blob: 922add8adb7498ff4609725782d09a56b46781d6 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * kexec for arm64
3 *
4 * Copyright (C) Linaro.
5 * Copyright (C) Huawei Futurewei Technologies.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/interrupt.h>
13#include <linux/irq.h>
14#include <linux/kernel.h>
15#include <linux/kexec.h>
16#include <linux/page-flags.h>
17#include <linux/smp.h>
18
19#include <asm/cacheflush.h>
20#include <asm/cpu_ops.h>
21#include <asm/daifflags.h>
22#include <asm/memory.h>
23#include <asm/mmu.h>
24#include <asm/mmu_context.h>
25#include <asm/page.h>
26
27#include "cpu-reset.h"
28
29/* Global variables for the arm64_relocate_new_kernel routine. */
30extern const unsigned char arm64_relocate_new_kernel[];
31extern const unsigned long arm64_relocate_new_kernel_size;
32
33/**
34 * kexec_image_info - For debugging output.
35 */
36#define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
37static void _kexec_image_info(const char *func, int line,
38 const struct kimage *kimage)
39{
40 unsigned long i;
41
42 pr_debug("%s:%d:\n", func, line);
43 pr_debug(" kexec kimage info:\n");
44 pr_debug(" type: %d\n", kimage->type);
45 pr_debug(" start: %lx\n", kimage->start);
46 pr_debug(" head: %lx\n", kimage->head);
47 pr_debug(" nr_segments: %lu\n", kimage->nr_segments);
48
49 for (i = 0; i < kimage->nr_segments; i++) {
50 pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
51 i,
52 kimage->segment[i].mem,
53 kimage->segment[i].mem + kimage->segment[i].memsz,
54 kimage->segment[i].memsz,
55 kimage->segment[i].memsz / PAGE_SIZE);
56 }
57}
58
59void machine_kexec_cleanup(struct kimage *kimage)
60{
61 /* Empty routine needed to avoid build errors. */
62}
63
64/**
65 * machine_kexec_prepare - Prepare for a kexec reboot.
66 *
67 * Called from the core kexec code when a kernel image is loaded.
68 * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
69 * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
70 */
71int machine_kexec_prepare(struct kimage *kimage)
72{
73 kexec_image_info(kimage);
74
75 if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
76 pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
77 return -EBUSY;
78 }
79
80 return 0;
81}
82
83/**
84 * kexec_list_flush - Helper to flush the kimage list and source pages to PoC.
85 */
86static void kexec_list_flush(struct kimage *kimage)
87{
88 kimage_entry_t *entry;
89
90 for (entry = &kimage->head; ; entry++) {
91 unsigned int flag;
92 void *addr;
93
94 /* flush the list entries. */
95 __flush_dcache_area(entry, sizeof(kimage_entry_t));
96
97 flag = *entry & IND_FLAGS;
98 if (flag == IND_DONE)
99 break;
100
101 addr = phys_to_virt(*entry & PAGE_MASK);
102
103 switch (flag) {
104 case IND_INDIRECTION:
105 /* Set entry point just before the new list page. */
106 entry = (kimage_entry_t *)addr - 1;
107 break;
108 case IND_SOURCE:
109 /* flush the source pages. */
110 __flush_dcache_area(addr, PAGE_SIZE);
111 break;
112 case IND_DESTINATION:
113 break;
114 default:
115 BUG();
116 }
117 }
118}
119
120/**
121 * kexec_segment_flush - Helper to flush the kimage segments to PoC.
122 */
123static void kexec_segment_flush(const struct kimage *kimage)
124{
125 unsigned long i;
126
127 pr_debug("%s:\n", __func__);
128
129 for (i = 0; i < kimage->nr_segments; i++) {
130 pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
131 i,
132 kimage->segment[i].mem,
133 kimage->segment[i].mem + kimage->segment[i].memsz,
134 kimage->segment[i].memsz,
135 kimage->segment[i].memsz / PAGE_SIZE);
136
137 __flush_dcache_area(phys_to_virt(kimage->segment[i].mem),
138 kimage->segment[i].memsz);
139 }
140}
141
142/**
143 * machine_kexec - Do the kexec reboot.
144 *
145 * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
146 */
147void machine_kexec(struct kimage *kimage)
148{
149 phys_addr_t reboot_code_buffer_phys;
150 void *reboot_code_buffer;
151 bool in_kexec_crash = (kimage == kexec_crash_image);
152 bool stuck_cpus = cpus_are_stuck_in_kernel();
153
154 /*
155 * New cpus may have become stuck_in_kernel after we loaded the image.
156 */
157 BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
158 WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
159 "Some CPUs may be stale, kdump will be unreliable.\n");
160
161 reboot_code_buffer_phys = page_to_phys(kimage->control_code_page);
162 reboot_code_buffer = phys_to_virt(reboot_code_buffer_phys);
163
164 kexec_image_info(kimage);
165
166 pr_debug("%s:%d: control_code_page: %p\n", __func__, __LINE__,
167 kimage->control_code_page);
168 pr_debug("%s:%d: reboot_code_buffer_phys: %pa\n", __func__, __LINE__,
169 &reboot_code_buffer_phys);
170 pr_debug("%s:%d: reboot_code_buffer: %p\n", __func__, __LINE__,
171 reboot_code_buffer);
172 pr_debug("%s:%d: relocate_new_kernel: %p\n", __func__, __LINE__,
173 arm64_relocate_new_kernel);
174 pr_debug("%s:%d: relocate_new_kernel_size: 0x%lx(%lu) bytes\n",
175 __func__, __LINE__, arm64_relocate_new_kernel_size,
176 arm64_relocate_new_kernel_size);
177
178 /*
179 * Copy arm64_relocate_new_kernel to the reboot_code_buffer for use
180 * after the kernel is shut down.
181 */
182 memcpy(reboot_code_buffer, arm64_relocate_new_kernel,
183 arm64_relocate_new_kernel_size);
184
185 /* Flush the reboot_code_buffer in preparation for its execution. */
186 __flush_dcache_area(reboot_code_buffer, arm64_relocate_new_kernel_size);
187
188 /*
189 * Although we've killed off the secondary CPUs, we don't update
190 * the online mask if we're handling a crash kernel and consequently
191 * need to avoid flush_icache_range(), which will attempt to IPI
192 * the offline CPUs. Therefore, we must use the __* variant here.
193 */
194 __flush_icache_range((uintptr_t)reboot_code_buffer,
195 arm64_relocate_new_kernel_size);
196
197 /* Flush the kimage list and its buffers. */
198 kexec_list_flush(kimage);
199
200 /* Flush the new image if already in place. */
201 if ((kimage != kexec_crash_image) && (kimage->head & IND_DONE))
202 kexec_segment_flush(kimage);
203
204 pr_info("Bye!\n");
205
206 local_daif_mask();
207
208 /*
209 * cpu_soft_restart will shutdown the MMU, disable data caches, then
210 * transfer control to the reboot_code_buffer which contains a copy of
211 * the arm64_relocate_new_kernel routine. arm64_relocate_new_kernel
212 * uses physical addressing to relocate the new image to its final
213 * position and transfers control to the image entry point when the
214 * relocation is complete.
215 */
216
217 cpu_soft_restart(reboot_code_buffer_phys, kimage->head, kimage->start, 0);
218
219 BUG(); /* Should never get here. */
220}
221
222static void machine_kexec_mask_interrupts(void)
223{
224 unsigned int i;
225 struct irq_desc *desc;
226
227 for_each_irq_desc(i, desc) {
228 struct irq_chip *chip;
229 int ret;
230
231 chip = irq_desc_get_chip(desc);
232 if (!chip)
233 continue;
234
235 /*
236 * First try to remove the active state. If this
237 * fails, try to EOI the interrupt.
238 */
239 ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
240
241 if (ret && irqd_irq_inprogress(&desc->irq_data) &&
242 chip->irq_eoi)
243 chip->irq_eoi(&desc->irq_data);
244
245 if (chip->irq_mask)
246 chip->irq_mask(&desc->irq_data);
247
248 if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
249 chip->irq_disable(&desc->irq_data);
250 }
251}
252
253/**
254 * machine_crash_shutdown - shutdown non-crashing cpus and save registers
255 */
256void machine_crash_shutdown(struct pt_regs *regs)
257{
258 local_irq_disable();
259
260 /* shutdown non-crashing cpus */
261 crash_smp_send_stop();
262
263 /* for crashing cpu */
264 crash_save_cpu(regs, smp_processor_id());
265 machine_kexec_mask_interrupts();
266
267 pr_info("Starting crashdump kernel...\n");
268}
269
270void arch_kexec_protect_crashkres(void)
271{
272 int i;
273
274 kexec_segment_flush(kexec_crash_image);
275
276 for (i = 0; i < kexec_crash_image->nr_segments; i++)
277 set_memory_valid(
278 __phys_to_virt(kexec_crash_image->segment[i].mem),
279 kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
280}
281
282void arch_kexec_unprotect_crashkres(void)
283{
284 int i;
285
286 for (i = 0; i < kexec_crash_image->nr_segments; i++)
287 set_memory_valid(
288 __phys_to_virt(kexec_crash_image->segment[i].mem),
289 kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
290}
291
292#ifdef CONFIG_HIBERNATION
293/*
294 * To preserve the crash dump kernel image, the relevant memory segments
295 * should be mapped again around the hibernation.
296 */
297void crash_prepare_suspend(void)
298{
299 if (kexec_crash_image)
300 arch_kexec_unprotect_crashkres();
301}
302
303void crash_post_resume(void)
304{
305 if (kexec_crash_image)
306 arch_kexec_protect_crashkres();
307}
308
309/*
310 * crash_is_nosave
311 *
312 * Return true only if a page is part of reserved memory for crash dump kernel,
313 * but does not hold any data of loaded kernel image.
314 *
315 * Note that all the pages in crash dump kernel memory have been initially
316 * marked as Reserved in kexec_reserve_crashkres_pages().
317 *
318 * In hibernation, the pages which are Reserved and yet "nosave" are excluded
319 * from the hibernation iamge. crash_is_nosave() does thich check for crash
320 * dump kernel and will reduce the total size of hibernation image.
321 */
322
323bool crash_is_nosave(unsigned long pfn)
324{
325 int i;
326 phys_addr_t addr;
327
328 if (!crashk_res.end)
329 return false;
330
331 /* in reserved memory? */
332 addr = __pfn_to_phys(pfn);
333 if ((addr < crashk_res.start) || (crashk_res.end < addr))
334 return false;
335
336 if (!kexec_crash_image)
337 return true;
338
339 /* not part of loaded kernel image? */
340 for (i = 0; i < kexec_crash_image->nr_segments; i++)
341 if (addr >= kexec_crash_image->segment[i].mem &&
342 addr < (kexec_crash_image->segment[i].mem +
343 kexec_crash_image->segment[i].memsz))
344 return false;
345
346 return true;
347}
348
349void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
350{
351 unsigned long addr;
352 struct page *page;
353
354 for (addr = begin; addr < end; addr += PAGE_SIZE) {
355 page = phys_to_page(addr);
356 ClearPageReserved(page);
357 free_reserved_page(page);
358 }
359}
360#endif /* CONFIG_HIBERNATION */