Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef __ALPHA_UACCESS_H |
| 3 | #define __ALPHA_UACCESS_H |
| 4 | |
| 5 | /* |
| 6 | * The fs value determines whether argument validity checking should be |
| 7 | * performed or not. If get_fs() == USER_DS, checking is performed, with |
| 8 | * get_fs() == KERNEL_DS, checking is bypassed. |
| 9 | * |
| 10 | * Or at least it did once upon a time. Nowadays it is a mask that |
| 11 | * defines which bits of the address space are off limits. This is a |
| 12 | * wee bit faster than the above. |
| 13 | * |
| 14 | * For historical reasons, these macros are grossly misnamed. |
| 15 | */ |
| 16 | |
| 17 | #define KERNEL_DS ((mm_segment_t) { 0UL }) |
| 18 | #define USER_DS ((mm_segment_t) { -0x40000000000UL }) |
| 19 | |
| 20 | #define get_fs() (current_thread_info()->addr_limit) |
| 21 | #define get_ds() (KERNEL_DS) |
| 22 | #define set_fs(x) (current_thread_info()->addr_limit = (x)) |
| 23 | |
| 24 | #define segment_eq(a, b) ((a).seg == (b).seg) |
| 25 | |
| 26 | /* |
| 27 | * Is a address valid? This does a straightforward calculation rather |
| 28 | * than tests. |
| 29 | * |
| 30 | * Address valid if: |
| 31 | * - "addr" doesn't have any high-bits set |
| 32 | * - AND "size" doesn't have any high-bits set |
| 33 | * - AND "addr+size" doesn't have any high-bits set |
| 34 | * - OR we are in kernel mode. |
| 35 | */ |
| 36 | #define __access_ok(addr, size) \ |
| 37 | ((get_fs().seg & (addr | size | (addr+size))) == 0) |
| 38 | |
| 39 | #define access_ok(type, addr, size) \ |
| 40 | ({ \ |
| 41 | __chk_user_ptr(addr); \ |
| 42 | __access_ok(((unsigned long)(addr)), (size)); \ |
| 43 | }) |
| 44 | |
| 45 | /* |
| 46 | * These are the main single-value transfer routines. They automatically |
| 47 | * use the right size if we just have the right pointer type. |
| 48 | * |
| 49 | * As the alpha uses the same address space for kernel and user |
| 50 | * data, we can just do these as direct assignments. (Of course, the |
| 51 | * exception handling means that it's no longer "just"...) |
| 52 | * |
| 53 | * Careful to not |
| 54 | * (a) re-use the arguments for side effects (sizeof/typeof is ok) |
| 55 | * (b) require any knowledge of processes at this stage |
| 56 | */ |
| 57 | #define put_user(x, ptr) \ |
| 58 | __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) |
| 59 | #define get_user(x, ptr) \ |
| 60 | __get_user_check((x), (ptr), sizeof(*(ptr))) |
| 61 | |
| 62 | /* |
| 63 | * The "__xxx" versions do not do address space checking, useful when |
| 64 | * doing multiple accesses to the same area (the programmer has to do the |
| 65 | * checks by hand with "access_ok()") |
| 66 | */ |
| 67 | #define __put_user(x, ptr) \ |
| 68 | __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) |
| 69 | #define __get_user(x, ptr) \ |
| 70 | __get_user_nocheck((x), (ptr), sizeof(*(ptr))) |
| 71 | |
| 72 | /* |
| 73 | * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to |
| 74 | * encode the bits we need for resolving the exception. See the |
| 75 | * more extensive comments with fixup_inline_exception below for |
| 76 | * more information. |
| 77 | */ |
| 78 | #define EXC(label,cont,res,err) \ |
| 79 | ".section __ex_table,\"a\"\n" \ |
| 80 | " .long "#label"-.\n" \ |
| 81 | " lda "#res","#cont"-"#label"("#err")\n" \ |
| 82 | ".previous\n" |
| 83 | |
| 84 | extern void __get_user_unknown(void); |
| 85 | |
| 86 | #define __get_user_nocheck(x, ptr, size) \ |
| 87 | ({ \ |
| 88 | long __gu_err = 0; \ |
| 89 | unsigned long __gu_val; \ |
| 90 | __chk_user_ptr(ptr); \ |
| 91 | switch (size) { \ |
| 92 | case 1: __get_user_8(ptr); break; \ |
| 93 | case 2: __get_user_16(ptr); break; \ |
| 94 | case 4: __get_user_32(ptr); break; \ |
| 95 | case 8: __get_user_64(ptr); break; \ |
| 96 | default: __get_user_unknown(); break; \ |
| 97 | } \ |
| 98 | (x) = (__force __typeof__(*(ptr))) __gu_val; \ |
| 99 | __gu_err; \ |
| 100 | }) |
| 101 | |
| 102 | #define __get_user_check(x, ptr, size) \ |
| 103 | ({ \ |
| 104 | long __gu_err = -EFAULT; \ |
| 105 | unsigned long __gu_val = 0; \ |
| 106 | const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \ |
| 107 | if (__access_ok((unsigned long)__gu_addr, size)) { \ |
| 108 | __gu_err = 0; \ |
| 109 | switch (size) { \ |
| 110 | case 1: __get_user_8(__gu_addr); break; \ |
| 111 | case 2: __get_user_16(__gu_addr); break; \ |
| 112 | case 4: __get_user_32(__gu_addr); break; \ |
| 113 | case 8: __get_user_64(__gu_addr); break; \ |
| 114 | default: __get_user_unknown(); break; \ |
| 115 | } \ |
| 116 | } \ |
| 117 | (x) = (__force __typeof__(*(ptr))) __gu_val; \ |
| 118 | __gu_err; \ |
| 119 | }) |
| 120 | |
| 121 | struct __large_struct { unsigned long buf[100]; }; |
| 122 | #define __m(x) (*(struct __large_struct __user *)(x)) |
| 123 | |
| 124 | #define __get_user_64(addr) \ |
| 125 | __asm__("1: ldq %0,%2\n" \ |
| 126 | "2:\n" \ |
| 127 | EXC(1b,2b,%0,%1) \ |
| 128 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 129 | : "m"(__m(addr)), "1"(__gu_err)) |
| 130 | |
| 131 | #define __get_user_32(addr) \ |
| 132 | __asm__("1: ldl %0,%2\n" \ |
| 133 | "2:\n" \ |
| 134 | EXC(1b,2b,%0,%1) \ |
| 135 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 136 | : "m"(__m(addr)), "1"(__gu_err)) |
| 137 | |
| 138 | #ifdef __alpha_bwx__ |
| 139 | /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| 140 | |
| 141 | #define __get_user_16(addr) \ |
| 142 | __asm__("1: ldwu %0,%2\n" \ |
| 143 | "2:\n" \ |
| 144 | EXC(1b,2b,%0,%1) \ |
| 145 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 146 | : "m"(__m(addr)), "1"(__gu_err)) |
| 147 | |
| 148 | #define __get_user_8(addr) \ |
| 149 | __asm__("1: ldbu %0,%2\n" \ |
| 150 | "2:\n" \ |
| 151 | EXC(1b,2b,%0,%1) \ |
| 152 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 153 | : "m"(__m(addr)), "1"(__gu_err)) |
| 154 | #else |
| 155 | /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| 156 | load, so we have to do a general unaligned operation. */ |
| 157 | |
| 158 | #define __get_user_16(addr) \ |
| 159 | { \ |
| 160 | long __gu_tmp; \ |
| 161 | __asm__("1: ldq_u %0,0(%3)\n" \ |
| 162 | "2: ldq_u %1,1(%3)\n" \ |
| 163 | " extwl %0,%3,%0\n" \ |
| 164 | " extwh %1,%3,%1\n" \ |
| 165 | " or %0,%1,%0\n" \ |
| 166 | "3:\n" \ |
| 167 | EXC(1b,3b,%0,%2) \ |
| 168 | EXC(2b,3b,%0,%2) \ |
| 169 | : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \ |
| 170 | : "r"(addr), "2"(__gu_err)); \ |
| 171 | } |
| 172 | |
| 173 | #define __get_user_8(addr) \ |
| 174 | __asm__("1: ldq_u %0,0(%2)\n" \ |
| 175 | " extbl %0,%2,%0\n" \ |
| 176 | "2:\n" \ |
| 177 | EXC(1b,2b,%0,%1) \ |
| 178 | : "=&r"(__gu_val), "=r"(__gu_err) \ |
| 179 | : "r"(addr), "1"(__gu_err)) |
| 180 | #endif |
| 181 | |
| 182 | extern void __put_user_unknown(void); |
| 183 | |
| 184 | #define __put_user_nocheck(x, ptr, size) \ |
| 185 | ({ \ |
| 186 | long __pu_err = 0; \ |
| 187 | __chk_user_ptr(ptr); \ |
| 188 | switch (size) { \ |
| 189 | case 1: __put_user_8(x, ptr); break; \ |
| 190 | case 2: __put_user_16(x, ptr); break; \ |
| 191 | case 4: __put_user_32(x, ptr); break; \ |
| 192 | case 8: __put_user_64(x, ptr); break; \ |
| 193 | default: __put_user_unknown(); break; \ |
| 194 | } \ |
| 195 | __pu_err; \ |
| 196 | }) |
| 197 | |
| 198 | #define __put_user_check(x, ptr, size) \ |
| 199 | ({ \ |
| 200 | long __pu_err = -EFAULT; \ |
| 201 | __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ |
| 202 | if (__access_ok((unsigned long)__pu_addr, size)) { \ |
| 203 | __pu_err = 0; \ |
| 204 | switch (size) { \ |
| 205 | case 1: __put_user_8(x, __pu_addr); break; \ |
| 206 | case 2: __put_user_16(x, __pu_addr); break; \ |
| 207 | case 4: __put_user_32(x, __pu_addr); break; \ |
| 208 | case 8: __put_user_64(x, __pu_addr); break; \ |
| 209 | default: __put_user_unknown(); break; \ |
| 210 | } \ |
| 211 | } \ |
| 212 | __pu_err; \ |
| 213 | }) |
| 214 | |
| 215 | /* |
| 216 | * The "__put_user_xx()" macros tell gcc they read from memory |
| 217 | * instead of writing: this is because they do not write to |
| 218 | * any memory gcc knows about, so there are no aliasing issues |
| 219 | */ |
| 220 | #define __put_user_64(x, addr) \ |
| 221 | __asm__ __volatile__("1: stq %r2,%1\n" \ |
| 222 | "2:\n" \ |
| 223 | EXC(1b,2b,$31,%0) \ |
| 224 | : "=r"(__pu_err) \ |
| 225 | : "m" (__m(addr)), "rJ" (x), "0"(__pu_err)) |
| 226 | |
| 227 | #define __put_user_32(x, addr) \ |
| 228 | __asm__ __volatile__("1: stl %r2,%1\n" \ |
| 229 | "2:\n" \ |
| 230 | EXC(1b,2b,$31,%0) \ |
| 231 | : "=r"(__pu_err) \ |
| 232 | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| 233 | |
| 234 | #ifdef __alpha_bwx__ |
| 235 | /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| 236 | |
| 237 | #define __put_user_16(x, addr) \ |
| 238 | __asm__ __volatile__("1: stw %r2,%1\n" \ |
| 239 | "2:\n" \ |
| 240 | EXC(1b,2b,$31,%0) \ |
| 241 | : "=r"(__pu_err) \ |
| 242 | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| 243 | |
| 244 | #define __put_user_8(x, addr) \ |
| 245 | __asm__ __volatile__("1: stb %r2,%1\n" \ |
| 246 | "2:\n" \ |
| 247 | EXC(1b,2b,$31,%0) \ |
| 248 | : "=r"(__pu_err) \ |
| 249 | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| 250 | #else |
| 251 | /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| 252 | write, so we have to do a general unaligned operation. */ |
| 253 | |
| 254 | #define __put_user_16(x, addr) \ |
| 255 | { \ |
| 256 | long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4; \ |
| 257 | __asm__ __volatile__( \ |
| 258 | "1: ldq_u %2,1(%5)\n" \ |
| 259 | "2: ldq_u %1,0(%5)\n" \ |
| 260 | " inswh %6,%5,%4\n" \ |
| 261 | " inswl %6,%5,%3\n" \ |
| 262 | " mskwh %2,%5,%2\n" \ |
| 263 | " mskwl %1,%5,%1\n" \ |
| 264 | " or %2,%4,%2\n" \ |
| 265 | " or %1,%3,%1\n" \ |
| 266 | "3: stq_u %2,1(%5)\n" \ |
| 267 | "4: stq_u %1,0(%5)\n" \ |
| 268 | "5:\n" \ |
| 269 | EXC(1b,5b,$31,%0) \ |
| 270 | EXC(2b,5b,$31,%0) \ |
| 271 | EXC(3b,5b,$31,%0) \ |
| 272 | EXC(4b,5b,$31,%0) \ |
| 273 | : "=r"(__pu_err), "=&r"(__pu_tmp1), \ |
| 274 | "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \ |
| 275 | "=&r"(__pu_tmp4) \ |
| 276 | : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \ |
| 277 | } |
| 278 | |
| 279 | #define __put_user_8(x, addr) \ |
| 280 | { \ |
| 281 | long __pu_tmp1, __pu_tmp2; \ |
| 282 | __asm__ __volatile__( \ |
| 283 | "1: ldq_u %1,0(%4)\n" \ |
| 284 | " insbl %3,%4,%2\n" \ |
| 285 | " mskbl %1,%4,%1\n" \ |
| 286 | " or %1,%2,%1\n" \ |
| 287 | "2: stq_u %1,0(%4)\n" \ |
| 288 | "3:\n" \ |
| 289 | EXC(1b,3b,$31,%0) \ |
| 290 | EXC(2b,3b,$31,%0) \ |
| 291 | : "=r"(__pu_err), \ |
| 292 | "=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \ |
| 293 | : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \ |
| 294 | } |
| 295 | #endif |
| 296 | |
| 297 | |
| 298 | /* |
| 299 | * Complex access routines |
| 300 | */ |
| 301 | |
| 302 | extern long __copy_user(void *to, const void *from, long len); |
| 303 | |
| 304 | static inline unsigned long |
| 305 | raw_copy_from_user(void *to, const void __user *from, unsigned long len) |
| 306 | { |
| 307 | return __copy_user(to, (__force const void *)from, len); |
| 308 | } |
| 309 | |
| 310 | static inline unsigned long |
| 311 | raw_copy_to_user(void __user *to, const void *from, unsigned long len) |
| 312 | { |
| 313 | return __copy_user((__force void *)to, from, len); |
| 314 | } |
| 315 | |
| 316 | extern long __clear_user(void __user *to, long len); |
| 317 | |
| 318 | extern inline long |
| 319 | clear_user(void __user *to, long len) |
| 320 | { |
| 321 | if (__access_ok((unsigned long)to, len)) |
| 322 | len = __clear_user(to, len); |
| 323 | return len; |
| 324 | } |
| 325 | |
| 326 | #define user_addr_max() \ |
| 327 | (uaccess_kernel() ? ~0UL : TASK_SIZE) |
| 328 | |
| 329 | extern long strncpy_from_user(char *dest, const char __user *src, long count); |
| 330 | extern __must_check long strnlen_user(const char __user *str, long n); |
| 331 | |
| 332 | #include <asm/extable.h> |
| 333 | |
| 334 | #endif /* __ALPHA_UACCESS_H */ |