Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * PowerPC version |
| 3 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 4 | * |
| 5 | * Derived from "arch/i386/mm/fault.c" |
| 6 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 7 | * |
| 8 | * Modified by Cort Dougan and Paul Mackerras. |
| 9 | * |
| 10 | * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or |
| 13 | * modify it under the terms of the GNU General Public License |
| 14 | * as published by the Free Software Foundation; either version |
| 15 | * 2 of the License, or (at your option) any later version. |
| 16 | */ |
| 17 | |
| 18 | #include <linux/signal.h> |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/sched/task_stack.h> |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/errno.h> |
| 23 | #include <linux/string.h> |
| 24 | #include <linux/types.h> |
| 25 | #include <linux/pagemap.h> |
| 26 | #include <linux/ptrace.h> |
| 27 | #include <linux/mman.h> |
| 28 | #include <linux/mm.h> |
| 29 | #include <linux/interrupt.h> |
| 30 | #include <linux/highmem.h> |
| 31 | #include <linux/extable.h> |
| 32 | #include <linux/kprobes.h> |
| 33 | #include <linux/kdebug.h> |
| 34 | #include <linux/perf_event.h> |
| 35 | #include <linux/ratelimit.h> |
| 36 | #include <linux/context_tracking.h> |
| 37 | #include <linux/hugetlb.h> |
| 38 | #include <linux/uaccess.h> |
| 39 | |
| 40 | #include <asm/firmware.h> |
| 41 | #include <asm/page.h> |
| 42 | #include <asm/pgtable.h> |
| 43 | #include <asm/mmu.h> |
| 44 | #include <asm/mmu_context.h> |
| 45 | #include <asm/siginfo.h> |
| 46 | #include <asm/debug.h> |
| 47 | |
| 48 | static inline bool notify_page_fault(struct pt_regs *regs) |
| 49 | { |
| 50 | bool ret = false; |
| 51 | |
| 52 | #ifdef CONFIG_KPROBES |
| 53 | /* kprobe_running() needs smp_processor_id() */ |
| 54 | if (!user_mode(regs)) { |
| 55 | preempt_disable(); |
| 56 | if (kprobe_running() && kprobe_fault_handler(regs, 11)) |
| 57 | ret = true; |
| 58 | preempt_enable(); |
| 59 | } |
| 60 | #endif /* CONFIG_KPROBES */ |
| 61 | |
| 62 | if (unlikely(debugger_fault_handler(regs))) |
| 63 | ret = true; |
| 64 | |
| 65 | return ret; |
| 66 | } |
| 67 | |
| 68 | /* |
| 69 | * Check whether the instruction inst is a store using |
| 70 | * an update addressing form which will update r1. |
| 71 | */ |
| 72 | static bool store_updates_sp(unsigned int inst) |
| 73 | { |
| 74 | /* check for 1 in the rA field */ |
| 75 | if (((inst >> 16) & 0x1f) != 1) |
| 76 | return false; |
| 77 | /* check major opcode */ |
| 78 | switch (inst >> 26) { |
| 79 | case OP_STWU: |
| 80 | case OP_STBU: |
| 81 | case OP_STHU: |
| 82 | case OP_STFSU: |
| 83 | case OP_STFDU: |
| 84 | return true; |
| 85 | case OP_STD: /* std or stdu */ |
| 86 | return (inst & 3) == 1; |
| 87 | case OP_31: |
| 88 | /* check minor opcode */ |
| 89 | switch ((inst >> 1) & 0x3ff) { |
| 90 | case OP_31_XOP_STDUX: |
| 91 | case OP_31_XOP_STWUX: |
| 92 | case OP_31_XOP_STBUX: |
| 93 | case OP_31_XOP_STHUX: |
| 94 | case OP_31_XOP_STFSUX: |
| 95 | case OP_31_XOP_STFDUX: |
| 96 | return true; |
| 97 | } |
| 98 | } |
| 99 | return false; |
| 100 | } |
| 101 | /* |
| 102 | * do_page_fault error handling helpers |
| 103 | */ |
| 104 | |
| 105 | static int |
| 106 | __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code, |
| 107 | int pkey) |
| 108 | { |
| 109 | /* |
| 110 | * If we are in kernel mode, bail out with a SEGV, this will |
| 111 | * be caught by the assembly which will restore the non-volatile |
| 112 | * registers before calling bad_page_fault() |
| 113 | */ |
| 114 | if (!user_mode(regs)) |
| 115 | return SIGSEGV; |
| 116 | |
| 117 | _exception_pkey(SIGSEGV, regs, si_code, address, pkey); |
| 118 | |
| 119 | return 0; |
| 120 | } |
| 121 | |
| 122 | static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) |
| 123 | { |
| 124 | return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0); |
| 125 | } |
| 126 | |
| 127 | static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code, |
| 128 | int pkey) |
| 129 | { |
| 130 | struct mm_struct *mm = current->mm; |
| 131 | |
| 132 | /* |
| 133 | * Something tried to access memory that isn't in our memory map.. |
| 134 | * Fix it, but check if it's kernel or user first.. |
| 135 | */ |
| 136 | up_read(&mm->mmap_sem); |
| 137 | |
| 138 | return __bad_area_nosemaphore(regs, address, si_code, pkey); |
| 139 | } |
| 140 | |
| 141 | static noinline int bad_area(struct pt_regs *regs, unsigned long address) |
| 142 | { |
| 143 | return __bad_area(regs, address, SEGV_MAPERR, 0); |
| 144 | } |
| 145 | |
| 146 | static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address, |
| 147 | int pkey) |
| 148 | { |
| 149 | return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey); |
| 150 | } |
| 151 | |
| 152 | static noinline int bad_access(struct pt_regs *regs, unsigned long address) |
| 153 | { |
| 154 | return __bad_area(regs, address, SEGV_ACCERR, 0); |
| 155 | } |
| 156 | |
| 157 | static int do_sigbus(struct pt_regs *regs, unsigned long address, |
| 158 | vm_fault_t fault) |
| 159 | { |
| 160 | siginfo_t info; |
| 161 | unsigned int lsb = 0; |
| 162 | |
| 163 | if (!user_mode(regs)) |
| 164 | return SIGBUS; |
| 165 | |
| 166 | current->thread.trap_nr = BUS_ADRERR; |
| 167 | clear_siginfo(&info); |
| 168 | info.si_signo = SIGBUS; |
| 169 | info.si_errno = 0; |
| 170 | info.si_code = BUS_ADRERR; |
| 171 | info.si_addr = (void __user *)address; |
| 172 | #ifdef CONFIG_MEMORY_FAILURE |
| 173 | if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { |
| 174 | pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", |
| 175 | current->comm, current->pid, address); |
| 176 | info.si_code = BUS_MCEERR_AR; |
| 177 | } |
| 178 | |
| 179 | if (fault & VM_FAULT_HWPOISON_LARGE) |
| 180 | lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); |
| 181 | if (fault & VM_FAULT_HWPOISON) |
| 182 | lsb = PAGE_SHIFT; |
| 183 | #endif |
| 184 | info.si_addr_lsb = lsb; |
| 185 | force_sig_info(SIGBUS, &info, current); |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | static int mm_fault_error(struct pt_regs *regs, unsigned long addr, |
| 190 | vm_fault_t fault) |
| 191 | { |
| 192 | /* |
| 193 | * Kernel page fault interrupted by SIGKILL. We have no reason to |
| 194 | * continue processing. |
| 195 | */ |
| 196 | if (fatal_signal_pending(current) && !user_mode(regs)) |
| 197 | return SIGKILL; |
| 198 | |
| 199 | /* Out of memory */ |
| 200 | if (fault & VM_FAULT_OOM) { |
| 201 | /* |
| 202 | * We ran out of memory, or some other thing happened to us that |
| 203 | * made us unable to handle the page fault gracefully. |
| 204 | */ |
| 205 | if (!user_mode(regs)) |
| 206 | return SIGSEGV; |
| 207 | pagefault_out_of_memory(); |
| 208 | } else { |
| 209 | if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| |
| 210 | VM_FAULT_HWPOISON_LARGE)) |
| 211 | return do_sigbus(regs, addr, fault); |
| 212 | else if (fault & VM_FAULT_SIGSEGV) |
| 213 | return bad_area_nosemaphore(regs, addr); |
| 214 | else |
| 215 | BUG(); |
| 216 | } |
| 217 | return 0; |
| 218 | } |
| 219 | |
| 220 | /* Is this a bad kernel fault ? */ |
| 221 | static bool bad_kernel_fault(bool is_exec, unsigned long error_code, |
| 222 | unsigned long address) |
| 223 | { |
| 224 | if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) { |
| 225 | printk_ratelimited(KERN_CRIT "kernel tried to execute" |
| 226 | " exec-protected page (%lx) -" |
| 227 | "exploit attempt? (uid: %d)\n", |
| 228 | address, from_kuid(&init_user_ns, |
| 229 | current_uid())); |
| 230 | } |
| 231 | return is_exec || (address >= TASK_SIZE); |
| 232 | } |
| 233 | |
| 234 | static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, |
| 235 | struct vm_area_struct *vma, unsigned int flags, |
| 236 | bool *must_retry) |
| 237 | { |
| 238 | /* |
| 239 | * N.B. The POWER/Open ABI allows programs to access up to |
| 240 | * 288 bytes below the stack pointer. |
| 241 | * The kernel signal delivery code writes up to about 1.5kB |
| 242 | * below the stack pointer (r1) before decrementing it. |
| 243 | * The exec code can write slightly over 640kB to the stack |
| 244 | * before setting the user r1. Thus we allow the stack to |
| 245 | * expand to 1MB without further checks. |
| 246 | */ |
| 247 | if (address + 0x100000 < vma->vm_end) { |
| 248 | unsigned int __user *nip = (unsigned int __user *)regs->nip; |
| 249 | /* get user regs even if this fault is in kernel mode */ |
| 250 | struct pt_regs *uregs = current->thread.regs; |
| 251 | if (uregs == NULL) |
| 252 | return true; |
| 253 | |
| 254 | /* |
| 255 | * A user-mode access to an address a long way below |
| 256 | * the stack pointer is only valid if the instruction |
| 257 | * is one which would update the stack pointer to the |
| 258 | * address accessed if the instruction completed, |
| 259 | * i.e. either stwu rs,n(r1) or stwux rs,r1,rb |
| 260 | * (or the byte, halfword, float or double forms). |
| 261 | * |
| 262 | * If we don't check this then any write to the area |
| 263 | * between the last mapped region and the stack will |
| 264 | * expand the stack rather than segfaulting. |
| 265 | */ |
| 266 | if (address + 2048 >= uregs->gpr[1]) |
| 267 | return false; |
| 268 | |
| 269 | if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && |
| 270 | access_ok(VERIFY_READ, nip, sizeof(*nip))) { |
| 271 | unsigned int inst; |
| 272 | int res; |
| 273 | |
| 274 | pagefault_disable(); |
| 275 | res = __get_user_inatomic(inst, nip); |
| 276 | pagefault_enable(); |
| 277 | if (!res) |
| 278 | return !store_updates_sp(inst); |
| 279 | *must_retry = true; |
| 280 | } |
| 281 | return true; |
| 282 | } |
| 283 | return false; |
| 284 | } |
| 285 | |
| 286 | static bool access_error(bool is_write, bool is_exec, |
| 287 | struct vm_area_struct *vma) |
| 288 | { |
| 289 | /* |
| 290 | * Allow execution from readable areas if the MMU does not |
| 291 | * provide separate controls over reading and executing. |
| 292 | * |
| 293 | * Note: That code used to not be enabled for 4xx/BookE. |
| 294 | * It is now as I/D cache coherency for these is done at |
| 295 | * set_pte_at() time and I see no reason why the test |
| 296 | * below wouldn't be valid on those processors. This -may- |
| 297 | * break programs compiled with a really old ABI though. |
| 298 | */ |
| 299 | if (is_exec) { |
| 300 | return !(vma->vm_flags & VM_EXEC) && |
| 301 | (cpu_has_feature(CPU_FTR_NOEXECUTE) || |
| 302 | !(vma->vm_flags & (VM_READ | VM_WRITE))); |
| 303 | } |
| 304 | |
| 305 | if (is_write) { |
| 306 | if (unlikely(!(vma->vm_flags & VM_WRITE))) |
| 307 | return true; |
| 308 | return false; |
| 309 | } |
| 310 | |
| 311 | if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) |
| 312 | return true; |
| 313 | /* |
| 314 | * We should ideally do the vma pkey access check here. But in the |
| 315 | * fault path, handle_mm_fault() also does the same check. To avoid |
| 316 | * these multiple checks, we skip it here and handle access error due |
| 317 | * to pkeys later. |
| 318 | */ |
| 319 | return false; |
| 320 | } |
| 321 | |
| 322 | #ifdef CONFIG_PPC_SMLPAR |
| 323 | static inline void cmo_account_page_fault(void) |
| 324 | { |
| 325 | if (firmware_has_feature(FW_FEATURE_CMO)) { |
| 326 | u32 page_ins; |
| 327 | |
| 328 | preempt_disable(); |
| 329 | page_ins = be32_to_cpu(get_lppaca()->page_ins); |
| 330 | page_ins += 1 << PAGE_FACTOR; |
| 331 | get_lppaca()->page_ins = cpu_to_be32(page_ins); |
| 332 | preempt_enable(); |
| 333 | } |
| 334 | } |
| 335 | #else |
| 336 | static inline void cmo_account_page_fault(void) { } |
| 337 | #endif /* CONFIG_PPC_SMLPAR */ |
| 338 | |
| 339 | #ifdef CONFIG_PPC_STD_MMU |
| 340 | static void sanity_check_fault(bool is_write, unsigned long error_code) |
| 341 | { |
| 342 | /* |
| 343 | * For hash translation mode, we should never get a |
| 344 | * PROTFAULT. Any update to pte to reduce access will result in us |
| 345 | * removing the hash page table entry, thus resulting in a DSISR_NOHPTE |
| 346 | * fault instead of DSISR_PROTFAULT. |
| 347 | * |
| 348 | * A pte update to relax the access will not result in a hash page table |
| 349 | * entry invalidate and hence can result in DSISR_PROTFAULT. |
| 350 | * ptep_set_access_flags() doesn't do a hpte flush. This is why we have |
| 351 | * the special !is_write in the below conditional. |
| 352 | * |
| 353 | * For platforms that doesn't supports coherent icache and do support |
| 354 | * per page noexec bit, we do setup things such that we do the |
| 355 | * sync between D/I cache via fault. But that is handled via low level |
| 356 | * hash fault code (hash_page_do_lazy_icache()) and we should not reach |
| 357 | * here in such case. |
| 358 | * |
| 359 | * For wrong access that can result in PROTFAULT, the above vma->vm_flags |
| 360 | * check should handle those and hence we should fall to the bad_area |
| 361 | * handling correctly. |
| 362 | * |
| 363 | * For embedded with per page exec support that doesn't support coherent |
| 364 | * icache we do get PROTFAULT and we handle that D/I cache sync in |
| 365 | * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON |
| 366 | * is conditional for server MMU. |
| 367 | * |
| 368 | * For radix, we can get prot fault for autonuma case, because radix |
| 369 | * page table will have them marked noaccess for user. |
| 370 | */ |
| 371 | if (!radix_enabled() && !is_write) |
| 372 | WARN_ON_ONCE(error_code & DSISR_PROTFAULT); |
| 373 | } |
| 374 | #else |
| 375 | static void sanity_check_fault(bool is_write, unsigned long error_code) { } |
| 376 | #endif /* CONFIG_PPC_STD_MMU */ |
| 377 | |
| 378 | /* |
| 379 | * Define the correct "is_write" bit in error_code based |
| 380 | * on the processor family |
| 381 | */ |
| 382 | #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) |
| 383 | #define page_fault_is_write(__err) ((__err) & ESR_DST) |
| 384 | #define page_fault_is_bad(__err) (0) |
| 385 | #else |
| 386 | #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) |
| 387 | #if defined(CONFIG_PPC_8xx) |
| 388 | #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) |
| 389 | #elif defined(CONFIG_PPC64) |
| 390 | #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) |
| 391 | #else |
| 392 | #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) |
| 393 | #endif |
| 394 | #endif |
| 395 | |
| 396 | /* |
| 397 | * For 600- and 800-family processors, the error_code parameter is DSISR |
| 398 | * for a data fault, SRR1 for an instruction fault. For 400-family processors |
| 399 | * the error_code parameter is ESR for a data fault, 0 for an instruction |
| 400 | * fault. |
| 401 | * For 64-bit processors, the error_code parameter is |
| 402 | * - DSISR for a non-SLB data access fault, |
| 403 | * - SRR1 & 0x08000000 for a non-SLB instruction access fault |
| 404 | * - 0 any SLB fault. |
| 405 | * |
| 406 | * The return value is 0 if the fault was handled, or the signal |
| 407 | * number if this is a kernel fault that can't be handled here. |
| 408 | */ |
| 409 | static int __do_page_fault(struct pt_regs *regs, unsigned long address, |
| 410 | unsigned long error_code) |
| 411 | { |
| 412 | struct vm_area_struct * vma; |
| 413 | struct mm_struct *mm = current->mm; |
| 414 | unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
| 415 | int is_exec = TRAP(regs) == 0x400; |
| 416 | int is_user = user_mode(regs); |
| 417 | int is_write = page_fault_is_write(error_code); |
| 418 | vm_fault_t fault, major = 0; |
| 419 | bool must_retry = false; |
| 420 | |
| 421 | if (notify_page_fault(regs)) |
| 422 | return 0; |
| 423 | |
| 424 | if (unlikely(page_fault_is_bad(error_code))) { |
| 425 | if (is_user) { |
| 426 | _exception(SIGBUS, regs, BUS_OBJERR, address); |
| 427 | return 0; |
| 428 | } |
| 429 | return SIGBUS; |
| 430 | } |
| 431 | |
| 432 | /* Additional sanity check(s) */ |
| 433 | sanity_check_fault(is_write, error_code); |
| 434 | |
| 435 | /* |
| 436 | * The kernel should never take an execute fault nor should it |
| 437 | * take a page fault to a kernel address. |
| 438 | */ |
| 439 | if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address))) |
| 440 | return SIGSEGV; |
| 441 | |
| 442 | /* |
| 443 | * If we're in an interrupt, have no user context or are running |
| 444 | * in a region with pagefaults disabled then we must not take the fault |
| 445 | */ |
| 446 | if (unlikely(faulthandler_disabled() || !mm)) { |
| 447 | if (is_user) |
| 448 | printk_ratelimited(KERN_ERR "Page fault in user mode" |
| 449 | " with faulthandler_disabled()=%d" |
| 450 | " mm=%p\n", |
| 451 | faulthandler_disabled(), mm); |
| 452 | return bad_area_nosemaphore(regs, address); |
| 453 | } |
| 454 | |
| 455 | /* We restore the interrupt state now */ |
| 456 | if (!arch_irq_disabled_regs(regs)) |
| 457 | local_irq_enable(); |
| 458 | |
| 459 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); |
| 460 | |
| 461 | if (error_code & DSISR_KEYFAULT) |
| 462 | return bad_key_fault_exception(regs, address, |
| 463 | get_mm_addr_key(mm, address)); |
| 464 | |
| 465 | /* |
| 466 | * We want to do this outside mmap_sem, because reading code around nip |
| 467 | * can result in fault, which will cause a deadlock when called with |
| 468 | * mmap_sem held |
| 469 | */ |
| 470 | if (is_user) |
| 471 | flags |= FAULT_FLAG_USER; |
| 472 | if (is_write) |
| 473 | flags |= FAULT_FLAG_WRITE; |
| 474 | if (is_exec) |
| 475 | flags |= FAULT_FLAG_INSTRUCTION; |
| 476 | |
| 477 | /* When running in the kernel we expect faults to occur only to |
| 478 | * addresses in user space. All other faults represent errors in the |
| 479 | * kernel and should generate an OOPS. Unfortunately, in the case of an |
| 480 | * erroneous fault occurring in a code path which already holds mmap_sem |
| 481 | * we will deadlock attempting to validate the fault against the |
| 482 | * address space. Luckily the kernel only validly references user |
| 483 | * space from well defined areas of code, which are listed in the |
| 484 | * exceptions table. |
| 485 | * |
| 486 | * As the vast majority of faults will be valid we will only perform |
| 487 | * the source reference check when there is a possibility of a deadlock. |
| 488 | * Attempt to lock the address space, if we cannot we then validate the |
| 489 | * source. If this is invalid we can skip the address space check, |
| 490 | * thus avoiding the deadlock. |
| 491 | */ |
| 492 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { |
| 493 | if (!is_user && !search_exception_tables(regs->nip)) |
| 494 | return bad_area_nosemaphore(regs, address); |
| 495 | |
| 496 | retry: |
| 497 | down_read(&mm->mmap_sem); |
| 498 | } else { |
| 499 | /* |
| 500 | * The above down_read_trylock() might have succeeded in |
| 501 | * which case we'll have missed the might_sleep() from |
| 502 | * down_read(): |
| 503 | */ |
| 504 | might_sleep(); |
| 505 | } |
| 506 | |
| 507 | vma = find_vma(mm, address); |
| 508 | if (unlikely(!vma)) |
| 509 | return bad_area(regs, address); |
| 510 | if (likely(vma->vm_start <= address)) |
| 511 | goto good_area; |
| 512 | if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) |
| 513 | return bad_area(regs, address); |
| 514 | |
| 515 | /* The stack is being expanded, check if it's valid */ |
| 516 | if (unlikely(bad_stack_expansion(regs, address, vma, flags, |
| 517 | &must_retry))) { |
| 518 | if (!must_retry) |
| 519 | return bad_area(regs, address); |
| 520 | |
| 521 | up_read(&mm->mmap_sem); |
| 522 | if (fault_in_pages_readable((const char __user *)regs->nip, |
| 523 | sizeof(unsigned int))) |
| 524 | return bad_area_nosemaphore(regs, address); |
| 525 | goto retry; |
| 526 | } |
| 527 | |
| 528 | /* Try to expand it */ |
| 529 | if (unlikely(expand_stack(vma, address))) |
| 530 | return bad_area(regs, address); |
| 531 | |
| 532 | good_area: |
| 533 | if (unlikely(access_error(is_write, is_exec, vma))) |
| 534 | return bad_access(regs, address); |
| 535 | |
| 536 | /* |
| 537 | * If for any reason at all we couldn't handle the fault, |
| 538 | * make sure we exit gracefully rather than endlessly redo |
| 539 | * the fault. |
| 540 | */ |
| 541 | fault = handle_mm_fault(vma, address, flags); |
| 542 | |
| 543 | #ifdef CONFIG_PPC_MEM_KEYS |
| 544 | /* |
| 545 | * we skipped checking for access error due to key earlier. |
| 546 | * Check that using handle_mm_fault error return. |
| 547 | */ |
| 548 | if (unlikely(fault & VM_FAULT_SIGSEGV) && |
| 549 | !arch_vma_access_permitted(vma, is_write, is_exec, 0)) { |
| 550 | |
| 551 | int pkey = vma_pkey(vma); |
| 552 | |
| 553 | up_read(&mm->mmap_sem); |
| 554 | return bad_key_fault_exception(regs, address, pkey); |
| 555 | } |
| 556 | #endif /* CONFIG_PPC_MEM_KEYS */ |
| 557 | |
| 558 | major |= fault & VM_FAULT_MAJOR; |
| 559 | |
| 560 | /* |
| 561 | * Handle the retry right now, the mmap_sem has been released in that |
| 562 | * case. |
| 563 | */ |
| 564 | if (unlikely(fault & VM_FAULT_RETRY)) { |
| 565 | /* We retry only once */ |
| 566 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
| 567 | /* |
| 568 | * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk |
| 569 | * of starvation. |
| 570 | */ |
| 571 | flags &= ~FAULT_FLAG_ALLOW_RETRY; |
| 572 | flags |= FAULT_FLAG_TRIED; |
| 573 | if (!fatal_signal_pending(current)) |
| 574 | goto retry; |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * User mode? Just return to handle the fatal exception otherwise |
| 579 | * return to bad_page_fault |
| 580 | */ |
| 581 | return is_user ? 0 : SIGBUS; |
| 582 | } |
| 583 | |
| 584 | up_read(¤t->mm->mmap_sem); |
| 585 | |
| 586 | if (unlikely(fault & VM_FAULT_ERROR)) |
| 587 | return mm_fault_error(regs, address, fault); |
| 588 | |
| 589 | /* |
| 590 | * Major/minor page fault accounting. |
| 591 | */ |
| 592 | if (major) { |
| 593 | current->maj_flt++; |
| 594 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); |
| 595 | cmo_account_page_fault(); |
| 596 | } else { |
| 597 | current->min_flt++; |
| 598 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); |
| 599 | } |
| 600 | return 0; |
| 601 | } |
| 602 | NOKPROBE_SYMBOL(__do_page_fault); |
| 603 | |
| 604 | int do_page_fault(struct pt_regs *regs, unsigned long address, |
| 605 | unsigned long error_code) |
| 606 | { |
| 607 | enum ctx_state prev_state = exception_enter(); |
| 608 | int rc = __do_page_fault(regs, address, error_code); |
| 609 | exception_exit(prev_state); |
| 610 | return rc; |
| 611 | } |
| 612 | NOKPROBE_SYMBOL(do_page_fault); |
| 613 | |
| 614 | /* |
| 615 | * bad_page_fault is called when we have a bad access from the kernel. |
| 616 | * It is called from the DSI and ISI handlers in head.S and from some |
| 617 | * of the procedures in traps.c. |
| 618 | */ |
| 619 | void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) |
| 620 | { |
| 621 | const struct exception_table_entry *entry; |
| 622 | |
| 623 | /* Are we prepared to handle this fault? */ |
| 624 | if ((entry = search_exception_tables(regs->nip)) != NULL) { |
| 625 | regs->nip = extable_fixup(entry); |
| 626 | return; |
| 627 | } |
| 628 | |
| 629 | /* kernel has accessed a bad area */ |
| 630 | |
| 631 | switch (TRAP(regs)) { |
| 632 | case 0x300: |
| 633 | case 0x380: |
| 634 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 635 | "data at address 0x%08lx\n", regs->dar); |
| 636 | break; |
| 637 | case 0x400: |
| 638 | case 0x480: |
| 639 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 640 | "instruction fetch\n"); |
| 641 | break; |
| 642 | case 0x600: |
| 643 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 644 | "unaligned access at address 0x%08lx\n", regs->dar); |
| 645 | break; |
| 646 | default: |
| 647 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 648 | "unknown fault\n"); |
| 649 | break; |
| 650 | } |
| 651 | printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", |
| 652 | regs->nip); |
| 653 | |
| 654 | if (task_stack_end_corrupted(current)) |
| 655 | printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); |
| 656 | |
| 657 | die("Kernel access of bad area", regs, sig); |
| 658 | } |