blob: e2addb2bca29669240acaed03d09b6f601b729b9 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001#include "amd64_edac.h"
2#include <asm/amd_nb.h>
3
4static struct edac_pci_ctl_info *pci_ctl;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
16static struct msr __percpu *msrs;
17
18/* Per-node stuff */
19static struct ecc_settings **ecc_stngs;
20
21/*
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24 * or higher value'.
25 *
26 *FIXME: Produce a better mapping/linearisation.
27 */
28static const struct scrubrate {
29 u32 scrubval; /* bit pattern for scrub rate */
30 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
31} scrubrates[] = {
32 { 0x01, 1600000000UL},
33 { 0x02, 800000000UL},
34 { 0x03, 400000000UL},
35 { 0x04, 200000000UL},
36 { 0x05, 100000000UL},
37 { 0x06, 50000000UL},
38 { 0x07, 25000000UL},
39 { 0x08, 12284069UL},
40 { 0x09, 6274509UL},
41 { 0x0A, 3121951UL},
42 { 0x0B, 1560975UL},
43 { 0x0C, 781440UL},
44 { 0x0D, 390720UL},
45 { 0x0E, 195300UL},
46 { 0x0F, 97650UL},
47 { 0x10, 48854UL},
48 { 0x11, 24427UL},
49 { 0x12, 12213UL},
50 { 0x13, 6101UL},
51 { 0x14, 3051UL},
52 { 0x15, 1523UL},
53 { 0x16, 761UL},
54 { 0x00, 0UL}, /* scrubbing off */
55};
56
57int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 u32 *val, const char *func)
59{
60 int err = 0;
61
62 err = pci_read_config_dword(pdev, offset, val);
63 if (err)
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func, PCI_FUNC(pdev->devfn), offset);
66
67 return err;
68}
69
70int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 u32 val, const char *func)
72{
73 int err = 0;
74
75 err = pci_write_config_dword(pdev, offset, val);
76 if (err)
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func, PCI_FUNC(pdev->devfn), offset);
79
80 return err;
81}
82
83/*
84 * Select DCT to which PCI cfg accesses are routed
85 */
86static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87{
88 u32 reg = 0;
89
90 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 reg |= dct;
93 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94}
95
96/*
97 *
98 * Depending on the family, F2 DCT reads need special handling:
99 *
100 * K8: has a single DCT only and no address offsets >= 0x100
101 *
102 * F10h: each DCT has its own set of regs
103 * DCT0 -> F2x040..
104 * DCT1 -> F2x140..
105 *
106 * F16h: has only 1 DCT
107 *
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109 */
110static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 int offset, u32 *val)
112{
113 switch (pvt->fam) {
114 case 0xf:
115 if (dct || offset >= 0x100)
116 return -EINVAL;
117 break;
118
119 case 0x10:
120 if (dct) {
121 /*
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 */
126 if (dct_ganging_enabled(pvt))
127 return 0;
128
129 offset += 0x100;
130 }
131 break;
132
133 case 0x15:
134 /*
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
137 */
138 dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 f15h_select_dct(pvt, dct);
140 break;
141
142 case 0x16:
143 if (dct)
144 return -EINVAL;
145 break;
146
147 default:
148 break;
149 }
150 return amd64_read_pci_cfg(pvt->F2, offset, val);
151}
152
153/*
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157 * functionality.
158 *
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
162 *
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
165 */
166
167static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
168{
169 /*
170 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 * as 0x0, scrubval 0x6 as 0x1, etc.
173 */
174 if (scrubval >= 0x5 && scrubval <= 0x14) {
175 scrubval -= 0x5;
176 pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
177 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
178 } else {
179 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
180 }
181}
182/*
183 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 * issue. If requested is too big, then use last maximum value found.
185 */
186static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187{
188 u32 scrubval;
189 int i;
190
191 /*
192 * map the configured rate (new_bw) to a value specific to the AMD64
193 * memory controller and apply to register. Search for the first
194 * bandwidth entry that is greater or equal than the setting requested
195 * and program that. If at last entry, turn off DRAM scrubbing.
196 *
197 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 * by falling back to the last element in scrubrates[].
199 */
200 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 /*
202 * skip scrub rates which aren't recommended
203 * (see F10 BKDG, F3x58)
204 */
205 if (scrubrates[i].scrubval < min_rate)
206 continue;
207
208 if (scrubrates[i].bandwidth <= new_bw)
209 break;
210 }
211
212 scrubval = scrubrates[i].scrubval;
213
214 if (pvt->fam == 0x17) {
215 __f17h_set_scrubval(pvt, scrubval);
216 } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 f15h_select_dct(pvt, 0);
218 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
219 f15h_select_dct(pvt, 1);
220 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
221 } else {
222 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
223 }
224
225 if (scrubval)
226 return scrubrates[i].bandwidth;
227
228 return 0;
229}
230
231static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232{
233 struct amd64_pvt *pvt = mci->pvt_info;
234 u32 min_scrubrate = 0x5;
235
236 if (pvt->fam == 0xf)
237 min_scrubrate = 0x0;
238
239 if (pvt->fam == 0x15) {
240 /* Erratum #505 */
241 if (pvt->model < 0x10)
242 f15h_select_dct(pvt, 0);
243
244 if (pvt->model == 0x60)
245 min_scrubrate = 0x6;
246 }
247 return __set_scrub_rate(pvt, bw, min_scrubrate);
248}
249
250static int get_scrub_rate(struct mem_ctl_info *mci)
251{
252 struct amd64_pvt *pvt = mci->pvt_info;
253 int i, retval = -EINVAL;
254 u32 scrubval = 0;
255
256 switch (pvt->fam) {
257 case 0x15:
258 /* Erratum #505 */
259 if (pvt->model < 0x10)
260 f15h_select_dct(pvt, 0);
261
262 if (pvt->model == 0x60)
263 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 break;
265
266 case 0x17:
267 amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
268 if (scrubval & BIT(0)) {
269 amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
270 scrubval &= 0xF;
271 scrubval += 0x5;
272 } else {
273 scrubval = 0;
274 }
275 break;
276
277 default:
278 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279 break;
280 }
281
282 scrubval = scrubval & 0x001F;
283
284 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
285 if (scrubrates[i].scrubval == scrubval) {
286 retval = scrubrates[i].bandwidth;
287 break;
288 }
289 }
290 return retval;
291}
292
293/*
294 * returns true if the SysAddr given by sys_addr matches the
295 * DRAM base/limit associated with node_id
296 */
297static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
298{
299 u64 addr;
300
301 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
302 * all ones if the most significant implemented address bit is 1.
303 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
304 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
305 * Application Programming.
306 */
307 addr = sys_addr & 0x000000ffffffffffull;
308
309 return ((addr >= get_dram_base(pvt, nid)) &&
310 (addr <= get_dram_limit(pvt, nid)));
311}
312
313/*
314 * Attempt to map a SysAddr to a node. On success, return a pointer to the
315 * mem_ctl_info structure for the node that the SysAddr maps to.
316 *
317 * On failure, return NULL.
318 */
319static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
320 u64 sys_addr)
321{
322 struct amd64_pvt *pvt;
323 u8 node_id;
324 u32 intlv_en, bits;
325
326 /*
327 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
328 * 3.4.4.2) registers to map the SysAddr to a node ID.
329 */
330 pvt = mci->pvt_info;
331
332 /*
333 * The value of this field should be the same for all DRAM Base
334 * registers. Therefore we arbitrarily choose to read it from the
335 * register for node 0.
336 */
337 intlv_en = dram_intlv_en(pvt, 0);
338
339 if (intlv_en == 0) {
340 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
341 if (base_limit_match(pvt, sys_addr, node_id))
342 goto found;
343 }
344 goto err_no_match;
345 }
346
347 if (unlikely((intlv_en != 0x01) &&
348 (intlv_en != 0x03) &&
349 (intlv_en != 0x07))) {
350 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
351 return NULL;
352 }
353
354 bits = (((u32) sys_addr) >> 12) & intlv_en;
355
356 for (node_id = 0; ; ) {
357 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
358 break; /* intlv_sel field matches */
359
360 if (++node_id >= DRAM_RANGES)
361 goto err_no_match;
362 }
363
364 /* sanity test for sys_addr */
365 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
366 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
367 "range for node %d with node interleaving enabled.\n",
368 __func__, sys_addr, node_id);
369 return NULL;
370 }
371
372found:
373 return edac_mc_find((int)node_id);
374
375err_no_match:
376 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
377 (unsigned long)sys_addr);
378
379 return NULL;
380}
381
382/*
383 * compute the CS base address of the @csrow on the DRAM controller @dct.
384 * For details see F2x[5C:40] in the processor's BKDG
385 */
386static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
387 u64 *base, u64 *mask)
388{
389 u64 csbase, csmask, base_bits, mask_bits;
390 u8 addr_shift;
391
392 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
393 csbase = pvt->csels[dct].csbases[csrow];
394 csmask = pvt->csels[dct].csmasks[csrow];
395 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
396 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
397 addr_shift = 4;
398
399 /*
400 * F16h and F15h, models 30h and later need two addr_shift values:
401 * 8 for high and 6 for low (cf. F16h BKDG).
402 */
403 } else if (pvt->fam == 0x16 ||
404 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
405 csbase = pvt->csels[dct].csbases[csrow];
406 csmask = pvt->csels[dct].csmasks[csrow >> 1];
407
408 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
409 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
410
411 *mask = ~0ULL;
412 /* poke holes for the csmask */
413 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
414 (GENMASK_ULL(30, 19) << 8));
415
416 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
417 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
418
419 return;
420 } else {
421 csbase = pvt->csels[dct].csbases[csrow];
422 csmask = pvt->csels[dct].csmasks[csrow >> 1];
423 addr_shift = 8;
424
425 if (pvt->fam == 0x15)
426 base_bits = mask_bits =
427 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428 else
429 base_bits = mask_bits =
430 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
431 }
432
433 *base = (csbase & base_bits) << addr_shift;
434
435 *mask = ~0ULL;
436 /* poke holes for the csmask */
437 *mask &= ~(mask_bits << addr_shift);
438 /* OR them in */
439 *mask |= (csmask & mask_bits) << addr_shift;
440}
441
442#define for_each_chip_select(i, dct, pvt) \
443 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
444
445#define chip_select_base(i, dct, pvt) \
446 pvt->csels[dct].csbases[i]
447
448#define for_each_chip_select_mask(i, dct, pvt) \
449 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
450
451/*
452 * @input_addr is an InputAddr associated with the node given by mci. Return the
453 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
454 */
455static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
456{
457 struct amd64_pvt *pvt;
458 int csrow;
459 u64 base, mask;
460
461 pvt = mci->pvt_info;
462
463 for_each_chip_select(csrow, 0, pvt) {
464 if (!csrow_enabled(csrow, 0, pvt))
465 continue;
466
467 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
468
469 mask = ~mask;
470
471 if ((input_addr & mask) == (base & mask)) {
472 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
473 (unsigned long)input_addr, csrow,
474 pvt->mc_node_id);
475
476 return csrow;
477 }
478 }
479 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
480 (unsigned long)input_addr, pvt->mc_node_id);
481
482 return -1;
483}
484
485/*
486 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
487 * for the node represented by mci. Info is passed back in *hole_base,
488 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
489 * info is invalid. Info may be invalid for either of the following reasons:
490 *
491 * - The revision of the node is not E or greater. In this case, the DRAM Hole
492 * Address Register does not exist.
493 *
494 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
495 * indicating that its contents are not valid.
496 *
497 * The values passed back in *hole_base, *hole_offset, and *hole_size are
498 * complete 32-bit values despite the fact that the bitfields in the DHAR
499 * only represent bits 31-24 of the base and offset values.
500 */
501int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
502 u64 *hole_offset, u64 *hole_size)
503{
504 struct amd64_pvt *pvt = mci->pvt_info;
505
506 /* only revE and later have the DRAM Hole Address Register */
507 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
508 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
509 pvt->ext_model, pvt->mc_node_id);
510 return 1;
511 }
512
513 /* valid for Fam10h and above */
514 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
515 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
516 return 1;
517 }
518
519 if (!dhar_valid(pvt)) {
520 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
521 pvt->mc_node_id);
522 return 1;
523 }
524
525 /* This node has Memory Hoisting */
526
527 /* +------------------+--------------------+--------------------+-----
528 * | memory | DRAM hole | relocated |
529 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
530 * | | | DRAM hole |
531 * | | | [0x100000000, |
532 * | | | (0x100000000+ |
533 * | | | (0xffffffff-x))] |
534 * +------------------+--------------------+--------------------+-----
535 *
536 * Above is a diagram of physical memory showing the DRAM hole and the
537 * relocated addresses from the DRAM hole. As shown, the DRAM hole
538 * starts at address x (the base address) and extends through address
539 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
540 * addresses in the hole so that they start at 0x100000000.
541 */
542
543 *hole_base = dhar_base(pvt);
544 *hole_size = (1ULL << 32) - *hole_base;
545
546 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
547 : k8_dhar_offset(pvt);
548
549 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
550 pvt->mc_node_id, (unsigned long)*hole_base,
551 (unsigned long)*hole_offset, (unsigned long)*hole_size);
552
553 return 0;
554}
555EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
556
557/*
558 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
559 * assumed that sys_addr maps to the node given by mci.
560 *
561 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
562 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
563 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
564 * then it is also involved in translating a SysAddr to a DramAddr. Sections
565 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
566 * These parts of the documentation are unclear. I interpret them as follows:
567 *
568 * When node n receives a SysAddr, it processes the SysAddr as follows:
569 *
570 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
571 * Limit registers for node n. If the SysAddr is not within the range
572 * specified by the base and limit values, then node n ignores the Sysaddr
573 * (since it does not map to node n). Otherwise continue to step 2 below.
574 *
575 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
576 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
577 * the range of relocated addresses (starting at 0x100000000) from the DRAM
578 * hole. If not, skip to step 3 below. Else get the value of the
579 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
580 * offset defined by this value from the SysAddr.
581 *
582 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
583 * Base register for node n. To obtain the DramAddr, subtract the base
584 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
585 */
586static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
587{
588 struct amd64_pvt *pvt = mci->pvt_info;
589 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
590 int ret;
591
592 dram_base = get_dram_base(pvt, pvt->mc_node_id);
593
594 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
595 &hole_size);
596 if (!ret) {
597 if ((sys_addr >= (1ULL << 32)) &&
598 (sys_addr < ((1ULL << 32) + hole_size))) {
599 /* use DHAR to translate SysAddr to DramAddr */
600 dram_addr = sys_addr - hole_offset;
601
602 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
603 (unsigned long)sys_addr,
604 (unsigned long)dram_addr);
605
606 return dram_addr;
607 }
608 }
609
610 /*
611 * Translate the SysAddr to a DramAddr as shown near the start of
612 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
613 * only deals with 40-bit values. Therefore we discard bits 63-40 of
614 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
615 * discard are all 1s. Otherwise the bits we discard are all 0s. See
616 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
617 * Programmer's Manual Volume 1 Application Programming.
618 */
619 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
620
621 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
622 (unsigned long)sys_addr, (unsigned long)dram_addr);
623 return dram_addr;
624}
625
626/*
627 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
628 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
629 * for node interleaving.
630 */
631static int num_node_interleave_bits(unsigned intlv_en)
632{
633 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
634 int n;
635
636 BUG_ON(intlv_en > 7);
637 n = intlv_shift_table[intlv_en];
638 return n;
639}
640
641/* Translate the DramAddr given by @dram_addr to an InputAddr. */
642static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
643{
644 struct amd64_pvt *pvt;
645 int intlv_shift;
646 u64 input_addr;
647
648 pvt = mci->pvt_info;
649
650 /*
651 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
652 * concerning translating a DramAddr to an InputAddr.
653 */
654 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
655 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
656 (dram_addr & 0xfff);
657
658 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
659 intlv_shift, (unsigned long)dram_addr,
660 (unsigned long)input_addr);
661
662 return input_addr;
663}
664
665/*
666 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
667 * assumed that @sys_addr maps to the node given by mci.
668 */
669static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
670{
671 u64 input_addr;
672
673 input_addr =
674 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
675
676 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
677 (unsigned long)sys_addr, (unsigned long)input_addr);
678
679 return input_addr;
680}
681
682/* Map the Error address to a PAGE and PAGE OFFSET. */
683static inline void error_address_to_page_and_offset(u64 error_address,
684 struct err_info *err)
685{
686 err->page = (u32) (error_address >> PAGE_SHIFT);
687 err->offset = ((u32) error_address) & ~PAGE_MASK;
688}
689
690/*
691 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
692 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
693 * of a node that detected an ECC memory error. mci represents the node that
694 * the error address maps to (possibly different from the node that detected
695 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
696 * error.
697 */
698static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
699{
700 int csrow;
701
702 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
703
704 if (csrow == -1)
705 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
706 "address 0x%lx\n", (unsigned long)sys_addr);
707 return csrow;
708}
709
710static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
711
712/*
713 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
714 * are ECC capable.
715 */
716static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
717{
718 unsigned long edac_cap = EDAC_FLAG_NONE;
719 u8 bit;
720
721 if (pvt->umc) {
722 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
723
724 for (i = 0; i < NUM_UMCS; i++) {
725 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
726 continue;
727
728 umc_en_mask |= BIT(i);
729
730 /* UMC Configuration bit 12 (DimmEccEn) */
731 if (pvt->umc[i].umc_cfg & BIT(12))
732 dimm_ecc_en_mask |= BIT(i);
733 }
734
735 if (umc_en_mask == dimm_ecc_en_mask)
736 edac_cap = EDAC_FLAG_SECDED;
737 } else {
738 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
739 ? 19
740 : 17;
741
742 if (pvt->dclr0 & BIT(bit))
743 edac_cap = EDAC_FLAG_SECDED;
744 }
745
746 return edac_cap;
747}
748
749static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
750
751static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
752{
753 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
754
755 if (pvt->dram_type == MEM_LRDDR3) {
756 u32 dcsm = pvt->csels[chan].csmasks[0];
757 /*
758 * It's assumed all LRDIMMs in a DCT are going to be of
759 * same 'type' until proven otherwise. So, use a cs
760 * value of '0' here to get dcsm value.
761 */
762 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
763 }
764
765 edac_dbg(1, "All DIMMs support ECC:%s\n",
766 (dclr & BIT(19)) ? "yes" : "no");
767
768
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
771
772 if (pvt->fam == 0x10)
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
775
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
781}
782
783static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
784{
785 int dimm, size0, size1, cs0, cs1;
786
787 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
788
789 for (dimm = 0; dimm < 4; dimm++) {
790 size0 = 0;
791 cs0 = dimm * 2;
792
793 if (csrow_enabled(cs0, ctrl, pvt))
794 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0);
795
796 size1 = 0;
797 cs1 = dimm * 2 + 1;
798
799 if (csrow_enabled(cs1, ctrl, pvt))
800 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1);
801
802 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
803 cs0, size0,
804 cs1, size1);
805 }
806}
807
808static void __dump_misc_regs_df(struct amd64_pvt *pvt)
809{
810 struct amd64_umc *umc;
811 u32 i, tmp, umc_base;
812
813 for (i = 0; i < NUM_UMCS; i++) {
814 umc_base = get_umc_base(i);
815 umc = &pvt->umc[i];
816
817 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
818 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
819 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
820 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
821
822 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
823 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
824
825 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
826 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
827 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
828
829 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
830 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
831 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
832 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
833 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
834 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
835 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
836 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
837 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
838
839 if (pvt->dram_type == MEM_LRDDR4) {
840 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
841 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
842 i, 1 << ((tmp >> 4) & 0x3));
843 }
844
845 debug_display_dimm_sizes_df(pvt, i);
846 }
847
848 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
849 pvt->dhar, dhar_base(pvt));
850}
851
852/* Display and decode various NB registers for debug purposes. */
853static void __dump_misc_regs(struct amd64_pvt *pvt)
854{
855 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
856
857 edac_dbg(1, " NB two channel DRAM capable: %s\n",
858 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
859
860 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
861 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
862 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
863
864 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
865
866 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
867
868 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
869 pvt->dhar, dhar_base(pvt),
870 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
871 : f10_dhar_offset(pvt));
872
873 debug_display_dimm_sizes(pvt, 0);
874
875 /* everything below this point is Fam10h and above */
876 if (pvt->fam == 0xf)
877 return;
878
879 debug_display_dimm_sizes(pvt, 1);
880
881 /* Only if NOT ganged does dclr1 have valid info */
882 if (!dct_ganging_enabled(pvt))
883 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
884}
885
886/* Display and decode various NB registers for debug purposes. */
887static void dump_misc_regs(struct amd64_pvt *pvt)
888{
889 if (pvt->umc)
890 __dump_misc_regs_df(pvt);
891 else
892 __dump_misc_regs(pvt);
893
894 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
895
896 amd64_info("using %s syndromes.\n",
897 ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
898}
899
900/*
901 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
902 */
903static void prep_chip_selects(struct amd64_pvt *pvt)
904{
905 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
906 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
907 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
908 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
909 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
910 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
911 } else {
912 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
913 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
914 }
915}
916
917/*
918 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
919 */
920static void read_dct_base_mask(struct amd64_pvt *pvt)
921{
922 int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
923
924 prep_chip_selects(pvt);
925
926 if (pvt->umc) {
927 base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
928 base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
929 mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
930 mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
931 } else {
932 base_reg0 = DCSB0;
933 base_reg1 = DCSB1;
934 mask_reg0 = DCSM0;
935 mask_reg1 = DCSM1;
936 }
937
938 for_each_chip_select(cs, 0, pvt) {
939 int reg0 = base_reg0 + (cs * 4);
940 int reg1 = base_reg1 + (cs * 4);
941 u32 *base0 = &pvt->csels[0].csbases[cs];
942 u32 *base1 = &pvt->csels[1].csbases[cs];
943
944 if (pvt->umc) {
945 if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
946 edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
947 cs, *base0, reg0);
948
949 if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
950 edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
951 cs, *base1, reg1);
952 } else {
953 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
954 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
955 cs, *base0, reg0);
956
957 if (pvt->fam == 0xf)
958 continue;
959
960 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
961 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
962 cs, *base1, (pvt->fam == 0x10) ? reg1
963 : reg0);
964 }
965 }
966
967 for_each_chip_select_mask(cs, 0, pvt) {
968 int reg0 = mask_reg0 + (cs * 4);
969 int reg1 = mask_reg1 + (cs * 4);
970 u32 *mask0 = &pvt->csels[0].csmasks[cs];
971 u32 *mask1 = &pvt->csels[1].csmasks[cs];
972
973 if (pvt->umc) {
974 if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
975 edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
976 cs, *mask0, reg0);
977
978 if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
979 edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
980 cs, *mask1, reg1);
981 } else {
982 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
983 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
984 cs, *mask0, reg0);
985
986 if (pvt->fam == 0xf)
987 continue;
988
989 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
990 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
991 cs, *mask1, (pvt->fam == 0x10) ? reg1
992 : reg0);
993 }
994 }
995}
996
997static void determine_memory_type(struct amd64_pvt *pvt)
998{
999 u32 dram_ctrl, dcsm;
1000
1001 switch (pvt->fam) {
1002 case 0xf:
1003 if (pvt->ext_model >= K8_REV_F)
1004 goto ddr3;
1005
1006 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1007 return;
1008
1009 case 0x10:
1010 if (pvt->dchr0 & DDR3_MODE)
1011 goto ddr3;
1012
1013 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1014 return;
1015
1016 case 0x15:
1017 if (pvt->model < 0x60)
1018 goto ddr3;
1019
1020 /*
1021 * Model 0x60h needs special handling:
1022 *
1023 * We use a Chip Select value of '0' to obtain dcsm.
1024 * Theoretically, it is possible to populate LRDIMMs of different
1025 * 'Rank' value on a DCT. But this is not the common case. So,
1026 * it's reasonable to assume all DIMMs are going to be of same
1027 * 'type' until proven otherwise.
1028 */
1029 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1030 dcsm = pvt->csels[0].csmasks[0];
1031
1032 if (((dram_ctrl >> 8) & 0x7) == 0x2)
1033 pvt->dram_type = MEM_DDR4;
1034 else if (pvt->dclr0 & BIT(16))
1035 pvt->dram_type = MEM_DDR3;
1036 else if (dcsm & 0x3)
1037 pvt->dram_type = MEM_LRDDR3;
1038 else
1039 pvt->dram_type = MEM_RDDR3;
1040
1041 return;
1042
1043 case 0x16:
1044 goto ddr3;
1045
1046 case 0x17:
1047 if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
1048 pvt->dram_type = MEM_LRDDR4;
1049 else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
1050 pvt->dram_type = MEM_RDDR4;
1051 else
1052 pvt->dram_type = MEM_DDR4;
1053 return;
1054
1055 default:
1056 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1057 pvt->dram_type = MEM_EMPTY;
1058 }
1059 return;
1060
1061ddr3:
1062 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1063}
1064
1065/* Get the number of DCT channels the memory controller is using. */
1066static int k8_early_channel_count(struct amd64_pvt *pvt)
1067{
1068 int flag;
1069
1070 if (pvt->ext_model >= K8_REV_F)
1071 /* RevF (NPT) and later */
1072 flag = pvt->dclr0 & WIDTH_128;
1073 else
1074 /* RevE and earlier */
1075 flag = pvt->dclr0 & REVE_WIDTH_128;
1076
1077 /* not used */
1078 pvt->dclr1 = 0;
1079
1080 return (flag) ? 2 : 1;
1081}
1082
1083/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1084static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1085{
1086 u16 mce_nid = amd_get_nb_id(m->extcpu);
1087 struct mem_ctl_info *mci;
1088 u8 start_bit = 1;
1089 u8 end_bit = 47;
1090 u64 addr;
1091
1092 mci = edac_mc_find(mce_nid);
1093 if (!mci)
1094 return 0;
1095
1096 pvt = mci->pvt_info;
1097
1098 if (pvt->fam == 0xf) {
1099 start_bit = 3;
1100 end_bit = 39;
1101 }
1102
1103 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1104
1105 /*
1106 * Erratum 637 workaround
1107 */
1108 if (pvt->fam == 0x15) {
1109 u64 cc6_base, tmp_addr;
1110 u32 tmp;
1111 u8 intlv_en;
1112
1113 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1114 return addr;
1115
1116
1117 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1118 intlv_en = tmp >> 21 & 0x7;
1119
1120 /* add [47:27] + 3 trailing bits */
1121 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
1122
1123 /* reverse and add DramIntlvEn */
1124 cc6_base |= intlv_en ^ 0x7;
1125
1126 /* pin at [47:24] */
1127 cc6_base <<= 24;
1128
1129 if (!intlv_en)
1130 return cc6_base | (addr & GENMASK_ULL(23, 0));
1131
1132 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1133
1134 /* faster log2 */
1135 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1136
1137 /* OR DramIntlvSel into bits [14:12] */
1138 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1139
1140 /* add remaining [11:0] bits from original MC4_ADDR */
1141 tmp_addr |= addr & GENMASK_ULL(11, 0);
1142
1143 return cc6_base | tmp_addr;
1144 }
1145
1146 return addr;
1147}
1148
1149static struct pci_dev *pci_get_related_function(unsigned int vendor,
1150 unsigned int device,
1151 struct pci_dev *related)
1152{
1153 struct pci_dev *dev = NULL;
1154
1155 while ((dev = pci_get_device(vendor, device, dev))) {
1156 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1157 (dev->bus->number == related->bus->number) &&
1158 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1159 break;
1160 }
1161
1162 return dev;
1163}
1164
1165static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1166{
1167 struct amd_northbridge *nb;
1168 struct pci_dev *f1 = NULL;
1169 unsigned int pci_func;
1170 int off = range << 3;
1171 u32 llim;
1172
1173 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1174 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1175
1176 if (pvt->fam == 0xf)
1177 return;
1178
1179 if (!dram_rw(pvt, range))
1180 return;
1181
1182 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1183 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1184
1185 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1186 if (pvt->fam != 0x15)
1187 return;
1188
1189 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1190 if (WARN_ON(!nb))
1191 return;
1192
1193 if (pvt->model == 0x60)
1194 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1195 else if (pvt->model == 0x30)
1196 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1197 else
1198 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1199
1200 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1201 if (WARN_ON(!f1))
1202 return;
1203
1204 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1205
1206 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1207
1208 /* {[39:27],111b} */
1209 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1210
1211 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1212
1213 /* [47:40] */
1214 pvt->ranges[range].lim.hi |= llim >> 13;
1215
1216 pci_dev_put(f1);
1217}
1218
1219static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1220 struct err_info *err)
1221{
1222 struct amd64_pvt *pvt = mci->pvt_info;
1223
1224 error_address_to_page_and_offset(sys_addr, err);
1225
1226 /*
1227 * Find out which node the error address belongs to. This may be
1228 * different from the node that detected the error.
1229 */
1230 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1231 if (!err->src_mci) {
1232 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1233 (unsigned long)sys_addr);
1234 err->err_code = ERR_NODE;
1235 return;
1236 }
1237
1238 /* Now map the sys_addr to a CSROW */
1239 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1240 if (err->csrow < 0) {
1241 err->err_code = ERR_CSROW;
1242 return;
1243 }
1244
1245 /* CHIPKILL enabled */
1246 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1247 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1248 if (err->channel < 0) {
1249 /*
1250 * Syndrome didn't map, so we don't know which of the
1251 * 2 DIMMs is in error. So we need to ID 'both' of them
1252 * as suspect.
1253 */
1254 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1255 "possible error reporting race\n",
1256 err->syndrome);
1257 err->err_code = ERR_CHANNEL;
1258 return;
1259 }
1260 } else {
1261 /*
1262 * non-chipkill ecc mode
1263 *
1264 * The k8 documentation is unclear about how to determine the
1265 * channel number when using non-chipkill memory. This method
1266 * was obtained from email communication with someone at AMD.
1267 * (Wish the email was placed in this comment - norsk)
1268 */
1269 err->channel = ((sys_addr & BIT(3)) != 0);
1270 }
1271}
1272
1273static int ddr2_cs_size(unsigned i, bool dct_width)
1274{
1275 unsigned shift = 0;
1276
1277 if (i <= 2)
1278 shift = i;
1279 else if (!(i & 0x1))
1280 shift = i >> 1;
1281 else
1282 shift = (i + 1) >> 1;
1283
1284 return 128 << (shift + !!dct_width);
1285}
1286
1287static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1288 unsigned cs_mode, int cs_mask_nr)
1289{
1290 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1291
1292 if (pvt->ext_model >= K8_REV_F) {
1293 WARN_ON(cs_mode > 11);
1294 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1295 }
1296 else if (pvt->ext_model >= K8_REV_D) {
1297 unsigned diff;
1298 WARN_ON(cs_mode > 10);
1299
1300 /*
1301 * the below calculation, besides trying to win an obfuscated C
1302 * contest, maps cs_mode values to DIMM chip select sizes. The
1303 * mappings are:
1304 *
1305 * cs_mode CS size (mb)
1306 * ======= ============
1307 * 0 32
1308 * 1 64
1309 * 2 128
1310 * 3 128
1311 * 4 256
1312 * 5 512
1313 * 6 256
1314 * 7 512
1315 * 8 1024
1316 * 9 1024
1317 * 10 2048
1318 *
1319 * Basically, it calculates a value with which to shift the
1320 * smallest CS size of 32MB.
1321 *
1322 * ddr[23]_cs_size have a similar purpose.
1323 */
1324 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1325
1326 return 32 << (cs_mode - diff);
1327 }
1328 else {
1329 WARN_ON(cs_mode > 6);
1330 return 32 << cs_mode;
1331 }
1332}
1333
1334/*
1335 * Get the number of DCT channels in use.
1336 *
1337 * Return:
1338 * number of Memory Channels in operation
1339 * Pass back:
1340 * contents of the DCL0_LOW register
1341 */
1342static int f1x_early_channel_count(struct amd64_pvt *pvt)
1343{
1344 int i, j, channels = 0;
1345
1346 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1347 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1348 return 2;
1349
1350 /*
1351 * Need to check if in unganged mode: In such, there are 2 channels,
1352 * but they are not in 128 bit mode and thus the above 'dclr0' status
1353 * bit will be OFF.
1354 *
1355 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1356 * their CSEnable bit on. If so, then SINGLE DIMM case.
1357 */
1358 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1359
1360 /*
1361 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1362 * is more than just one DIMM present in unganged mode. Need to check
1363 * both controllers since DIMMs can be placed in either one.
1364 */
1365 for (i = 0; i < 2; i++) {
1366 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1367
1368 for (j = 0; j < 4; j++) {
1369 if (DBAM_DIMM(j, dbam) > 0) {
1370 channels++;
1371 break;
1372 }
1373 }
1374 }
1375
1376 if (channels > 2)
1377 channels = 2;
1378
1379 amd64_info("MCT channel count: %d\n", channels);
1380
1381 return channels;
1382}
1383
1384static int f17_early_channel_count(struct amd64_pvt *pvt)
1385{
1386 int i, channels = 0;
1387
1388 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1389 for (i = 0; i < NUM_UMCS; i++)
1390 channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
1391
1392 amd64_info("MCT channel count: %d\n", channels);
1393
1394 return channels;
1395}
1396
1397static int ddr3_cs_size(unsigned i, bool dct_width)
1398{
1399 unsigned shift = 0;
1400 int cs_size = 0;
1401
1402 if (i == 0 || i == 3 || i == 4)
1403 cs_size = -1;
1404 else if (i <= 2)
1405 shift = i;
1406 else if (i == 12)
1407 shift = 7;
1408 else if (!(i & 0x1))
1409 shift = i >> 1;
1410 else
1411 shift = (i + 1) >> 1;
1412
1413 if (cs_size != -1)
1414 cs_size = (128 * (1 << !!dct_width)) << shift;
1415
1416 return cs_size;
1417}
1418
1419static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1420{
1421 unsigned shift = 0;
1422 int cs_size = 0;
1423
1424 if (i < 4 || i == 6)
1425 cs_size = -1;
1426 else if (i == 12)
1427 shift = 7;
1428 else if (!(i & 0x1))
1429 shift = i >> 1;
1430 else
1431 shift = (i + 1) >> 1;
1432
1433 if (cs_size != -1)
1434 cs_size = rank_multiply * (128 << shift);
1435
1436 return cs_size;
1437}
1438
1439static int ddr4_cs_size(unsigned i)
1440{
1441 int cs_size = 0;
1442
1443 if (i == 0)
1444 cs_size = -1;
1445 else if (i == 1)
1446 cs_size = 1024;
1447 else
1448 /* Min cs_size = 1G */
1449 cs_size = 1024 * (1 << (i >> 1));
1450
1451 return cs_size;
1452}
1453
1454static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1455 unsigned cs_mode, int cs_mask_nr)
1456{
1457 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1458
1459 WARN_ON(cs_mode > 11);
1460
1461 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1462 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1463 else
1464 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1465}
1466
1467/*
1468 * F15h supports only 64bit DCT interfaces
1469 */
1470static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1471 unsigned cs_mode, int cs_mask_nr)
1472{
1473 WARN_ON(cs_mode > 12);
1474
1475 return ddr3_cs_size(cs_mode, false);
1476}
1477
1478/* F15h M60h supports DDR4 mapping as well.. */
1479static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1480 unsigned cs_mode, int cs_mask_nr)
1481{
1482 int cs_size;
1483 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1484
1485 WARN_ON(cs_mode > 12);
1486
1487 if (pvt->dram_type == MEM_DDR4) {
1488 if (cs_mode > 9)
1489 return -1;
1490
1491 cs_size = ddr4_cs_size(cs_mode);
1492 } else if (pvt->dram_type == MEM_LRDDR3) {
1493 unsigned rank_multiply = dcsm & 0xf;
1494
1495 if (rank_multiply == 3)
1496 rank_multiply = 4;
1497 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1498 } else {
1499 /* Minimum cs size is 512mb for F15hM60h*/
1500 if (cs_mode == 0x1)
1501 return -1;
1502
1503 cs_size = ddr3_cs_size(cs_mode, false);
1504 }
1505
1506 return cs_size;
1507}
1508
1509/*
1510 * F16h and F15h model 30h have only limited cs_modes.
1511 */
1512static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1513 unsigned cs_mode, int cs_mask_nr)
1514{
1515 WARN_ON(cs_mode > 12);
1516
1517 if (cs_mode == 6 || cs_mode == 8 ||
1518 cs_mode == 9 || cs_mode == 12)
1519 return -1;
1520 else
1521 return ddr3_cs_size(cs_mode, false);
1522}
1523
1524static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1525 unsigned int cs_mode, int csrow_nr)
1526{
1527 u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
1528
1529 /* Each mask is used for every two base addresses. */
1530 u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
1531
1532 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1533 u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
1534
1535 edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
1536
1537 /* Return size in MBs. */
1538 return size >> 10;
1539}
1540
1541static void read_dram_ctl_register(struct amd64_pvt *pvt)
1542{
1543
1544 if (pvt->fam == 0xf)
1545 return;
1546
1547 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1548 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1549 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1550
1551 edac_dbg(0, " DCTs operate in %s mode\n",
1552 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1553
1554 if (!dct_ganging_enabled(pvt))
1555 edac_dbg(0, " Address range split per DCT: %s\n",
1556 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1557
1558 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1559 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1560 (dct_memory_cleared(pvt) ? "yes" : "no"));
1561
1562 edac_dbg(0, " channel interleave: %s, "
1563 "interleave bits selector: 0x%x\n",
1564 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1565 dct_sel_interleave_addr(pvt));
1566 }
1567
1568 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1569}
1570
1571/*
1572 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1573 * 2.10.12 Memory Interleaving Modes).
1574 */
1575static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1576 u8 intlv_en, int num_dcts_intlv,
1577 u32 dct_sel)
1578{
1579 u8 channel = 0;
1580 u8 select;
1581
1582 if (!(intlv_en))
1583 return (u8)(dct_sel);
1584
1585 if (num_dcts_intlv == 2) {
1586 select = (sys_addr >> 8) & 0x3;
1587 channel = select ? 0x3 : 0;
1588 } else if (num_dcts_intlv == 4) {
1589 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1590 switch (intlv_addr) {
1591 case 0x4:
1592 channel = (sys_addr >> 8) & 0x3;
1593 break;
1594 case 0x5:
1595 channel = (sys_addr >> 9) & 0x3;
1596 break;
1597 }
1598 }
1599 return channel;
1600}
1601
1602/*
1603 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1604 * Interleaving Modes.
1605 */
1606static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1607 bool hi_range_sel, u8 intlv_en)
1608{
1609 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1610
1611 if (dct_ganging_enabled(pvt))
1612 return 0;
1613
1614 if (hi_range_sel)
1615 return dct_sel_high;
1616
1617 /*
1618 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1619 */
1620 if (dct_interleave_enabled(pvt)) {
1621 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1622
1623 /* return DCT select function: 0=DCT0, 1=DCT1 */
1624 if (!intlv_addr)
1625 return sys_addr >> 6 & 1;
1626
1627 if (intlv_addr & 0x2) {
1628 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1629 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1630
1631 return ((sys_addr >> shift) & 1) ^ temp;
1632 }
1633
1634 if (intlv_addr & 0x4) {
1635 u8 shift = intlv_addr & 0x1 ? 9 : 8;
1636
1637 return (sys_addr >> shift) & 1;
1638 }
1639
1640 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1641 }
1642
1643 if (dct_high_range_enabled(pvt))
1644 return ~dct_sel_high & 1;
1645
1646 return 0;
1647}
1648
1649/* Convert the sys_addr to the normalized DCT address */
1650static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1651 u64 sys_addr, bool hi_rng,
1652 u32 dct_sel_base_addr)
1653{
1654 u64 chan_off;
1655 u64 dram_base = get_dram_base(pvt, range);
1656 u64 hole_off = f10_dhar_offset(pvt);
1657 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1658
1659 if (hi_rng) {
1660 /*
1661 * if
1662 * base address of high range is below 4Gb
1663 * (bits [47:27] at [31:11])
1664 * DRAM address space on this DCT is hoisted above 4Gb &&
1665 * sys_addr > 4Gb
1666 *
1667 * remove hole offset from sys_addr
1668 * else
1669 * remove high range offset from sys_addr
1670 */
1671 if ((!(dct_sel_base_addr >> 16) ||
1672 dct_sel_base_addr < dhar_base(pvt)) &&
1673 dhar_valid(pvt) &&
1674 (sys_addr >= BIT_64(32)))
1675 chan_off = hole_off;
1676 else
1677 chan_off = dct_sel_base_off;
1678 } else {
1679 /*
1680 * if
1681 * we have a valid hole &&
1682 * sys_addr > 4Gb
1683 *
1684 * remove hole
1685 * else
1686 * remove dram base to normalize to DCT address
1687 */
1688 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1689 chan_off = hole_off;
1690 else
1691 chan_off = dram_base;
1692 }
1693
1694 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1695}
1696
1697/*
1698 * checks if the csrow passed in is marked as SPARED, if so returns the new
1699 * spare row
1700 */
1701static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1702{
1703 int tmp_cs;
1704
1705 if (online_spare_swap_done(pvt, dct) &&
1706 csrow == online_spare_bad_dramcs(pvt, dct)) {
1707
1708 for_each_chip_select(tmp_cs, dct, pvt) {
1709 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1710 csrow = tmp_cs;
1711 break;
1712 }
1713 }
1714 }
1715 return csrow;
1716}
1717
1718/*
1719 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1720 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1721 *
1722 * Return:
1723 * -EINVAL: NOT FOUND
1724 * 0..csrow = Chip-Select Row
1725 */
1726static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1727{
1728 struct mem_ctl_info *mci;
1729 struct amd64_pvt *pvt;
1730 u64 cs_base, cs_mask;
1731 int cs_found = -EINVAL;
1732 int csrow;
1733
1734 mci = edac_mc_find(nid);
1735 if (!mci)
1736 return cs_found;
1737
1738 pvt = mci->pvt_info;
1739
1740 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1741
1742 for_each_chip_select(csrow, dct, pvt) {
1743 if (!csrow_enabled(csrow, dct, pvt))
1744 continue;
1745
1746 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1747
1748 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1749 csrow, cs_base, cs_mask);
1750
1751 cs_mask = ~cs_mask;
1752
1753 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1754 (in_addr & cs_mask), (cs_base & cs_mask));
1755
1756 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1757 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1758 cs_found = csrow;
1759 break;
1760 }
1761 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1762
1763 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1764 break;
1765 }
1766 }
1767 return cs_found;
1768}
1769
1770/*
1771 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1772 * swapped with a region located at the bottom of memory so that the GPU can use
1773 * the interleaved region and thus two channels.
1774 */
1775static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1776{
1777 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1778
1779 if (pvt->fam == 0x10) {
1780 /* only revC3 and revE have that feature */
1781 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1782 return sys_addr;
1783 }
1784
1785 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1786
1787 if (!(swap_reg & 0x1))
1788 return sys_addr;
1789
1790 swap_base = (swap_reg >> 3) & 0x7f;
1791 swap_limit = (swap_reg >> 11) & 0x7f;
1792 rgn_size = (swap_reg >> 20) & 0x7f;
1793 tmp_addr = sys_addr >> 27;
1794
1795 if (!(sys_addr >> 34) &&
1796 (((tmp_addr >= swap_base) &&
1797 (tmp_addr <= swap_limit)) ||
1798 (tmp_addr < rgn_size)))
1799 return sys_addr ^ (u64)swap_base << 27;
1800
1801 return sys_addr;
1802}
1803
1804/* For a given @dram_range, check if @sys_addr falls within it. */
1805static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1806 u64 sys_addr, int *chan_sel)
1807{
1808 int cs_found = -EINVAL;
1809 u64 chan_addr;
1810 u32 dct_sel_base;
1811 u8 channel;
1812 bool high_range = false;
1813
1814 u8 node_id = dram_dst_node(pvt, range);
1815 u8 intlv_en = dram_intlv_en(pvt, range);
1816 u32 intlv_sel = dram_intlv_sel(pvt, range);
1817
1818 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1819 range, sys_addr, get_dram_limit(pvt, range));
1820
1821 if (dhar_valid(pvt) &&
1822 dhar_base(pvt) <= sys_addr &&
1823 sys_addr < BIT_64(32)) {
1824 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1825 sys_addr);
1826 return -EINVAL;
1827 }
1828
1829 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1830 return -EINVAL;
1831
1832 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1833
1834 dct_sel_base = dct_sel_baseaddr(pvt);
1835
1836 /*
1837 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1838 * select between DCT0 and DCT1.
1839 */
1840 if (dct_high_range_enabled(pvt) &&
1841 !dct_ganging_enabled(pvt) &&
1842 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1843 high_range = true;
1844
1845 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1846
1847 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1848 high_range, dct_sel_base);
1849
1850 /* Remove node interleaving, see F1x120 */
1851 if (intlv_en)
1852 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1853 (chan_addr & 0xfff);
1854
1855 /* remove channel interleave */
1856 if (dct_interleave_enabled(pvt) &&
1857 !dct_high_range_enabled(pvt) &&
1858 !dct_ganging_enabled(pvt)) {
1859
1860 if (dct_sel_interleave_addr(pvt) != 1) {
1861 if (dct_sel_interleave_addr(pvt) == 0x3)
1862 /* hash 9 */
1863 chan_addr = ((chan_addr >> 10) << 9) |
1864 (chan_addr & 0x1ff);
1865 else
1866 /* A[6] or hash 6 */
1867 chan_addr = ((chan_addr >> 7) << 6) |
1868 (chan_addr & 0x3f);
1869 } else
1870 /* A[12] */
1871 chan_addr = ((chan_addr >> 13) << 12) |
1872 (chan_addr & 0xfff);
1873 }
1874
1875 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1876
1877 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1878
1879 if (cs_found >= 0)
1880 *chan_sel = channel;
1881
1882 return cs_found;
1883}
1884
1885static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1886 u64 sys_addr, int *chan_sel)
1887{
1888 int cs_found = -EINVAL;
1889 int num_dcts_intlv = 0;
1890 u64 chan_addr, chan_offset;
1891 u64 dct_base, dct_limit;
1892 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1893 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1894
1895 u64 dhar_offset = f10_dhar_offset(pvt);
1896 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1897 u8 node_id = dram_dst_node(pvt, range);
1898 u8 intlv_en = dram_intlv_en(pvt, range);
1899
1900 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1901 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1902
1903 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1904 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1905
1906 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1907 range, sys_addr, get_dram_limit(pvt, range));
1908
1909 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1910 !(get_dram_limit(pvt, range) >= sys_addr))
1911 return -EINVAL;
1912
1913 if (dhar_valid(pvt) &&
1914 dhar_base(pvt) <= sys_addr &&
1915 sys_addr < BIT_64(32)) {
1916 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1917 sys_addr);
1918 return -EINVAL;
1919 }
1920
1921 /* Verify sys_addr is within DCT Range. */
1922 dct_base = (u64) dct_sel_baseaddr(pvt);
1923 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1924
1925 if (!(dct_cont_base_reg & BIT(0)) &&
1926 !(dct_base <= (sys_addr >> 27) &&
1927 dct_limit >= (sys_addr >> 27)))
1928 return -EINVAL;
1929
1930 /* Verify number of dct's that participate in channel interleaving. */
1931 num_dcts_intlv = (int) hweight8(intlv_en);
1932
1933 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1934 return -EINVAL;
1935
1936 if (pvt->model >= 0x60)
1937 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
1938 else
1939 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1940 num_dcts_intlv, dct_sel);
1941
1942 /* Verify we stay within the MAX number of channels allowed */
1943 if (channel > 3)
1944 return -EINVAL;
1945
1946 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1947
1948 /* Get normalized DCT addr */
1949 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1950 chan_offset = dhar_offset;
1951 else
1952 chan_offset = dct_base << 27;
1953
1954 chan_addr = sys_addr - chan_offset;
1955
1956 /* remove channel interleave */
1957 if (num_dcts_intlv == 2) {
1958 if (intlv_addr == 0x4)
1959 chan_addr = ((chan_addr >> 9) << 8) |
1960 (chan_addr & 0xff);
1961 else if (intlv_addr == 0x5)
1962 chan_addr = ((chan_addr >> 10) << 9) |
1963 (chan_addr & 0x1ff);
1964 else
1965 return -EINVAL;
1966
1967 } else if (num_dcts_intlv == 4) {
1968 if (intlv_addr == 0x4)
1969 chan_addr = ((chan_addr >> 10) << 8) |
1970 (chan_addr & 0xff);
1971 else if (intlv_addr == 0x5)
1972 chan_addr = ((chan_addr >> 11) << 9) |
1973 (chan_addr & 0x1ff);
1974 else
1975 return -EINVAL;
1976 }
1977
1978 if (dct_offset_en) {
1979 amd64_read_pci_cfg(pvt->F1,
1980 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1981 &tmp);
1982 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
1983 }
1984
1985 f15h_select_dct(pvt, channel);
1986
1987 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1988
1989 /*
1990 * Find Chip select:
1991 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1992 * there is support for 4 DCT's, but only 2 are currently functional.
1993 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1994 * pvt->csels[1]. So we need to use '1' here to get correct info.
1995 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1996 */
1997 alias_channel = (channel == 3) ? 1 : channel;
1998
1999 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
2000
2001 if (cs_found >= 0)
2002 *chan_sel = alias_channel;
2003
2004 return cs_found;
2005}
2006
2007static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2008 u64 sys_addr,
2009 int *chan_sel)
2010{
2011 int cs_found = -EINVAL;
2012 unsigned range;
2013
2014 for (range = 0; range < DRAM_RANGES; range++) {
2015 if (!dram_rw(pvt, range))
2016 continue;
2017
2018 if (pvt->fam == 0x15 && pvt->model >= 0x30)
2019 cs_found = f15_m30h_match_to_this_node(pvt, range,
2020 sys_addr,
2021 chan_sel);
2022
2023 else if ((get_dram_base(pvt, range) <= sys_addr) &&
2024 (get_dram_limit(pvt, range) >= sys_addr)) {
2025 cs_found = f1x_match_to_this_node(pvt, range,
2026 sys_addr, chan_sel);
2027 if (cs_found >= 0)
2028 break;
2029 }
2030 }
2031 return cs_found;
2032}
2033
2034/*
2035 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2036 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2037 *
2038 * The @sys_addr is usually an error address received from the hardware
2039 * (MCX_ADDR).
2040 */
2041static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2042 struct err_info *err)
2043{
2044 struct amd64_pvt *pvt = mci->pvt_info;
2045
2046 error_address_to_page_and_offset(sys_addr, err);
2047
2048 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2049 if (err->csrow < 0) {
2050 err->err_code = ERR_CSROW;
2051 return;
2052 }
2053
2054 /*
2055 * We need the syndromes for channel detection only when we're
2056 * ganged. Otherwise @chan should already contain the channel at
2057 * this point.
2058 */
2059 if (dct_ganging_enabled(pvt))
2060 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2061}
2062
2063/*
2064 * debug routine to display the memory sizes of all logical DIMMs and its
2065 * CSROWs
2066 */
2067static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2068{
2069 int dimm, size0, size1;
2070 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2071 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
2072
2073 if (pvt->fam == 0xf) {
2074 /* K8 families < revF not supported yet */
2075 if (pvt->ext_model < K8_REV_F)
2076 return;
2077 else
2078 WARN_ON(ctrl != 0);
2079 }
2080
2081 if (pvt->fam == 0x10) {
2082 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2083 : pvt->dbam0;
2084 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2085 pvt->csels[1].csbases :
2086 pvt->csels[0].csbases;
2087 } else if (ctrl) {
2088 dbam = pvt->dbam0;
2089 dcsb = pvt->csels[1].csbases;
2090 }
2091 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2092 ctrl, dbam);
2093
2094 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2095
2096 /* Dump memory sizes for DIMM and its CSROWs */
2097 for (dimm = 0; dimm < 4; dimm++) {
2098
2099 size0 = 0;
2100 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2101 /*
2102 * For F15m60h, we need multiplier for LRDIMM cs_size
2103 * calculation. We pass dimm value to the dbam_to_cs
2104 * mapper so we can find the multiplier from the
2105 * corresponding DCSM.
2106 */
2107 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2108 DBAM_DIMM(dimm, dbam),
2109 dimm);
2110
2111 size1 = 0;
2112 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2113 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2114 DBAM_DIMM(dimm, dbam),
2115 dimm);
2116
2117 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2118 dimm * 2, size0,
2119 dimm * 2 + 1, size1);
2120 }
2121}
2122
2123static struct amd64_family_type family_types[] = {
2124 [K8_CPUS] = {
2125 .ctl_name = "K8",
2126 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2127 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2128 .ops = {
2129 .early_channel_count = k8_early_channel_count,
2130 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
2131 .dbam_to_cs = k8_dbam_to_chip_select,
2132 }
2133 },
2134 [F10_CPUS] = {
2135 .ctl_name = "F10h",
2136 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2137 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2138 .ops = {
2139 .early_channel_count = f1x_early_channel_count,
2140 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2141 .dbam_to_cs = f10_dbam_to_chip_select,
2142 }
2143 },
2144 [F15_CPUS] = {
2145 .ctl_name = "F15h",
2146 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2147 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2148 .ops = {
2149 .early_channel_count = f1x_early_channel_count,
2150 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2151 .dbam_to_cs = f15_dbam_to_chip_select,
2152 }
2153 },
2154 [F15_M30H_CPUS] = {
2155 .ctl_name = "F15h_M30h",
2156 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2157 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2158 .ops = {
2159 .early_channel_count = f1x_early_channel_count,
2160 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2161 .dbam_to_cs = f16_dbam_to_chip_select,
2162 }
2163 },
2164 [F15_M60H_CPUS] = {
2165 .ctl_name = "F15h_M60h",
2166 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2167 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2168 .ops = {
2169 .early_channel_count = f1x_early_channel_count,
2170 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2171 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
2172 }
2173 },
2174 [F16_CPUS] = {
2175 .ctl_name = "F16h",
2176 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2177 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2178 .ops = {
2179 .early_channel_count = f1x_early_channel_count,
2180 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2181 .dbam_to_cs = f16_dbam_to_chip_select,
2182 }
2183 },
2184 [F16_M30H_CPUS] = {
2185 .ctl_name = "F16h_M30h",
2186 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2187 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2188 .ops = {
2189 .early_channel_count = f1x_early_channel_count,
2190 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2191 .dbam_to_cs = f16_dbam_to_chip_select,
2192 }
2193 },
2194 [F17_CPUS] = {
2195 .ctl_name = "F17h",
2196 .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
2197 .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2198 .ops = {
2199 .early_channel_count = f17_early_channel_count,
2200 .dbam_to_cs = f17_base_addr_to_cs_size,
2201 }
2202 },
2203 [F17_M10H_CPUS] = {
2204 .ctl_name = "F17h_M10h",
2205 .f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
2206 .f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2207 .ops = {
2208 .early_channel_count = f17_early_channel_count,
2209 .dbam_to_cs = f17_base_addr_to_cs_size,
2210 }
2211 },
2212};
2213
2214/*
2215 * These are tables of eigenvectors (one per line) which can be used for the
2216 * construction of the syndrome tables. The modified syndrome search algorithm
2217 * uses those to find the symbol in error and thus the DIMM.
2218 *
2219 * Algorithm courtesy of Ross LaFetra from AMD.
2220 */
2221static const u16 x4_vectors[] = {
2222 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2223 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2224 0x0001, 0x0002, 0x0004, 0x0008,
2225 0x1013, 0x3032, 0x4044, 0x8088,
2226 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2227 0x4857, 0xc4fe, 0x13cc, 0x3288,
2228 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2229 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2230 0x15c1, 0x2a42, 0x89ac, 0x4758,
2231 0x2b03, 0x1602, 0x4f0c, 0xca08,
2232 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2233 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2234 0x2b87, 0x164e, 0x642c, 0xdc18,
2235 0x40b9, 0x80de, 0x1094, 0x20e8,
2236 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2237 0x11c1, 0x2242, 0x84ac, 0x4c58,
2238 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2239 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2240 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2241 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2242 0x16b3, 0x3d62, 0x4f34, 0x8518,
2243 0x1e2f, 0x391a, 0x5cac, 0xf858,
2244 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2245 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2246 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2247 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2248 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2249 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2250 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2251 0x185d, 0x2ca6, 0x7914, 0x9e28,
2252 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2253 0x4199, 0x82ee, 0x19f4, 0x2e58,
2254 0x4807, 0xc40e, 0x130c, 0x3208,
2255 0x1905, 0x2e0a, 0x5804, 0xac08,
2256 0x213f, 0x132a, 0xadfc, 0x5ba8,
2257 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2258};
2259
2260static const u16 x8_vectors[] = {
2261 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2262 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2263 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2264 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2265 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2266 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2267 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2268 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2269 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2270 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2271 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2272 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2273 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2274 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2275 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2276 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2277 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2278 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2279 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2280};
2281
2282static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2283 unsigned v_dim)
2284{
2285 unsigned int i, err_sym;
2286
2287 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2288 u16 s = syndrome;
2289 unsigned v_idx = err_sym * v_dim;
2290 unsigned v_end = (err_sym + 1) * v_dim;
2291
2292 /* walk over all 16 bits of the syndrome */
2293 for (i = 1; i < (1U << 16); i <<= 1) {
2294
2295 /* if bit is set in that eigenvector... */
2296 if (v_idx < v_end && vectors[v_idx] & i) {
2297 u16 ev_comp = vectors[v_idx++];
2298
2299 /* ... and bit set in the modified syndrome, */
2300 if (s & i) {
2301 /* remove it. */
2302 s ^= ev_comp;
2303
2304 if (!s)
2305 return err_sym;
2306 }
2307
2308 } else if (s & i)
2309 /* can't get to zero, move to next symbol */
2310 break;
2311 }
2312 }
2313
2314 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2315 return -1;
2316}
2317
2318static int map_err_sym_to_channel(int err_sym, int sym_size)
2319{
2320 if (sym_size == 4)
2321 switch (err_sym) {
2322 case 0x20:
2323 case 0x21:
2324 return 0;
2325 break;
2326 case 0x22:
2327 case 0x23:
2328 return 1;
2329 break;
2330 default:
2331 return err_sym >> 4;
2332 break;
2333 }
2334 /* x8 symbols */
2335 else
2336 switch (err_sym) {
2337 /* imaginary bits not in a DIMM */
2338 case 0x10:
2339 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2340 err_sym);
2341 return -1;
2342 break;
2343
2344 case 0x11:
2345 return 0;
2346 break;
2347 case 0x12:
2348 return 1;
2349 break;
2350 default:
2351 return err_sym >> 3;
2352 break;
2353 }
2354 return -1;
2355}
2356
2357static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2358{
2359 struct amd64_pvt *pvt = mci->pvt_info;
2360 int err_sym = -1;
2361
2362 if (pvt->ecc_sym_sz == 8)
2363 err_sym = decode_syndrome(syndrome, x8_vectors,
2364 ARRAY_SIZE(x8_vectors),
2365 pvt->ecc_sym_sz);
2366 else if (pvt->ecc_sym_sz == 4)
2367 err_sym = decode_syndrome(syndrome, x4_vectors,
2368 ARRAY_SIZE(x4_vectors),
2369 pvt->ecc_sym_sz);
2370 else {
2371 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2372 return err_sym;
2373 }
2374
2375 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2376}
2377
2378static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2379 u8 ecc_type)
2380{
2381 enum hw_event_mc_err_type err_type;
2382 const char *string;
2383
2384 if (ecc_type == 2)
2385 err_type = HW_EVENT_ERR_CORRECTED;
2386 else if (ecc_type == 1)
2387 err_type = HW_EVENT_ERR_UNCORRECTED;
2388 else if (ecc_type == 3)
2389 err_type = HW_EVENT_ERR_DEFERRED;
2390 else {
2391 WARN(1, "Something is rotten in the state of Denmark.\n");
2392 return;
2393 }
2394
2395 switch (err->err_code) {
2396 case DECODE_OK:
2397 string = "";
2398 break;
2399 case ERR_NODE:
2400 string = "Failed to map error addr to a node";
2401 break;
2402 case ERR_CSROW:
2403 string = "Failed to map error addr to a csrow";
2404 break;
2405 case ERR_CHANNEL:
2406 string = "Unknown syndrome - possible error reporting race";
2407 break;
2408 case ERR_SYND:
2409 string = "MCA_SYND not valid - unknown syndrome and csrow";
2410 break;
2411 case ERR_NORM_ADDR:
2412 string = "Cannot decode normalized address";
2413 break;
2414 default:
2415 string = "WTF error";
2416 break;
2417 }
2418
2419 edac_mc_handle_error(err_type, mci, 1,
2420 err->page, err->offset, err->syndrome,
2421 err->csrow, err->channel, -1,
2422 string, "");
2423}
2424
2425static inline void decode_bus_error(int node_id, struct mce *m)
2426{
2427 struct mem_ctl_info *mci;
2428 struct amd64_pvt *pvt;
2429 u8 ecc_type = (m->status >> 45) & 0x3;
2430 u8 xec = XEC(m->status, 0x1f);
2431 u16 ec = EC(m->status);
2432 u64 sys_addr;
2433 struct err_info err;
2434
2435 mci = edac_mc_find(node_id);
2436 if (!mci)
2437 return;
2438
2439 pvt = mci->pvt_info;
2440
2441 /* Bail out early if this was an 'observed' error */
2442 if (PP(ec) == NBSL_PP_OBS)
2443 return;
2444
2445 /* Do only ECC errors */
2446 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2447 return;
2448
2449 memset(&err, 0, sizeof(err));
2450
2451 sys_addr = get_error_address(pvt, m);
2452
2453 if (ecc_type == 2)
2454 err.syndrome = extract_syndrome(m->status);
2455
2456 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2457
2458 __log_ecc_error(mci, &err, ecc_type);
2459}
2460
2461/*
2462 * To find the UMC channel represented by this bank we need to match on its
2463 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2464 * IPID.
2465 */
2466static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
2467{
2468 u32 umc_instance_id[] = {0x50f00, 0x150f00};
2469 u32 instance_id = m->ipid & GENMASK(31, 0);
2470 int i, channel = -1;
2471
2472 for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
2473 if (umc_instance_id[i] == instance_id)
2474 channel = i;
2475
2476 return channel;
2477}
2478
2479static void decode_umc_error(int node_id, struct mce *m)
2480{
2481 u8 ecc_type = (m->status >> 45) & 0x3;
2482 struct mem_ctl_info *mci;
2483 struct amd64_pvt *pvt;
2484 struct err_info err;
2485 u64 sys_addr;
2486
2487 mci = edac_mc_find(node_id);
2488 if (!mci)
2489 return;
2490
2491 pvt = mci->pvt_info;
2492
2493 memset(&err, 0, sizeof(err));
2494
2495 if (m->status & MCI_STATUS_DEFERRED)
2496 ecc_type = 3;
2497
2498 err.channel = find_umc_channel(pvt, m);
2499 if (err.channel < 0) {
2500 err.err_code = ERR_CHANNEL;
2501 goto log_error;
2502 }
2503
2504 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
2505 err.err_code = ERR_NORM_ADDR;
2506 goto log_error;
2507 }
2508
2509 error_address_to_page_and_offset(sys_addr, &err);
2510
2511 if (!(m->status & MCI_STATUS_SYNDV)) {
2512 err.err_code = ERR_SYND;
2513 goto log_error;
2514 }
2515
2516 if (ecc_type == 2) {
2517 u8 length = (m->synd >> 18) & 0x3f;
2518
2519 if (length)
2520 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
2521 else
2522 err.err_code = ERR_CHANNEL;
2523 }
2524
2525 err.csrow = m->synd & 0x7;
2526
2527log_error:
2528 __log_ecc_error(mci, &err, ecc_type);
2529}
2530
2531/*
2532 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2533 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2534 * Reserve F0 and F6 on systems with a UMC.
2535 */
2536static int
2537reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
2538{
2539 if (pvt->umc) {
2540 pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2541 if (!pvt->F0) {
2542 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2543 return -ENODEV;
2544 }
2545
2546 pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2547 if (!pvt->F6) {
2548 pci_dev_put(pvt->F0);
2549 pvt->F0 = NULL;
2550
2551 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2552 return -ENODEV;
2553 }
2554
2555 edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
2556 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2557 edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
2558
2559 return 0;
2560 }
2561
2562 /* Reserve the ADDRESS MAP Device */
2563 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2564 if (!pvt->F1) {
2565 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2566 return -ENODEV;
2567 }
2568
2569 /* Reserve the DCT Device */
2570 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2571 if (!pvt->F2) {
2572 pci_dev_put(pvt->F1);
2573 pvt->F1 = NULL;
2574
2575 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2576 return -ENODEV;
2577 }
2578
2579 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2580 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2581 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2582
2583 return 0;
2584}
2585
2586static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2587{
2588 if (pvt->umc) {
2589 pci_dev_put(pvt->F0);
2590 pci_dev_put(pvt->F6);
2591 } else {
2592 pci_dev_put(pvt->F1);
2593 pci_dev_put(pvt->F2);
2594 }
2595}
2596
2597static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
2598{
2599 pvt->ecc_sym_sz = 4;
2600
2601 if (pvt->umc) {
2602 u8 i;
2603
2604 for (i = 0; i < NUM_UMCS; i++) {
2605 /* Check enabled channels only: */
2606 if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
2607 (pvt->umc[i].ecc_ctrl & BIT(7))) {
2608 pvt->ecc_sym_sz = 8;
2609 break;
2610 }
2611 }
2612
2613 return;
2614 }
2615
2616 if (pvt->fam >= 0x10) {
2617 u32 tmp;
2618
2619 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2620 /* F16h has only DCT0, so no need to read dbam1. */
2621 if (pvt->fam != 0x16)
2622 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2623
2624 /* F10h, revD and later can do x8 ECC too. */
2625 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2626 pvt->ecc_sym_sz = 8;
2627 }
2628}
2629
2630/*
2631 * Retrieve the hardware registers of the memory controller.
2632 */
2633static void __read_mc_regs_df(struct amd64_pvt *pvt)
2634{
2635 u8 nid = pvt->mc_node_id;
2636 struct amd64_umc *umc;
2637 u32 i, umc_base;
2638
2639 /* Read registers from each UMC */
2640 for (i = 0; i < NUM_UMCS; i++) {
2641
2642 umc_base = get_umc_base(i);
2643 umc = &pvt->umc[i];
2644
2645 amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
2646 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2647 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
2648 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2649 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2650 }
2651}
2652
2653/*
2654 * Retrieve the hardware registers of the memory controller (this includes the
2655 * 'Address Map' and 'Misc' device regs)
2656 */
2657static void read_mc_regs(struct amd64_pvt *pvt)
2658{
2659 unsigned int range;
2660 u64 msr_val;
2661
2662 /*
2663 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2664 * those are Read-As-Zero.
2665 */
2666 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2667 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
2668
2669 /* Check first whether TOP_MEM2 is enabled: */
2670 rdmsrl(MSR_K8_SYSCFG, msr_val);
2671 if (msr_val & BIT(21)) {
2672 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2673 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2674 } else {
2675 edac_dbg(0, " TOP_MEM2 disabled\n");
2676 }
2677
2678 if (pvt->umc) {
2679 __read_mc_regs_df(pvt);
2680 amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
2681
2682 goto skip;
2683 }
2684
2685 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2686
2687 read_dram_ctl_register(pvt);
2688
2689 for (range = 0; range < DRAM_RANGES; range++) {
2690 u8 rw;
2691
2692 /* read settings for this DRAM range */
2693 read_dram_base_limit_regs(pvt, range);
2694
2695 rw = dram_rw(pvt, range);
2696 if (!rw)
2697 continue;
2698
2699 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2700 range,
2701 get_dram_base(pvt, range),
2702 get_dram_limit(pvt, range));
2703
2704 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2705 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2706 (rw & 0x1) ? "R" : "-",
2707 (rw & 0x2) ? "W" : "-",
2708 dram_intlv_sel(pvt, range),
2709 dram_dst_node(pvt, range));
2710 }
2711
2712 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2713 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2714
2715 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2716
2717 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2718 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2719
2720 if (!dct_ganging_enabled(pvt)) {
2721 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2722 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2723 }
2724
2725skip:
2726 read_dct_base_mask(pvt);
2727
2728 determine_memory_type(pvt);
2729 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2730
2731 determine_ecc_sym_sz(pvt);
2732
2733 dump_misc_regs(pvt);
2734}
2735
2736/*
2737 * NOTE: CPU Revision Dependent code
2738 *
2739 * Input:
2740 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2741 * k8 private pointer to -->
2742 * DRAM Bank Address mapping register
2743 * node_id
2744 * DCL register where dual_channel_active is
2745 *
2746 * The DBAM register consists of 4 sets of 4 bits each definitions:
2747 *
2748 * Bits: CSROWs
2749 * 0-3 CSROWs 0 and 1
2750 * 4-7 CSROWs 2 and 3
2751 * 8-11 CSROWs 4 and 5
2752 * 12-15 CSROWs 6 and 7
2753 *
2754 * Values range from: 0 to 15
2755 * The meaning of the values depends on CPU revision and dual-channel state,
2756 * see relevant BKDG more info.
2757 *
2758 * The memory controller provides for total of only 8 CSROWs in its current
2759 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2760 * single channel or two (2) DIMMs in dual channel mode.
2761 *
2762 * The following code logic collapses the various tables for CSROW based on CPU
2763 * revision.
2764 *
2765 * Returns:
2766 * The number of PAGE_SIZE pages on the specified CSROW number it
2767 * encompasses
2768 *
2769 */
2770static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2771{
2772 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2773 int csrow_nr = csrow_nr_orig;
2774 u32 cs_mode, nr_pages;
2775
2776 if (!pvt->umc)
2777 csrow_nr >>= 1;
2778
2779 cs_mode = DBAM_DIMM(csrow_nr, dbam);
2780
2781 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
2782 nr_pages <<= 20 - PAGE_SHIFT;
2783
2784 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2785 csrow_nr_orig, dct, cs_mode);
2786 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2787
2788 return nr_pages;
2789}
2790
2791/*
2792 * Initialize the array of csrow attribute instances, based on the values
2793 * from pci config hardware registers.
2794 */
2795static int init_csrows(struct mem_ctl_info *mci)
2796{
2797 struct amd64_pvt *pvt = mci->pvt_info;
2798 enum edac_type edac_mode = EDAC_NONE;
2799 struct csrow_info *csrow;
2800 struct dimm_info *dimm;
2801 int i, j, empty = 1;
2802 int nr_pages = 0;
2803 u32 val;
2804
2805 if (!pvt->umc) {
2806 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2807
2808 pvt->nbcfg = val;
2809
2810 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2811 pvt->mc_node_id, val,
2812 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2813 }
2814
2815 /*
2816 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2817 */
2818 for_each_chip_select(i, 0, pvt) {
2819 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2820 bool row_dct1 = false;
2821
2822 if (pvt->fam != 0xf)
2823 row_dct1 = !!csrow_enabled(i, 1, pvt);
2824
2825 if (!row_dct0 && !row_dct1)
2826 continue;
2827
2828 csrow = mci->csrows[i];
2829 empty = 0;
2830
2831 edac_dbg(1, "MC node: %d, csrow: %d\n",
2832 pvt->mc_node_id, i);
2833
2834 if (row_dct0) {
2835 nr_pages = get_csrow_nr_pages(pvt, 0, i);
2836 csrow->channels[0]->dimm->nr_pages = nr_pages;
2837 }
2838
2839 /* K8 has only one DCT */
2840 if (pvt->fam != 0xf && row_dct1) {
2841 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2842
2843 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2844 nr_pages += row_dct1_pages;
2845 }
2846
2847 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2848
2849 /* Determine DIMM ECC mode: */
2850 if (pvt->umc) {
2851 if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
2852 edac_mode = EDAC_S4ECD4ED;
2853 else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
2854 edac_mode = EDAC_SECDED;
2855
2856 } else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2857 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
2858 ? EDAC_S4ECD4ED
2859 : EDAC_SECDED;
2860 }
2861
2862 for (j = 0; j < pvt->channel_count; j++) {
2863 dimm = csrow->channels[j]->dimm;
2864 dimm->mtype = pvt->dram_type;
2865 dimm->edac_mode = edac_mode;
2866 }
2867 }
2868
2869 return empty;
2870}
2871
2872/* get all cores on this DCT */
2873static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2874{
2875 int cpu;
2876
2877 for_each_online_cpu(cpu)
2878 if (amd_get_nb_id(cpu) == nid)
2879 cpumask_set_cpu(cpu, mask);
2880}
2881
2882/* check MCG_CTL on all the cpus on this node */
2883static bool nb_mce_bank_enabled_on_node(u16 nid)
2884{
2885 cpumask_var_t mask;
2886 int cpu, nbe;
2887 bool ret = false;
2888
2889 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2890 amd64_warn("%s: Error allocating mask\n", __func__);
2891 return false;
2892 }
2893
2894 get_cpus_on_this_dct_cpumask(mask, nid);
2895
2896 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2897
2898 for_each_cpu(cpu, mask) {
2899 struct msr *reg = per_cpu_ptr(msrs, cpu);
2900 nbe = reg->l & MSR_MCGCTL_NBE;
2901
2902 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2903 cpu, reg->q,
2904 (nbe ? "enabled" : "disabled"));
2905
2906 if (!nbe)
2907 goto out;
2908 }
2909 ret = true;
2910
2911out:
2912 free_cpumask_var(mask);
2913 return ret;
2914}
2915
2916static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2917{
2918 cpumask_var_t cmask;
2919 int cpu;
2920
2921 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2922 amd64_warn("%s: error allocating mask\n", __func__);
2923 return -ENOMEM;
2924 }
2925
2926 get_cpus_on_this_dct_cpumask(cmask, nid);
2927
2928 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2929
2930 for_each_cpu(cpu, cmask) {
2931
2932 struct msr *reg = per_cpu_ptr(msrs, cpu);
2933
2934 if (on) {
2935 if (reg->l & MSR_MCGCTL_NBE)
2936 s->flags.nb_mce_enable = 1;
2937
2938 reg->l |= MSR_MCGCTL_NBE;
2939 } else {
2940 /*
2941 * Turn off NB MCE reporting only when it was off before
2942 */
2943 if (!s->flags.nb_mce_enable)
2944 reg->l &= ~MSR_MCGCTL_NBE;
2945 }
2946 }
2947 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2948
2949 free_cpumask_var(cmask);
2950
2951 return 0;
2952}
2953
2954static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2955 struct pci_dev *F3)
2956{
2957 bool ret = true;
2958 u32 value, mask = 0x3; /* UECC/CECC enable */
2959
2960 if (toggle_ecc_err_reporting(s, nid, ON)) {
2961 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2962 return false;
2963 }
2964
2965 amd64_read_pci_cfg(F3, NBCTL, &value);
2966
2967 s->old_nbctl = value & mask;
2968 s->nbctl_valid = true;
2969
2970 value |= mask;
2971 amd64_write_pci_cfg(F3, NBCTL, value);
2972
2973 amd64_read_pci_cfg(F3, NBCFG, &value);
2974
2975 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2976 nid, value, !!(value & NBCFG_ECC_ENABLE));
2977
2978 if (!(value & NBCFG_ECC_ENABLE)) {
2979 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2980
2981 s->flags.nb_ecc_prev = 0;
2982
2983 /* Attempt to turn on DRAM ECC Enable */
2984 value |= NBCFG_ECC_ENABLE;
2985 amd64_write_pci_cfg(F3, NBCFG, value);
2986
2987 amd64_read_pci_cfg(F3, NBCFG, &value);
2988
2989 if (!(value & NBCFG_ECC_ENABLE)) {
2990 amd64_warn("Hardware rejected DRAM ECC enable,"
2991 "check memory DIMM configuration.\n");
2992 ret = false;
2993 } else {
2994 amd64_info("Hardware accepted DRAM ECC Enable\n");
2995 }
2996 } else {
2997 s->flags.nb_ecc_prev = 1;
2998 }
2999
3000 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3001 nid, value, !!(value & NBCFG_ECC_ENABLE));
3002
3003 return ret;
3004}
3005
3006static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3007 struct pci_dev *F3)
3008{
3009 u32 value, mask = 0x3; /* UECC/CECC enable */
3010
3011 if (!s->nbctl_valid)
3012 return;
3013
3014 amd64_read_pci_cfg(F3, NBCTL, &value);
3015 value &= ~mask;
3016 value |= s->old_nbctl;
3017
3018 amd64_write_pci_cfg(F3, NBCTL, value);
3019
3020 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3021 if (!s->flags.nb_ecc_prev) {
3022 amd64_read_pci_cfg(F3, NBCFG, &value);
3023 value &= ~NBCFG_ECC_ENABLE;
3024 amd64_write_pci_cfg(F3, NBCFG, value);
3025 }
3026
3027 /* restore the NB Enable MCGCTL bit */
3028 if (toggle_ecc_err_reporting(s, nid, OFF))
3029 amd64_warn("Error restoring NB MCGCTL settings!\n");
3030}
3031
3032/*
3033 * EDAC requires that the BIOS have ECC enabled before
3034 * taking over the processing of ECC errors. A command line
3035 * option allows to force-enable hardware ECC later in
3036 * enable_ecc_error_reporting().
3037 */
3038static const char *ecc_msg =
3039 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3040 " Either enable ECC checking or force module loading by setting "
3041 "'ecc_enable_override'.\n"
3042 " (Note that use of the override may cause unknown side effects.)\n";
3043
3044static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3045{
3046 bool nb_mce_en = false;
3047 u8 ecc_en = 0, i;
3048 u32 value;
3049
3050 if (boot_cpu_data.x86 >= 0x17) {
3051 u8 umc_en_mask = 0, ecc_en_mask = 0;
3052
3053 for (i = 0; i < NUM_UMCS; i++) {
3054 u32 base = get_umc_base(i);
3055
3056 /* Only check enabled UMCs. */
3057 if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
3058 continue;
3059
3060 if (!(value & UMC_SDP_INIT))
3061 continue;
3062
3063 umc_en_mask |= BIT(i);
3064
3065 if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
3066 continue;
3067
3068 if (value & UMC_ECC_ENABLED)
3069 ecc_en_mask |= BIT(i);
3070 }
3071
3072 /* Check whether at least one UMC is enabled: */
3073 if (umc_en_mask)
3074 ecc_en = umc_en_mask == ecc_en_mask;
3075 else
3076 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3077
3078 /* Assume UMC MCA banks are enabled. */
3079 nb_mce_en = true;
3080 } else {
3081 amd64_read_pci_cfg(F3, NBCFG, &value);
3082
3083 ecc_en = !!(value & NBCFG_ECC_ENABLE);
3084
3085 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3086 if (!nb_mce_en)
3087 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3088 MSR_IA32_MCG_CTL, nid);
3089 }
3090
3091 amd64_info("Node %d: DRAM ECC %s.\n",
3092 nid, (ecc_en ? "enabled" : "disabled"));
3093
3094 if (!ecc_en || !nb_mce_en) {
3095 amd64_info("%s", ecc_msg);
3096 return false;
3097 }
3098 return true;
3099}
3100
3101static inline void
3102f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3103{
3104 u8 i, ecc_en = 1, cpk_en = 1;
3105
3106 for (i = 0; i < NUM_UMCS; i++) {
3107 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3108 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3109 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3110 }
3111 }
3112
3113 /* Set chipkill only if ECC is enabled: */
3114 if (ecc_en) {
3115 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3116
3117 if (cpk_en)
3118 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3119 }
3120}
3121
3122static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
3123 struct amd64_family_type *fam)
3124{
3125 struct amd64_pvt *pvt = mci->pvt_info;
3126
3127 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3128 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3129
3130 if (pvt->umc) {
3131 f17h_determine_edac_ctl_cap(mci, pvt);
3132 } else {
3133 if (pvt->nbcap & NBCAP_SECDED)
3134 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3135
3136 if (pvt->nbcap & NBCAP_CHIPKILL)
3137 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3138 }
3139
3140 mci->edac_cap = determine_edac_cap(pvt);
3141 mci->mod_name = EDAC_MOD_STR;
3142 mci->ctl_name = fam->ctl_name;
3143 mci->dev_name = pci_name(pvt->F3);
3144 mci->ctl_page_to_phys = NULL;
3145
3146 /* memory scrubber interface */
3147 mci->set_sdram_scrub_rate = set_scrub_rate;
3148 mci->get_sdram_scrub_rate = get_scrub_rate;
3149}
3150
3151/*
3152 * returns a pointer to the family descriptor on success, NULL otherwise.
3153 */
3154static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3155{
3156 struct amd64_family_type *fam_type = NULL;
3157
3158 pvt->ext_model = boot_cpu_data.x86_model >> 4;
3159 pvt->stepping = boot_cpu_data.x86_stepping;
3160 pvt->model = boot_cpu_data.x86_model;
3161 pvt->fam = boot_cpu_data.x86;
3162
3163 switch (pvt->fam) {
3164 case 0xf:
3165 fam_type = &family_types[K8_CPUS];
3166 pvt->ops = &family_types[K8_CPUS].ops;
3167 break;
3168
3169 case 0x10:
3170 fam_type = &family_types[F10_CPUS];
3171 pvt->ops = &family_types[F10_CPUS].ops;
3172 break;
3173
3174 case 0x15:
3175 if (pvt->model == 0x30) {
3176 fam_type = &family_types[F15_M30H_CPUS];
3177 pvt->ops = &family_types[F15_M30H_CPUS].ops;
3178 break;
3179 } else if (pvt->model == 0x60) {
3180 fam_type = &family_types[F15_M60H_CPUS];
3181 pvt->ops = &family_types[F15_M60H_CPUS].ops;
3182 break;
3183 }
3184
3185 fam_type = &family_types[F15_CPUS];
3186 pvt->ops = &family_types[F15_CPUS].ops;
3187 break;
3188
3189 case 0x16:
3190 if (pvt->model == 0x30) {
3191 fam_type = &family_types[F16_M30H_CPUS];
3192 pvt->ops = &family_types[F16_M30H_CPUS].ops;
3193 break;
3194 }
3195 fam_type = &family_types[F16_CPUS];
3196 pvt->ops = &family_types[F16_CPUS].ops;
3197 break;
3198
3199 case 0x17:
3200 if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
3201 fam_type = &family_types[F17_M10H_CPUS];
3202 pvt->ops = &family_types[F17_M10H_CPUS].ops;
3203 break;
3204 }
3205 fam_type = &family_types[F17_CPUS];
3206 pvt->ops = &family_types[F17_CPUS].ops;
3207 break;
3208
3209 default:
3210 amd64_err("Unsupported family!\n");
3211 return NULL;
3212 }
3213
3214 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3215 (pvt->fam == 0xf ?
3216 (pvt->ext_model >= K8_REV_F ? "revF or later "
3217 : "revE or earlier ")
3218 : ""), pvt->mc_node_id);
3219 return fam_type;
3220}
3221
3222static const struct attribute_group *amd64_edac_attr_groups[] = {
3223#ifdef CONFIG_EDAC_DEBUG
3224 &amd64_edac_dbg_group,
3225#endif
3226#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3227 &amd64_edac_inj_group,
3228#endif
3229 NULL
3230};
3231
3232static int init_one_instance(unsigned int nid)
3233{
3234 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3235 struct amd64_family_type *fam_type = NULL;
3236 struct mem_ctl_info *mci = NULL;
3237 struct edac_mc_layer layers[2];
3238 struct amd64_pvt *pvt = NULL;
3239 u16 pci_id1, pci_id2;
3240 int err = 0, ret;
3241
3242 ret = -ENOMEM;
3243 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3244 if (!pvt)
3245 goto err_ret;
3246
3247 pvt->mc_node_id = nid;
3248 pvt->F3 = F3;
3249
3250 ret = -EINVAL;
3251 fam_type = per_family_init(pvt);
3252 if (!fam_type)
3253 goto err_free;
3254
3255 if (pvt->fam >= 0x17) {
3256 pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
3257 if (!pvt->umc) {
3258 ret = -ENOMEM;
3259 goto err_free;
3260 }
3261
3262 pci_id1 = fam_type->f0_id;
3263 pci_id2 = fam_type->f6_id;
3264 } else {
3265 pci_id1 = fam_type->f1_id;
3266 pci_id2 = fam_type->f2_id;
3267 }
3268
3269 err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3270 if (err)
3271 goto err_post_init;
3272
3273 read_mc_regs(pvt);
3274
3275 /*
3276 * We need to determine how many memory channels there are. Then use
3277 * that information for calculating the size of the dynamic instance
3278 * tables in the 'mci' structure.
3279 */
3280 ret = -EINVAL;
3281 pvt->channel_count = pvt->ops->early_channel_count(pvt);
3282 if (pvt->channel_count < 0)
3283 goto err_siblings;
3284
3285 ret = -ENOMEM;
3286 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3287 layers[0].size = pvt->csels[0].b_cnt;
3288 layers[0].is_virt_csrow = true;
3289 layers[1].type = EDAC_MC_LAYER_CHANNEL;
3290
3291 /*
3292 * Always allocate two channels since we can have setups with DIMMs on
3293 * only one channel. Also, this simplifies handling later for the price
3294 * of a couple of KBs tops.
3295 */
3296 layers[1].size = 2;
3297 layers[1].is_virt_csrow = false;
3298
3299 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3300 if (!mci)
3301 goto err_siblings;
3302
3303 mci->pvt_info = pvt;
3304 mci->pdev = &pvt->F3->dev;
3305
3306 setup_mci_misc_attrs(mci, fam_type);
3307
3308 if (init_csrows(mci))
3309 mci->edac_cap = EDAC_FLAG_NONE;
3310
3311 ret = -ENODEV;
3312 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3313 edac_dbg(1, "failed edac_mc_add_mc()\n");
3314 goto err_add_mc;
3315 }
3316
3317 return 0;
3318
3319err_add_mc:
3320 edac_mc_free(mci);
3321
3322err_siblings:
3323 free_mc_sibling_devs(pvt);
3324
3325err_post_init:
3326 if (pvt->fam >= 0x17)
3327 kfree(pvt->umc);
3328
3329err_free:
3330 kfree(pvt);
3331
3332err_ret:
3333 return ret;
3334}
3335
3336static int probe_one_instance(unsigned int nid)
3337{
3338 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3339 struct ecc_settings *s;
3340 int ret;
3341
3342 ret = -ENOMEM;
3343 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
3344 if (!s)
3345 goto err_out;
3346
3347 ecc_stngs[nid] = s;
3348
3349 if (!ecc_enabled(F3, nid)) {
3350 ret = 0;
3351
3352 if (!ecc_enable_override)
3353 goto err_enable;
3354
3355 if (boot_cpu_data.x86 >= 0x17) {
3356 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3357 goto err_enable;
3358 } else
3359 amd64_warn("Forcing ECC on!\n");
3360
3361 if (!enable_ecc_error_reporting(s, nid, F3))
3362 goto err_enable;
3363 }
3364
3365 ret = init_one_instance(nid);
3366 if (ret < 0) {
3367 amd64_err("Error probing instance: %d\n", nid);
3368
3369 if (boot_cpu_data.x86 < 0x17)
3370 restore_ecc_error_reporting(s, nid, F3);
3371
3372 goto err_enable;
3373 }
3374
3375 return ret;
3376
3377err_enable:
3378 kfree(s);
3379 ecc_stngs[nid] = NULL;
3380
3381err_out:
3382 return ret;
3383}
3384
3385static void remove_one_instance(unsigned int nid)
3386{
3387 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3388 struct ecc_settings *s = ecc_stngs[nid];
3389 struct mem_ctl_info *mci;
3390 struct amd64_pvt *pvt;
3391
3392 mci = find_mci_by_dev(&F3->dev);
3393 WARN_ON(!mci);
3394
3395 /* Remove from EDAC CORE tracking list */
3396 mci = edac_mc_del_mc(&F3->dev);
3397 if (!mci)
3398 return;
3399
3400 pvt = mci->pvt_info;
3401
3402 restore_ecc_error_reporting(s, nid, F3);
3403
3404 free_mc_sibling_devs(pvt);
3405
3406 kfree(ecc_stngs[nid]);
3407 ecc_stngs[nid] = NULL;
3408
3409 /* Free the EDAC CORE resources */
3410 mci->pvt_info = NULL;
3411
3412 kfree(pvt);
3413 edac_mc_free(mci);
3414}
3415
3416static void setup_pci_device(void)
3417{
3418 struct mem_ctl_info *mci;
3419 struct amd64_pvt *pvt;
3420
3421 if (pci_ctl)
3422 return;
3423
3424 mci = edac_mc_find(0);
3425 if (!mci)
3426 return;
3427
3428 pvt = mci->pvt_info;
3429 if (pvt->umc)
3430 pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
3431 else
3432 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3433 if (!pci_ctl) {
3434 pr_warn("%s(): Unable to create PCI control\n", __func__);
3435 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3436 }
3437}
3438
3439static const struct x86_cpu_id amd64_cpuids[] = {
3440 { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3441 { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3442 { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3443 { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3444 { X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3445 { }
3446};
3447MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
3448
3449static int __init amd64_edac_init(void)
3450{
3451 const char *owner;
3452 int err = -ENODEV;
3453 int i;
3454
3455 owner = edac_get_owner();
3456 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3457 return -EBUSY;
3458
3459 if (!x86_match_cpu(amd64_cpuids))
3460 return -ENODEV;
3461
3462 if (amd_cache_northbridges() < 0)
3463 return -ENODEV;
3464
3465 opstate_init();
3466
3467 err = -ENOMEM;
3468 ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3469 if (!ecc_stngs)
3470 goto err_free;
3471
3472 msrs = msrs_alloc();
3473 if (!msrs)
3474 goto err_free;
3475
3476 for (i = 0; i < amd_nb_num(); i++) {
3477 err = probe_one_instance(i);
3478 if (err) {
3479 /* unwind properly */
3480 while (--i >= 0)
3481 remove_one_instance(i);
3482
3483 goto err_pci;
3484 }
3485 }
3486
3487 if (!edac_has_mcs()) {
3488 err = -ENODEV;
3489 goto err_pci;
3490 }
3491
3492 /* register stuff with EDAC MCE */
3493 if (report_gart_errors)
3494 amd_report_gart_errors(true);
3495
3496 if (boot_cpu_data.x86 >= 0x17)
3497 amd_register_ecc_decoder(decode_umc_error);
3498 else
3499 amd_register_ecc_decoder(decode_bus_error);
3500
3501 setup_pci_device();
3502
3503#ifdef CONFIG_X86_32
3504 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3505#endif
3506
3507 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
3508
3509 return 0;
3510
3511err_pci:
3512 msrs_free(msrs);
3513 msrs = NULL;
3514
3515err_free:
3516 kfree(ecc_stngs);
3517 ecc_stngs = NULL;
3518
3519 return err;
3520}
3521
3522static void __exit amd64_edac_exit(void)
3523{
3524 int i;
3525
3526 if (pci_ctl)
3527 edac_pci_release_generic_ctl(pci_ctl);
3528
3529 /* unregister from EDAC MCE */
3530 amd_report_gart_errors(false);
3531
3532 if (boot_cpu_data.x86 >= 0x17)
3533 amd_unregister_ecc_decoder(decode_umc_error);
3534 else
3535 amd_unregister_ecc_decoder(decode_bus_error);
3536
3537 for (i = 0; i < amd_nb_num(); i++)
3538 remove_one_instance(i);
3539
3540 kfree(ecc_stngs);
3541 ecc_stngs = NULL;
3542
3543 msrs_free(msrs);
3544 msrs = NULL;
3545}
3546
3547module_init(amd64_edac_init);
3548module_exit(amd64_edac_exit);
3549
3550MODULE_LICENSE("GPL");
3551MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3552 "Dave Peterson, Thayne Harbaugh");
3553MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3554 EDAC_AMD64_VERSION);
3555
3556module_param(edac_op_state, int, 0444);
3557MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");