Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright IBM Corp. 2006 |
| 4 | * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com> |
| 5 | */ |
| 6 | |
| 7 | #include <linux/bootmem.h> |
| 8 | #include <linux/pfn.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/init.h> |
| 11 | #include <linux/list.h> |
| 12 | #include <linux/hugetlb.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/memblock.h> |
| 15 | #include <asm/cacheflush.h> |
| 16 | #include <asm/pgalloc.h> |
| 17 | #include <asm/pgtable.h> |
| 18 | #include <asm/setup.h> |
| 19 | #include <asm/tlbflush.h> |
| 20 | #include <asm/sections.h> |
| 21 | #include <asm/set_memory.h> |
| 22 | |
| 23 | static DEFINE_MUTEX(vmem_mutex); |
| 24 | |
| 25 | struct memory_segment { |
| 26 | struct list_head list; |
| 27 | unsigned long start; |
| 28 | unsigned long size; |
| 29 | }; |
| 30 | |
| 31 | static LIST_HEAD(mem_segs); |
| 32 | |
| 33 | static void __ref *vmem_alloc_pages(unsigned int order) |
| 34 | { |
| 35 | unsigned long size = PAGE_SIZE << order; |
| 36 | |
| 37 | if (slab_is_available()) |
| 38 | return (void *)__get_free_pages(GFP_KERNEL, order); |
| 39 | return (void *) memblock_alloc(size, size); |
| 40 | } |
| 41 | |
| 42 | void *vmem_crst_alloc(unsigned long val) |
| 43 | { |
| 44 | unsigned long *table; |
| 45 | |
| 46 | table = vmem_alloc_pages(CRST_ALLOC_ORDER); |
| 47 | if (table) |
| 48 | crst_table_init(table, val); |
| 49 | return table; |
| 50 | } |
| 51 | |
| 52 | pte_t __ref *vmem_pte_alloc(void) |
| 53 | { |
| 54 | unsigned long size = PTRS_PER_PTE * sizeof(pte_t); |
| 55 | pte_t *pte; |
| 56 | |
| 57 | if (slab_is_available()) |
| 58 | pte = (pte_t *) page_table_alloc(&init_mm); |
| 59 | else |
| 60 | pte = (pte_t *) memblock_alloc(size, size); |
| 61 | if (!pte) |
| 62 | return NULL; |
| 63 | memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE); |
| 64 | return pte; |
| 65 | } |
| 66 | |
| 67 | /* |
| 68 | * Add a physical memory range to the 1:1 mapping. |
| 69 | */ |
| 70 | static int vmem_add_mem(unsigned long start, unsigned long size) |
| 71 | { |
| 72 | unsigned long pgt_prot, sgt_prot, r3_prot; |
| 73 | unsigned long pages4k, pages1m, pages2g; |
| 74 | unsigned long end = start + size; |
| 75 | unsigned long address = start; |
| 76 | pgd_t *pg_dir; |
| 77 | p4d_t *p4_dir; |
| 78 | pud_t *pu_dir; |
| 79 | pmd_t *pm_dir; |
| 80 | pte_t *pt_dir; |
| 81 | int ret = -ENOMEM; |
| 82 | |
| 83 | pgt_prot = pgprot_val(PAGE_KERNEL); |
| 84 | sgt_prot = pgprot_val(SEGMENT_KERNEL); |
| 85 | r3_prot = pgprot_val(REGION3_KERNEL); |
| 86 | if (!MACHINE_HAS_NX) { |
| 87 | pgt_prot &= ~_PAGE_NOEXEC; |
| 88 | sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC; |
| 89 | r3_prot &= ~_REGION_ENTRY_NOEXEC; |
| 90 | } |
| 91 | pages4k = pages1m = pages2g = 0; |
| 92 | while (address < end) { |
| 93 | pg_dir = pgd_offset_k(address); |
| 94 | if (pgd_none(*pg_dir)) { |
| 95 | p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); |
| 96 | if (!p4_dir) |
| 97 | goto out; |
| 98 | pgd_populate(&init_mm, pg_dir, p4_dir); |
| 99 | } |
| 100 | p4_dir = p4d_offset(pg_dir, address); |
| 101 | if (p4d_none(*p4_dir)) { |
| 102 | pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); |
| 103 | if (!pu_dir) |
| 104 | goto out; |
| 105 | p4d_populate(&init_mm, p4_dir, pu_dir); |
| 106 | } |
| 107 | pu_dir = pud_offset(p4_dir, address); |
| 108 | if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address && |
| 109 | !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) && |
| 110 | !debug_pagealloc_enabled()) { |
| 111 | pud_val(*pu_dir) = address | r3_prot; |
| 112 | address += PUD_SIZE; |
| 113 | pages2g++; |
| 114 | continue; |
| 115 | } |
| 116 | if (pud_none(*pu_dir)) { |
| 117 | pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); |
| 118 | if (!pm_dir) |
| 119 | goto out; |
| 120 | pud_populate(&init_mm, pu_dir, pm_dir); |
| 121 | } |
| 122 | pm_dir = pmd_offset(pu_dir, address); |
| 123 | if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address && |
| 124 | !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) && |
| 125 | !debug_pagealloc_enabled()) { |
| 126 | pmd_val(*pm_dir) = address | sgt_prot; |
| 127 | address += PMD_SIZE; |
| 128 | pages1m++; |
| 129 | continue; |
| 130 | } |
| 131 | if (pmd_none(*pm_dir)) { |
| 132 | pt_dir = vmem_pte_alloc(); |
| 133 | if (!pt_dir) |
| 134 | goto out; |
| 135 | pmd_populate(&init_mm, pm_dir, pt_dir); |
| 136 | } |
| 137 | |
| 138 | pt_dir = pte_offset_kernel(pm_dir, address); |
| 139 | pte_val(*pt_dir) = address | pgt_prot; |
| 140 | address += PAGE_SIZE; |
| 141 | pages4k++; |
| 142 | } |
| 143 | ret = 0; |
| 144 | out: |
| 145 | update_page_count(PG_DIRECT_MAP_4K, pages4k); |
| 146 | update_page_count(PG_DIRECT_MAP_1M, pages1m); |
| 147 | update_page_count(PG_DIRECT_MAP_2G, pages2g); |
| 148 | return ret; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Remove a physical memory range from the 1:1 mapping. |
| 153 | * Currently only invalidates page table entries. |
| 154 | */ |
| 155 | static void vmem_remove_range(unsigned long start, unsigned long size) |
| 156 | { |
| 157 | unsigned long pages4k, pages1m, pages2g; |
| 158 | unsigned long end = start + size; |
| 159 | unsigned long address = start; |
| 160 | pgd_t *pg_dir; |
| 161 | p4d_t *p4_dir; |
| 162 | pud_t *pu_dir; |
| 163 | pmd_t *pm_dir; |
| 164 | pte_t *pt_dir; |
| 165 | |
| 166 | pages4k = pages1m = pages2g = 0; |
| 167 | while (address < end) { |
| 168 | pg_dir = pgd_offset_k(address); |
| 169 | if (pgd_none(*pg_dir)) { |
| 170 | address += PGDIR_SIZE; |
| 171 | continue; |
| 172 | } |
| 173 | p4_dir = p4d_offset(pg_dir, address); |
| 174 | if (p4d_none(*p4_dir)) { |
| 175 | address += P4D_SIZE; |
| 176 | continue; |
| 177 | } |
| 178 | pu_dir = pud_offset(p4_dir, address); |
| 179 | if (pud_none(*pu_dir)) { |
| 180 | address += PUD_SIZE; |
| 181 | continue; |
| 182 | } |
| 183 | if (pud_large(*pu_dir)) { |
| 184 | pud_clear(pu_dir); |
| 185 | address += PUD_SIZE; |
| 186 | pages2g++; |
| 187 | continue; |
| 188 | } |
| 189 | pm_dir = pmd_offset(pu_dir, address); |
| 190 | if (pmd_none(*pm_dir)) { |
| 191 | address += PMD_SIZE; |
| 192 | continue; |
| 193 | } |
| 194 | if (pmd_large(*pm_dir)) { |
| 195 | pmd_clear(pm_dir); |
| 196 | address += PMD_SIZE; |
| 197 | pages1m++; |
| 198 | continue; |
| 199 | } |
| 200 | pt_dir = pte_offset_kernel(pm_dir, address); |
| 201 | pte_clear(&init_mm, address, pt_dir); |
| 202 | address += PAGE_SIZE; |
| 203 | pages4k++; |
| 204 | } |
| 205 | flush_tlb_kernel_range(start, end); |
| 206 | update_page_count(PG_DIRECT_MAP_4K, -pages4k); |
| 207 | update_page_count(PG_DIRECT_MAP_1M, -pages1m); |
| 208 | update_page_count(PG_DIRECT_MAP_2G, -pages2g); |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * Add a backed mem_map array to the virtual mem_map array. |
| 213 | */ |
| 214 | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, |
| 215 | struct vmem_altmap *altmap) |
| 216 | { |
| 217 | unsigned long pgt_prot, sgt_prot; |
| 218 | unsigned long address = start; |
| 219 | pgd_t *pg_dir; |
| 220 | p4d_t *p4_dir; |
| 221 | pud_t *pu_dir; |
| 222 | pmd_t *pm_dir; |
| 223 | pte_t *pt_dir; |
| 224 | int ret = -ENOMEM; |
| 225 | |
| 226 | pgt_prot = pgprot_val(PAGE_KERNEL); |
| 227 | sgt_prot = pgprot_val(SEGMENT_KERNEL); |
| 228 | if (!MACHINE_HAS_NX) { |
| 229 | pgt_prot &= ~_PAGE_NOEXEC; |
| 230 | sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC; |
| 231 | } |
| 232 | for (address = start; address < end;) { |
| 233 | pg_dir = pgd_offset_k(address); |
| 234 | if (pgd_none(*pg_dir)) { |
| 235 | p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); |
| 236 | if (!p4_dir) |
| 237 | goto out; |
| 238 | pgd_populate(&init_mm, pg_dir, p4_dir); |
| 239 | } |
| 240 | |
| 241 | p4_dir = p4d_offset(pg_dir, address); |
| 242 | if (p4d_none(*p4_dir)) { |
| 243 | pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); |
| 244 | if (!pu_dir) |
| 245 | goto out; |
| 246 | p4d_populate(&init_mm, p4_dir, pu_dir); |
| 247 | } |
| 248 | |
| 249 | pu_dir = pud_offset(p4_dir, address); |
| 250 | if (pud_none(*pu_dir)) { |
| 251 | pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); |
| 252 | if (!pm_dir) |
| 253 | goto out; |
| 254 | pud_populate(&init_mm, pu_dir, pm_dir); |
| 255 | } |
| 256 | |
| 257 | pm_dir = pmd_offset(pu_dir, address); |
| 258 | if (pmd_none(*pm_dir)) { |
| 259 | /* Use 1MB frames for vmemmap if available. We always |
| 260 | * use large frames even if they are only partially |
| 261 | * used. |
| 262 | * Otherwise we would have also page tables since |
| 263 | * vmemmap_populate gets called for each section |
| 264 | * separately. */ |
| 265 | if (MACHINE_HAS_EDAT1) { |
| 266 | void *new_page; |
| 267 | |
| 268 | new_page = vmemmap_alloc_block(PMD_SIZE, node); |
| 269 | if (!new_page) |
| 270 | goto out; |
| 271 | pmd_val(*pm_dir) = __pa(new_page) | sgt_prot; |
| 272 | address = (address + PMD_SIZE) & PMD_MASK; |
| 273 | continue; |
| 274 | } |
| 275 | pt_dir = vmem_pte_alloc(); |
| 276 | if (!pt_dir) |
| 277 | goto out; |
| 278 | pmd_populate(&init_mm, pm_dir, pt_dir); |
| 279 | } else if (pmd_large(*pm_dir)) { |
| 280 | address = (address + PMD_SIZE) & PMD_MASK; |
| 281 | continue; |
| 282 | } |
| 283 | |
| 284 | pt_dir = pte_offset_kernel(pm_dir, address); |
| 285 | if (pte_none(*pt_dir)) { |
| 286 | void *new_page; |
| 287 | |
| 288 | new_page = vmemmap_alloc_block(PAGE_SIZE, node); |
| 289 | if (!new_page) |
| 290 | goto out; |
| 291 | pte_val(*pt_dir) = __pa(new_page) | pgt_prot; |
| 292 | } |
| 293 | address += PAGE_SIZE; |
| 294 | } |
| 295 | ret = 0; |
| 296 | out: |
| 297 | return ret; |
| 298 | } |
| 299 | |
| 300 | void vmemmap_free(unsigned long start, unsigned long end, |
| 301 | struct vmem_altmap *altmap) |
| 302 | { |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Add memory segment to the segment list if it doesn't overlap with |
| 307 | * an already present segment. |
| 308 | */ |
| 309 | static int insert_memory_segment(struct memory_segment *seg) |
| 310 | { |
| 311 | struct memory_segment *tmp; |
| 312 | |
| 313 | if (seg->start + seg->size > VMEM_MAX_PHYS || |
| 314 | seg->start + seg->size < seg->start) |
| 315 | return -ERANGE; |
| 316 | |
| 317 | list_for_each_entry(tmp, &mem_segs, list) { |
| 318 | if (seg->start >= tmp->start + tmp->size) |
| 319 | continue; |
| 320 | if (seg->start + seg->size <= tmp->start) |
| 321 | continue; |
| 322 | return -ENOSPC; |
| 323 | } |
| 324 | list_add(&seg->list, &mem_segs); |
| 325 | return 0; |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * Remove memory segment from the segment list. |
| 330 | */ |
| 331 | static void remove_memory_segment(struct memory_segment *seg) |
| 332 | { |
| 333 | list_del(&seg->list); |
| 334 | } |
| 335 | |
| 336 | static void __remove_shared_memory(struct memory_segment *seg) |
| 337 | { |
| 338 | remove_memory_segment(seg); |
| 339 | vmem_remove_range(seg->start, seg->size); |
| 340 | } |
| 341 | |
| 342 | int vmem_remove_mapping(unsigned long start, unsigned long size) |
| 343 | { |
| 344 | struct memory_segment *seg; |
| 345 | int ret; |
| 346 | |
| 347 | mutex_lock(&vmem_mutex); |
| 348 | |
| 349 | ret = -ENOENT; |
| 350 | list_for_each_entry(seg, &mem_segs, list) { |
| 351 | if (seg->start == start && seg->size == size) |
| 352 | break; |
| 353 | } |
| 354 | |
| 355 | if (seg->start != start || seg->size != size) |
| 356 | goto out; |
| 357 | |
| 358 | ret = 0; |
| 359 | __remove_shared_memory(seg); |
| 360 | kfree(seg); |
| 361 | out: |
| 362 | mutex_unlock(&vmem_mutex); |
| 363 | return ret; |
| 364 | } |
| 365 | |
| 366 | int vmem_add_mapping(unsigned long start, unsigned long size) |
| 367 | { |
| 368 | struct memory_segment *seg; |
| 369 | int ret; |
| 370 | |
| 371 | mutex_lock(&vmem_mutex); |
| 372 | ret = -ENOMEM; |
| 373 | seg = kzalloc(sizeof(*seg), GFP_KERNEL); |
| 374 | if (!seg) |
| 375 | goto out; |
| 376 | seg->start = start; |
| 377 | seg->size = size; |
| 378 | |
| 379 | ret = insert_memory_segment(seg); |
| 380 | if (ret) |
| 381 | goto out_free; |
| 382 | |
| 383 | ret = vmem_add_mem(start, size); |
| 384 | if (ret) |
| 385 | goto out_remove; |
| 386 | goto out; |
| 387 | |
| 388 | out_remove: |
| 389 | __remove_shared_memory(seg); |
| 390 | out_free: |
| 391 | kfree(seg); |
| 392 | out: |
| 393 | mutex_unlock(&vmem_mutex); |
| 394 | return ret; |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * map whole physical memory to virtual memory (identity mapping) |
| 399 | * we reserve enough space in the vmalloc area for vmemmap to hotplug |
| 400 | * additional memory segments. |
| 401 | */ |
| 402 | void __init vmem_map_init(void) |
| 403 | { |
| 404 | struct memblock_region *reg; |
| 405 | |
| 406 | for_each_memblock(memory, reg) |
| 407 | vmem_add_mem(reg->base, reg->size); |
| 408 | __set_memory((unsigned long)_stext, |
| 409 | (unsigned long)(_etext - _stext) >> PAGE_SHIFT, |
| 410 | SET_MEMORY_RO | SET_MEMORY_X); |
| 411 | __set_memory((unsigned long)_etext, |
| 412 | (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT, |
| 413 | SET_MEMORY_RO); |
| 414 | __set_memory((unsigned long)_sinittext, |
| 415 | (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT, |
| 416 | SET_MEMORY_RO | SET_MEMORY_X); |
| 417 | pr_info("Write protected kernel read-only data: %luk\n", |
| 418 | (unsigned long)(__end_rodata - _stext) >> 10); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Convert memblock.memory to a memory segment list so there is a single |
| 423 | * list that contains all memory segments. |
| 424 | */ |
| 425 | static int __init vmem_convert_memory_chunk(void) |
| 426 | { |
| 427 | struct memblock_region *reg; |
| 428 | struct memory_segment *seg; |
| 429 | |
| 430 | mutex_lock(&vmem_mutex); |
| 431 | for_each_memblock(memory, reg) { |
| 432 | seg = kzalloc(sizeof(*seg), GFP_KERNEL); |
| 433 | if (!seg) |
| 434 | panic("Out of memory...\n"); |
| 435 | seg->start = reg->base; |
| 436 | seg->size = reg->size; |
| 437 | insert_memory_segment(seg); |
| 438 | } |
| 439 | mutex_unlock(&vmem_mutex); |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | core_initcall(vmem_convert_memory_chunk); |