blob: ed73f6fb0779b9b80ddc5cf5833c08d4c863a248 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/pci.h>
32#include <linux/interrupt.h>
33#include <linux/kmod.h>
34#include <linux/delay.h>
35#include <linux/workqueue.h>
36#include <linux/nmi.h>
37#include <linux/acpi.h>
38#include <linux/efi.h>
39#include <linux/ioport.h>
40#include <linux/list.h>
41#include <linux/jiffies.h>
42#include <linux/semaphore.h>
43
44#include <asm/io.h>
45#include <linux/uaccess.h>
46#include <linux/io-64-nonatomic-lo-hi.h>
47
48#include "acpica/accommon.h"
49#include "acpica/acnamesp.h"
50#include "internal.h"
51
52#define _COMPONENT ACPI_OS_SERVICES
53ACPI_MODULE_NAME("osl");
54
55struct acpi_os_dpc {
56 acpi_osd_exec_callback function;
57 void *context;
58 struct work_struct work;
59};
60
61#ifdef ENABLE_DEBUGGER
62#include <linux/kdb.h>
63
64/* stuff for debugger support */
65int acpi_in_debugger;
66EXPORT_SYMBOL(acpi_in_debugger);
67#endif /*ENABLE_DEBUGGER */
68
69static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 u32 pm1b_ctrl);
71static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 u32 val_b);
73
74static acpi_osd_handler acpi_irq_handler;
75static void *acpi_irq_context;
76static struct workqueue_struct *kacpid_wq;
77static struct workqueue_struct *kacpi_notify_wq;
78static struct workqueue_struct *kacpi_hotplug_wq;
79static bool acpi_os_initialized;
80unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81bool acpi_permanent_mmap = false;
82
83/*
84 * This list of permanent mappings is for memory that may be accessed from
85 * interrupt context, where we can't do the ioremap().
86 */
87struct acpi_ioremap {
88 struct list_head list;
89 void __iomem *virt;
90 acpi_physical_address phys;
91 acpi_size size;
92 unsigned long refcount;
93};
94
95static LIST_HEAD(acpi_ioremaps);
96static DEFINE_MUTEX(acpi_ioremap_lock);
97
98static void __init acpi_request_region (struct acpi_generic_address *gas,
99 unsigned int length, char *desc)
100{
101 u64 addr;
102
103 /* Handle possible alignment issues */
104 memcpy(&addr, &gas->address, sizeof(addr));
105 if (!addr || !length)
106 return;
107
108 /* Resources are never freed */
109 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 request_region(addr, length, desc);
111 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 request_mem_region(addr, length, desc);
113}
114
115static int __init acpi_reserve_resources(void)
116{
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 "ACPI PM1a_EVT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 "ACPI PM1b_EVT_BLK");
122
123 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 "ACPI PM1a_CNT_BLK");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 "ACPI PM1b_CNT_BLK");
128
129 if (acpi_gbl_FADT.pm_timer_length == 4)
130 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 "ACPI PM2_CNT_BLK");
134
135 /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145 return 0;
146}
147fs_initcall_sync(acpi_reserve_resources);
148
149void acpi_os_printf(const char *fmt, ...)
150{
151 va_list args;
152 va_start(args, fmt);
153 acpi_os_vprintf(fmt, args);
154 va_end(args);
155}
156EXPORT_SYMBOL(acpi_os_printf);
157
158void acpi_os_vprintf(const char *fmt, va_list args)
159{
160 static char buffer[512];
161
162 vsprintf(buffer, fmt, args);
163
164#ifdef ENABLE_DEBUGGER
165 if (acpi_in_debugger) {
166 kdb_printf("%s", buffer);
167 } else {
168 if (printk_get_level(buffer))
169 printk("%s", buffer);
170 else
171 printk(KERN_CONT "%s", buffer);
172 }
173#else
174 if (acpi_debugger_write_log(buffer) < 0) {
175 if (printk_get_level(buffer))
176 printk("%s", buffer);
177 else
178 printk(KERN_CONT "%s", buffer);
179 }
180#endif
181}
182
183#ifdef CONFIG_KEXEC
184static unsigned long acpi_rsdp;
185static int __init setup_acpi_rsdp(char *arg)
186{
187 return kstrtoul(arg, 16, &acpi_rsdp);
188}
189early_param("acpi_rsdp", setup_acpi_rsdp);
190#endif
191
192acpi_physical_address __init acpi_os_get_root_pointer(void)
193{
194 acpi_physical_address pa;
195
196#ifdef CONFIG_KEXEC
197 if (acpi_rsdp)
198 return acpi_rsdp;
199#endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
203
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
212 }
213
214 return pa;
215}
216
217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218static struct acpi_ioremap *
219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220{
221 struct acpi_ioremap *map;
222
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
227
228 return NULL;
229}
230
231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232static void __iomem *
233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234{
235 struct acpi_ioremap *map;
236
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
240
241 return NULL;
242}
243
244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245{
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
248
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
254 }
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
257}
258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261static struct acpi_ioremap *
262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263{
264 struct acpi_ioremap *map;
265
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
270
271 return NULL;
272}
273
274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275/* ioremap will take care of cache attributes */
276#define should_use_kmap(pfn) 0
277#else
278#define should_use_kmap(pfn) page_is_ram(pfn)
279#endif
280
281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282{
283 unsigned long pfn;
284
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
292}
293
294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295{
296 unsigned long pfn;
297
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
303}
304
305/**
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
309 *
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
314 *
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
317 */
318void __iomem *__ref
319acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320{
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
325
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
329 }
330
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
333
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
340 }
341
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
346 }
347
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
355 }
356
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
362
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
368}
369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372{
373 return (void *)acpi_os_map_iomem(phys, size);
374}
375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378{
379 if (!--map->refcount)
380 list_del_rcu(&map->list);
381}
382
383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384{
385 if (!map->refcount) {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390}
391
392/**
393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
394 * @virt: Start of the address range to drop a reference to.
395 * @size: Size of the address range to drop a reference to.
396 *
397 * Look up the given virtual address range in the list of existing ACPI memory
398 * mappings, drop a reference to it and unmap it if there are no more active
399 * references to it.
400 *
401 * During early init (when acpi_permanent_mmap has not been set yet) this
402 * routine simply calls __acpi_unmap_table() to get the job done. Since
403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404 * here.
405 */
406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407{
408 struct acpi_ioremap *map;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 acpi_os_map_cleanup(map);
426}
427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430{
431 return acpi_os_unmap_iomem((void __iomem *)virt, size);
432}
433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436{
437 u64 addr;
438 void __iomem *virt;
439
440 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 return 0;
442
443 /* Handle possible alignment issues */
444 memcpy(&addr, &gas->address, sizeof(addr));
445 if (!addr || !gas->bit_width)
446 return -EINVAL;
447
448 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 if (!virt)
450 return -EIO;
451
452 return 0;
453}
454EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457{
458 u64 addr;
459 struct acpi_ioremap *map;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return;
468
469 mutex_lock(&acpi_ioremap_lock);
470 map = acpi_map_lookup(addr, gas->bit_width / 8);
471 if (!map) {
472 mutex_unlock(&acpi_ioremap_lock);
473 return;
474 }
475 acpi_os_drop_map_ref(map);
476 mutex_unlock(&acpi_ioremap_lock);
477
478 acpi_os_map_cleanup(map);
479}
480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482#ifdef ACPI_FUTURE_USAGE
483acpi_status
484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485{
486 if (!phys || !virt)
487 return AE_BAD_PARAMETER;
488
489 *phys = virt_to_phys(virt);
490
491 return AE_OK;
492}
493#endif
494
495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496static bool acpi_rev_override;
497
498int __init acpi_rev_override_setup(char *str)
499{
500 acpi_rev_override = true;
501 return 1;
502}
503__setup("acpi_rev_override", acpi_rev_override_setup);
504#else
505#define acpi_rev_override false
506#endif
507
508#define ACPI_MAX_OVERRIDE_LEN 100
509
510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512acpi_status
513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 acpi_string *new_val)
515{
516 if (!init_val || !new_val)
517 return AE_BAD_PARAMETER;
518
519 *new_val = NULL;
520 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 acpi_os_name);
523 *new_val = acpi_os_name;
524 }
525
526 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 *new_val = (char *)5;
529 }
530
531 return AE_OK;
532}
533
534static irqreturn_t acpi_irq(int irq, void *dev_id)
535{
536 u32 handled;
537
538 handled = (*acpi_irq_handler) (acpi_irq_context);
539
540 if (handled) {
541 acpi_irq_handled++;
542 return IRQ_HANDLED;
543 } else {
544 acpi_irq_not_handled++;
545 return IRQ_NONE;
546 }
547}
548
549acpi_status
550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 void *context)
552{
553 unsigned int irq;
554
555 acpi_irq_stats_init();
556
557 /*
558 * ACPI interrupts different from the SCI in our copy of the FADT are
559 * not supported.
560 */
561 if (gsi != acpi_gbl_FADT.sci_interrupt)
562 return AE_BAD_PARAMETER;
563
564 if (acpi_irq_handler)
565 return AE_ALREADY_ACQUIRED;
566
567 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 gsi);
570 return AE_OK;
571 }
572
573 acpi_irq_handler = handler;
574 acpi_irq_context = context;
575 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 acpi_irq_handler = NULL;
578 return AE_NOT_ACQUIRED;
579 }
580 acpi_sci_irq = irq;
581
582 return AE_OK;
583}
584
585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586{
587 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 return AE_BAD_PARAMETER;
589
590 free_irq(acpi_sci_irq, acpi_irq);
591 acpi_irq_handler = NULL;
592 acpi_sci_irq = INVALID_ACPI_IRQ;
593
594 return AE_OK;
595}
596
597/*
598 * Running in interpreter thread context, safe to sleep
599 */
600
601void acpi_os_sleep(u64 ms)
602{
603 msleep(ms);
604}
605
606void acpi_os_stall(u32 us)
607{
608 while (us) {
609 u32 delay = 1000;
610
611 if (delay > us)
612 delay = us;
613 udelay(delay);
614 touch_nmi_watchdog();
615 us -= delay;
616 }
617}
618
619/*
620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621 * monotonically increasing timer with 100ns granularity. Do not use
622 * ktime_get() to implement this function because this function may get
623 * called after timekeeping has been suspended. Note: calling this function
624 * after timekeeping has been suspended may lead to unexpected results
625 * because when timekeeping is suspended the jiffies counter is not
626 * incremented. See also timekeeping_suspend().
627 */
628u64 acpi_os_get_timer(void)
629{
630 return (get_jiffies_64() - INITIAL_JIFFIES) *
631 (ACPI_100NSEC_PER_SEC / HZ);
632}
633
634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635{
636 u32 dummy;
637
638 if (!value)
639 value = &dummy;
640
641 *value = 0;
642 if (width <= 8) {
643 *(u8 *) value = inb(port);
644 } else if (width <= 16) {
645 *(u16 *) value = inw(port);
646 } else if (width <= 32) {
647 *(u32 *) value = inl(port);
648 } else {
649 BUG();
650 }
651
652 return AE_OK;
653}
654
655EXPORT_SYMBOL(acpi_os_read_port);
656
657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658{
659 if (width <= 8) {
660 outb(value, port);
661 } else if (width <= 16) {
662 outw(value, port);
663 } else if (width <= 32) {
664 outl(value, port);
665 } else {
666 BUG();
667 }
668
669 return AE_OK;
670}
671
672EXPORT_SYMBOL(acpi_os_write_port);
673
674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675{
676
677 switch (width) {
678 case 8:
679 *(u8 *) value = readb(virt_addr);
680 break;
681 case 16:
682 *(u16 *) value = readw(virt_addr);
683 break;
684 case 32:
685 *(u32 *) value = readl(virt_addr);
686 break;
687 case 64:
688 *(u64 *) value = readq(virt_addr);
689 break;
690 default:
691 return -EINVAL;
692 }
693
694 return 0;
695}
696
697acpi_status
698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699{
700 void __iomem *virt_addr;
701 unsigned int size = width / 8;
702 bool unmap = false;
703 u64 dummy;
704 int error;
705
706 rcu_read_lock();
707 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 if (!virt_addr) {
709 rcu_read_unlock();
710 virt_addr = acpi_os_ioremap(phys_addr, size);
711 if (!virt_addr)
712 return AE_BAD_ADDRESS;
713 unmap = true;
714 }
715
716 if (!value)
717 value = &dummy;
718
719 error = acpi_os_read_iomem(virt_addr, value, width);
720 BUG_ON(error);
721
722 if (unmap)
723 iounmap(virt_addr);
724 else
725 rcu_read_unlock();
726
727 return AE_OK;
728}
729
730acpi_status
731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732{
733 void __iomem *virt_addr;
734 unsigned int size = width / 8;
735 bool unmap = false;
736
737 rcu_read_lock();
738 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 if (!virt_addr) {
740 rcu_read_unlock();
741 virt_addr = acpi_os_ioremap(phys_addr, size);
742 if (!virt_addr)
743 return AE_BAD_ADDRESS;
744 unmap = true;
745 }
746
747 switch (width) {
748 case 8:
749 writeb(value, virt_addr);
750 break;
751 case 16:
752 writew(value, virt_addr);
753 break;
754 case 32:
755 writel(value, virt_addr);
756 break;
757 case 64:
758 writeq(value, virt_addr);
759 break;
760 default:
761 BUG();
762 }
763
764 if (unmap)
765 iounmap(virt_addr);
766 else
767 rcu_read_unlock();
768
769 return AE_OK;
770}
771
772acpi_status
773acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
774 u64 *value, u32 width)
775{
776 int result, size;
777 u32 value32;
778
779 if (!value)
780 return AE_BAD_PARAMETER;
781
782 switch (width) {
783 case 8:
784 size = 1;
785 break;
786 case 16:
787 size = 2;
788 break;
789 case 32:
790 size = 4;
791 break;
792 default:
793 return AE_ERROR;
794 }
795
796 result = raw_pci_read(pci_id->segment, pci_id->bus,
797 PCI_DEVFN(pci_id->device, pci_id->function),
798 reg, size, &value32);
799 *value = value32;
800
801 return (result ? AE_ERROR : AE_OK);
802}
803
804acpi_status
805acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
806 u64 value, u32 width)
807{
808 int result, size;
809
810 switch (width) {
811 case 8:
812 size = 1;
813 break;
814 case 16:
815 size = 2;
816 break;
817 case 32:
818 size = 4;
819 break;
820 default:
821 return AE_ERROR;
822 }
823
824 result = raw_pci_write(pci_id->segment, pci_id->bus,
825 PCI_DEVFN(pci_id->device, pci_id->function),
826 reg, size, value);
827
828 return (result ? AE_ERROR : AE_OK);
829}
830
831static void acpi_os_execute_deferred(struct work_struct *work)
832{
833 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
834
835 dpc->function(dpc->context);
836 kfree(dpc);
837}
838
839#ifdef CONFIG_ACPI_DEBUGGER
840static struct acpi_debugger acpi_debugger;
841static bool acpi_debugger_initialized;
842
843int acpi_register_debugger(struct module *owner,
844 const struct acpi_debugger_ops *ops)
845{
846 int ret = 0;
847
848 mutex_lock(&acpi_debugger.lock);
849 if (acpi_debugger.ops) {
850 ret = -EBUSY;
851 goto err_lock;
852 }
853
854 acpi_debugger.owner = owner;
855 acpi_debugger.ops = ops;
856
857err_lock:
858 mutex_unlock(&acpi_debugger.lock);
859 return ret;
860}
861EXPORT_SYMBOL(acpi_register_debugger);
862
863void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
864{
865 mutex_lock(&acpi_debugger.lock);
866 if (ops == acpi_debugger.ops) {
867 acpi_debugger.ops = NULL;
868 acpi_debugger.owner = NULL;
869 }
870 mutex_unlock(&acpi_debugger.lock);
871}
872EXPORT_SYMBOL(acpi_unregister_debugger);
873
874int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
875{
876 int ret;
877 int (*func)(acpi_osd_exec_callback, void *);
878 struct module *owner;
879
880 if (!acpi_debugger_initialized)
881 return -ENODEV;
882 mutex_lock(&acpi_debugger.lock);
883 if (!acpi_debugger.ops) {
884 ret = -ENODEV;
885 goto err_lock;
886 }
887 if (!try_module_get(acpi_debugger.owner)) {
888 ret = -ENODEV;
889 goto err_lock;
890 }
891 func = acpi_debugger.ops->create_thread;
892 owner = acpi_debugger.owner;
893 mutex_unlock(&acpi_debugger.lock);
894
895 ret = func(function, context);
896
897 mutex_lock(&acpi_debugger.lock);
898 module_put(owner);
899err_lock:
900 mutex_unlock(&acpi_debugger.lock);
901 return ret;
902}
903
904ssize_t acpi_debugger_write_log(const char *msg)
905{
906 ssize_t ret;
907 ssize_t (*func)(const char *);
908 struct module *owner;
909
910 if (!acpi_debugger_initialized)
911 return -ENODEV;
912 mutex_lock(&acpi_debugger.lock);
913 if (!acpi_debugger.ops) {
914 ret = -ENODEV;
915 goto err_lock;
916 }
917 if (!try_module_get(acpi_debugger.owner)) {
918 ret = -ENODEV;
919 goto err_lock;
920 }
921 func = acpi_debugger.ops->write_log;
922 owner = acpi_debugger.owner;
923 mutex_unlock(&acpi_debugger.lock);
924
925 ret = func(msg);
926
927 mutex_lock(&acpi_debugger.lock);
928 module_put(owner);
929err_lock:
930 mutex_unlock(&acpi_debugger.lock);
931 return ret;
932}
933
934ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
935{
936 ssize_t ret;
937 ssize_t (*func)(char *, size_t);
938 struct module *owner;
939
940 if (!acpi_debugger_initialized)
941 return -ENODEV;
942 mutex_lock(&acpi_debugger.lock);
943 if (!acpi_debugger.ops) {
944 ret = -ENODEV;
945 goto err_lock;
946 }
947 if (!try_module_get(acpi_debugger.owner)) {
948 ret = -ENODEV;
949 goto err_lock;
950 }
951 func = acpi_debugger.ops->read_cmd;
952 owner = acpi_debugger.owner;
953 mutex_unlock(&acpi_debugger.lock);
954
955 ret = func(buffer, buffer_length);
956
957 mutex_lock(&acpi_debugger.lock);
958 module_put(owner);
959err_lock:
960 mutex_unlock(&acpi_debugger.lock);
961 return ret;
962}
963
964int acpi_debugger_wait_command_ready(void)
965{
966 int ret;
967 int (*func)(bool, char *, size_t);
968 struct module *owner;
969
970 if (!acpi_debugger_initialized)
971 return -ENODEV;
972 mutex_lock(&acpi_debugger.lock);
973 if (!acpi_debugger.ops) {
974 ret = -ENODEV;
975 goto err_lock;
976 }
977 if (!try_module_get(acpi_debugger.owner)) {
978 ret = -ENODEV;
979 goto err_lock;
980 }
981 func = acpi_debugger.ops->wait_command_ready;
982 owner = acpi_debugger.owner;
983 mutex_unlock(&acpi_debugger.lock);
984
985 ret = func(acpi_gbl_method_executing,
986 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
987
988 mutex_lock(&acpi_debugger.lock);
989 module_put(owner);
990err_lock:
991 mutex_unlock(&acpi_debugger.lock);
992 return ret;
993}
994
995int acpi_debugger_notify_command_complete(void)
996{
997 int ret;
998 int (*func)(void);
999 struct module *owner;
1000
1001 if (!acpi_debugger_initialized)
1002 return -ENODEV;
1003 mutex_lock(&acpi_debugger.lock);
1004 if (!acpi_debugger.ops) {
1005 ret = -ENODEV;
1006 goto err_lock;
1007 }
1008 if (!try_module_get(acpi_debugger.owner)) {
1009 ret = -ENODEV;
1010 goto err_lock;
1011 }
1012 func = acpi_debugger.ops->notify_command_complete;
1013 owner = acpi_debugger.owner;
1014 mutex_unlock(&acpi_debugger.lock);
1015
1016 ret = func();
1017
1018 mutex_lock(&acpi_debugger.lock);
1019 module_put(owner);
1020err_lock:
1021 mutex_unlock(&acpi_debugger.lock);
1022 return ret;
1023}
1024
1025int __init acpi_debugger_init(void)
1026{
1027 mutex_init(&acpi_debugger.lock);
1028 acpi_debugger_initialized = true;
1029 return 0;
1030}
1031#endif
1032
1033/*******************************************************************************
1034 *
1035 * FUNCTION: acpi_os_execute
1036 *
1037 * PARAMETERS: Type - Type of the callback
1038 * Function - Function to be executed
1039 * Context - Function parameters
1040 *
1041 * RETURN: Status
1042 *
1043 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1044 * immediately executes function on a separate thread.
1045 *
1046 ******************************************************************************/
1047
1048acpi_status acpi_os_execute(acpi_execute_type type,
1049 acpi_osd_exec_callback function, void *context)
1050{
1051 acpi_status status = AE_OK;
1052 struct acpi_os_dpc *dpc;
1053 struct workqueue_struct *queue;
1054 int ret;
1055 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1056 "Scheduling function [%p(%p)] for deferred execution.\n",
1057 function, context));
1058
1059 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1060 ret = acpi_debugger_create_thread(function, context);
1061 if (ret) {
1062 pr_err("Call to kthread_create() failed.\n");
1063 status = AE_ERROR;
1064 }
1065 goto out_thread;
1066 }
1067
1068 /*
1069 * Allocate/initialize DPC structure. Note that this memory will be
1070 * freed by the callee. The kernel handles the work_struct list in a
1071 * way that allows us to also free its memory inside the callee.
1072 * Because we may want to schedule several tasks with different
1073 * parameters we can't use the approach some kernel code uses of
1074 * having a static work_struct.
1075 */
1076
1077 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1078 if (!dpc)
1079 return AE_NO_MEMORY;
1080
1081 dpc->function = function;
1082 dpc->context = context;
1083
1084 /*
1085 * To prevent lockdep from complaining unnecessarily, make sure that
1086 * there is a different static lockdep key for each workqueue by using
1087 * INIT_WORK() for each of them separately.
1088 */
1089 if (type == OSL_NOTIFY_HANDLER) {
1090 queue = kacpi_notify_wq;
1091 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1092 } else if (type == OSL_GPE_HANDLER) {
1093 queue = kacpid_wq;
1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095 } else {
1096 pr_err("Unsupported os_execute type %d.\n", type);
1097 status = AE_ERROR;
1098 }
1099
1100 if (ACPI_FAILURE(status))
1101 goto err_workqueue;
1102
1103 /*
1104 * On some machines, a software-initiated SMI causes corruption unless
1105 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1106 * typically it's done in GPE-related methods that are run via
1107 * workqueues, so we can avoid the known corruption cases by always
1108 * queueing on CPU 0.
1109 */
1110 ret = queue_work_on(0, queue, &dpc->work);
1111 if (!ret) {
1112 printk(KERN_ERR PREFIX
1113 "Call to queue_work() failed.\n");
1114 status = AE_ERROR;
1115 }
1116err_workqueue:
1117 if (ACPI_FAILURE(status))
1118 kfree(dpc);
1119out_thread:
1120 return status;
1121}
1122EXPORT_SYMBOL(acpi_os_execute);
1123
1124void acpi_os_wait_events_complete(void)
1125{
1126 /*
1127 * Make sure the GPE handler or the fixed event handler is not used
1128 * on another CPU after removal.
1129 */
1130 if (acpi_sci_irq_valid())
1131 synchronize_hardirq(acpi_sci_irq);
1132 flush_workqueue(kacpid_wq);
1133 flush_workqueue(kacpi_notify_wq);
1134}
1135
1136struct acpi_hp_work {
1137 struct work_struct work;
1138 struct acpi_device *adev;
1139 u32 src;
1140};
1141
1142static void acpi_hotplug_work_fn(struct work_struct *work)
1143{
1144 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1145
1146 acpi_os_wait_events_complete();
1147 acpi_device_hotplug(hpw->adev, hpw->src);
1148 kfree(hpw);
1149}
1150
1151acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1152{
1153 struct acpi_hp_work *hpw;
1154
1155 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1156 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1157 adev, src));
1158
1159 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1160 if (!hpw)
1161 return AE_NO_MEMORY;
1162
1163 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1164 hpw->adev = adev;
1165 hpw->src = src;
1166 /*
1167 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1168 * the hotplug code may call driver .remove() functions, which may
1169 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1170 * these workqueues.
1171 */
1172 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1173 kfree(hpw);
1174 return AE_ERROR;
1175 }
1176 return AE_OK;
1177}
1178
1179bool acpi_queue_hotplug_work(struct work_struct *work)
1180{
1181 return queue_work(kacpi_hotplug_wq, work);
1182}
1183
1184acpi_status
1185acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1186{
1187 struct semaphore *sem = NULL;
1188
1189 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1190 if (!sem)
1191 return AE_NO_MEMORY;
1192
1193 sema_init(sem, initial_units);
1194
1195 *handle = (acpi_handle *) sem;
1196
1197 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1198 *handle, initial_units));
1199
1200 return AE_OK;
1201}
1202
1203/*
1204 * TODO: A better way to delete semaphores? Linux doesn't have a
1205 * 'delete_semaphore()' function -- may result in an invalid
1206 * pointer dereference for non-synchronized consumers. Should
1207 * we at least check for blocked threads and signal/cancel them?
1208 */
1209
1210acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1211{
1212 struct semaphore *sem = (struct semaphore *)handle;
1213
1214 if (!sem)
1215 return AE_BAD_PARAMETER;
1216
1217 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1218
1219 BUG_ON(!list_empty(&sem->wait_list));
1220 kfree(sem);
1221 sem = NULL;
1222
1223 return AE_OK;
1224}
1225
1226/*
1227 * TODO: Support for units > 1?
1228 */
1229acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1230{
1231 acpi_status status = AE_OK;
1232 struct semaphore *sem = (struct semaphore *)handle;
1233 long jiffies;
1234 int ret = 0;
1235
1236 if (!acpi_os_initialized)
1237 return AE_OK;
1238
1239 if (!sem || (units < 1))
1240 return AE_BAD_PARAMETER;
1241
1242 if (units > 1)
1243 return AE_SUPPORT;
1244
1245 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1246 handle, units, timeout));
1247
1248 if (timeout == ACPI_WAIT_FOREVER)
1249 jiffies = MAX_SCHEDULE_TIMEOUT;
1250 else
1251 jiffies = msecs_to_jiffies(timeout);
1252
1253 ret = down_timeout(sem, jiffies);
1254 if (ret)
1255 status = AE_TIME;
1256
1257 if (ACPI_FAILURE(status)) {
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1259 "Failed to acquire semaphore[%p|%d|%d], %s",
1260 handle, units, timeout,
1261 acpi_format_exception(status)));
1262 } else {
1263 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1264 "Acquired semaphore[%p|%d|%d]", handle,
1265 units, timeout));
1266 }
1267
1268 return status;
1269}
1270
1271/*
1272 * TODO: Support for units > 1?
1273 */
1274acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1275{
1276 struct semaphore *sem = (struct semaphore *)handle;
1277
1278 if (!acpi_os_initialized)
1279 return AE_OK;
1280
1281 if (!sem || (units < 1))
1282 return AE_BAD_PARAMETER;
1283
1284 if (units > 1)
1285 return AE_SUPPORT;
1286
1287 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1288 units));
1289
1290 up(sem);
1291
1292 return AE_OK;
1293}
1294
1295acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1296{
1297#ifdef ENABLE_DEBUGGER
1298 if (acpi_in_debugger) {
1299 u32 chars;
1300
1301 kdb_read(buffer, buffer_length);
1302
1303 /* remove the CR kdb includes */
1304 chars = strlen(buffer) - 1;
1305 buffer[chars] = '\0';
1306 }
1307#else
1308 int ret;
1309
1310 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1311 if (ret < 0)
1312 return AE_ERROR;
1313 if (bytes_read)
1314 *bytes_read = ret;
1315#endif
1316
1317 return AE_OK;
1318}
1319EXPORT_SYMBOL(acpi_os_get_line);
1320
1321acpi_status acpi_os_wait_command_ready(void)
1322{
1323 int ret;
1324
1325 ret = acpi_debugger_wait_command_ready();
1326 if (ret < 0)
1327 return AE_ERROR;
1328 return AE_OK;
1329}
1330
1331acpi_status acpi_os_notify_command_complete(void)
1332{
1333 int ret;
1334
1335 ret = acpi_debugger_notify_command_complete();
1336 if (ret < 0)
1337 return AE_ERROR;
1338 return AE_OK;
1339}
1340
1341acpi_status acpi_os_signal(u32 function, void *info)
1342{
1343 switch (function) {
1344 case ACPI_SIGNAL_FATAL:
1345 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1346 break;
1347 case ACPI_SIGNAL_BREAKPOINT:
1348 /*
1349 * AML Breakpoint
1350 * ACPI spec. says to treat it as a NOP unless
1351 * you are debugging. So if/when we integrate
1352 * AML debugger into the kernel debugger its
1353 * hook will go here. But until then it is
1354 * not useful to print anything on breakpoints.
1355 */
1356 break;
1357 default:
1358 break;
1359 }
1360
1361 return AE_OK;
1362}
1363
1364static int __init acpi_os_name_setup(char *str)
1365{
1366 char *p = acpi_os_name;
1367 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1368
1369 if (!str || !*str)
1370 return 0;
1371
1372 for (; count-- && *str; str++) {
1373 if (isalnum(*str) || *str == ' ' || *str == ':')
1374 *p++ = *str;
1375 else if (*str == '\'' || *str == '"')
1376 continue;
1377 else
1378 break;
1379 }
1380 *p = 0;
1381
1382 return 1;
1383
1384}
1385
1386__setup("acpi_os_name=", acpi_os_name_setup);
1387
1388/*
1389 * Disable the auto-serialization of named objects creation methods.
1390 *
1391 * This feature is enabled by default. It marks the AML control methods
1392 * that contain the opcodes to create named objects as "Serialized".
1393 */
1394static int __init acpi_no_auto_serialize_setup(char *str)
1395{
1396 acpi_gbl_auto_serialize_methods = FALSE;
1397 pr_info("ACPI: auto-serialization disabled\n");
1398
1399 return 1;
1400}
1401
1402__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1403
1404/* Check of resource interference between native drivers and ACPI
1405 * OperationRegions (SystemIO and System Memory only).
1406 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1407 * in arbitrary AML code and can interfere with legacy drivers.
1408 * acpi_enforce_resources= can be set to:
1409 *
1410 * - strict (default) (2)
1411 * -> further driver trying to access the resources will not load
1412 * - lax (1)
1413 * -> further driver trying to access the resources will load, but you
1414 * get a system message that something might go wrong...
1415 *
1416 * - no (0)
1417 * -> ACPI Operation Region resources will not be registered
1418 *
1419 */
1420#define ENFORCE_RESOURCES_STRICT 2
1421#define ENFORCE_RESOURCES_LAX 1
1422#define ENFORCE_RESOURCES_NO 0
1423
1424static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1425
1426static int __init acpi_enforce_resources_setup(char *str)
1427{
1428 if (str == NULL || *str == '\0')
1429 return 0;
1430
1431 if (!strcmp("strict", str))
1432 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1433 else if (!strcmp("lax", str))
1434 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1435 else if (!strcmp("no", str))
1436 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1437
1438 return 1;
1439}
1440
1441__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1442
1443/* Check for resource conflicts between ACPI OperationRegions and native
1444 * drivers */
1445int acpi_check_resource_conflict(const struct resource *res)
1446{
1447 acpi_adr_space_type space_id;
1448 acpi_size length;
1449 u8 warn = 0;
1450 int clash = 0;
1451
1452 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1453 return 0;
1454 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1455 return 0;
1456
1457 if (res->flags & IORESOURCE_IO)
1458 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1459 else
1460 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1461
1462 length = resource_size(res);
1463 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1464 warn = 1;
1465 clash = acpi_check_address_range(space_id, res->start, length, warn);
1466
1467 if (clash) {
1468 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1469 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1470 printk(KERN_NOTICE "ACPI: This conflict may"
1471 " cause random problems and system"
1472 " instability\n");
1473 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1474 " for this device, you should use it instead of"
1475 " the native driver\n");
1476 }
1477 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1478 return -EBUSY;
1479 }
1480 return 0;
1481}
1482EXPORT_SYMBOL(acpi_check_resource_conflict);
1483
1484int acpi_check_region(resource_size_t start, resource_size_t n,
1485 const char *name)
1486{
1487 struct resource res = {
1488 .start = start,
1489 .end = start + n - 1,
1490 .name = name,
1491 .flags = IORESOURCE_IO,
1492 };
1493
1494 return acpi_check_resource_conflict(&res);
1495}
1496EXPORT_SYMBOL(acpi_check_region);
1497
1498static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1499 void *_res, void **return_value)
1500{
1501 struct acpi_mem_space_context **mem_ctx;
1502 union acpi_operand_object *handler_obj;
1503 union acpi_operand_object *region_obj2;
1504 union acpi_operand_object *region_obj;
1505 struct resource *res = _res;
1506 acpi_status status;
1507
1508 region_obj = acpi_ns_get_attached_object(handle);
1509 if (!region_obj)
1510 return AE_OK;
1511
1512 handler_obj = region_obj->region.handler;
1513 if (!handler_obj)
1514 return AE_OK;
1515
1516 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1517 return AE_OK;
1518
1519 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1520 return AE_OK;
1521
1522 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1523 if (!region_obj2)
1524 return AE_OK;
1525
1526 mem_ctx = (void *)&region_obj2->extra.region_context;
1527
1528 if (!(mem_ctx[0]->address >= res->start &&
1529 mem_ctx[0]->address < res->end))
1530 return AE_OK;
1531
1532 status = handler_obj->address_space.setup(region_obj,
1533 ACPI_REGION_DEACTIVATE,
1534 NULL, (void **)mem_ctx);
1535 if (ACPI_SUCCESS(status))
1536 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1537
1538 return status;
1539}
1540
1541/**
1542 * acpi_release_memory - Release any mappings done to a memory region
1543 * @handle: Handle to namespace node
1544 * @res: Memory resource
1545 * @level: A level that terminates the search
1546 *
1547 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1548 * overlap with @res and that have already been activated (mapped).
1549 *
1550 * This is a helper that allows drivers to place special requirements on memory
1551 * region that may overlap with operation regions, primarily allowing them to
1552 * safely map the region as non-cached memory.
1553 *
1554 * The unmapped Operation Regions will be automatically remapped next time they
1555 * are called, so the drivers do not need to do anything else.
1556 */
1557acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1558 u32 level)
1559{
1560 if (!(res->flags & IORESOURCE_MEM))
1561 return AE_TYPE;
1562
1563 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564 acpi_deactivate_mem_region, NULL, res, NULL);
1565}
1566EXPORT_SYMBOL_GPL(acpi_release_memory);
1567
1568/*
1569 * Let drivers know whether the resource checks are effective
1570 */
1571int acpi_resources_are_enforced(void)
1572{
1573 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1574}
1575EXPORT_SYMBOL(acpi_resources_are_enforced);
1576
1577/*
1578 * Deallocate the memory for a spinlock.
1579 */
1580void acpi_os_delete_lock(acpi_spinlock handle)
1581{
1582 ACPI_FREE(handle);
1583}
1584
1585/*
1586 * Acquire a spinlock.
1587 *
1588 * handle is a pointer to the spinlock_t.
1589 */
1590
1591acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1592{
1593 acpi_cpu_flags flags;
1594 spin_lock_irqsave(lockp, flags);
1595 return flags;
1596}
1597
1598/*
1599 * Release a spinlock. See above.
1600 */
1601
1602void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1603{
1604 spin_unlock_irqrestore(lockp, flags);
1605}
1606
1607#ifndef ACPI_USE_LOCAL_CACHE
1608
1609/*******************************************************************************
1610 *
1611 * FUNCTION: acpi_os_create_cache
1612 *
1613 * PARAMETERS: name - Ascii name for the cache
1614 * size - Size of each cached object
1615 * depth - Maximum depth of the cache (in objects) <ignored>
1616 * cache - Where the new cache object is returned
1617 *
1618 * RETURN: status
1619 *
1620 * DESCRIPTION: Create a cache object
1621 *
1622 ******************************************************************************/
1623
1624acpi_status
1625acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1626{
1627 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1628 if (*cache == NULL)
1629 return AE_ERROR;
1630 else
1631 return AE_OK;
1632}
1633
1634/*******************************************************************************
1635 *
1636 * FUNCTION: acpi_os_purge_cache
1637 *
1638 * PARAMETERS: Cache - Handle to cache object
1639 *
1640 * RETURN: Status
1641 *
1642 * DESCRIPTION: Free all objects within the requested cache.
1643 *
1644 ******************************************************************************/
1645
1646acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1647{
1648 kmem_cache_shrink(cache);
1649 return (AE_OK);
1650}
1651
1652/*******************************************************************************
1653 *
1654 * FUNCTION: acpi_os_delete_cache
1655 *
1656 * PARAMETERS: Cache - Handle to cache object
1657 *
1658 * RETURN: Status
1659 *
1660 * DESCRIPTION: Free all objects within the requested cache and delete the
1661 * cache object.
1662 *
1663 ******************************************************************************/
1664
1665acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1666{
1667 kmem_cache_destroy(cache);
1668 return (AE_OK);
1669}
1670
1671/*******************************************************************************
1672 *
1673 * FUNCTION: acpi_os_release_object
1674 *
1675 * PARAMETERS: Cache - Handle to cache object
1676 * Object - The object to be released
1677 *
1678 * RETURN: None
1679 *
1680 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1681 * the object is deleted.
1682 *
1683 ******************************************************************************/
1684
1685acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1686{
1687 kmem_cache_free(cache, object);
1688 return (AE_OK);
1689}
1690#endif
1691
1692static int __init acpi_no_static_ssdt_setup(char *s)
1693{
1694 acpi_gbl_disable_ssdt_table_install = TRUE;
1695 pr_info("ACPI: static SSDT installation disabled\n");
1696
1697 return 0;
1698}
1699
1700early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1701
1702static int __init acpi_disable_return_repair(char *s)
1703{
1704 printk(KERN_NOTICE PREFIX
1705 "ACPI: Predefined validation mechanism disabled\n");
1706 acpi_gbl_disable_auto_repair = TRUE;
1707
1708 return 1;
1709}
1710
1711__setup("acpica_no_return_repair", acpi_disable_return_repair);
1712
1713acpi_status __init acpi_os_initialize(void)
1714{
1715 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1716 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1717 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1718 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1719 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1720 /*
1721 * Use acpi_os_map_generic_address to pre-map the reset
1722 * register if it's in system memory.
1723 */
1724 int rv;
1725
1726 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1727 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1728 }
1729 acpi_os_initialized = true;
1730
1731 return AE_OK;
1732}
1733
1734acpi_status __init acpi_os_initialize1(void)
1735{
1736 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1737 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1738 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1739 BUG_ON(!kacpid_wq);
1740 BUG_ON(!kacpi_notify_wq);
1741 BUG_ON(!kacpi_hotplug_wq);
1742 acpi_osi_init();
1743 return AE_OK;
1744}
1745
1746acpi_status acpi_os_terminate(void)
1747{
1748 if (acpi_irq_handler) {
1749 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1750 acpi_irq_handler);
1751 }
1752
1753 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1755 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1756 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1757 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1758 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1759
1760 destroy_workqueue(kacpid_wq);
1761 destroy_workqueue(kacpi_notify_wq);
1762 destroy_workqueue(kacpi_hotplug_wq);
1763
1764 return AE_OK;
1765}
1766
1767acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1768 u32 pm1b_control)
1769{
1770 int rc = 0;
1771 if (__acpi_os_prepare_sleep)
1772 rc = __acpi_os_prepare_sleep(sleep_state,
1773 pm1a_control, pm1b_control);
1774 if (rc < 0)
1775 return AE_ERROR;
1776 else if (rc > 0)
1777 return AE_CTRL_TERMINATE;
1778
1779 return AE_OK;
1780}
1781
1782void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1783 u32 pm1a_ctrl, u32 pm1b_ctrl))
1784{
1785 __acpi_os_prepare_sleep = func;
1786}
1787
1788#if (ACPI_REDUCED_HARDWARE)
1789acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1790 u32 val_b)
1791{
1792 int rc = 0;
1793 if (__acpi_os_prepare_extended_sleep)
1794 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1795 val_a, val_b);
1796 if (rc < 0)
1797 return AE_ERROR;
1798 else if (rc > 0)
1799 return AE_CTRL_TERMINATE;
1800
1801 return AE_OK;
1802}
1803#else
1804acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1805 u32 val_b)
1806{
1807 return AE_OK;
1808}
1809#endif
1810
1811void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1812 u32 val_a, u32 val_b))
1813{
1814 __acpi_os_prepare_extended_sleep = func;
1815}
1816
1817acpi_status acpi_os_enter_sleep(u8 sleep_state,
1818 u32 reg_a_value, u32 reg_b_value)
1819{
1820 acpi_status status;
1821
1822 if (acpi_gbl_reduced_hardware)
1823 status = acpi_os_prepare_extended_sleep(sleep_state,
1824 reg_a_value,
1825 reg_b_value);
1826 else
1827 status = acpi_os_prepare_sleep(sleep_state,
1828 reg_a_value, reg_b_value);
1829 return status;
1830}