct falloc_range { |
| 2741 | struct list_head list; |
| 2742 | u64 start; |
| 2743 | u64 len; |
| 2744 | }; |
| 2745 | |
| 2746 | /* |
| 2747 | * Helper function to add falloc range |
| 2748 | * |
| 2749 | * Caller should have locked the larger range of extent containing |
| 2750 | * [start, len) |
| 2751 | */ |
| 2752 | static int add_falloc_range(struct list_head *head, u64 start, u64 len) |
| 2753 | { |
| 2754 | struct falloc_range *prev = NULL; |
| 2755 | struct falloc_range *range = NULL; |
| 2756 | |
| 2757 | if (list_empty(head)) |
| 2758 | goto insert; |
| 2759 | |
| 2760 | /* |
| 2761 | * As fallocate iterate by bytenr order, we only need to check |
| 2762 | * the last range. |
| 2763 | */ |
| 2764 | prev = list_entry(head->prev, struct falloc_range, list); |
| 2765 | if (prev->start + prev->len == start) { |
| 2766 | prev->len += len; |
| 2767 | return 0; |
| 2768 | } |
| 2769 | insert: |
| 2770 | range = kmalloc(sizeof(*range), GFP_KERNEL); |
| 2771 | if (!range) |
| 2772 | return -ENOMEM; |
| 2773 | range->start = start; |
| 2774 | range->len = len; |
| 2775 | list_add_tail(&range->list, head); |
| 2776 | return 0; |
| 2777 | } |
| 2778 | |
| 2779 | static int btrfs_fallocate_update_isize(struct inode *inode, |
| 2780 | const u64 end, |
| 2781 | const int mode) |
| 2782 | { |
| 2783 | struct btrfs_trans_handle *trans; |
| 2784 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 2785 | int ret; |
| 2786 | int ret2; |
| 2787 | |
| 2788 | if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) |
| 2789 | return 0; |
| 2790 | |
| 2791 | trans = btrfs_start_transaction(root, 1); |
| 2792 | if (IS_ERR(trans)) |
| 2793 | return PTR_ERR(trans); |
| 2794 | |
| 2795 | inode->i_ctime = current_time(inode); |
| 2796 | i_size_write(inode, end); |
| 2797 | btrfs_ordered_update_i_size(inode, end, NULL); |
| 2798 | ret = btrfs_update_inode(trans, root, inode); |
| 2799 | ret2 = btrfs_end_transaction(trans); |
| 2800 | |
| 2801 | return ret ? ret : ret2; |
| 2802 | } |
| 2803 | |
| 2804 | enum { |
| 2805 | RANGE_BOUNDARY_WRITTEN_EXTENT = 0, |
| 2806 | RANGE_BOUNDARY_PREALLOC_EXTENT = 1, |
| 2807 | RANGE_BOUNDARY_HOLE = 2, |
| 2808 | }; |
| 2809 | |
| 2810 | static int btrfs_zero_range_check_range_boundary(struct inode *inode, |
| 2811 | u64 offset) |
| 2812 | { |
| 2813 | const u64 sectorsize = btrfs_inode_sectorsize(inode); |
| 2814 | struct extent_map *em; |
| 2815 | int ret; |
| 2816 | |
| 2817 | offset = round_down(offset, sectorsize); |
| 2818 | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); |
| 2819 | if (IS_ERR(em)) |
| 2820 | return PTR_ERR(em); |
| 2821 | |
| 2822 | if (em->block_start == EXTENT_MAP_HOLE) |
| 2823 | ret = RANGE_BOUNDARY_HOLE; |
| 2824 | else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| 2825 | ret = RANGE_BOUNDARY_PREALLOC_EXTENT; |
| 2826 | else |
| 2827 | ret = RANGE_BOUNDARY_WRITTEN_EXTENT; |
| 2828 | |
| 2829 | free_extent_map(em); |
| 2830 | return ret; |
| 2831 | } |
| 2832 | |
| 2833 | static int btrfs_zero_range(struct inode *inode, |
| 2834 | loff_t offset, |
| 2835 | loff_t len, |
| 2836 | const int mode) |
| 2837 | { |
| 2838 | struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| 2839 | struct extent_map *em; |
| 2840 | struct extent_changeset *data_reserved = NULL; |
| 2841 | int ret; |
| 2842 | u64 alloc_hint = 0; |
| 2843 | const u64 sectorsize = btrfs_inode_sectorsize(inode); |
| 2844 | u64 alloc_start = round_down(offset, sectorsize); |
| 2845 | u64 alloc_end = round_up(offset + len, sectorsize); |
| 2846 | u64 bytes_to_reserve = 0; |
| 2847 | bool space_reserved = false; |
| 2848 | |
| 2849 | inode_dio_wait(inode); |
| 2850 | |
| 2851 | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, |
| 2852 | alloc_start, alloc_end - alloc_start, 0); |
| 2853 | if (IS_ERR(em)) { |
| 2854 | ret = PTR_ERR(em); |
| 2855 | goto out; |
| 2856 | } |
| 2857 | |
| 2858 | /* |
| 2859 | * Avoid hole punching and extent allocation for some cases. More cases |
| 2860 | * could be considered, but these are unlikely common and we keep things |
| 2861 | * as simple as possible for now. Also, intentionally, if the target |
| 2862 | * range contains one or more prealloc extents together with regular |
| 2863 | * extents and holes, we drop all the existing extents and allocate a |
| 2864 | * new prealloc extent, so that we get a larger contiguous disk extent. |
| 2865 | */ |
| 2866 | if (em->start <= alloc_start && |
| 2867 | test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { |
| 2868 | const u64 em_end = em->start + em->len; |
| 2869 | |
| 2870 | if (em_end >= offset + len) { |
| 2871 | /* |
| 2872 | * The whole range is already a prealloc extent, |
| 2873 | * do nothing except updating the inode's i_size if |
| 2874 | * needed. |
| 2875 | */ |
| 2876 | free_extent_map(em); |
| 2877 | ret = btrfs_fallocate_update_isize(inode, offset + len, |
| 2878 | mode); |
| 2879 | goto out; |
| 2880 | } |
| 2881 | /* |
| 2882 | * Part of the range is already a prealloc extent, so operate |
| 2883 | * only on the remaining part of the range. |
| 2884 | */ |
| 2885 | alloc_start = em_end; |
| 2886 | ASSERT(IS_ALIGNED(alloc_start, sectorsize)); |
| 2887 | len = offset + len - alloc_start; |
| 2888 | offset = alloc_start; |
| 2889 | alloc_hint = em->block_start + em->len; |
| 2890 | } |
| 2891 | free_extent_map(em); |
| 2892 | |
| 2893 | if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == |
| 2894 | BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { |
| 2895 | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, |
| 2896 | alloc_start, sectorsize, 0); |
| 2897 | if (IS_ERR(em)) { |
| 2898 | ret = PTR_ERR(em); |
| 2899 | goto out; |
| 2900 | } |
| 2901 | |
| 2902 | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { |
| 2903 | free_extent_map(em); |
| 2904 | ret = btrfs_fallocate_update_isize(inode, offset + len, |
| 2905 | mode); |
| 2906 | goto out; |
| 2907 | } |
| 2908 | if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { |
| 2909 | free_extent_map(em); |
| 2910 | ret = btrfs_truncate_block(inode, offset, len, 0); |
| 2911 | if (!ret) |
| 2912 | ret = btrfs_fallocate_update_isize(inode, |
| 2913 | offset + len, |
| 2914 | mode); |
| 2915 | return ret; |
| 2916 | } |
| 2917 | free_extent_map(em); |
| 2918 | alloc_start = round_down(offset, sectorsize); |
| 2919 | alloc_end = alloc_start + sectorsize; |
| 2920 | goto reserve_space; |
| 2921 | } |
| 2922 | |
| 2923 | alloc_start = round_up(offset, sectorsize); |
| 2924 | alloc_end = round_down(offset + len, sectorsize); |
| 2925 | |
| 2926 | /* |
| 2927 | * For unaligned ranges, check the pages at the boundaries, they might |
| 2928 | * map to an extent, in which case we need to partially zero them, or |
| 2929 | * they might map to a hole, in which case we need our allocation range |
| 2930 | * to cover them. |
| 2931 | */ |
| 2932 | if (!IS_ALIGNED(offset, sectorsize)) { |
| 2933 | ret = btrfs_zero_range_check_range_boundary(inode, offset); |
| 2934 | if (ret < 0) |
| 2935 | goto out; |
| 2936 | if (ret == RANGE_BOUNDARY_HOLE) { |
| 2937 | alloc_start = round_down(offset, sectorsize); |
| 2938 | ret = 0; |
| 2939 | } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { |
| 2940 | ret = btrfs_truncate_block(inode, offset, 0, 0); |
| 2941 | if (ret) |
| 2942 | goto out; |
| 2943 | } else { |
| 2944 | ret = 0; |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | if (!IS_ALIGNED(offset + len, sectorsize)) { |
| 2949 | ret = btrfs_zero_range_check_range_boundary(inode, |
| 2950 | offset + len); |
| 2951 | if (ret < 0) |
| 2952 | goto out; |
| 2953 | if (ret == RANGE_BOUNDARY_HOLE) { |
| 2954 | alloc_end = round_up(offset + len, sectorsize); |
| 2955 | ret = 0; |
| 2956 | } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { |
| 2957 | ret = btrfs_truncate_block(inode, offset + len, 0, 1); |
| 2958 | if (ret) |
| 2959 | goto out; |
| 2960 | } else { |
| 2961 | ret = 0; |
| 2962 | } |
| 2963 | } |
| 2964 | |
| 2965 | reserve_space: |
| 2966 | if (alloc_start < alloc_end) { |
| 2967 | struct extent_state *cached_state = NULL; |
| 2968 | const u64 lockstart = alloc_start; |
| 2969 | const u64 lockend = alloc_end - 1; |
| 2970 | |
| 2971 | bytes_to_reserve = alloc_end - alloc_start; |
| 2972 | ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), |
| 2973 | bytes_to_reserve); |
| 2974 | if (ret < 0) |
| 2975 | goto out; |
| 2976 | space_reserved = true; |
| 2977 | ret = btrfs_qgroup_reserve_data(inode, &data_reserved, |
| 2978 | alloc_start, bytes_to_reserve); |
| 2979 | if (ret) |
| 2980 | goto out; |
| 2981 | ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, |
| 2982 | &cached_state); |
| 2983 | if (ret) |
| 2984 | goto out; |
| 2985 | ret = btrfs_prealloc_file_range(inode, mode, alloc_start, |
| 2986 | alloc_end - alloc_start, |
| 2987 | i_blocksize(inode), |
| 2988 | offset + len, &alloc_hint); |
| 2989 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, |
| 2990 | lockend, &cached_state); |
| 2991 | /* btrfs_prealloc_file_range releases reserved space on error */ |
| 2992 | if (ret) { |
| 2993 | space_reserved = false; |
| 2994 | goto out; |
| 2995 | } |
| 2996 | } |
| 2997 | ret = btrfs_fallocate_update_isize(inode, offset + len, mode); |
| 2998 | out: |
| 2999 | if (ret && space_reserved) |
| 3000 | btrfs_free_reserved_data_space(inode, data_reserved, |
| 3001 | alloc_start, bytes_to_reserve); |
| 3002 | extent_changeset_free(data_reserved); |
| 3003 | |
| 3004 | return ret; |
| 3005 | } |
| 3006 | |
| 3007 | static long btrfs_fallocate(struct file *file, int mode, |
| 3008 | loff_t offset, loff_t len) |
| 3009 | { |
| 3010 | struct inode *inode = file_inode(file); |
| 3011 | struct extent_state *cached_state = NULL; |
| 3012 | struct extent_changeset *data_reserved = NULL; |
| 3013 | struct falloc_range *range; |
| 3014 | struct falloc_range *tmp; |
| 3015 | struct list_head reserve_list; |
| 3016 | u64 cur_offset; |
| 3017 | u64 last_byte; |
| 3018 | u64 alloc_start; |
| 3019 | u64 alloc_end; |
| 3020 | u64 alloc_hint = 0; |
| 3021 | u64 locked_end; |
| 3022 | u64 actual_end = 0; |
| 3023 | struct extent_map *em; |
| 3024 | int blocksize = btrfs_inode_sectorsize(inode); |
| 3025 | int ret; |
| 3026 | |
| 3027 | alloc_start = round_down(offset, blocksize); |
| 3028 | alloc_end = round_up(offset + len, blocksize); |
| 3029 | cur_offset = alloc_start; |
| 3030 | |
| 3031 | /* Make sure we aren't being give some crap mode */ |
| 3032 | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | |
| 3033 | FALLOC_FL_ZERO_RANGE)) |
| 3034 | return -EOPNOTSUPP; |
| 3035 | |
| 3036 | if (mode & FALLOC_FL_PUNCH_HOLE) |
| 3037 | return btrfs_punch_hole(inode, offset, len); |
| 3038 | |
| 3039 | /* |
| 3040 | * Only trigger disk allocation, don't trigger qgroup reserve |
| 3041 | * |
| 3042 | * For qgroup space, it will be checked later. |
| 3043 | */ |
| 3044 | if (!(mode & FALLOC_FL_ZERO_RANGE)) { |
| 3045 | ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), |
| 3046 | alloc_end - alloc_start); |
| 3047 | if (ret < 0) |
| 3048 | return ret; |
| 3049 | } |
| 3050 | |
| 3051 | inode_lock(inode); |
| 3052 | |
| 3053 | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { |
| 3054 | ret = inode_newsize_ok(inode, offset + len); |
| 3055 | if (ret) |
| 3056 | goto out; |
| 3057 | } |
| 3058 | |
| 3059 | /* |
| 3060 | * TODO: Move these two operations after we have checked |
| 3061 | * accurate reserved space, or fallocate can still fail but |
| 3062 | * with page truncated or size expanded. |
| 3063 | * |
| 3064 | * But that's a minor problem and won't do much harm BTW. |
| 3065 | */ |
| 3066 | if (alloc_start > inode->i_size) { |
| 3067 | ret = btrfs_cont_expand(inode, i_size_read(inode), |
| 3068 | alloc_start); |
| 3069 | if (ret) |
| 3070 | goto out; |
| 3071 | } else if (offset + len > inode->i_size) { |
| 3072 | /* |
| 3073 | * If we are fallocating from the end of the file onward we |
| 3074 | * need to zero out the end of the block if i_size lands in the |
| 3075 | * middle of a block. |
| 3076 | */ |
| 3077 | ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); |
| 3078 | if (ret) |
| 3079 | goto out; |
| 3080 | } |
| 3081 | |
| 3082 | /* |
| 3083 | * wait for ordered IO before we have any locks. We'll loop again |
| 3084 | * below with the locks held. |
| 3085 | */ |
| 3086 | ret = btrfs_wait_ordered_range(inode, alloc_start, |
| 3087 | alloc_end - alloc_start); |
| 3088 | if (ret) |
| 3089 | goto out; |
| 3090 | |
| 3091 | if (mode & FALLOC_FL_ZERO_RANGE) { |
| 3092 | ret = btrfs_zero_range(inode, offset, len, mode); |
| 3093 | inode_unlock(inode); |
| 3094 | return ret; |
| 3095 | } |
| 3096 | |
| 3097 | locked_end = alloc_end - 1; |
| 3098 | while (1) { |
| 3099 | struct btrfs_ordered_extent *ordered; |
| 3100 | |
| 3101 | /* the extent lock is ordered inside the running |
| 3102 | * transaction |
| 3103 | */ |
| 3104 | lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, |
| 3105 | locked_end, &cached_state); |
| 3106 | ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); |
| 3107 | |
| 3108 | if (ordered && |
| 3109 | ordered->file_offset + ordered->len > alloc_start && |
| 3110 | ordered->file_offset < alloc_end) { |
| 3111 | btrfs_put_ordered_extent(ordered); |
| 3112 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, |
| 3113 | alloc_start, locked_end, |
| 3114 | &cached_state); |
| 3115 | /* |
| 3116 | * we can't wait on the range with the transaction |
| 3117 | * running or with the extent lock held |
| 3118 | */ |
| 3119 | ret = btrfs_wait_ordered_range(inode, alloc_start, |
| 3120 | alloc_end - alloc_start); |
| 3121 | if (ret) |
| 3122 | goto out; |
| 3123 | } else { |
| 3124 | if (ordered) |
| 3125 | btrfs_put_ordered_extent(ordered); |
| 3126 | break; |
| 3127 | } |
| 3128 | } |
| 3129 | |
| 3130 | /* First, check if we exceed the qgroup limit */ |
| 3131 | INIT_LIST_HEAD(&reserve_list); |
| 3132 | while (cur_offset < alloc_end) { |
| 3133 | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, |
| 3134 | alloc_end - cur_offset, 0); |
| 3135 | if (IS_ERR(em)) { |
| 3136 | ret = PTR_ERR(em); |
| 3137 | break; |
| 3138 | } |
| 3139 | last_byte = min(extent_map_end(em), alloc_end); |
| 3140 | actual_end = min_t(u64, extent_map_end(em), offset + len); |
| 3141 | last_byte = ALIGN(last_byte, blocksize); |
| 3142 | if (em->block_start == EXTENT_MAP_HOLE || |
| 3143 | (cur_offset >= inode->i_size && |
| 3144 | !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { |
| 3145 | ret = add_falloc_range(&reserve_list, cur_offset, |
| 3146 | last_byte - cur_offset); |
| 3147 | if (ret < 0) { |
| 3148 | free_extent_map(em); |
| 3149 | break; |
| 3150 | } |
| 3151 | ret = btrfs_qgroup_reserve_data(inode, &data_reserved, |
| 3152 | cur_offset, last_byte - cur_offset); |
| 3153 | if (ret < 0) { |
| 3154 | free_extent_map(em); |
| 3155 | break; |
| 3156 | } |
| 3157 | } else { |
| 3158 | /* |
| 3159 | * Do not need to reserve unwritten extent for this |
| 3160 | * range, free reserved data space first, otherwise |
| 3161 | * it'll result in false ENOSPC error. |
| 3162 | */ |
| 3163 | btrfs_free_reserved_data_space(inode, data_reserved, |
| 3164 | cur_offset, last_byte - cur_offset); |
| 3165 | } |
| 3166 | free_extent_map(em); |
| 3167 | cur_offset = last_byte; |
| 3168 | } |
| 3169 | |
| 3170 | /* |
| 3171 | * If ret is still 0, means we're OK to fallocate. |
| 3172 | * Or just cleanup the list and exit. |
| 3173 | */ |
| 3174 | list_for_each_entry_safe(range, tmp, &reserve_list, list) { |
| 3175 | if (!ret) |
| 3176 | ret = btrfs_prealloc_file_range(inode, mode, |
| 3177 | range->start, |
| 3178 | range->len, i_blocksize(inode), |
| 3179 | offset + len, &alloc_hint); |
| 3180 | else |
| 3181 | btrfs_free_reserved_data_space(inode, |
| 3182 | data_reserved, range->start, |
| 3183 | range->len); |
| 3184 | list_del(&range->list); |
| 3185 | kfree(range); |
| 3186 | } |
| 3187 | if (ret < 0) |
| 3188 | goto out_unlock; |
| 3189 | |
| 3190 | /* |
| 3191 | * We didn't need to allocate any more space, but we still extended the |
| 3192 | * size of the file so we need to update i_size and the inode item. |
| 3193 | */ |
| 3194 | ret = btrfs_fallocate_update_isize(inode, actual_end, mode); |
| 3195 | out_unlock: |
| 3196 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, |
| 3197 | &cached_state); |
| 3198 | out: |
| 3199 | inode_unlock(inode); |
| 3200 | /* Let go of our reservation. */ |
| 3201 | if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) |
| 3202 | btrfs_free_reserved_data_space(inode, data_reserved, |
| 3203 | alloc_start, alloc_end - cur_offset); |
| 3204 | extent_changeset_free(data_reserved); |
| 3205 | return ret; |
| 3206 | } |
| 3207 | |
| 3208 | static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) |
| 3209 | { |
| 3210 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 3211 | struct extent_map *em = NULL; |
| 3212 | struct extent_state *cached_state = NULL; |
| 3213 | u64 lockstart; |
| 3214 | u64 lockend; |
| 3215 | u64 start; |
| 3216 | u64 len; |
| 3217 | int ret = 0; |
| 3218 | |
| 3219 | if (inode->i_size == 0) |
| 3220 | return -ENXIO; |
| 3221 | |
| 3222 | /* |
| 3223 | * *offset can be negative, in this case we start finding DATA/HOLE from |
| 3224 | * the very start of the file. |
| 3225 | */ |
| 3226 | start = max_t(loff_t, 0, *offset); |
| 3227 | |
| 3228 | lockstart = round_down(start, fs_info->sectorsize); |
| 3229 | lockend = round_up(i_size_read(inode), |
| 3230 | fs_info->sectorsize); |
| 3231 | if (lockend <= lockstart) |
| 3232 | lockend = lockstart + fs_info->sectorsize; |
| 3233 | lockend--; |
| 3234 | len = lockend - lockstart + 1; |
| 3235 | |
| 3236 | lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| 3237 | &cached_state); |
| 3238 | |
| 3239 | while (start < inode->i_size) { |
| 3240 | em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, |
| 3241 | start, len, 0); |
| 3242 | if (IS_ERR(em)) { |
| 3243 | ret = PTR_ERR(em); |
| 3244 | em = NULL; |
| 3245 | break; |
| 3246 | } |
| 3247 | |
| 3248 | if (whence == SEEK_HOLE && |
| 3249 | (em->block_start == EXTENT_MAP_HOLE || |
| 3250 | test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) |
| 3251 | break; |
| 3252 | else if (whence == SEEK_DATA && |
| 3253 | (em->block_start != EXTENT_MAP_HOLE && |
| 3254 | !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) |
| 3255 | break; |
| 3256 | |
| 3257 | start = em->start + em->len; |
| 3258 | free_extent_map(em); |
| 3259 | em = NULL; |
| 3260 | cond_resched(); |
| 3261 | } |
| 3262 | free_extent_map(em); |
| 3263 | if (!ret) { |
| 3264 | if (whence == SEEK_DATA && start >= inode->i_size) |
| 3265 | ret = -ENXIO; |
| 3266 | else |
| 3267 | *offset = min_t(loff_t, start, inode->i_size); |
| 3268 | } |
| 3269 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| 3270 | &cached_state); |
| 3271 | return ret; |
| 3272 | } |
| 3273 | |
| 3274 | static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) |
| 3275 | { |
| 3276 | struct inode *inode = file->f_mapping->host; |
| 3277 | int ret; |
| 3278 | |
| 3279 | inode_lock(inode); |
| 3280 | switch (whence) { |
| 3281 | case SEEK_END: |
| 3282 | case SEEK_CUR: |
| 3283 | offset = generic_file_llseek(file, offset, whence); |
| 3284 | goto out; |
| 3285 | case SEEK_DATA: |
| 3286 | case SEEK_HOLE: |
| 3287 | if (offset >= i_size_read(inode)) { |
| 3288 | inode_unlock(inode); |
| 3289 | return -ENXIO; |
| 3290 | } |
| 3291 | |
| 3292 | ret = find_desired_extent(inode, &offset, whence); |
| 3293 | if (ret) { |
| 3294 | inode_unlock(inode); |
| 3295 | return ret; |
| 3296 | } |
| 3297 | } |
| 3298 | |
| 3299 | offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); |
| 3300 | out: |
| 3301 | inode_unlock(inode); |
| 3302 | return offset; |
| 3303 | } |
| 3304 | |
| 3305 | static int btrfs_file_open(struct inode *inode, struct file *filp) |
| 3306 | { |
| 3307 | filp->f_mode |= FMODE_NOWAIT; |
| 3308 | return generic_file_open(inode, filp); |
| 3309 | } |
| 3310 | |
| 3311 | const struct file_operations btrfs_file_operations = { |
| 3312 | .llseek = btrfs_file_llseek, |
| 3313 | .read_iter = generic_file_read_iter, |
| 3314 | .splice_read = generic_file_splice_read, |
| 3315 | .write_iter = btrfs_file_write_iter, |
| 3316 | .mmap = btrfs_file_mmap, |
| 3317 | .open = btrfs_file_open, |
| 3318 | .release = btrfs_release_file, |
| 3319 | .fsync = btrfs_sync_file, |
| 3320 | .fallocate = btrfs_fallocate, |
| 3321 | .unlocked_ioctl = btrfs_ioctl, |
| 3322 | #ifdef CONFIG_COMPAT |
| 3323 | .compat_ioctl = btrfs_compat_ioctl, |
| 3324 | #endif |
| 3325 | .clone_file_range = btrfs_clone_file_range, |
| 3326 | .dedupe_file_range = btrfs_dedupe_file_range, |
| 3327 | }; |
| 3328 | |
| 3329 | void __cold btrfs_auto_defrag_exit(void) |
| 3330 | { |
| 3331 | kmem_cache_destroy(btrfs_inode_defrag_cachep); |
| 3332 | } |
| 3333 | |
| 3334 | int __init btrfs_auto_defrag_init(void) |
| 3335 | { |
| 3336 | btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", |
| 3337 | sizeof(struct inode_defrag), 0, |
| 3338 | SLAB_MEM_SPREAD, |
| 3339 | NULL); |
| 3340 | if (!btrfs_inode_defrag_cachep) |
| 3341 | return -ENOMEM; |
| 3342 | |
| 3343 | return 0; |
| 3344 | } |
| 3345 | |
| 3346 | int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) |
| 3347 | { |
| 3348 | int ret; |
| 3349 | |
| 3350 | /* |
| 3351 | * So with compression we will find and lock a dirty page and clear the |
| 3352 | * first one as dirty, setup an async extent, and immediately return |
| 3353 | * with the entire range locked but with nobody actually marked with |
| 3354 | * writeback. So we can't just filemap_write_and_wait_range() and |
| 3355 | * expect it to work since it will just kick off a thread to do the |
| 3356 | * actual work. So we need to call filemap_fdatawrite_range _again_ |
| 3357 | * since it will wait on the page lock, which won't be unlocked until |
| 3358 | * after the pages have been marked as writeback and so we're good to go |
| 3359 | * from there. We have to do this otherwise we'll miss the ordered |
| 3360 | * extents and that results in badness. Please Josef, do not think you |
| 3361 | * know better and pull this out at some point in the future, it is |
| 3362 | * right and you are wrong. |
| 3363 | */ |
| 3364 | ret = filemap_fdatawrite_range(inode->i_mapping, start, end); |
| 3365 | if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| 3366 | &BTRFS_I(inode)->runtime_flags)) |
| 3367 | ret = filemap_fdatawrite_range(inode->i_mapping, start, end); |
| 3368 | |
| 3369 | return ret; |
| 3370 | } |