David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* Copyright (c) 2018 Facebook */ |
| 3 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4 | #include <byteswap.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5 | #include <endian.h> |
| 6 | #include <stdio.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 7 | #include <stdlib.h> |
| 8 | #include <string.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 9 | #include <fcntl.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 10 | #include <unistd.h> |
| 11 | #include <errno.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 12 | #include <sys/utsname.h> |
| 13 | #include <sys/param.h> |
| 14 | #include <sys/stat.h> |
| 15 | #include <linux/kernel.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 16 | #include <linux/err.h> |
| 17 | #include <linux/btf.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 18 | #include <gelf.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 19 | #include "btf.h" |
| 20 | #include "bpf.h" |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 21 | #include "libbpf.h" |
| 22 | #include "libbpf_internal.h" |
| 23 | #include "hashmap.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 24 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 25 | #define BTF_MAX_NR_TYPES 0x7fffffffU |
| 26 | #define BTF_MAX_STR_OFFSET 0x7fffffffU |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 27 | |
| 28 | static struct btf_type btf_void; |
| 29 | |
| 30 | struct btf { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 31 | /* raw BTF data in native endianness */ |
| 32 | void *raw_data; |
| 33 | /* raw BTF data in non-native endianness */ |
| 34 | void *raw_data_swapped; |
| 35 | __u32 raw_size; |
| 36 | /* whether target endianness differs from the native one */ |
| 37 | bool swapped_endian; |
| 38 | |
| 39 | /* |
| 40 | * When BTF is loaded from an ELF or raw memory it is stored |
| 41 | * in a contiguous memory block. The hdr, type_data, and, strs_data |
| 42 | * point inside that memory region to their respective parts of BTF |
| 43 | * representation: |
| 44 | * |
| 45 | * +--------------------------------+ |
| 46 | * | Header | Types | Strings | |
| 47 | * +--------------------------------+ |
| 48 | * ^ ^ ^ |
| 49 | * | | | |
| 50 | * hdr | | |
| 51 | * types_data-+ | |
| 52 | * strs_data------------+ |
| 53 | * |
| 54 | * If BTF data is later modified, e.g., due to types added or |
| 55 | * removed, BTF deduplication performed, etc, this contiguous |
| 56 | * representation is broken up into three independently allocated |
| 57 | * memory regions to be able to modify them independently. |
| 58 | * raw_data is nulled out at that point, but can be later allocated |
| 59 | * and cached again if user calls btf__get_raw_data(), at which point |
| 60 | * raw_data will contain a contiguous copy of header, types, and |
| 61 | * strings: |
| 62 | * |
| 63 | * +----------+ +---------+ +-----------+ |
| 64 | * | Header | | Types | | Strings | |
| 65 | * +----------+ +---------+ +-----------+ |
| 66 | * ^ ^ ^ |
| 67 | * | | | |
| 68 | * hdr | | |
| 69 | * types_data----+ | |
| 70 | * strs_data------------------+ |
| 71 | * |
| 72 | * +----------+---------+-----------+ |
| 73 | * | Header | Types | Strings | |
| 74 | * raw_data----->+----------+---------+-----------+ |
| 75 | */ |
| 76 | struct btf_header *hdr; |
| 77 | |
| 78 | void *types_data; |
| 79 | size_t types_data_cap; /* used size stored in hdr->type_len */ |
| 80 | |
| 81 | /* type ID to `struct btf_type *` lookup index */ |
| 82 | __u32 *type_offs; |
| 83 | size_t type_offs_cap; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 84 | __u32 nr_types; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 85 | |
| 86 | void *strs_data; |
| 87 | size_t strs_data_cap; /* used size stored in hdr->str_len */ |
| 88 | |
| 89 | /* lookup index for each unique string in strings section */ |
| 90 | struct hashmap *strs_hash; |
| 91 | /* whether strings are already deduplicated */ |
| 92 | bool strs_deduped; |
| 93 | /* BTF object FD, if loaded into kernel */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 94 | int fd; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 95 | |
| 96 | /* Pointer size (in bytes) for a target architecture of this BTF */ |
| 97 | int ptr_sz; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 98 | }; |
| 99 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 100 | static inline __u64 ptr_to_u64(const void *ptr) |
| 101 | { |
| 102 | return (__u64) (unsigned long) ptr; |
| 103 | } |
| 104 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 105 | /* Ensure given dynamically allocated memory region pointed to by *data* with |
| 106 | * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough |
| 107 | * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements |
| 108 | * are already used. At most *max_cnt* elements can be ever allocated. |
| 109 | * If necessary, memory is reallocated and all existing data is copied over, |
| 110 | * new pointer to the memory region is stored at *data, new memory region |
| 111 | * capacity (in number of elements) is stored in *cap. |
| 112 | * On success, memory pointer to the beginning of unused memory is returned. |
| 113 | * On error, NULL is returned. |
| 114 | */ |
| 115 | void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, |
| 116 | size_t cur_cnt, size_t max_cnt, size_t add_cnt) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 117 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 118 | size_t new_cnt; |
| 119 | void *new_data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 120 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 121 | if (cur_cnt + add_cnt <= *cap_cnt) |
| 122 | return *data + cur_cnt * elem_sz; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 123 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 124 | /* requested more than the set limit */ |
| 125 | if (cur_cnt + add_cnt > max_cnt) |
| 126 | return NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 127 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 128 | new_cnt = *cap_cnt; |
| 129 | new_cnt += new_cnt / 4; /* expand by 25% */ |
| 130 | if (new_cnt < 16) /* but at least 16 elements */ |
| 131 | new_cnt = 16; |
| 132 | if (new_cnt > max_cnt) /* but not exceeding a set limit */ |
| 133 | new_cnt = max_cnt; |
| 134 | if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ |
| 135 | new_cnt = cur_cnt + add_cnt; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 136 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 137 | new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); |
| 138 | if (!new_data) |
| 139 | return NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 140 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 141 | /* zero out newly allocated portion of memory */ |
| 142 | memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 143 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 144 | *data = new_data; |
| 145 | *cap_cnt = new_cnt; |
| 146 | return new_data + cur_cnt * elem_sz; |
| 147 | } |
| 148 | |
| 149 | /* Ensure given dynamically allocated memory region has enough allocated space |
| 150 | * to accommodate *need_cnt* elements of size *elem_sz* bytes each |
| 151 | */ |
| 152 | int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) |
| 153 | { |
| 154 | void *p; |
| 155 | |
| 156 | if (need_cnt <= *cap_cnt) |
| 157 | return 0; |
| 158 | |
| 159 | p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); |
| 160 | if (!p) |
| 161 | return -ENOMEM; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 162 | |
| 163 | return 0; |
| 164 | } |
| 165 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 166 | static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) |
| 167 | { |
| 168 | __u32 *p; |
| 169 | |
| 170 | p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), |
| 171 | btf->nr_types + 1, BTF_MAX_NR_TYPES, 1); |
| 172 | if (!p) |
| 173 | return -ENOMEM; |
| 174 | |
| 175 | *p = type_off; |
| 176 | return 0; |
| 177 | } |
| 178 | |
| 179 | static void btf_bswap_hdr(struct btf_header *h) |
| 180 | { |
| 181 | h->magic = bswap_16(h->magic); |
| 182 | h->hdr_len = bswap_32(h->hdr_len); |
| 183 | h->type_off = bswap_32(h->type_off); |
| 184 | h->type_len = bswap_32(h->type_len); |
| 185 | h->str_off = bswap_32(h->str_off); |
| 186 | h->str_len = bswap_32(h->str_len); |
| 187 | } |
| 188 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 189 | static int btf_parse_hdr(struct btf *btf) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 190 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 191 | struct btf_header *hdr = btf->hdr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 192 | __u32 meta_left; |
| 193 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 194 | if (btf->raw_size < sizeof(struct btf_header)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 195 | pr_debug("BTF header not found\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 196 | return -EINVAL; |
| 197 | } |
| 198 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 199 | if (hdr->magic == bswap_16(BTF_MAGIC)) { |
| 200 | btf->swapped_endian = true; |
| 201 | if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { |
| 202 | pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", |
| 203 | bswap_32(hdr->hdr_len)); |
| 204 | return -ENOTSUP; |
| 205 | } |
| 206 | btf_bswap_hdr(hdr); |
| 207 | } else if (hdr->magic != BTF_MAGIC) { |
| 208 | pr_debug("Invalid BTF magic: %x\n", hdr->magic); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 209 | return -EINVAL; |
| 210 | } |
| 211 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 212 | if (btf->raw_size < hdr->hdr_len) { |
| 213 | pr_debug("BTF header len %u larger than data size %u\n", |
| 214 | hdr->hdr_len, btf->raw_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 215 | return -EINVAL; |
| 216 | } |
| 217 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 218 | meta_left = btf->raw_size - hdr->hdr_len; |
| 219 | if (meta_left < (long long)hdr->str_off + hdr->str_len) { |
| 220 | pr_debug("Invalid BTF total size: %u\n", btf->raw_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 221 | return -EINVAL; |
| 222 | } |
| 223 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 224 | if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { |
| 225 | pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", |
| 226 | hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 227 | return -EINVAL; |
| 228 | } |
| 229 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 230 | if (hdr->type_off % 4) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 231 | pr_debug("BTF type section is not aligned to 4 bytes\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 232 | return -EINVAL; |
| 233 | } |
| 234 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 235 | return 0; |
| 236 | } |
| 237 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 238 | static int btf_parse_str_sec(struct btf *btf) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 239 | { |
| 240 | const struct btf_header *hdr = btf->hdr; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 241 | const char *start = btf->strs_data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 242 | const char *end = start + btf->hdr->str_len; |
| 243 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 244 | if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 245 | start[0] || end[-1]) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 246 | pr_debug("Invalid BTF string section\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 247 | return -EINVAL; |
| 248 | } |
| 249 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 250 | return 0; |
| 251 | } |
| 252 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 253 | static int btf_type_size(const struct btf_type *t) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 254 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 255 | const int base_size = sizeof(struct btf_type); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 256 | __u16 vlen = btf_vlen(t); |
| 257 | |
| 258 | switch (btf_kind(t)) { |
| 259 | case BTF_KIND_FWD: |
| 260 | case BTF_KIND_CONST: |
| 261 | case BTF_KIND_VOLATILE: |
| 262 | case BTF_KIND_RESTRICT: |
| 263 | case BTF_KIND_PTR: |
| 264 | case BTF_KIND_TYPEDEF: |
| 265 | case BTF_KIND_FUNC: |
| 266 | return base_size; |
| 267 | case BTF_KIND_INT: |
| 268 | return base_size + sizeof(__u32); |
| 269 | case BTF_KIND_ENUM: |
| 270 | return base_size + vlen * sizeof(struct btf_enum); |
| 271 | case BTF_KIND_ARRAY: |
| 272 | return base_size + sizeof(struct btf_array); |
| 273 | case BTF_KIND_STRUCT: |
| 274 | case BTF_KIND_UNION: |
| 275 | return base_size + vlen * sizeof(struct btf_member); |
| 276 | case BTF_KIND_FUNC_PROTO: |
| 277 | return base_size + vlen * sizeof(struct btf_param); |
| 278 | case BTF_KIND_VAR: |
| 279 | return base_size + sizeof(struct btf_var); |
| 280 | case BTF_KIND_DATASEC: |
| 281 | return base_size + vlen * sizeof(struct btf_var_secinfo); |
| 282 | default: |
| 283 | pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); |
| 284 | return -EINVAL; |
| 285 | } |
| 286 | } |
| 287 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 288 | static void btf_bswap_type_base(struct btf_type *t) |
| 289 | { |
| 290 | t->name_off = bswap_32(t->name_off); |
| 291 | t->info = bswap_32(t->info); |
| 292 | t->type = bswap_32(t->type); |
| 293 | } |
| 294 | |
| 295 | static int btf_bswap_type_rest(struct btf_type *t) |
| 296 | { |
| 297 | struct btf_var_secinfo *v; |
| 298 | struct btf_member *m; |
| 299 | struct btf_array *a; |
| 300 | struct btf_param *p; |
| 301 | struct btf_enum *e; |
| 302 | __u16 vlen = btf_vlen(t); |
| 303 | int i; |
| 304 | |
| 305 | switch (btf_kind(t)) { |
| 306 | case BTF_KIND_FWD: |
| 307 | case BTF_KIND_CONST: |
| 308 | case BTF_KIND_VOLATILE: |
| 309 | case BTF_KIND_RESTRICT: |
| 310 | case BTF_KIND_PTR: |
| 311 | case BTF_KIND_TYPEDEF: |
| 312 | case BTF_KIND_FUNC: |
| 313 | return 0; |
| 314 | case BTF_KIND_INT: |
| 315 | *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); |
| 316 | return 0; |
| 317 | case BTF_KIND_ENUM: |
| 318 | for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { |
| 319 | e->name_off = bswap_32(e->name_off); |
| 320 | e->val = bswap_32(e->val); |
| 321 | } |
| 322 | return 0; |
| 323 | case BTF_KIND_ARRAY: |
| 324 | a = btf_array(t); |
| 325 | a->type = bswap_32(a->type); |
| 326 | a->index_type = bswap_32(a->index_type); |
| 327 | a->nelems = bswap_32(a->nelems); |
| 328 | return 0; |
| 329 | case BTF_KIND_STRUCT: |
| 330 | case BTF_KIND_UNION: |
| 331 | for (i = 0, m = btf_members(t); i < vlen; i++, m++) { |
| 332 | m->name_off = bswap_32(m->name_off); |
| 333 | m->type = bswap_32(m->type); |
| 334 | m->offset = bswap_32(m->offset); |
| 335 | } |
| 336 | return 0; |
| 337 | case BTF_KIND_FUNC_PROTO: |
| 338 | for (i = 0, p = btf_params(t); i < vlen; i++, p++) { |
| 339 | p->name_off = bswap_32(p->name_off); |
| 340 | p->type = bswap_32(p->type); |
| 341 | } |
| 342 | return 0; |
| 343 | case BTF_KIND_VAR: |
| 344 | btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); |
| 345 | return 0; |
| 346 | case BTF_KIND_DATASEC: |
| 347 | for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { |
| 348 | v->type = bswap_32(v->type); |
| 349 | v->offset = bswap_32(v->offset); |
| 350 | v->size = bswap_32(v->size); |
| 351 | } |
| 352 | return 0; |
| 353 | default: |
| 354 | pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); |
| 355 | return -EINVAL; |
| 356 | } |
| 357 | } |
| 358 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 359 | static int btf_parse_type_sec(struct btf *btf) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 360 | { |
| 361 | struct btf_header *hdr = btf->hdr; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 362 | void *next_type = btf->types_data; |
| 363 | void *end_type = next_type + hdr->type_len; |
| 364 | int err, i = 0, type_size; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 365 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 366 | /* VOID (type_id == 0) is specially handled by btf__get_type_by_id(), |
| 367 | * so ensure we can never properly use its offset from index by |
| 368 | * setting it to a large value |
| 369 | */ |
| 370 | err = btf_add_type_idx_entry(btf, UINT_MAX); |
| 371 | if (err) |
| 372 | return err; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 373 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 374 | while (next_type + sizeof(struct btf_type) <= end_type) { |
| 375 | i++; |
| 376 | |
| 377 | if (btf->swapped_endian) |
| 378 | btf_bswap_type_base(next_type); |
| 379 | |
| 380 | type_size = btf_type_size(next_type); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 381 | if (type_size < 0) |
| 382 | return type_size; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 383 | if (next_type + type_size > end_type) { |
| 384 | pr_warn("BTF type [%d] is malformed\n", i); |
| 385 | return -EINVAL; |
| 386 | } |
| 387 | |
| 388 | if (btf->swapped_endian && btf_bswap_type_rest(next_type)) |
| 389 | return -EINVAL; |
| 390 | |
| 391 | err = btf_add_type_idx_entry(btf, next_type - btf->types_data); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 392 | if (err) |
| 393 | return err; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 394 | |
| 395 | next_type += type_size; |
| 396 | btf->nr_types++; |
| 397 | } |
| 398 | |
| 399 | if (next_type != end_type) { |
| 400 | pr_warn("BTF types data is malformed\n"); |
| 401 | return -EINVAL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 402 | } |
| 403 | |
| 404 | return 0; |
| 405 | } |
| 406 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 407 | __u32 btf__get_nr_types(const struct btf *btf) |
| 408 | { |
| 409 | return btf->nr_types; |
| 410 | } |
| 411 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 412 | /* internal helper returning non-const pointer to a type */ |
| 413 | static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) |
| 414 | { |
| 415 | if (type_id == 0) |
| 416 | return &btf_void; |
| 417 | |
| 418 | return btf->types_data + btf->type_offs[type_id]; |
| 419 | } |
| 420 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 421 | const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) |
| 422 | { |
| 423 | if (type_id > btf->nr_types) |
| 424 | return NULL; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 425 | return btf_type_by_id((struct btf *)btf, type_id); |
| 426 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 427 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 428 | static int determine_ptr_size(const struct btf *btf) |
| 429 | { |
| 430 | const struct btf_type *t; |
| 431 | const char *name; |
| 432 | int i; |
| 433 | |
| 434 | for (i = 1; i <= btf->nr_types; i++) { |
| 435 | t = btf__type_by_id(btf, i); |
| 436 | if (!btf_is_int(t)) |
| 437 | continue; |
| 438 | |
| 439 | name = btf__name_by_offset(btf, t->name_off); |
| 440 | if (!name) |
| 441 | continue; |
| 442 | |
| 443 | if (strcmp(name, "long int") == 0 || |
| 444 | strcmp(name, "long unsigned int") == 0) { |
| 445 | if (t->size != 4 && t->size != 8) |
| 446 | continue; |
| 447 | return t->size; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | return -1; |
| 452 | } |
| 453 | |
| 454 | static size_t btf_ptr_sz(const struct btf *btf) |
| 455 | { |
| 456 | if (!btf->ptr_sz) |
| 457 | ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); |
| 458 | return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; |
| 459 | } |
| 460 | |
| 461 | /* Return pointer size this BTF instance assumes. The size is heuristically |
| 462 | * determined by looking for 'long' or 'unsigned long' integer type and |
| 463 | * recording its size in bytes. If BTF type information doesn't have any such |
| 464 | * type, this function returns 0. In the latter case, native architecture's |
| 465 | * pointer size is assumed, so will be either 4 or 8, depending on |
| 466 | * architecture that libbpf was compiled for. It's possible to override |
| 467 | * guessed value by using btf__set_pointer_size() API. |
| 468 | */ |
| 469 | size_t btf__pointer_size(const struct btf *btf) |
| 470 | { |
| 471 | if (!btf->ptr_sz) |
| 472 | ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); |
| 473 | |
| 474 | if (btf->ptr_sz < 0) |
| 475 | /* not enough BTF type info to guess */ |
| 476 | return 0; |
| 477 | |
| 478 | return btf->ptr_sz; |
| 479 | } |
| 480 | |
| 481 | /* Override or set pointer size in bytes. Only values of 4 and 8 are |
| 482 | * supported. |
| 483 | */ |
| 484 | int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) |
| 485 | { |
| 486 | if (ptr_sz != 4 && ptr_sz != 8) |
| 487 | return -EINVAL; |
| 488 | btf->ptr_sz = ptr_sz; |
| 489 | return 0; |
| 490 | } |
| 491 | |
| 492 | static bool is_host_big_endian(void) |
| 493 | { |
| 494 | #if __BYTE_ORDER == __LITTLE_ENDIAN |
| 495 | return false; |
| 496 | #elif __BYTE_ORDER == __BIG_ENDIAN |
| 497 | return true; |
| 498 | #else |
| 499 | # error "Unrecognized __BYTE_ORDER__" |
| 500 | #endif |
| 501 | } |
| 502 | |
| 503 | enum btf_endianness btf__endianness(const struct btf *btf) |
| 504 | { |
| 505 | if (is_host_big_endian()) |
| 506 | return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; |
| 507 | else |
| 508 | return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; |
| 509 | } |
| 510 | |
| 511 | int btf__set_endianness(struct btf *btf, enum btf_endianness endian) |
| 512 | { |
| 513 | if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) |
| 514 | return -EINVAL; |
| 515 | |
| 516 | btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); |
| 517 | if (!btf->swapped_endian) { |
| 518 | free(btf->raw_data_swapped); |
| 519 | btf->raw_data_swapped = NULL; |
| 520 | } |
| 521 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 522 | } |
| 523 | |
| 524 | static bool btf_type_is_void(const struct btf_type *t) |
| 525 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 526 | return t == &btf_void || btf_is_fwd(t); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 527 | } |
| 528 | |
| 529 | static bool btf_type_is_void_or_null(const struct btf_type *t) |
| 530 | { |
| 531 | return !t || btf_type_is_void(t); |
| 532 | } |
| 533 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 534 | #define MAX_RESOLVE_DEPTH 32 |
| 535 | |
| 536 | __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) |
| 537 | { |
| 538 | const struct btf_array *array; |
| 539 | const struct btf_type *t; |
| 540 | __u32 nelems = 1; |
| 541 | __s64 size = -1; |
| 542 | int i; |
| 543 | |
| 544 | t = btf__type_by_id(btf, type_id); |
| 545 | for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); |
| 546 | i++) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 547 | switch (btf_kind(t)) { |
| 548 | case BTF_KIND_INT: |
| 549 | case BTF_KIND_STRUCT: |
| 550 | case BTF_KIND_UNION: |
| 551 | case BTF_KIND_ENUM: |
| 552 | case BTF_KIND_DATASEC: |
| 553 | size = t->size; |
| 554 | goto done; |
| 555 | case BTF_KIND_PTR: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 556 | size = btf_ptr_sz(btf); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 557 | goto done; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 558 | case BTF_KIND_TYPEDEF: |
| 559 | case BTF_KIND_VOLATILE: |
| 560 | case BTF_KIND_CONST: |
| 561 | case BTF_KIND_RESTRICT: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 562 | case BTF_KIND_VAR: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 563 | type_id = t->type; |
| 564 | break; |
| 565 | case BTF_KIND_ARRAY: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 566 | array = btf_array(t); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 567 | if (nelems && array->nelems > UINT32_MAX / nelems) |
| 568 | return -E2BIG; |
| 569 | nelems *= array->nelems; |
| 570 | type_id = array->type; |
| 571 | break; |
| 572 | default: |
| 573 | return -EINVAL; |
| 574 | } |
| 575 | |
| 576 | t = btf__type_by_id(btf, type_id); |
| 577 | } |
| 578 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 579 | done: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 580 | if (size < 0) |
| 581 | return -EINVAL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 582 | if (nelems && size > UINT32_MAX / nelems) |
| 583 | return -E2BIG; |
| 584 | |
| 585 | return nelems * size; |
| 586 | } |
| 587 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 588 | int btf__align_of(const struct btf *btf, __u32 id) |
| 589 | { |
| 590 | const struct btf_type *t = btf__type_by_id(btf, id); |
| 591 | __u16 kind = btf_kind(t); |
| 592 | |
| 593 | switch (kind) { |
| 594 | case BTF_KIND_INT: |
| 595 | case BTF_KIND_ENUM: |
| 596 | return min(btf_ptr_sz(btf), (size_t)t->size); |
| 597 | case BTF_KIND_PTR: |
| 598 | return btf_ptr_sz(btf); |
| 599 | case BTF_KIND_TYPEDEF: |
| 600 | case BTF_KIND_VOLATILE: |
| 601 | case BTF_KIND_CONST: |
| 602 | case BTF_KIND_RESTRICT: |
| 603 | return btf__align_of(btf, t->type); |
| 604 | case BTF_KIND_ARRAY: |
| 605 | return btf__align_of(btf, btf_array(t)->type); |
| 606 | case BTF_KIND_STRUCT: |
| 607 | case BTF_KIND_UNION: { |
| 608 | const struct btf_member *m = btf_members(t); |
| 609 | __u16 vlen = btf_vlen(t); |
| 610 | int i, max_align = 1, align; |
| 611 | |
| 612 | for (i = 0; i < vlen; i++, m++) { |
| 613 | align = btf__align_of(btf, m->type); |
| 614 | if (align <= 0) |
| 615 | return align; |
| 616 | max_align = max(max_align, align); |
| 617 | } |
| 618 | |
| 619 | return max_align; |
| 620 | } |
| 621 | default: |
| 622 | pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); |
| 623 | return 0; |
| 624 | } |
| 625 | } |
| 626 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 627 | int btf__resolve_type(const struct btf *btf, __u32 type_id) |
| 628 | { |
| 629 | const struct btf_type *t; |
| 630 | int depth = 0; |
| 631 | |
| 632 | t = btf__type_by_id(btf, type_id); |
| 633 | while (depth < MAX_RESOLVE_DEPTH && |
| 634 | !btf_type_is_void_or_null(t) && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 635 | (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 636 | type_id = t->type; |
| 637 | t = btf__type_by_id(btf, type_id); |
| 638 | depth++; |
| 639 | } |
| 640 | |
| 641 | if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) |
| 642 | return -EINVAL; |
| 643 | |
| 644 | return type_id; |
| 645 | } |
| 646 | |
| 647 | __s32 btf__find_by_name(const struct btf *btf, const char *type_name) |
| 648 | { |
| 649 | __u32 i; |
| 650 | |
| 651 | if (!strcmp(type_name, "void")) |
| 652 | return 0; |
| 653 | |
| 654 | for (i = 1; i <= btf->nr_types; i++) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 655 | const struct btf_type *t = btf__type_by_id(btf, i); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 656 | const char *name = btf__name_by_offset(btf, t->name_off); |
| 657 | |
| 658 | if (name && !strcmp(type_name, name)) |
| 659 | return i; |
| 660 | } |
| 661 | |
| 662 | return -ENOENT; |
| 663 | } |
| 664 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 665 | __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, |
| 666 | __u32 kind) |
| 667 | { |
| 668 | __u32 i; |
| 669 | |
| 670 | if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) |
| 671 | return 0; |
| 672 | |
| 673 | for (i = 1; i <= btf->nr_types; i++) { |
| 674 | const struct btf_type *t = btf__type_by_id(btf, i); |
| 675 | const char *name; |
| 676 | |
| 677 | if (btf_kind(t) != kind) |
| 678 | continue; |
| 679 | name = btf__name_by_offset(btf, t->name_off); |
| 680 | if (name && !strcmp(type_name, name)) |
| 681 | return i; |
| 682 | } |
| 683 | |
| 684 | return -ENOENT; |
| 685 | } |
| 686 | |
| 687 | static bool btf_is_modifiable(const struct btf *btf) |
| 688 | { |
| 689 | return (void *)btf->hdr != btf->raw_data; |
| 690 | } |
| 691 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 692 | void btf__free(struct btf *btf) |
| 693 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 694 | if (IS_ERR_OR_NULL(btf)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 695 | return; |
| 696 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 697 | if (btf->fd >= 0) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 698 | close(btf->fd); |
| 699 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 700 | if (btf_is_modifiable(btf)) { |
| 701 | /* if BTF was modified after loading, it will have a split |
| 702 | * in-memory representation for header, types, and strings |
| 703 | * sections, so we need to free all of them individually. It |
| 704 | * might still have a cached contiguous raw data present, |
| 705 | * which will be unconditionally freed below. |
| 706 | */ |
| 707 | free(btf->hdr); |
| 708 | free(btf->types_data); |
| 709 | free(btf->strs_data); |
| 710 | } |
| 711 | free(btf->raw_data); |
| 712 | free(btf->raw_data_swapped); |
| 713 | free(btf->type_offs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 714 | free(btf); |
| 715 | } |
| 716 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 717 | struct btf *btf__new_empty(void) |
| 718 | { |
| 719 | struct btf *btf; |
| 720 | |
| 721 | btf = calloc(1, sizeof(*btf)); |
| 722 | if (!btf) |
| 723 | return ERR_PTR(-ENOMEM); |
| 724 | |
| 725 | btf->fd = -1; |
| 726 | btf->ptr_sz = sizeof(void *); |
| 727 | btf->swapped_endian = false; |
| 728 | |
| 729 | /* +1 for empty string at offset 0 */ |
| 730 | btf->raw_size = sizeof(struct btf_header) + 1; |
| 731 | btf->raw_data = calloc(1, btf->raw_size); |
| 732 | if (!btf->raw_data) { |
| 733 | free(btf); |
| 734 | return ERR_PTR(-ENOMEM); |
| 735 | } |
| 736 | |
| 737 | btf->hdr = btf->raw_data; |
| 738 | btf->hdr->hdr_len = sizeof(struct btf_header); |
| 739 | btf->hdr->magic = BTF_MAGIC; |
| 740 | btf->hdr->version = BTF_VERSION; |
| 741 | |
| 742 | btf->types_data = btf->raw_data + btf->hdr->hdr_len; |
| 743 | btf->strs_data = btf->raw_data + btf->hdr->hdr_len; |
| 744 | btf->hdr->str_len = 1; /* empty string at offset 0 */ |
| 745 | |
| 746 | return btf; |
| 747 | } |
| 748 | |
| 749 | struct btf *btf__new(const void *data, __u32 size) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 750 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 751 | struct btf *btf; |
| 752 | int err; |
| 753 | |
| 754 | btf = calloc(1, sizeof(struct btf)); |
| 755 | if (!btf) |
| 756 | return ERR_PTR(-ENOMEM); |
| 757 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 758 | btf->raw_data = malloc(size); |
| 759 | if (!btf->raw_data) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 760 | err = -ENOMEM; |
| 761 | goto done; |
| 762 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 763 | memcpy(btf->raw_data, data, size); |
| 764 | btf->raw_size = size; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 765 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 766 | btf->hdr = btf->raw_data; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 767 | err = btf_parse_hdr(btf); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 768 | if (err) |
| 769 | goto done; |
| 770 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 771 | btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; |
| 772 | btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; |
| 773 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 774 | err = btf_parse_str_sec(btf); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 775 | err = err ?: btf_parse_type_sec(btf); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 776 | if (err) |
| 777 | goto done; |
| 778 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 779 | btf->fd = -1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 780 | |
| 781 | done: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 782 | if (err) { |
| 783 | btf__free(btf); |
| 784 | return ERR_PTR(err); |
| 785 | } |
| 786 | |
| 787 | return btf; |
| 788 | } |
| 789 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 790 | struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) |
| 791 | { |
| 792 | Elf_Data *btf_data = NULL, *btf_ext_data = NULL; |
| 793 | int err = 0, fd = -1, idx = 0; |
| 794 | struct btf *btf = NULL; |
| 795 | Elf_Scn *scn = NULL; |
| 796 | Elf *elf = NULL; |
| 797 | GElf_Ehdr ehdr; |
| 798 | |
| 799 | if (elf_version(EV_CURRENT) == EV_NONE) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 800 | pr_warn("failed to init libelf for %s\n", path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 801 | return ERR_PTR(-LIBBPF_ERRNO__LIBELF); |
| 802 | } |
| 803 | |
| 804 | fd = open(path, O_RDONLY); |
| 805 | if (fd < 0) { |
| 806 | err = -errno; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 807 | pr_warn("failed to open %s: %s\n", path, strerror(errno)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 808 | return ERR_PTR(err); |
| 809 | } |
| 810 | |
| 811 | err = -LIBBPF_ERRNO__FORMAT; |
| 812 | |
| 813 | elf = elf_begin(fd, ELF_C_READ, NULL); |
| 814 | if (!elf) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 815 | pr_warn("failed to open %s as ELF file\n", path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 816 | goto done; |
| 817 | } |
| 818 | if (!gelf_getehdr(elf, &ehdr)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 819 | pr_warn("failed to get EHDR from %s\n", path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 820 | goto done; |
| 821 | } |
| 822 | if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 823 | pr_warn("failed to get e_shstrndx from %s\n", path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 824 | goto done; |
| 825 | } |
| 826 | |
| 827 | while ((scn = elf_nextscn(elf, scn)) != NULL) { |
| 828 | GElf_Shdr sh; |
| 829 | char *name; |
| 830 | |
| 831 | idx++; |
| 832 | if (gelf_getshdr(scn, &sh) != &sh) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 833 | pr_warn("failed to get section(%d) header from %s\n", |
| 834 | idx, path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 835 | goto done; |
| 836 | } |
| 837 | name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); |
| 838 | if (!name) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 839 | pr_warn("failed to get section(%d) name from %s\n", |
| 840 | idx, path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 841 | goto done; |
| 842 | } |
| 843 | if (strcmp(name, BTF_ELF_SEC) == 0) { |
| 844 | btf_data = elf_getdata(scn, 0); |
| 845 | if (!btf_data) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 846 | pr_warn("failed to get section(%d, %s) data from %s\n", |
| 847 | idx, name, path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 848 | goto done; |
| 849 | } |
| 850 | continue; |
| 851 | } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { |
| 852 | btf_ext_data = elf_getdata(scn, 0); |
| 853 | if (!btf_ext_data) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 854 | pr_warn("failed to get section(%d, %s) data from %s\n", |
| 855 | idx, name, path); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 856 | goto done; |
| 857 | } |
| 858 | continue; |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | err = 0; |
| 863 | |
| 864 | if (!btf_data) { |
| 865 | err = -ENOENT; |
| 866 | goto done; |
| 867 | } |
| 868 | btf = btf__new(btf_data->d_buf, btf_data->d_size); |
| 869 | if (IS_ERR(btf)) |
| 870 | goto done; |
| 871 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 872 | switch (gelf_getclass(elf)) { |
| 873 | case ELFCLASS32: |
| 874 | btf__set_pointer_size(btf, 4); |
| 875 | break; |
| 876 | case ELFCLASS64: |
| 877 | btf__set_pointer_size(btf, 8); |
| 878 | break; |
| 879 | default: |
| 880 | pr_warn("failed to get ELF class (bitness) for %s\n", path); |
| 881 | break; |
| 882 | } |
| 883 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 884 | if (btf_ext && btf_ext_data) { |
| 885 | *btf_ext = btf_ext__new(btf_ext_data->d_buf, |
| 886 | btf_ext_data->d_size); |
| 887 | if (IS_ERR(*btf_ext)) |
| 888 | goto done; |
| 889 | } else if (btf_ext) { |
| 890 | *btf_ext = NULL; |
| 891 | } |
| 892 | done: |
| 893 | if (elf) |
| 894 | elf_end(elf); |
| 895 | close(fd); |
| 896 | |
| 897 | if (err) |
| 898 | return ERR_PTR(err); |
| 899 | /* |
| 900 | * btf is always parsed before btf_ext, so no need to clean up |
| 901 | * btf_ext, if btf loading failed |
| 902 | */ |
| 903 | if (IS_ERR(btf)) |
| 904 | return btf; |
| 905 | if (btf_ext && IS_ERR(*btf_ext)) { |
| 906 | btf__free(btf); |
| 907 | err = PTR_ERR(*btf_ext); |
| 908 | return ERR_PTR(err); |
| 909 | } |
| 910 | return btf; |
| 911 | } |
| 912 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 913 | struct btf *btf__parse_raw(const char *path) |
| 914 | { |
| 915 | struct btf *btf = NULL; |
| 916 | void *data = NULL; |
| 917 | FILE *f = NULL; |
| 918 | __u16 magic; |
| 919 | int err = 0; |
| 920 | long sz; |
| 921 | |
| 922 | f = fopen(path, "rb"); |
| 923 | if (!f) { |
| 924 | err = -errno; |
| 925 | goto err_out; |
| 926 | } |
| 927 | |
| 928 | /* check BTF magic */ |
| 929 | if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { |
| 930 | err = -EIO; |
| 931 | goto err_out; |
| 932 | } |
| 933 | if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { |
| 934 | /* definitely not a raw BTF */ |
| 935 | err = -EPROTO; |
| 936 | goto err_out; |
| 937 | } |
| 938 | |
| 939 | /* get file size */ |
| 940 | if (fseek(f, 0, SEEK_END)) { |
| 941 | err = -errno; |
| 942 | goto err_out; |
| 943 | } |
| 944 | sz = ftell(f); |
| 945 | if (sz < 0) { |
| 946 | err = -errno; |
| 947 | goto err_out; |
| 948 | } |
| 949 | /* rewind to the start */ |
| 950 | if (fseek(f, 0, SEEK_SET)) { |
| 951 | err = -errno; |
| 952 | goto err_out; |
| 953 | } |
| 954 | |
| 955 | /* pre-alloc memory and read all of BTF data */ |
| 956 | data = malloc(sz); |
| 957 | if (!data) { |
| 958 | err = -ENOMEM; |
| 959 | goto err_out; |
| 960 | } |
| 961 | if (fread(data, 1, sz, f) < sz) { |
| 962 | err = -EIO; |
| 963 | goto err_out; |
| 964 | } |
| 965 | |
| 966 | /* finally parse BTF data */ |
| 967 | btf = btf__new(data, sz); |
| 968 | |
| 969 | err_out: |
| 970 | free(data); |
| 971 | if (f) |
| 972 | fclose(f); |
| 973 | return err ? ERR_PTR(err) : btf; |
| 974 | } |
| 975 | |
| 976 | struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) |
| 977 | { |
| 978 | struct btf *btf; |
| 979 | |
| 980 | if (btf_ext) |
| 981 | *btf_ext = NULL; |
| 982 | |
| 983 | btf = btf__parse_raw(path); |
| 984 | if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) |
| 985 | return btf; |
| 986 | |
| 987 | return btf__parse_elf(path, btf_ext); |
| 988 | } |
| 989 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 990 | static int compare_vsi_off(const void *_a, const void *_b) |
| 991 | { |
| 992 | const struct btf_var_secinfo *a = _a; |
| 993 | const struct btf_var_secinfo *b = _b; |
| 994 | |
| 995 | return a->offset - b->offset; |
| 996 | } |
| 997 | |
| 998 | static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, |
| 999 | struct btf_type *t) |
| 1000 | { |
| 1001 | __u32 size = 0, off = 0, i, vars = btf_vlen(t); |
| 1002 | const char *name = btf__name_by_offset(btf, t->name_off); |
| 1003 | const struct btf_type *t_var; |
| 1004 | struct btf_var_secinfo *vsi; |
| 1005 | const struct btf_var *var; |
| 1006 | int ret; |
| 1007 | |
| 1008 | if (!name) { |
| 1009 | pr_debug("No name found in string section for DATASEC kind.\n"); |
| 1010 | return -ENOENT; |
| 1011 | } |
| 1012 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1013 | /* .extern datasec size and var offsets were set correctly during |
| 1014 | * extern collection step, so just skip straight to sorting variables |
| 1015 | */ |
| 1016 | if (t->size) |
| 1017 | goto sort_vars; |
| 1018 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1019 | ret = bpf_object__section_size(obj, name, &size); |
| 1020 | if (ret || !size || (t->size && t->size != size)) { |
| 1021 | pr_debug("Invalid size for section %s: %u bytes\n", name, size); |
| 1022 | return -ENOENT; |
| 1023 | } |
| 1024 | |
| 1025 | t->size = size; |
| 1026 | |
| 1027 | for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { |
| 1028 | t_var = btf__type_by_id(btf, vsi->type); |
| 1029 | var = btf_var(t_var); |
| 1030 | |
| 1031 | if (!btf_is_var(t_var)) { |
| 1032 | pr_debug("Non-VAR type seen in section %s\n", name); |
| 1033 | return -EINVAL; |
| 1034 | } |
| 1035 | |
| 1036 | if (var->linkage == BTF_VAR_STATIC) |
| 1037 | continue; |
| 1038 | |
| 1039 | name = btf__name_by_offset(btf, t_var->name_off); |
| 1040 | if (!name) { |
| 1041 | pr_debug("No name found in string section for VAR kind\n"); |
| 1042 | return -ENOENT; |
| 1043 | } |
| 1044 | |
| 1045 | ret = bpf_object__variable_offset(obj, name, &off); |
| 1046 | if (ret) { |
| 1047 | pr_debug("No offset found in symbol table for VAR %s\n", |
| 1048 | name); |
| 1049 | return -ENOENT; |
| 1050 | } |
| 1051 | |
| 1052 | vsi->offset = off; |
| 1053 | } |
| 1054 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1055 | sort_vars: |
| 1056 | qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1057 | return 0; |
| 1058 | } |
| 1059 | |
| 1060 | int btf__finalize_data(struct bpf_object *obj, struct btf *btf) |
| 1061 | { |
| 1062 | int err = 0; |
| 1063 | __u32 i; |
| 1064 | |
| 1065 | for (i = 1; i <= btf->nr_types; i++) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1066 | struct btf_type *t = btf_type_by_id(btf, i); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1067 | |
| 1068 | /* Loader needs to fix up some of the things compiler |
| 1069 | * couldn't get its hands on while emitting BTF. This |
| 1070 | * is section size and global variable offset. We use |
| 1071 | * the info from the ELF itself for this purpose. |
| 1072 | */ |
| 1073 | if (btf_is_datasec(t)) { |
| 1074 | err = btf_fixup_datasec(obj, btf, t); |
| 1075 | if (err) |
| 1076 | break; |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | return err; |
| 1081 | } |
| 1082 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1083 | static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); |
| 1084 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1085 | int btf__load(struct btf *btf) |
| 1086 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1087 | __u32 log_buf_size = 0, raw_size; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1088 | char *log_buf = NULL; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1089 | void *raw_data; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1090 | int err = 0; |
| 1091 | |
| 1092 | if (btf->fd >= 0) |
| 1093 | return -EEXIST; |
| 1094 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1095 | retry_load: |
| 1096 | if (log_buf_size) { |
| 1097 | log_buf = malloc(log_buf_size); |
| 1098 | if (!log_buf) |
| 1099 | return -ENOMEM; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1100 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1101 | *log_buf = 0; |
| 1102 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1103 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1104 | raw_data = btf_get_raw_data(btf, &raw_size, false); |
| 1105 | if (!raw_data) { |
| 1106 | err = -ENOMEM; |
| 1107 | goto done; |
| 1108 | } |
| 1109 | /* cache native raw data representation */ |
| 1110 | btf->raw_size = raw_size; |
| 1111 | btf->raw_data = raw_data; |
| 1112 | |
| 1113 | btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1114 | if (btf->fd < 0) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1115 | if (!log_buf || errno == ENOSPC) { |
| 1116 | log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, |
| 1117 | log_buf_size << 1); |
| 1118 | free(log_buf); |
| 1119 | goto retry_load; |
| 1120 | } |
| 1121 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1122 | err = -errno; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1123 | pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1124 | if (*log_buf) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1125 | pr_warn("%s\n", log_buf); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1126 | goto done; |
| 1127 | } |
| 1128 | |
| 1129 | done: |
| 1130 | free(log_buf); |
| 1131 | return err; |
| 1132 | } |
| 1133 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1134 | int btf__fd(const struct btf *btf) |
| 1135 | { |
| 1136 | return btf->fd; |
| 1137 | } |
| 1138 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1139 | void btf__set_fd(struct btf *btf, int fd) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1140 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1141 | btf->fd = fd; |
| 1142 | } |
| 1143 | |
| 1144 | static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) |
| 1145 | { |
| 1146 | struct btf_header *hdr = btf->hdr; |
| 1147 | struct btf_type *t; |
| 1148 | void *data, *p; |
| 1149 | __u32 data_sz; |
| 1150 | int i; |
| 1151 | |
| 1152 | data = swap_endian ? btf->raw_data_swapped : btf->raw_data; |
| 1153 | if (data) { |
| 1154 | *size = btf->raw_size; |
| 1155 | return data; |
| 1156 | } |
| 1157 | |
| 1158 | data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; |
| 1159 | data = calloc(1, data_sz); |
| 1160 | if (!data) |
| 1161 | return NULL; |
| 1162 | p = data; |
| 1163 | |
| 1164 | memcpy(p, hdr, hdr->hdr_len); |
| 1165 | if (swap_endian) |
| 1166 | btf_bswap_hdr(p); |
| 1167 | p += hdr->hdr_len; |
| 1168 | |
| 1169 | memcpy(p, btf->types_data, hdr->type_len); |
| 1170 | if (swap_endian) { |
| 1171 | for (i = 1; i <= btf->nr_types; i++) { |
| 1172 | t = p + btf->type_offs[i]; |
| 1173 | /* btf_bswap_type_rest() relies on native t->info, so |
| 1174 | * we swap base type info after we swapped all the |
| 1175 | * additional information |
| 1176 | */ |
| 1177 | if (btf_bswap_type_rest(t)) |
| 1178 | goto err_out; |
| 1179 | btf_bswap_type_base(t); |
| 1180 | } |
| 1181 | } |
| 1182 | p += hdr->type_len; |
| 1183 | |
| 1184 | memcpy(p, btf->strs_data, hdr->str_len); |
| 1185 | p += hdr->str_len; |
| 1186 | |
| 1187 | *size = data_sz; |
| 1188 | return data; |
| 1189 | err_out: |
| 1190 | free(data); |
| 1191 | return NULL; |
| 1192 | } |
| 1193 | |
| 1194 | const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) |
| 1195 | { |
| 1196 | struct btf *btf = (struct btf *)btf_ro; |
| 1197 | __u32 data_sz; |
| 1198 | void *data; |
| 1199 | |
| 1200 | data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); |
| 1201 | if (!data) |
| 1202 | return NULL; |
| 1203 | |
| 1204 | btf->raw_size = data_sz; |
| 1205 | if (btf->swapped_endian) |
| 1206 | btf->raw_data_swapped = data; |
| 1207 | else |
| 1208 | btf->raw_data = data; |
| 1209 | *size = data_sz; |
| 1210 | return data; |
| 1211 | } |
| 1212 | |
| 1213 | const char *btf__str_by_offset(const struct btf *btf, __u32 offset) |
| 1214 | { |
| 1215 | if (offset < btf->hdr->str_len) |
| 1216 | return btf->strs_data + offset; |
| 1217 | else |
| 1218 | return NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1219 | } |
| 1220 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1221 | const char *btf__name_by_offset(const struct btf *btf, __u32 offset) |
| 1222 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1223 | return btf__str_by_offset(btf, offset); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1224 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1225 | |
| 1226 | int btf__get_from_id(__u32 id, struct btf **btf) |
| 1227 | { |
| 1228 | struct bpf_btf_info btf_info = { 0 }; |
| 1229 | __u32 len = sizeof(btf_info); |
| 1230 | __u32 last_size; |
| 1231 | int btf_fd; |
| 1232 | void *ptr; |
| 1233 | int err; |
| 1234 | |
| 1235 | err = 0; |
| 1236 | *btf = NULL; |
| 1237 | btf_fd = bpf_btf_get_fd_by_id(id); |
| 1238 | if (btf_fd < 0) |
| 1239 | return 0; |
| 1240 | |
| 1241 | /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so |
| 1242 | * let's start with a sane default - 4KiB here - and resize it only if |
| 1243 | * bpf_obj_get_info_by_fd() needs a bigger buffer. |
| 1244 | */ |
| 1245 | btf_info.btf_size = 4096; |
| 1246 | last_size = btf_info.btf_size; |
| 1247 | ptr = malloc(last_size); |
| 1248 | if (!ptr) { |
| 1249 | err = -ENOMEM; |
| 1250 | goto exit_free; |
| 1251 | } |
| 1252 | |
| 1253 | memset(ptr, 0, last_size); |
| 1254 | btf_info.btf = ptr_to_u64(ptr); |
| 1255 | err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); |
| 1256 | |
| 1257 | if (!err && btf_info.btf_size > last_size) { |
| 1258 | void *temp_ptr; |
| 1259 | |
| 1260 | last_size = btf_info.btf_size; |
| 1261 | temp_ptr = realloc(ptr, last_size); |
| 1262 | if (!temp_ptr) { |
| 1263 | err = -ENOMEM; |
| 1264 | goto exit_free; |
| 1265 | } |
| 1266 | ptr = temp_ptr; |
| 1267 | memset(ptr, 0, last_size); |
| 1268 | btf_info.btf = ptr_to_u64(ptr); |
| 1269 | err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); |
| 1270 | } |
| 1271 | |
| 1272 | if (err || btf_info.btf_size > last_size) { |
| 1273 | err = errno; |
| 1274 | goto exit_free; |
| 1275 | } |
| 1276 | |
| 1277 | *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); |
| 1278 | if (IS_ERR(*btf)) { |
| 1279 | err = PTR_ERR(*btf); |
| 1280 | *btf = NULL; |
| 1281 | } |
| 1282 | |
| 1283 | exit_free: |
| 1284 | close(btf_fd); |
| 1285 | free(ptr); |
| 1286 | |
| 1287 | return err; |
| 1288 | } |
| 1289 | |
| 1290 | int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, |
| 1291 | __u32 expected_key_size, __u32 expected_value_size, |
| 1292 | __u32 *key_type_id, __u32 *value_type_id) |
| 1293 | { |
| 1294 | const struct btf_type *container_type; |
| 1295 | const struct btf_member *key, *value; |
| 1296 | const size_t max_name = 256; |
| 1297 | char container_name[max_name]; |
| 1298 | __s64 key_size, value_size; |
| 1299 | __s32 container_id; |
| 1300 | |
| 1301 | if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == |
| 1302 | max_name) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1303 | pr_warn("map:%s length of '____btf_map_%s' is too long\n", |
| 1304 | map_name, map_name); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1305 | return -EINVAL; |
| 1306 | } |
| 1307 | |
| 1308 | container_id = btf__find_by_name(btf, container_name); |
| 1309 | if (container_id < 0) { |
| 1310 | pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", |
| 1311 | map_name, container_name); |
| 1312 | return container_id; |
| 1313 | } |
| 1314 | |
| 1315 | container_type = btf__type_by_id(btf, container_id); |
| 1316 | if (!container_type) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1317 | pr_warn("map:%s cannot find BTF type for container_id:%u\n", |
| 1318 | map_name, container_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1319 | return -EINVAL; |
| 1320 | } |
| 1321 | |
| 1322 | if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1323 | pr_warn("map:%s container_name:%s is an invalid container struct\n", |
| 1324 | map_name, container_name); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1325 | return -EINVAL; |
| 1326 | } |
| 1327 | |
| 1328 | key = btf_members(container_type); |
| 1329 | value = key + 1; |
| 1330 | |
| 1331 | key_size = btf__resolve_size(btf, key->type); |
| 1332 | if (key_size < 0) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1333 | pr_warn("map:%s invalid BTF key_type_size\n", map_name); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1334 | return key_size; |
| 1335 | } |
| 1336 | |
| 1337 | if (expected_key_size != key_size) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1338 | pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", |
| 1339 | map_name, (__u32)key_size, expected_key_size); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1340 | return -EINVAL; |
| 1341 | } |
| 1342 | |
| 1343 | value_size = btf__resolve_size(btf, value->type); |
| 1344 | if (value_size < 0) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1345 | pr_warn("map:%s invalid BTF value_type_size\n", map_name); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1346 | return value_size; |
| 1347 | } |
| 1348 | |
| 1349 | if (expected_value_size != value_size) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1350 | pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", |
| 1351 | map_name, (__u32)value_size, expected_value_size); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1352 | return -EINVAL; |
| 1353 | } |
| 1354 | |
| 1355 | *key_type_id = key->type; |
| 1356 | *value_type_id = value->type; |
| 1357 | |
| 1358 | return 0; |
| 1359 | } |
| 1360 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1361 | static size_t strs_hash_fn(const void *key, void *ctx) |
| 1362 | { |
| 1363 | struct btf *btf = ctx; |
| 1364 | const char *str = btf->strs_data + (long)key; |
| 1365 | |
| 1366 | return str_hash(str); |
| 1367 | } |
| 1368 | |
| 1369 | static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx) |
| 1370 | { |
| 1371 | struct btf *btf = ctx; |
| 1372 | const char *str1 = btf->strs_data + (long)key1; |
| 1373 | const char *str2 = btf->strs_data + (long)key2; |
| 1374 | |
| 1375 | return strcmp(str1, str2) == 0; |
| 1376 | } |
| 1377 | |
| 1378 | static void btf_invalidate_raw_data(struct btf *btf) |
| 1379 | { |
| 1380 | if (btf->raw_data) { |
| 1381 | free(btf->raw_data); |
| 1382 | btf->raw_data = NULL; |
| 1383 | } |
| 1384 | if (btf->raw_data_swapped) { |
| 1385 | free(btf->raw_data_swapped); |
| 1386 | btf->raw_data_swapped = NULL; |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | /* Ensure BTF is ready to be modified (by splitting into a three memory |
| 1391 | * regions for header, types, and strings). Also invalidate cached |
| 1392 | * raw_data, if any. |
| 1393 | */ |
| 1394 | static int btf_ensure_modifiable(struct btf *btf) |
| 1395 | { |
| 1396 | void *hdr, *types, *strs, *strs_end, *s; |
| 1397 | struct hashmap *hash = NULL; |
| 1398 | long off; |
| 1399 | int err; |
| 1400 | |
| 1401 | if (btf_is_modifiable(btf)) { |
| 1402 | /* any BTF modification invalidates raw_data */ |
| 1403 | btf_invalidate_raw_data(btf); |
| 1404 | return 0; |
| 1405 | } |
| 1406 | |
| 1407 | /* split raw data into three memory regions */ |
| 1408 | hdr = malloc(btf->hdr->hdr_len); |
| 1409 | types = malloc(btf->hdr->type_len); |
| 1410 | strs = malloc(btf->hdr->str_len); |
| 1411 | if (!hdr || !types || !strs) |
| 1412 | goto err_out; |
| 1413 | |
| 1414 | memcpy(hdr, btf->hdr, btf->hdr->hdr_len); |
| 1415 | memcpy(types, btf->types_data, btf->hdr->type_len); |
| 1416 | memcpy(strs, btf->strs_data, btf->hdr->str_len); |
| 1417 | |
| 1418 | /* build lookup index for all strings */ |
| 1419 | hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf); |
| 1420 | if (IS_ERR(hash)) { |
| 1421 | err = PTR_ERR(hash); |
| 1422 | hash = NULL; |
| 1423 | goto err_out; |
| 1424 | } |
| 1425 | |
| 1426 | strs_end = strs + btf->hdr->str_len; |
| 1427 | for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) { |
| 1428 | /* hashmap__add() returns EEXIST if string with the same |
| 1429 | * content already is in the hash map |
| 1430 | */ |
| 1431 | err = hashmap__add(hash, (void *)off, (void *)off); |
| 1432 | if (err == -EEXIST) |
| 1433 | continue; /* duplicate */ |
| 1434 | if (err) |
| 1435 | goto err_out; |
| 1436 | } |
| 1437 | |
| 1438 | /* only when everything was successful, update internal state */ |
| 1439 | btf->hdr = hdr; |
| 1440 | btf->types_data = types; |
| 1441 | btf->types_data_cap = btf->hdr->type_len; |
| 1442 | btf->strs_data = strs; |
| 1443 | btf->strs_data_cap = btf->hdr->str_len; |
| 1444 | btf->strs_hash = hash; |
| 1445 | /* if BTF was created from scratch, all strings are guaranteed to be |
| 1446 | * unique and deduplicated |
| 1447 | */ |
| 1448 | btf->strs_deduped = btf->hdr->str_len <= 1; |
| 1449 | |
| 1450 | /* invalidate raw_data representation */ |
| 1451 | btf_invalidate_raw_data(btf); |
| 1452 | |
| 1453 | return 0; |
| 1454 | |
| 1455 | err_out: |
| 1456 | hashmap__free(hash); |
| 1457 | free(hdr); |
| 1458 | free(types); |
| 1459 | free(strs); |
| 1460 | return -ENOMEM; |
| 1461 | } |
| 1462 | |
| 1463 | static void *btf_add_str_mem(struct btf *btf, size_t add_sz) |
| 1464 | { |
| 1465 | return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1, |
| 1466 | btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz); |
| 1467 | } |
| 1468 | |
| 1469 | /* Find an offset in BTF string section that corresponds to a given string *s*. |
| 1470 | * Returns: |
| 1471 | * - >0 offset into string section, if string is found; |
| 1472 | * - -ENOENT, if string is not in the string section; |
| 1473 | * - <0, on any other error. |
| 1474 | */ |
| 1475 | int btf__find_str(struct btf *btf, const char *s) |
| 1476 | { |
| 1477 | long old_off, new_off, len; |
| 1478 | void *p; |
| 1479 | |
| 1480 | /* BTF needs to be in a modifiable state to build string lookup index */ |
| 1481 | if (btf_ensure_modifiable(btf)) |
| 1482 | return -ENOMEM; |
| 1483 | |
| 1484 | /* see btf__add_str() for why we do this */ |
| 1485 | len = strlen(s) + 1; |
| 1486 | p = btf_add_str_mem(btf, len); |
| 1487 | if (!p) |
| 1488 | return -ENOMEM; |
| 1489 | |
| 1490 | new_off = btf->hdr->str_len; |
| 1491 | memcpy(p, s, len); |
| 1492 | |
| 1493 | if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off)) |
| 1494 | return old_off; |
| 1495 | |
| 1496 | return -ENOENT; |
| 1497 | } |
| 1498 | |
| 1499 | /* Add a string s to the BTF string section. |
| 1500 | * Returns: |
| 1501 | * - > 0 offset into string section, on success; |
| 1502 | * - < 0, on error. |
| 1503 | */ |
| 1504 | int btf__add_str(struct btf *btf, const char *s) |
| 1505 | { |
| 1506 | long old_off, new_off, len; |
| 1507 | void *p; |
| 1508 | int err; |
| 1509 | |
| 1510 | if (btf_ensure_modifiable(btf)) |
| 1511 | return -ENOMEM; |
| 1512 | |
| 1513 | /* Hashmap keys are always offsets within btf->strs_data, so to even |
| 1514 | * look up some string from the "outside", we need to first append it |
| 1515 | * at the end, so that it can be addressed with an offset. Luckily, |
| 1516 | * until btf->hdr->str_len is incremented, that string is just a piece |
| 1517 | * of garbage for the rest of BTF code, so no harm, no foul. On the |
| 1518 | * other hand, if the string is unique, it's already appended and |
| 1519 | * ready to be used, only a simple btf->hdr->str_len increment away. |
| 1520 | */ |
| 1521 | len = strlen(s) + 1; |
| 1522 | p = btf_add_str_mem(btf, len); |
| 1523 | if (!p) |
| 1524 | return -ENOMEM; |
| 1525 | |
| 1526 | new_off = btf->hdr->str_len; |
| 1527 | memcpy(p, s, len); |
| 1528 | |
| 1529 | /* Now attempt to add the string, but only if the string with the same |
| 1530 | * contents doesn't exist already (HASHMAP_ADD strategy). If such |
| 1531 | * string exists, we'll get its offset in old_off (that's old_key). |
| 1532 | */ |
| 1533 | err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off, |
| 1534 | HASHMAP_ADD, (const void **)&old_off, NULL); |
| 1535 | if (err == -EEXIST) |
| 1536 | return old_off; /* duplicated string, return existing offset */ |
| 1537 | if (err) |
| 1538 | return err; |
| 1539 | |
| 1540 | btf->hdr->str_len += len; /* new unique string, adjust data length */ |
| 1541 | return new_off; |
| 1542 | } |
| 1543 | |
| 1544 | static void *btf_add_type_mem(struct btf *btf, size_t add_sz) |
| 1545 | { |
| 1546 | return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1, |
| 1547 | btf->hdr->type_len, UINT_MAX, add_sz); |
| 1548 | } |
| 1549 | |
| 1550 | static __u32 btf_type_info(int kind, int vlen, int kflag) |
| 1551 | { |
| 1552 | return (kflag << 31) | (kind << 24) | vlen; |
| 1553 | } |
| 1554 | |
| 1555 | static void btf_type_inc_vlen(struct btf_type *t) |
| 1556 | { |
| 1557 | t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | * Append new BTF_KIND_INT type with: |
| 1562 | * - *name* - non-empty, non-NULL type name; |
| 1563 | * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; |
| 1564 | * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. |
| 1565 | * Returns: |
| 1566 | * - >0, type ID of newly added BTF type; |
| 1567 | * - <0, on error. |
| 1568 | */ |
| 1569 | int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) |
| 1570 | { |
| 1571 | struct btf_type *t; |
| 1572 | int sz, err, name_off; |
| 1573 | |
| 1574 | /* non-empty name */ |
| 1575 | if (!name || !name[0]) |
| 1576 | return -EINVAL; |
| 1577 | /* byte_sz must be power of 2 */ |
| 1578 | if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) |
| 1579 | return -EINVAL; |
| 1580 | if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) |
| 1581 | return -EINVAL; |
| 1582 | |
| 1583 | /* deconstruct BTF, if necessary, and invalidate raw_data */ |
| 1584 | if (btf_ensure_modifiable(btf)) |
| 1585 | return -ENOMEM; |
| 1586 | |
| 1587 | sz = sizeof(struct btf_type) + sizeof(int); |
| 1588 | t = btf_add_type_mem(btf, sz); |
| 1589 | if (!t) |
| 1590 | return -ENOMEM; |
| 1591 | |
| 1592 | /* if something goes wrong later, we might end up with an extra string, |
| 1593 | * but that shouldn't be a problem, because BTF can't be constructed |
| 1594 | * completely anyway and will most probably be just discarded |
| 1595 | */ |
| 1596 | name_off = btf__add_str(btf, name); |
| 1597 | if (name_off < 0) |
| 1598 | return name_off; |
| 1599 | |
| 1600 | t->name_off = name_off; |
| 1601 | t->info = btf_type_info(BTF_KIND_INT, 0, 0); |
| 1602 | t->size = byte_sz; |
| 1603 | /* set INT info, we don't allow setting legacy bit offset/size */ |
| 1604 | *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); |
| 1605 | |
| 1606 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 1607 | if (err) |
| 1608 | return err; |
| 1609 | |
| 1610 | btf->hdr->type_len += sz; |
| 1611 | btf->hdr->str_off += sz; |
| 1612 | btf->nr_types++; |
| 1613 | return btf->nr_types; |
| 1614 | } |
| 1615 | |
| 1616 | /* it's completely legal to append BTF types with type IDs pointing forward to |
| 1617 | * types that haven't been appended yet, so we only make sure that id looks |
| 1618 | * sane, we can't guarantee that ID will always be valid |
| 1619 | */ |
| 1620 | static int validate_type_id(int id) |
| 1621 | { |
| 1622 | if (id < 0 || id > BTF_MAX_NR_TYPES) |
| 1623 | return -EINVAL; |
| 1624 | return 0; |
| 1625 | } |
| 1626 | |
| 1627 | /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ |
| 1628 | static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) |
| 1629 | { |
| 1630 | struct btf_type *t; |
| 1631 | int sz, name_off = 0, err; |
| 1632 | |
| 1633 | if (validate_type_id(ref_type_id)) |
| 1634 | return -EINVAL; |
| 1635 | |
| 1636 | if (btf_ensure_modifiable(btf)) |
| 1637 | return -ENOMEM; |
| 1638 | |
| 1639 | sz = sizeof(struct btf_type); |
| 1640 | t = btf_add_type_mem(btf, sz); |
| 1641 | if (!t) |
| 1642 | return -ENOMEM; |
| 1643 | |
| 1644 | if (name && name[0]) { |
| 1645 | name_off = btf__add_str(btf, name); |
| 1646 | if (name_off < 0) |
| 1647 | return name_off; |
| 1648 | } |
| 1649 | |
| 1650 | t->name_off = name_off; |
| 1651 | t->info = btf_type_info(kind, 0, 0); |
| 1652 | t->type = ref_type_id; |
| 1653 | |
| 1654 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 1655 | if (err) |
| 1656 | return err; |
| 1657 | |
| 1658 | btf->hdr->type_len += sz; |
| 1659 | btf->hdr->str_off += sz; |
| 1660 | btf->nr_types++; |
| 1661 | return btf->nr_types; |
| 1662 | } |
| 1663 | |
| 1664 | /* |
| 1665 | * Append new BTF_KIND_PTR type with: |
| 1666 | * - *ref_type_id* - referenced type ID, it might not exist yet; |
| 1667 | * Returns: |
| 1668 | * - >0, type ID of newly added BTF type; |
| 1669 | * - <0, on error. |
| 1670 | */ |
| 1671 | int btf__add_ptr(struct btf *btf, int ref_type_id) |
| 1672 | { |
| 1673 | return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); |
| 1674 | } |
| 1675 | |
| 1676 | /* |
| 1677 | * Append new BTF_KIND_ARRAY type with: |
| 1678 | * - *index_type_id* - type ID of the type describing array index; |
| 1679 | * - *elem_type_id* - type ID of the type describing array element; |
| 1680 | * - *nr_elems* - the size of the array; |
| 1681 | * Returns: |
| 1682 | * - >0, type ID of newly added BTF type; |
| 1683 | * - <0, on error. |
| 1684 | */ |
| 1685 | int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) |
| 1686 | { |
| 1687 | struct btf_type *t; |
| 1688 | struct btf_array *a; |
| 1689 | int sz, err; |
| 1690 | |
| 1691 | if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) |
| 1692 | return -EINVAL; |
| 1693 | |
| 1694 | if (btf_ensure_modifiable(btf)) |
| 1695 | return -ENOMEM; |
| 1696 | |
| 1697 | sz = sizeof(struct btf_type) + sizeof(struct btf_array); |
| 1698 | t = btf_add_type_mem(btf, sz); |
| 1699 | if (!t) |
| 1700 | return -ENOMEM; |
| 1701 | |
| 1702 | t->name_off = 0; |
| 1703 | t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); |
| 1704 | t->size = 0; |
| 1705 | |
| 1706 | a = btf_array(t); |
| 1707 | a->type = elem_type_id; |
| 1708 | a->index_type = index_type_id; |
| 1709 | a->nelems = nr_elems; |
| 1710 | |
| 1711 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 1712 | if (err) |
| 1713 | return err; |
| 1714 | |
| 1715 | btf->hdr->type_len += sz; |
| 1716 | btf->hdr->str_off += sz; |
| 1717 | btf->nr_types++; |
| 1718 | return btf->nr_types; |
| 1719 | } |
| 1720 | |
| 1721 | /* generic STRUCT/UNION append function */ |
| 1722 | static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) |
| 1723 | { |
| 1724 | struct btf_type *t; |
| 1725 | int sz, err, name_off = 0; |
| 1726 | |
| 1727 | if (btf_ensure_modifiable(btf)) |
| 1728 | return -ENOMEM; |
| 1729 | |
| 1730 | sz = sizeof(struct btf_type); |
| 1731 | t = btf_add_type_mem(btf, sz); |
| 1732 | if (!t) |
| 1733 | return -ENOMEM; |
| 1734 | |
| 1735 | if (name && name[0]) { |
| 1736 | name_off = btf__add_str(btf, name); |
| 1737 | if (name_off < 0) |
| 1738 | return name_off; |
| 1739 | } |
| 1740 | |
| 1741 | /* start out with vlen=0 and no kflag; this will be adjusted when |
| 1742 | * adding each member |
| 1743 | */ |
| 1744 | t->name_off = name_off; |
| 1745 | t->info = btf_type_info(kind, 0, 0); |
| 1746 | t->size = bytes_sz; |
| 1747 | |
| 1748 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 1749 | if (err) |
| 1750 | return err; |
| 1751 | |
| 1752 | btf->hdr->type_len += sz; |
| 1753 | btf->hdr->str_off += sz; |
| 1754 | btf->nr_types++; |
| 1755 | return btf->nr_types; |
| 1756 | } |
| 1757 | |
| 1758 | /* |
| 1759 | * Append new BTF_KIND_STRUCT type with: |
| 1760 | * - *name* - name of the struct, can be NULL or empty for anonymous structs; |
| 1761 | * - *byte_sz* - size of the struct, in bytes; |
| 1762 | * |
| 1763 | * Struct initially has no fields in it. Fields can be added by |
| 1764 | * btf__add_field() right after btf__add_struct() succeeds. |
| 1765 | * |
| 1766 | * Returns: |
| 1767 | * - >0, type ID of newly added BTF type; |
| 1768 | * - <0, on error. |
| 1769 | */ |
| 1770 | int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) |
| 1771 | { |
| 1772 | return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); |
| 1773 | } |
| 1774 | |
| 1775 | /* |
| 1776 | * Append new BTF_KIND_UNION type with: |
| 1777 | * - *name* - name of the union, can be NULL or empty for anonymous union; |
| 1778 | * - *byte_sz* - size of the union, in bytes; |
| 1779 | * |
| 1780 | * Union initially has no fields in it. Fields can be added by |
| 1781 | * btf__add_field() right after btf__add_union() succeeds. All fields |
| 1782 | * should have *bit_offset* of 0. |
| 1783 | * |
| 1784 | * Returns: |
| 1785 | * - >0, type ID of newly added BTF type; |
| 1786 | * - <0, on error. |
| 1787 | */ |
| 1788 | int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) |
| 1789 | { |
| 1790 | return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); |
| 1791 | } |
| 1792 | |
| 1793 | /* |
| 1794 | * Append new field for the current STRUCT/UNION type with: |
| 1795 | * - *name* - name of the field, can be NULL or empty for anonymous field; |
| 1796 | * - *type_id* - type ID for the type describing field type; |
| 1797 | * - *bit_offset* - bit offset of the start of the field within struct/union; |
| 1798 | * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; |
| 1799 | * Returns: |
| 1800 | * - 0, on success; |
| 1801 | * - <0, on error. |
| 1802 | */ |
| 1803 | int btf__add_field(struct btf *btf, const char *name, int type_id, |
| 1804 | __u32 bit_offset, __u32 bit_size) |
| 1805 | { |
| 1806 | struct btf_type *t; |
| 1807 | struct btf_member *m; |
| 1808 | bool is_bitfield; |
| 1809 | int sz, name_off = 0; |
| 1810 | |
| 1811 | /* last type should be union/struct */ |
| 1812 | if (btf->nr_types == 0) |
| 1813 | return -EINVAL; |
| 1814 | t = btf_type_by_id(btf, btf->nr_types); |
| 1815 | if (!btf_is_composite(t)) |
| 1816 | return -EINVAL; |
| 1817 | |
| 1818 | if (validate_type_id(type_id)) |
| 1819 | return -EINVAL; |
| 1820 | /* best-effort bit field offset/size enforcement */ |
| 1821 | is_bitfield = bit_size || (bit_offset % 8 != 0); |
| 1822 | if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) |
| 1823 | return -EINVAL; |
| 1824 | |
| 1825 | /* only offset 0 is allowed for unions */ |
| 1826 | if (btf_is_union(t) && bit_offset) |
| 1827 | return -EINVAL; |
| 1828 | |
| 1829 | /* decompose and invalidate raw data */ |
| 1830 | if (btf_ensure_modifiable(btf)) |
| 1831 | return -ENOMEM; |
| 1832 | |
| 1833 | sz = sizeof(struct btf_member); |
| 1834 | m = btf_add_type_mem(btf, sz); |
| 1835 | if (!m) |
| 1836 | return -ENOMEM; |
| 1837 | |
| 1838 | if (name && name[0]) { |
| 1839 | name_off = btf__add_str(btf, name); |
| 1840 | if (name_off < 0) |
| 1841 | return name_off; |
| 1842 | } |
| 1843 | |
| 1844 | m->name_off = name_off; |
| 1845 | m->type = type_id; |
| 1846 | m->offset = bit_offset | (bit_size << 24); |
| 1847 | |
| 1848 | /* btf_add_type_mem can invalidate t pointer */ |
| 1849 | t = btf_type_by_id(btf, btf->nr_types); |
| 1850 | /* update parent type's vlen and kflag */ |
| 1851 | t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); |
| 1852 | |
| 1853 | btf->hdr->type_len += sz; |
| 1854 | btf->hdr->str_off += sz; |
| 1855 | return 0; |
| 1856 | } |
| 1857 | |
| 1858 | /* |
| 1859 | * Append new BTF_KIND_ENUM type with: |
| 1860 | * - *name* - name of the enum, can be NULL or empty for anonymous enums; |
| 1861 | * - *byte_sz* - size of the enum, in bytes. |
| 1862 | * |
| 1863 | * Enum initially has no enum values in it (and corresponds to enum forward |
| 1864 | * declaration). Enumerator values can be added by btf__add_enum_value() |
| 1865 | * immediately after btf__add_enum() succeeds. |
| 1866 | * |
| 1867 | * Returns: |
| 1868 | * - >0, type ID of newly added BTF type; |
| 1869 | * - <0, on error. |
| 1870 | */ |
| 1871 | int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) |
| 1872 | { |
| 1873 | struct btf_type *t; |
| 1874 | int sz, err, name_off = 0; |
| 1875 | |
| 1876 | /* byte_sz must be power of 2 */ |
| 1877 | if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) |
| 1878 | return -EINVAL; |
| 1879 | |
| 1880 | if (btf_ensure_modifiable(btf)) |
| 1881 | return -ENOMEM; |
| 1882 | |
| 1883 | sz = sizeof(struct btf_type); |
| 1884 | t = btf_add_type_mem(btf, sz); |
| 1885 | if (!t) |
| 1886 | return -ENOMEM; |
| 1887 | |
| 1888 | if (name && name[0]) { |
| 1889 | name_off = btf__add_str(btf, name); |
| 1890 | if (name_off < 0) |
| 1891 | return name_off; |
| 1892 | } |
| 1893 | |
| 1894 | /* start out with vlen=0; it will be adjusted when adding enum values */ |
| 1895 | t->name_off = name_off; |
| 1896 | t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); |
| 1897 | t->size = byte_sz; |
| 1898 | |
| 1899 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 1900 | if (err) |
| 1901 | return err; |
| 1902 | |
| 1903 | btf->hdr->type_len += sz; |
| 1904 | btf->hdr->str_off += sz; |
| 1905 | btf->nr_types++; |
| 1906 | return btf->nr_types; |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * Append new enum value for the current ENUM type with: |
| 1911 | * - *name* - name of the enumerator value, can't be NULL or empty; |
| 1912 | * - *value* - integer value corresponding to enum value *name*; |
| 1913 | * Returns: |
| 1914 | * - 0, on success; |
| 1915 | * - <0, on error. |
| 1916 | */ |
| 1917 | int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) |
| 1918 | { |
| 1919 | struct btf_type *t; |
| 1920 | struct btf_enum *v; |
| 1921 | int sz, name_off; |
| 1922 | |
| 1923 | /* last type should be BTF_KIND_ENUM */ |
| 1924 | if (btf->nr_types == 0) |
| 1925 | return -EINVAL; |
| 1926 | t = btf_type_by_id(btf, btf->nr_types); |
| 1927 | if (!btf_is_enum(t)) |
| 1928 | return -EINVAL; |
| 1929 | |
| 1930 | /* non-empty name */ |
| 1931 | if (!name || !name[0]) |
| 1932 | return -EINVAL; |
| 1933 | if (value < INT_MIN || value > UINT_MAX) |
| 1934 | return -E2BIG; |
| 1935 | |
| 1936 | /* decompose and invalidate raw data */ |
| 1937 | if (btf_ensure_modifiable(btf)) |
| 1938 | return -ENOMEM; |
| 1939 | |
| 1940 | sz = sizeof(struct btf_enum); |
| 1941 | v = btf_add_type_mem(btf, sz); |
| 1942 | if (!v) |
| 1943 | return -ENOMEM; |
| 1944 | |
| 1945 | name_off = btf__add_str(btf, name); |
| 1946 | if (name_off < 0) |
| 1947 | return name_off; |
| 1948 | |
| 1949 | v->name_off = name_off; |
| 1950 | v->val = value; |
| 1951 | |
| 1952 | /* update parent type's vlen */ |
| 1953 | t = btf_type_by_id(btf, btf->nr_types); |
| 1954 | btf_type_inc_vlen(t); |
| 1955 | |
| 1956 | btf->hdr->type_len += sz; |
| 1957 | btf->hdr->str_off += sz; |
| 1958 | return 0; |
| 1959 | } |
| 1960 | |
| 1961 | /* |
| 1962 | * Append new BTF_KIND_FWD type with: |
| 1963 | * - *name*, non-empty/non-NULL name; |
| 1964 | * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, |
| 1965 | * BTF_FWD_UNION, or BTF_FWD_ENUM; |
| 1966 | * Returns: |
| 1967 | * - >0, type ID of newly added BTF type; |
| 1968 | * - <0, on error. |
| 1969 | */ |
| 1970 | int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) |
| 1971 | { |
| 1972 | if (!name || !name[0]) |
| 1973 | return -EINVAL; |
| 1974 | |
| 1975 | switch (fwd_kind) { |
| 1976 | case BTF_FWD_STRUCT: |
| 1977 | case BTF_FWD_UNION: { |
| 1978 | struct btf_type *t; |
| 1979 | int id; |
| 1980 | |
| 1981 | id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); |
| 1982 | if (id <= 0) |
| 1983 | return id; |
| 1984 | t = btf_type_by_id(btf, id); |
| 1985 | t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); |
| 1986 | return id; |
| 1987 | } |
| 1988 | case BTF_FWD_ENUM: |
| 1989 | /* enum forward in BTF currently is just an enum with no enum |
| 1990 | * values; we also assume a standard 4-byte size for it |
| 1991 | */ |
| 1992 | return btf__add_enum(btf, name, sizeof(int)); |
| 1993 | default: |
| 1994 | return -EINVAL; |
| 1995 | } |
| 1996 | } |
| 1997 | |
| 1998 | /* |
| 1999 | * Append new BTF_KING_TYPEDEF type with: |
| 2000 | * - *name*, non-empty/non-NULL name; |
| 2001 | * - *ref_type_id* - referenced type ID, it might not exist yet; |
| 2002 | * Returns: |
| 2003 | * - >0, type ID of newly added BTF type; |
| 2004 | * - <0, on error. |
| 2005 | */ |
| 2006 | int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) |
| 2007 | { |
| 2008 | if (!name || !name[0]) |
| 2009 | return -EINVAL; |
| 2010 | |
| 2011 | return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * Append new BTF_KIND_VOLATILE type with: |
| 2016 | * - *ref_type_id* - referenced type ID, it might not exist yet; |
| 2017 | * Returns: |
| 2018 | * - >0, type ID of newly added BTF type; |
| 2019 | * - <0, on error. |
| 2020 | */ |
| 2021 | int btf__add_volatile(struct btf *btf, int ref_type_id) |
| 2022 | { |
| 2023 | return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); |
| 2024 | } |
| 2025 | |
| 2026 | /* |
| 2027 | * Append new BTF_KIND_CONST type with: |
| 2028 | * - *ref_type_id* - referenced type ID, it might not exist yet; |
| 2029 | * Returns: |
| 2030 | * - >0, type ID of newly added BTF type; |
| 2031 | * - <0, on error. |
| 2032 | */ |
| 2033 | int btf__add_const(struct btf *btf, int ref_type_id) |
| 2034 | { |
| 2035 | return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); |
| 2036 | } |
| 2037 | |
| 2038 | /* |
| 2039 | * Append new BTF_KIND_RESTRICT type with: |
| 2040 | * - *ref_type_id* - referenced type ID, it might not exist yet; |
| 2041 | * Returns: |
| 2042 | * - >0, type ID of newly added BTF type; |
| 2043 | * - <0, on error. |
| 2044 | */ |
| 2045 | int btf__add_restrict(struct btf *btf, int ref_type_id) |
| 2046 | { |
| 2047 | return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); |
| 2048 | } |
| 2049 | |
| 2050 | /* |
| 2051 | * Append new BTF_KIND_FUNC type with: |
| 2052 | * - *name*, non-empty/non-NULL name; |
| 2053 | * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; |
| 2054 | * Returns: |
| 2055 | * - >0, type ID of newly added BTF type; |
| 2056 | * - <0, on error. |
| 2057 | */ |
| 2058 | int btf__add_func(struct btf *btf, const char *name, |
| 2059 | enum btf_func_linkage linkage, int proto_type_id) |
| 2060 | { |
| 2061 | int id; |
| 2062 | |
| 2063 | if (!name || !name[0]) |
| 2064 | return -EINVAL; |
| 2065 | if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && |
| 2066 | linkage != BTF_FUNC_EXTERN) |
| 2067 | return -EINVAL; |
| 2068 | |
| 2069 | id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); |
| 2070 | if (id > 0) { |
| 2071 | struct btf_type *t = btf_type_by_id(btf, id); |
| 2072 | |
| 2073 | t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); |
| 2074 | } |
| 2075 | return id; |
| 2076 | } |
| 2077 | |
| 2078 | /* |
| 2079 | * Append new BTF_KIND_FUNC_PROTO with: |
| 2080 | * - *ret_type_id* - type ID for return result of a function. |
| 2081 | * |
| 2082 | * Function prototype initially has no arguments, but they can be added by |
| 2083 | * btf__add_func_param() one by one, immediately after |
| 2084 | * btf__add_func_proto() succeeded. |
| 2085 | * |
| 2086 | * Returns: |
| 2087 | * - >0, type ID of newly added BTF type; |
| 2088 | * - <0, on error. |
| 2089 | */ |
| 2090 | int btf__add_func_proto(struct btf *btf, int ret_type_id) |
| 2091 | { |
| 2092 | struct btf_type *t; |
| 2093 | int sz, err; |
| 2094 | |
| 2095 | if (validate_type_id(ret_type_id)) |
| 2096 | return -EINVAL; |
| 2097 | |
| 2098 | if (btf_ensure_modifiable(btf)) |
| 2099 | return -ENOMEM; |
| 2100 | |
| 2101 | sz = sizeof(struct btf_type); |
| 2102 | t = btf_add_type_mem(btf, sz); |
| 2103 | if (!t) |
| 2104 | return -ENOMEM; |
| 2105 | |
| 2106 | /* start out with vlen=0; this will be adjusted when adding enum |
| 2107 | * values, if necessary |
| 2108 | */ |
| 2109 | t->name_off = 0; |
| 2110 | t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); |
| 2111 | t->type = ret_type_id; |
| 2112 | |
| 2113 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 2114 | if (err) |
| 2115 | return err; |
| 2116 | |
| 2117 | btf->hdr->type_len += sz; |
| 2118 | btf->hdr->str_off += sz; |
| 2119 | btf->nr_types++; |
| 2120 | return btf->nr_types; |
| 2121 | } |
| 2122 | |
| 2123 | /* |
| 2124 | * Append new function parameter for current FUNC_PROTO type with: |
| 2125 | * - *name* - parameter name, can be NULL or empty; |
| 2126 | * - *type_id* - type ID describing the type of the parameter. |
| 2127 | * Returns: |
| 2128 | * - 0, on success; |
| 2129 | * - <0, on error. |
| 2130 | */ |
| 2131 | int btf__add_func_param(struct btf *btf, const char *name, int type_id) |
| 2132 | { |
| 2133 | struct btf_type *t; |
| 2134 | struct btf_param *p; |
| 2135 | int sz, name_off = 0; |
| 2136 | |
| 2137 | if (validate_type_id(type_id)) |
| 2138 | return -EINVAL; |
| 2139 | |
| 2140 | /* last type should be BTF_KIND_FUNC_PROTO */ |
| 2141 | if (btf->nr_types == 0) |
| 2142 | return -EINVAL; |
| 2143 | t = btf_type_by_id(btf, btf->nr_types); |
| 2144 | if (!btf_is_func_proto(t)) |
| 2145 | return -EINVAL; |
| 2146 | |
| 2147 | /* decompose and invalidate raw data */ |
| 2148 | if (btf_ensure_modifiable(btf)) |
| 2149 | return -ENOMEM; |
| 2150 | |
| 2151 | sz = sizeof(struct btf_param); |
| 2152 | p = btf_add_type_mem(btf, sz); |
| 2153 | if (!p) |
| 2154 | return -ENOMEM; |
| 2155 | |
| 2156 | if (name && name[0]) { |
| 2157 | name_off = btf__add_str(btf, name); |
| 2158 | if (name_off < 0) |
| 2159 | return name_off; |
| 2160 | } |
| 2161 | |
| 2162 | p->name_off = name_off; |
| 2163 | p->type = type_id; |
| 2164 | |
| 2165 | /* update parent type's vlen */ |
| 2166 | t = btf_type_by_id(btf, btf->nr_types); |
| 2167 | btf_type_inc_vlen(t); |
| 2168 | |
| 2169 | btf->hdr->type_len += sz; |
| 2170 | btf->hdr->str_off += sz; |
| 2171 | return 0; |
| 2172 | } |
| 2173 | |
| 2174 | /* |
| 2175 | * Append new BTF_KIND_VAR type with: |
| 2176 | * - *name* - non-empty/non-NULL name; |
| 2177 | * - *linkage* - variable linkage, one of BTF_VAR_STATIC, |
| 2178 | * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; |
| 2179 | * - *type_id* - type ID of the type describing the type of the variable. |
| 2180 | * Returns: |
| 2181 | * - >0, type ID of newly added BTF type; |
| 2182 | * - <0, on error. |
| 2183 | */ |
| 2184 | int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) |
| 2185 | { |
| 2186 | struct btf_type *t; |
| 2187 | struct btf_var *v; |
| 2188 | int sz, err, name_off; |
| 2189 | |
| 2190 | /* non-empty name */ |
| 2191 | if (!name || !name[0]) |
| 2192 | return -EINVAL; |
| 2193 | if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && |
| 2194 | linkage != BTF_VAR_GLOBAL_EXTERN) |
| 2195 | return -EINVAL; |
| 2196 | if (validate_type_id(type_id)) |
| 2197 | return -EINVAL; |
| 2198 | |
| 2199 | /* deconstruct BTF, if necessary, and invalidate raw_data */ |
| 2200 | if (btf_ensure_modifiable(btf)) |
| 2201 | return -ENOMEM; |
| 2202 | |
| 2203 | sz = sizeof(struct btf_type) + sizeof(struct btf_var); |
| 2204 | t = btf_add_type_mem(btf, sz); |
| 2205 | if (!t) |
| 2206 | return -ENOMEM; |
| 2207 | |
| 2208 | name_off = btf__add_str(btf, name); |
| 2209 | if (name_off < 0) |
| 2210 | return name_off; |
| 2211 | |
| 2212 | t->name_off = name_off; |
| 2213 | t->info = btf_type_info(BTF_KIND_VAR, 0, 0); |
| 2214 | t->type = type_id; |
| 2215 | |
| 2216 | v = btf_var(t); |
| 2217 | v->linkage = linkage; |
| 2218 | |
| 2219 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 2220 | if (err) |
| 2221 | return err; |
| 2222 | |
| 2223 | btf->hdr->type_len += sz; |
| 2224 | btf->hdr->str_off += sz; |
| 2225 | btf->nr_types++; |
| 2226 | return btf->nr_types; |
| 2227 | } |
| 2228 | |
| 2229 | /* |
| 2230 | * Append new BTF_KIND_DATASEC type with: |
| 2231 | * - *name* - non-empty/non-NULL name; |
| 2232 | * - *byte_sz* - data section size, in bytes. |
| 2233 | * |
| 2234 | * Data section is initially empty. Variables info can be added with |
| 2235 | * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. |
| 2236 | * |
| 2237 | * Returns: |
| 2238 | * - >0, type ID of newly added BTF type; |
| 2239 | * - <0, on error. |
| 2240 | */ |
| 2241 | int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) |
| 2242 | { |
| 2243 | struct btf_type *t; |
| 2244 | int sz, err, name_off; |
| 2245 | |
| 2246 | /* non-empty name */ |
| 2247 | if (!name || !name[0]) |
| 2248 | return -EINVAL; |
| 2249 | |
| 2250 | if (btf_ensure_modifiable(btf)) |
| 2251 | return -ENOMEM; |
| 2252 | |
| 2253 | sz = sizeof(struct btf_type); |
| 2254 | t = btf_add_type_mem(btf, sz); |
| 2255 | if (!t) |
| 2256 | return -ENOMEM; |
| 2257 | |
| 2258 | name_off = btf__add_str(btf, name); |
| 2259 | if (name_off < 0) |
| 2260 | return name_off; |
| 2261 | |
| 2262 | /* start with vlen=0, which will be update as var_secinfos are added */ |
| 2263 | t->name_off = name_off; |
| 2264 | t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); |
| 2265 | t->size = byte_sz; |
| 2266 | |
| 2267 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
| 2268 | if (err) |
| 2269 | return err; |
| 2270 | |
| 2271 | btf->hdr->type_len += sz; |
| 2272 | btf->hdr->str_off += sz; |
| 2273 | btf->nr_types++; |
| 2274 | return btf->nr_types; |
| 2275 | } |
| 2276 | |
| 2277 | /* |
| 2278 | * Append new data section variable information entry for current DATASEC type: |
| 2279 | * - *var_type_id* - type ID, describing type of the variable; |
| 2280 | * - *offset* - variable offset within data section, in bytes; |
| 2281 | * - *byte_sz* - variable size, in bytes. |
| 2282 | * |
| 2283 | * Returns: |
| 2284 | * - 0, on success; |
| 2285 | * - <0, on error. |
| 2286 | */ |
| 2287 | int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) |
| 2288 | { |
| 2289 | struct btf_type *t; |
| 2290 | struct btf_var_secinfo *v; |
| 2291 | int sz; |
| 2292 | |
| 2293 | /* last type should be BTF_KIND_DATASEC */ |
| 2294 | if (btf->nr_types == 0) |
| 2295 | return -EINVAL; |
| 2296 | t = btf_type_by_id(btf, btf->nr_types); |
| 2297 | if (!btf_is_datasec(t)) |
| 2298 | return -EINVAL; |
| 2299 | |
| 2300 | if (validate_type_id(var_type_id)) |
| 2301 | return -EINVAL; |
| 2302 | |
| 2303 | /* decompose and invalidate raw data */ |
| 2304 | if (btf_ensure_modifiable(btf)) |
| 2305 | return -ENOMEM; |
| 2306 | |
| 2307 | sz = sizeof(struct btf_var_secinfo); |
| 2308 | v = btf_add_type_mem(btf, sz); |
| 2309 | if (!v) |
| 2310 | return -ENOMEM; |
| 2311 | |
| 2312 | v->type = var_type_id; |
| 2313 | v->offset = offset; |
| 2314 | v->size = byte_sz; |
| 2315 | |
| 2316 | /* update parent type's vlen */ |
| 2317 | t = btf_type_by_id(btf, btf->nr_types); |
| 2318 | btf_type_inc_vlen(t); |
| 2319 | |
| 2320 | btf->hdr->type_len += sz; |
| 2321 | btf->hdr->str_off += sz; |
| 2322 | return 0; |
| 2323 | } |
| 2324 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2325 | struct btf_ext_sec_setup_param { |
| 2326 | __u32 off; |
| 2327 | __u32 len; |
| 2328 | __u32 min_rec_size; |
| 2329 | struct btf_ext_info *ext_info; |
| 2330 | const char *desc; |
| 2331 | }; |
| 2332 | |
| 2333 | static int btf_ext_setup_info(struct btf_ext *btf_ext, |
| 2334 | struct btf_ext_sec_setup_param *ext_sec) |
| 2335 | { |
| 2336 | const struct btf_ext_info_sec *sinfo; |
| 2337 | struct btf_ext_info *ext_info; |
| 2338 | __u32 info_left, record_size; |
| 2339 | /* The start of the info sec (including the __u32 record_size). */ |
| 2340 | void *info; |
| 2341 | |
| 2342 | if (ext_sec->len == 0) |
| 2343 | return 0; |
| 2344 | |
| 2345 | if (ext_sec->off & 0x03) { |
| 2346 | pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", |
| 2347 | ext_sec->desc); |
| 2348 | return -EINVAL; |
| 2349 | } |
| 2350 | |
| 2351 | info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; |
| 2352 | info_left = ext_sec->len; |
| 2353 | |
| 2354 | if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { |
| 2355 | pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", |
| 2356 | ext_sec->desc, ext_sec->off, ext_sec->len); |
| 2357 | return -EINVAL; |
| 2358 | } |
| 2359 | |
| 2360 | /* At least a record size */ |
| 2361 | if (info_left < sizeof(__u32)) { |
| 2362 | pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); |
| 2363 | return -EINVAL; |
| 2364 | } |
| 2365 | |
| 2366 | /* The record size needs to meet the minimum standard */ |
| 2367 | record_size = *(__u32 *)info; |
| 2368 | if (record_size < ext_sec->min_rec_size || |
| 2369 | record_size & 0x03) { |
| 2370 | pr_debug("%s section in .BTF.ext has invalid record size %u\n", |
| 2371 | ext_sec->desc, record_size); |
| 2372 | return -EINVAL; |
| 2373 | } |
| 2374 | |
| 2375 | sinfo = info + sizeof(__u32); |
| 2376 | info_left -= sizeof(__u32); |
| 2377 | |
| 2378 | /* If no records, return failure now so .BTF.ext won't be used. */ |
| 2379 | if (!info_left) { |
| 2380 | pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); |
| 2381 | return -EINVAL; |
| 2382 | } |
| 2383 | |
| 2384 | while (info_left) { |
| 2385 | unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); |
| 2386 | __u64 total_record_size; |
| 2387 | __u32 num_records; |
| 2388 | |
| 2389 | if (info_left < sec_hdrlen) { |
| 2390 | pr_debug("%s section header is not found in .BTF.ext\n", |
| 2391 | ext_sec->desc); |
| 2392 | return -EINVAL; |
| 2393 | } |
| 2394 | |
| 2395 | num_records = sinfo->num_info; |
| 2396 | if (num_records == 0) { |
| 2397 | pr_debug("%s section has incorrect num_records in .BTF.ext\n", |
| 2398 | ext_sec->desc); |
| 2399 | return -EINVAL; |
| 2400 | } |
| 2401 | |
| 2402 | total_record_size = sec_hdrlen + |
| 2403 | (__u64)num_records * record_size; |
| 2404 | if (info_left < total_record_size) { |
| 2405 | pr_debug("%s section has incorrect num_records in .BTF.ext\n", |
| 2406 | ext_sec->desc); |
| 2407 | return -EINVAL; |
| 2408 | } |
| 2409 | |
| 2410 | info_left -= total_record_size; |
| 2411 | sinfo = (void *)sinfo + total_record_size; |
| 2412 | } |
| 2413 | |
| 2414 | ext_info = ext_sec->ext_info; |
| 2415 | ext_info->len = ext_sec->len - sizeof(__u32); |
| 2416 | ext_info->rec_size = record_size; |
| 2417 | ext_info->info = info + sizeof(__u32); |
| 2418 | |
| 2419 | return 0; |
| 2420 | } |
| 2421 | |
| 2422 | static int btf_ext_setup_func_info(struct btf_ext *btf_ext) |
| 2423 | { |
| 2424 | struct btf_ext_sec_setup_param param = { |
| 2425 | .off = btf_ext->hdr->func_info_off, |
| 2426 | .len = btf_ext->hdr->func_info_len, |
| 2427 | .min_rec_size = sizeof(struct bpf_func_info_min), |
| 2428 | .ext_info = &btf_ext->func_info, |
| 2429 | .desc = "func_info" |
| 2430 | }; |
| 2431 | |
| 2432 | return btf_ext_setup_info(btf_ext, ¶m); |
| 2433 | } |
| 2434 | |
| 2435 | static int btf_ext_setup_line_info(struct btf_ext *btf_ext) |
| 2436 | { |
| 2437 | struct btf_ext_sec_setup_param param = { |
| 2438 | .off = btf_ext->hdr->line_info_off, |
| 2439 | .len = btf_ext->hdr->line_info_len, |
| 2440 | .min_rec_size = sizeof(struct bpf_line_info_min), |
| 2441 | .ext_info = &btf_ext->line_info, |
| 2442 | .desc = "line_info", |
| 2443 | }; |
| 2444 | |
| 2445 | return btf_ext_setup_info(btf_ext, ¶m); |
| 2446 | } |
| 2447 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2448 | static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2449 | { |
| 2450 | struct btf_ext_sec_setup_param param = { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2451 | .off = btf_ext->hdr->core_relo_off, |
| 2452 | .len = btf_ext->hdr->core_relo_len, |
| 2453 | .min_rec_size = sizeof(struct bpf_core_relo), |
| 2454 | .ext_info = &btf_ext->core_relo_info, |
| 2455 | .desc = "core_relo", |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2456 | }; |
| 2457 | |
| 2458 | return btf_ext_setup_info(btf_ext, ¶m); |
| 2459 | } |
| 2460 | |
| 2461 | static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) |
| 2462 | { |
| 2463 | const struct btf_ext_header *hdr = (struct btf_ext_header *)data; |
| 2464 | |
| 2465 | if (data_size < offsetofend(struct btf_ext_header, hdr_len) || |
| 2466 | data_size < hdr->hdr_len) { |
| 2467 | pr_debug("BTF.ext header not found"); |
| 2468 | return -EINVAL; |
| 2469 | } |
| 2470 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2471 | if (hdr->magic == bswap_16(BTF_MAGIC)) { |
| 2472 | pr_warn("BTF.ext in non-native endianness is not supported\n"); |
| 2473 | return -ENOTSUP; |
| 2474 | } else if (hdr->magic != BTF_MAGIC) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2475 | pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); |
| 2476 | return -EINVAL; |
| 2477 | } |
| 2478 | |
| 2479 | if (hdr->version != BTF_VERSION) { |
| 2480 | pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); |
| 2481 | return -ENOTSUP; |
| 2482 | } |
| 2483 | |
| 2484 | if (hdr->flags) { |
| 2485 | pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); |
| 2486 | return -ENOTSUP; |
| 2487 | } |
| 2488 | |
| 2489 | if (data_size == hdr->hdr_len) { |
| 2490 | pr_debug("BTF.ext has no data\n"); |
| 2491 | return -EINVAL; |
| 2492 | } |
| 2493 | |
| 2494 | return 0; |
| 2495 | } |
| 2496 | |
| 2497 | void btf_ext__free(struct btf_ext *btf_ext) |
| 2498 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2499 | if (IS_ERR_OR_NULL(btf_ext)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2500 | return; |
| 2501 | free(btf_ext->data); |
| 2502 | free(btf_ext); |
| 2503 | } |
| 2504 | |
| 2505 | struct btf_ext *btf_ext__new(__u8 *data, __u32 size) |
| 2506 | { |
| 2507 | struct btf_ext *btf_ext; |
| 2508 | int err; |
| 2509 | |
| 2510 | err = btf_ext_parse_hdr(data, size); |
| 2511 | if (err) |
| 2512 | return ERR_PTR(err); |
| 2513 | |
| 2514 | btf_ext = calloc(1, sizeof(struct btf_ext)); |
| 2515 | if (!btf_ext) |
| 2516 | return ERR_PTR(-ENOMEM); |
| 2517 | |
| 2518 | btf_ext->data_size = size; |
| 2519 | btf_ext->data = malloc(size); |
| 2520 | if (!btf_ext->data) { |
| 2521 | err = -ENOMEM; |
| 2522 | goto done; |
| 2523 | } |
| 2524 | memcpy(btf_ext->data, data, size); |
| 2525 | |
| 2526 | if (btf_ext->hdr->hdr_len < |
| 2527 | offsetofend(struct btf_ext_header, line_info_len)) |
| 2528 | goto done; |
| 2529 | err = btf_ext_setup_func_info(btf_ext); |
| 2530 | if (err) |
| 2531 | goto done; |
| 2532 | |
| 2533 | err = btf_ext_setup_line_info(btf_ext); |
| 2534 | if (err) |
| 2535 | goto done; |
| 2536 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2537 | if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2538 | goto done; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2539 | err = btf_ext_setup_core_relos(btf_ext); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2540 | if (err) |
| 2541 | goto done; |
| 2542 | |
| 2543 | done: |
| 2544 | if (err) { |
| 2545 | btf_ext__free(btf_ext); |
| 2546 | return ERR_PTR(err); |
| 2547 | } |
| 2548 | |
| 2549 | return btf_ext; |
| 2550 | } |
| 2551 | |
| 2552 | const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) |
| 2553 | { |
| 2554 | *size = btf_ext->data_size; |
| 2555 | return btf_ext->data; |
| 2556 | } |
| 2557 | |
| 2558 | static int btf_ext_reloc_info(const struct btf *btf, |
| 2559 | const struct btf_ext_info *ext_info, |
| 2560 | const char *sec_name, __u32 insns_cnt, |
| 2561 | void **info, __u32 *cnt) |
| 2562 | { |
| 2563 | __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); |
| 2564 | __u32 i, record_size, existing_len, records_len; |
| 2565 | struct btf_ext_info_sec *sinfo; |
| 2566 | const char *info_sec_name; |
| 2567 | __u64 remain_len; |
| 2568 | void *data; |
| 2569 | |
| 2570 | record_size = ext_info->rec_size; |
| 2571 | sinfo = ext_info->info; |
| 2572 | remain_len = ext_info->len; |
| 2573 | while (remain_len > 0) { |
| 2574 | records_len = sinfo->num_info * record_size; |
| 2575 | info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); |
| 2576 | if (strcmp(info_sec_name, sec_name)) { |
| 2577 | remain_len -= sec_hdrlen + records_len; |
| 2578 | sinfo = (void *)sinfo + sec_hdrlen + records_len; |
| 2579 | continue; |
| 2580 | } |
| 2581 | |
| 2582 | existing_len = (*cnt) * record_size; |
| 2583 | data = realloc(*info, existing_len + records_len); |
| 2584 | if (!data) |
| 2585 | return -ENOMEM; |
| 2586 | |
| 2587 | memcpy(data + existing_len, sinfo->data, records_len); |
| 2588 | /* adjust insn_off only, the rest data will be passed |
| 2589 | * to the kernel. |
| 2590 | */ |
| 2591 | for (i = 0; i < sinfo->num_info; i++) { |
| 2592 | __u32 *insn_off; |
| 2593 | |
| 2594 | insn_off = data + existing_len + (i * record_size); |
| 2595 | *insn_off = *insn_off / sizeof(struct bpf_insn) + |
| 2596 | insns_cnt; |
| 2597 | } |
| 2598 | *info = data; |
| 2599 | *cnt += sinfo->num_info; |
| 2600 | return 0; |
| 2601 | } |
| 2602 | |
| 2603 | return -ENOENT; |
| 2604 | } |
| 2605 | |
| 2606 | int btf_ext__reloc_func_info(const struct btf *btf, |
| 2607 | const struct btf_ext *btf_ext, |
| 2608 | const char *sec_name, __u32 insns_cnt, |
| 2609 | void **func_info, __u32 *cnt) |
| 2610 | { |
| 2611 | return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, |
| 2612 | insns_cnt, func_info, cnt); |
| 2613 | } |
| 2614 | |
| 2615 | int btf_ext__reloc_line_info(const struct btf *btf, |
| 2616 | const struct btf_ext *btf_ext, |
| 2617 | const char *sec_name, __u32 insns_cnt, |
| 2618 | void **line_info, __u32 *cnt) |
| 2619 | { |
| 2620 | return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, |
| 2621 | insns_cnt, line_info, cnt); |
| 2622 | } |
| 2623 | |
| 2624 | __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) |
| 2625 | { |
| 2626 | return btf_ext->func_info.rec_size; |
| 2627 | } |
| 2628 | |
| 2629 | __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) |
| 2630 | { |
| 2631 | return btf_ext->line_info.rec_size; |
| 2632 | } |
| 2633 | |
| 2634 | struct btf_dedup; |
| 2635 | |
| 2636 | static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, |
| 2637 | const struct btf_dedup_opts *opts); |
| 2638 | static void btf_dedup_free(struct btf_dedup *d); |
| 2639 | static int btf_dedup_strings(struct btf_dedup *d); |
| 2640 | static int btf_dedup_prim_types(struct btf_dedup *d); |
| 2641 | static int btf_dedup_struct_types(struct btf_dedup *d); |
| 2642 | static int btf_dedup_ref_types(struct btf_dedup *d); |
| 2643 | static int btf_dedup_compact_types(struct btf_dedup *d); |
| 2644 | static int btf_dedup_remap_types(struct btf_dedup *d); |
| 2645 | |
| 2646 | /* |
| 2647 | * Deduplicate BTF types and strings. |
| 2648 | * |
| 2649 | * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF |
| 2650 | * section with all BTF type descriptors and string data. It overwrites that |
| 2651 | * memory in-place with deduplicated types and strings without any loss of |
| 2652 | * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section |
| 2653 | * is provided, all the strings referenced from .BTF.ext section are honored |
| 2654 | * and updated to point to the right offsets after deduplication. |
| 2655 | * |
| 2656 | * If function returns with error, type/string data might be garbled and should |
| 2657 | * be discarded. |
| 2658 | * |
| 2659 | * More verbose and detailed description of both problem btf_dedup is solving, |
| 2660 | * as well as solution could be found at: |
| 2661 | * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html |
| 2662 | * |
| 2663 | * Problem description and justification |
| 2664 | * ===================================== |
| 2665 | * |
| 2666 | * BTF type information is typically emitted either as a result of conversion |
| 2667 | * from DWARF to BTF or directly by compiler. In both cases, each compilation |
| 2668 | * unit contains information about a subset of all the types that are used |
| 2669 | * in an application. These subsets are frequently overlapping and contain a lot |
| 2670 | * of duplicated information when later concatenated together into a single |
| 2671 | * binary. This algorithm ensures that each unique type is represented by single |
| 2672 | * BTF type descriptor, greatly reducing resulting size of BTF data. |
| 2673 | * |
| 2674 | * Compilation unit isolation and subsequent duplication of data is not the only |
| 2675 | * problem. The same type hierarchy (e.g., struct and all the type that struct |
| 2676 | * references) in different compilation units can be represented in BTF to |
| 2677 | * various degrees of completeness (or, rather, incompleteness) due to |
| 2678 | * struct/union forward declarations. |
| 2679 | * |
| 2680 | * Let's take a look at an example, that we'll use to better understand the |
| 2681 | * problem (and solution). Suppose we have two compilation units, each using |
| 2682 | * same `struct S`, but each of them having incomplete type information about |
| 2683 | * struct's fields: |
| 2684 | * |
| 2685 | * // CU #1: |
| 2686 | * struct S; |
| 2687 | * struct A { |
| 2688 | * int a; |
| 2689 | * struct A* self; |
| 2690 | * struct S* parent; |
| 2691 | * }; |
| 2692 | * struct B; |
| 2693 | * struct S { |
| 2694 | * struct A* a_ptr; |
| 2695 | * struct B* b_ptr; |
| 2696 | * }; |
| 2697 | * |
| 2698 | * // CU #2: |
| 2699 | * struct S; |
| 2700 | * struct A; |
| 2701 | * struct B { |
| 2702 | * int b; |
| 2703 | * struct B* self; |
| 2704 | * struct S* parent; |
| 2705 | * }; |
| 2706 | * struct S { |
| 2707 | * struct A* a_ptr; |
| 2708 | * struct B* b_ptr; |
| 2709 | * }; |
| 2710 | * |
| 2711 | * In case of CU #1, BTF data will know only that `struct B` exist (but no |
| 2712 | * more), but will know the complete type information about `struct A`. While |
| 2713 | * for CU #2, it will know full type information about `struct B`, but will |
| 2714 | * only know about forward declaration of `struct A` (in BTF terms, it will |
| 2715 | * have `BTF_KIND_FWD` type descriptor with name `B`). |
| 2716 | * |
| 2717 | * This compilation unit isolation means that it's possible that there is no |
| 2718 | * single CU with complete type information describing structs `S`, `A`, and |
| 2719 | * `B`. Also, we might get tons of duplicated and redundant type information. |
| 2720 | * |
| 2721 | * Additional complication we need to keep in mind comes from the fact that |
| 2722 | * types, in general, can form graphs containing cycles, not just DAGs. |
| 2723 | * |
| 2724 | * While algorithm does deduplication, it also merges and resolves type |
| 2725 | * information (unless disabled throught `struct btf_opts`), whenever possible. |
| 2726 | * E.g., in the example above with two compilation units having partial type |
| 2727 | * information for structs `A` and `B`, the output of algorithm will emit |
| 2728 | * a single copy of each BTF type that describes structs `A`, `B`, and `S` |
| 2729 | * (as well as type information for `int` and pointers), as if they were defined |
| 2730 | * in a single compilation unit as: |
| 2731 | * |
| 2732 | * struct A { |
| 2733 | * int a; |
| 2734 | * struct A* self; |
| 2735 | * struct S* parent; |
| 2736 | * }; |
| 2737 | * struct B { |
| 2738 | * int b; |
| 2739 | * struct B* self; |
| 2740 | * struct S* parent; |
| 2741 | * }; |
| 2742 | * struct S { |
| 2743 | * struct A* a_ptr; |
| 2744 | * struct B* b_ptr; |
| 2745 | * }; |
| 2746 | * |
| 2747 | * Algorithm summary |
| 2748 | * ================= |
| 2749 | * |
| 2750 | * Algorithm completes its work in 6 separate passes: |
| 2751 | * |
| 2752 | * 1. Strings deduplication. |
| 2753 | * 2. Primitive types deduplication (int, enum, fwd). |
| 2754 | * 3. Struct/union types deduplication. |
| 2755 | * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func |
| 2756 | * protos, and const/volatile/restrict modifiers). |
| 2757 | * 5. Types compaction. |
| 2758 | * 6. Types remapping. |
| 2759 | * |
| 2760 | * Algorithm determines canonical type descriptor, which is a single |
| 2761 | * representative type for each truly unique type. This canonical type is the |
| 2762 | * one that will go into final deduplicated BTF type information. For |
| 2763 | * struct/unions, it is also the type that algorithm will merge additional type |
| 2764 | * information into (while resolving FWDs), as it discovers it from data in |
| 2765 | * other CUs. Each input BTF type eventually gets either mapped to itself, if |
| 2766 | * that type is canonical, or to some other type, if that type is equivalent |
| 2767 | * and was chosen as canonical representative. This mapping is stored in |
| 2768 | * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that |
| 2769 | * FWD type got resolved to. |
| 2770 | * |
| 2771 | * To facilitate fast discovery of canonical types, we also maintain canonical |
| 2772 | * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash |
| 2773 | * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types |
| 2774 | * that match that signature. With sufficiently good choice of type signature |
| 2775 | * hashing function, we can limit number of canonical types for each unique type |
| 2776 | * signature to a very small number, allowing to find canonical type for any |
| 2777 | * duplicated type very quickly. |
| 2778 | * |
| 2779 | * Struct/union deduplication is the most critical part and algorithm for |
| 2780 | * deduplicating structs/unions is described in greater details in comments for |
| 2781 | * `btf_dedup_is_equiv` function. |
| 2782 | */ |
| 2783 | int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, |
| 2784 | const struct btf_dedup_opts *opts) |
| 2785 | { |
| 2786 | struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); |
| 2787 | int err; |
| 2788 | |
| 2789 | if (IS_ERR(d)) { |
| 2790 | pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); |
| 2791 | return -EINVAL; |
| 2792 | } |
| 2793 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2794 | if (btf_ensure_modifiable(btf)) |
| 2795 | return -ENOMEM; |
| 2796 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2797 | err = btf_dedup_strings(d); |
| 2798 | if (err < 0) { |
| 2799 | pr_debug("btf_dedup_strings failed:%d\n", err); |
| 2800 | goto done; |
| 2801 | } |
| 2802 | err = btf_dedup_prim_types(d); |
| 2803 | if (err < 0) { |
| 2804 | pr_debug("btf_dedup_prim_types failed:%d\n", err); |
| 2805 | goto done; |
| 2806 | } |
| 2807 | err = btf_dedup_struct_types(d); |
| 2808 | if (err < 0) { |
| 2809 | pr_debug("btf_dedup_struct_types failed:%d\n", err); |
| 2810 | goto done; |
| 2811 | } |
| 2812 | err = btf_dedup_ref_types(d); |
| 2813 | if (err < 0) { |
| 2814 | pr_debug("btf_dedup_ref_types failed:%d\n", err); |
| 2815 | goto done; |
| 2816 | } |
| 2817 | err = btf_dedup_compact_types(d); |
| 2818 | if (err < 0) { |
| 2819 | pr_debug("btf_dedup_compact_types failed:%d\n", err); |
| 2820 | goto done; |
| 2821 | } |
| 2822 | err = btf_dedup_remap_types(d); |
| 2823 | if (err < 0) { |
| 2824 | pr_debug("btf_dedup_remap_types failed:%d\n", err); |
| 2825 | goto done; |
| 2826 | } |
| 2827 | |
| 2828 | done: |
| 2829 | btf_dedup_free(d); |
| 2830 | return err; |
| 2831 | } |
| 2832 | |
| 2833 | #define BTF_UNPROCESSED_ID ((__u32)-1) |
| 2834 | #define BTF_IN_PROGRESS_ID ((__u32)-2) |
| 2835 | |
| 2836 | struct btf_dedup { |
| 2837 | /* .BTF section to be deduped in-place */ |
| 2838 | struct btf *btf; |
| 2839 | /* |
| 2840 | * Optional .BTF.ext section. When provided, any strings referenced |
| 2841 | * from it will be taken into account when deduping strings |
| 2842 | */ |
| 2843 | struct btf_ext *btf_ext; |
| 2844 | /* |
| 2845 | * This is a map from any type's signature hash to a list of possible |
| 2846 | * canonical representative type candidates. Hash collisions are |
| 2847 | * ignored, so even types of various kinds can share same list of |
| 2848 | * candidates, which is fine because we rely on subsequent |
| 2849 | * btf_xxx_equal() checks to authoritatively verify type equality. |
| 2850 | */ |
| 2851 | struct hashmap *dedup_table; |
| 2852 | /* Canonical types map */ |
| 2853 | __u32 *map; |
| 2854 | /* Hypothetical mapping, used during type graph equivalence checks */ |
| 2855 | __u32 *hypot_map; |
| 2856 | __u32 *hypot_list; |
| 2857 | size_t hypot_cnt; |
| 2858 | size_t hypot_cap; |
| 2859 | /* Various option modifying behavior of algorithm */ |
| 2860 | struct btf_dedup_opts opts; |
| 2861 | }; |
| 2862 | |
| 2863 | struct btf_str_ptr { |
| 2864 | const char *str; |
| 2865 | __u32 new_off; |
| 2866 | bool used; |
| 2867 | }; |
| 2868 | |
| 2869 | struct btf_str_ptrs { |
| 2870 | struct btf_str_ptr *ptrs; |
| 2871 | const char *data; |
| 2872 | __u32 cnt; |
| 2873 | __u32 cap; |
| 2874 | }; |
| 2875 | |
| 2876 | static long hash_combine(long h, long value) |
| 2877 | { |
| 2878 | return h * 31 + value; |
| 2879 | } |
| 2880 | |
| 2881 | #define for_each_dedup_cand(d, node, hash) \ |
| 2882 | hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) |
| 2883 | |
| 2884 | static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) |
| 2885 | { |
| 2886 | return hashmap__append(d->dedup_table, |
| 2887 | (void *)hash, (void *)(long)type_id); |
| 2888 | } |
| 2889 | |
| 2890 | static int btf_dedup_hypot_map_add(struct btf_dedup *d, |
| 2891 | __u32 from_id, __u32 to_id) |
| 2892 | { |
| 2893 | if (d->hypot_cnt == d->hypot_cap) { |
| 2894 | __u32 *new_list; |
| 2895 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2896 | d->hypot_cap += max((size_t)16, d->hypot_cap / 2); |
| 2897 | new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2898 | if (!new_list) |
| 2899 | return -ENOMEM; |
| 2900 | d->hypot_list = new_list; |
| 2901 | } |
| 2902 | d->hypot_list[d->hypot_cnt++] = from_id; |
| 2903 | d->hypot_map[from_id] = to_id; |
| 2904 | return 0; |
| 2905 | } |
| 2906 | |
| 2907 | static void btf_dedup_clear_hypot_map(struct btf_dedup *d) |
| 2908 | { |
| 2909 | int i; |
| 2910 | |
| 2911 | for (i = 0; i < d->hypot_cnt; i++) |
| 2912 | d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; |
| 2913 | d->hypot_cnt = 0; |
| 2914 | } |
| 2915 | |
| 2916 | static void btf_dedup_free(struct btf_dedup *d) |
| 2917 | { |
| 2918 | hashmap__free(d->dedup_table); |
| 2919 | d->dedup_table = NULL; |
| 2920 | |
| 2921 | free(d->map); |
| 2922 | d->map = NULL; |
| 2923 | |
| 2924 | free(d->hypot_map); |
| 2925 | d->hypot_map = NULL; |
| 2926 | |
| 2927 | free(d->hypot_list); |
| 2928 | d->hypot_list = NULL; |
| 2929 | |
| 2930 | free(d); |
| 2931 | } |
| 2932 | |
| 2933 | static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) |
| 2934 | { |
| 2935 | return (size_t)key; |
| 2936 | } |
| 2937 | |
| 2938 | static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) |
| 2939 | { |
| 2940 | return 0; |
| 2941 | } |
| 2942 | |
| 2943 | static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) |
| 2944 | { |
| 2945 | return k1 == k2; |
| 2946 | } |
| 2947 | |
| 2948 | static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, |
| 2949 | const struct btf_dedup_opts *opts) |
| 2950 | { |
| 2951 | struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); |
| 2952 | hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; |
| 2953 | int i, err = 0; |
| 2954 | |
| 2955 | if (!d) |
| 2956 | return ERR_PTR(-ENOMEM); |
| 2957 | |
| 2958 | d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; |
| 2959 | /* dedup_table_size is now used only to force collisions in tests */ |
| 2960 | if (opts && opts->dedup_table_size == 1) |
| 2961 | hash_fn = btf_dedup_collision_hash_fn; |
| 2962 | |
| 2963 | d->btf = btf; |
| 2964 | d->btf_ext = btf_ext; |
| 2965 | |
| 2966 | d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); |
| 2967 | if (IS_ERR(d->dedup_table)) { |
| 2968 | err = PTR_ERR(d->dedup_table); |
| 2969 | d->dedup_table = NULL; |
| 2970 | goto done; |
| 2971 | } |
| 2972 | |
| 2973 | d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); |
| 2974 | if (!d->map) { |
| 2975 | err = -ENOMEM; |
| 2976 | goto done; |
| 2977 | } |
| 2978 | /* special BTF "void" type is made canonical immediately */ |
| 2979 | d->map[0] = 0; |
| 2980 | for (i = 1; i <= btf->nr_types; i++) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2981 | struct btf_type *t = btf_type_by_id(d->btf, i); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2982 | |
| 2983 | /* VAR and DATASEC are never deduped and are self-canonical */ |
| 2984 | if (btf_is_var(t) || btf_is_datasec(t)) |
| 2985 | d->map[i] = i; |
| 2986 | else |
| 2987 | d->map[i] = BTF_UNPROCESSED_ID; |
| 2988 | } |
| 2989 | |
| 2990 | d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); |
| 2991 | if (!d->hypot_map) { |
| 2992 | err = -ENOMEM; |
| 2993 | goto done; |
| 2994 | } |
| 2995 | for (i = 0; i <= btf->nr_types; i++) |
| 2996 | d->hypot_map[i] = BTF_UNPROCESSED_ID; |
| 2997 | |
| 2998 | done: |
| 2999 | if (err) { |
| 3000 | btf_dedup_free(d); |
| 3001 | return ERR_PTR(err); |
| 3002 | } |
| 3003 | |
| 3004 | return d; |
| 3005 | } |
| 3006 | |
| 3007 | typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); |
| 3008 | |
| 3009 | /* |
| 3010 | * Iterate over all possible places in .BTF and .BTF.ext that can reference |
| 3011 | * string and pass pointer to it to a provided callback `fn`. |
| 3012 | */ |
| 3013 | static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) |
| 3014 | { |
| 3015 | void *line_data_cur, *line_data_end; |
| 3016 | int i, j, r, rec_size; |
| 3017 | struct btf_type *t; |
| 3018 | |
| 3019 | for (i = 1; i <= d->btf->nr_types; i++) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3020 | t = btf_type_by_id(d->btf, i); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3021 | r = fn(&t->name_off, ctx); |
| 3022 | if (r) |
| 3023 | return r; |
| 3024 | |
| 3025 | switch (btf_kind(t)) { |
| 3026 | case BTF_KIND_STRUCT: |
| 3027 | case BTF_KIND_UNION: { |
| 3028 | struct btf_member *m = btf_members(t); |
| 3029 | __u16 vlen = btf_vlen(t); |
| 3030 | |
| 3031 | for (j = 0; j < vlen; j++) { |
| 3032 | r = fn(&m->name_off, ctx); |
| 3033 | if (r) |
| 3034 | return r; |
| 3035 | m++; |
| 3036 | } |
| 3037 | break; |
| 3038 | } |
| 3039 | case BTF_KIND_ENUM: { |
| 3040 | struct btf_enum *m = btf_enum(t); |
| 3041 | __u16 vlen = btf_vlen(t); |
| 3042 | |
| 3043 | for (j = 0; j < vlen; j++) { |
| 3044 | r = fn(&m->name_off, ctx); |
| 3045 | if (r) |
| 3046 | return r; |
| 3047 | m++; |
| 3048 | } |
| 3049 | break; |
| 3050 | } |
| 3051 | case BTF_KIND_FUNC_PROTO: { |
| 3052 | struct btf_param *m = btf_params(t); |
| 3053 | __u16 vlen = btf_vlen(t); |
| 3054 | |
| 3055 | for (j = 0; j < vlen; j++) { |
| 3056 | r = fn(&m->name_off, ctx); |
| 3057 | if (r) |
| 3058 | return r; |
| 3059 | m++; |
| 3060 | } |
| 3061 | break; |
| 3062 | } |
| 3063 | default: |
| 3064 | break; |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | if (!d->btf_ext) |
| 3069 | return 0; |
| 3070 | |
| 3071 | line_data_cur = d->btf_ext->line_info.info; |
| 3072 | line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; |
| 3073 | rec_size = d->btf_ext->line_info.rec_size; |
| 3074 | |
| 3075 | while (line_data_cur < line_data_end) { |
| 3076 | struct btf_ext_info_sec *sec = line_data_cur; |
| 3077 | struct bpf_line_info_min *line_info; |
| 3078 | __u32 num_info = sec->num_info; |
| 3079 | |
| 3080 | r = fn(&sec->sec_name_off, ctx); |
| 3081 | if (r) |
| 3082 | return r; |
| 3083 | |
| 3084 | line_data_cur += sizeof(struct btf_ext_info_sec); |
| 3085 | for (i = 0; i < num_info; i++) { |
| 3086 | line_info = line_data_cur; |
| 3087 | r = fn(&line_info->file_name_off, ctx); |
| 3088 | if (r) |
| 3089 | return r; |
| 3090 | r = fn(&line_info->line_off, ctx); |
| 3091 | if (r) |
| 3092 | return r; |
| 3093 | line_data_cur += rec_size; |
| 3094 | } |
| 3095 | } |
| 3096 | |
| 3097 | return 0; |
| 3098 | } |
| 3099 | |
| 3100 | static int str_sort_by_content(const void *a1, const void *a2) |
| 3101 | { |
| 3102 | const struct btf_str_ptr *p1 = a1; |
| 3103 | const struct btf_str_ptr *p2 = a2; |
| 3104 | |
| 3105 | return strcmp(p1->str, p2->str); |
| 3106 | } |
| 3107 | |
| 3108 | static int str_sort_by_offset(const void *a1, const void *a2) |
| 3109 | { |
| 3110 | const struct btf_str_ptr *p1 = a1; |
| 3111 | const struct btf_str_ptr *p2 = a2; |
| 3112 | |
| 3113 | if (p1->str != p2->str) |
| 3114 | return p1->str < p2->str ? -1 : 1; |
| 3115 | return 0; |
| 3116 | } |
| 3117 | |
| 3118 | static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) |
| 3119 | { |
| 3120 | const struct btf_str_ptr *p = pelem; |
| 3121 | |
| 3122 | if (str_ptr != p->str) |
| 3123 | return (const char *)str_ptr < p->str ? -1 : 1; |
| 3124 | return 0; |
| 3125 | } |
| 3126 | |
| 3127 | static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) |
| 3128 | { |
| 3129 | struct btf_str_ptrs *strs; |
| 3130 | struct btf_str_ptr *s; |
| 3131 | |
| 3132 | if (*str_off_ptr == 0) |
| 3133 | return 0; |
| 3134 | |
| 3135 | strs = ctx; |
| 3136 | s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, |
| 3137 | sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); |
| 3138 | if (!s) |
| 3139 | return -EINVAL; |
| 3140 | s->used = true; |
| 3141 | return 0; |
| 3142 | } |
| 3143 | |
| 3144 | static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) |
| 3145 | { |
| 3146 | struct btf_str_ptrs *strs; |
| 3147 | struct btf_str_ptr *s; |
| 3148 | |
| 3149 | if (*str_off_ptr == 0) |
| 3150 | return 0; |
| 3151 | |
| 3152 | strs = ctx; |
| 3153 | s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, |
| 3154 | sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); |
| 3155 | if (!s) |
| 3156 | return -EINVAL; |
| 3157 | *str_off_ptr = s->new_off; |
| 3158 | return 0; |
| 3159 | } |
| 3160 | |
| 3161 | /* |
| 3162 | * Dedup string and filter out those that are not referenced from either .BTF |
| 3163 | * or .BTF.ext (if provided) sections. |
| 3164 | * |
| 3165 | * This is done by building index of all strings in BTF's string section, |
| 3166 | * then iterating over all entities that can reference strings (e.g., type |
| 3167 | * names, struct field names, .BTF.ext line info, etc) and marking corresponding |
| 3168 | * strings as used. After that all used strings are deduped and compacted into |
| 3169 | * sequential blob of memory and new offsets are calculated. Then all the string |
| 3170 | * references are iterated again and rewritten using new offsets. |
| 3171 | */ |
| 3172 | static int btf_dedup_strings(struct btf_dedup *d) |
| 3173 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3174 | char *start = d->btf->strs_data; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3175 | char *end = start + d->btf->hdr->str_len; |
| 3176 | char *p = start, *tmp_strs = NULL; |
| 3177 | struct btf_str_ptrs strs = { |
| 3178 | .cnt = 0, |
| 3179 | .cap = 0, |
| 3180 | .ptrs = NULL, |
| 3181 | .data = start, |
| 3182 | }; |
| 3183 | int i, j, err = 0, grp_idx; |
| 3184 | bool grp_used; |
| 3185 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3186 | if (d->btf->strs_deduped) |
| 3187 | return 0; |
| 3188 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3189 | /* build index of all strings */ |
| 3190 | while (p < end) { |
| 3191 | if (strs.cnt + 1 > strs.cap) { |
| 3192 | struct btf_str_ptr *new_ptrs; |
| 3193 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3194 | strs.cap += max(strs.cnt / 2, 16U); |
| 3195 | new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0])); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3196 | if (!new_ptrs) { |
| 3197 | err = -ENOMEM; |
| 3198 | goto done; |
| 3199 | } |
| 3200 | strs.ptrs = new_ptrs; |
| 3201 | } |
| 3202 | |
| 3203 | strs.ptrs[strs.cnt].str = p; |
| 3204 | strs.ptrs[strs.cnt].used = false; |
| 3205 | |
| 3206 | p += strlen(p) + 1; |
| 3207 | strs.cnt++; |
| 3208 | } |
| 3209 | |
| 3210 | /* temporary storage for deduplicated strings */ |
| 3211 | tmp_strs = malloc(d->btf->hdr->str_len); |
| 3212 | if (!tmp_strs) { |
| 3213 | err = -ENOMEM; |
| 3214 | goto done; |
| 3215 | } |
| 3216 | |
| 3217 | /* mark all used strings */ |
| 3218 | strs.ptrs[0].used = true; |
| 3219 | err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); |
| 3220 | if (err) |
| 3221 | goto done; |
| 3222 | |
| 3223 | /* sort strings by context, so that we can identify duplicates */ |
| 3224 | qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); |
| 3225 | |
| 3226 | /* |
| 3227 | * iterate groups of equal strings and if any instance in a group was |
| 3228 | * referenced, emit single instance and remember new offset |
| 3229 | */ |
| 3230 | p = tmp_strs; |
| 3231 | grp_idx = 0; |
| 3232 | grp_used = strs.ptrs[0].used; |
| 3233 | /* iterate past end to avoid code duplication after loop */ |
| 3234 | for (i = 1; i <= strs.cnt; i++) { |
| 3235 | /* |
| 3236 | * when i == strs.cnt, we want to skip string comparison and go |
| 3237 | * straight to handling last group of strings (otherwise we'd |
| 3238 | * need to handle last group after the loop w/ duplicated code) |
| 3239 | */ |
| 3240 | if (i < strs.cnt && |
| 3241 | !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { |
| 3242 | grp_used = grp_used || strs.ptrs[i].used; |
| 3243 | continue; |
| 3244 | } |
| 3245 | |
| 3246 | /* |
| 3247 | * this check would have been required after the loop to handle |
| 3248 | * last group of strings, but due to <= condition in a loop |
| 3249 | * we avoid that duplication |
| 3250 | */ |
| 3251 | if (grp_used) { |
| 3252 | int new_off = p - tmp_strs; |
| 3253 | __u32 len = strlen(strs.ptrs[grp_idx].str); |
| 3254 | |
| 3255 | memmove(p, strs.ptrs[grp_idx].str, len + 1); |
| 3256 | for (j = grp_idx; j < i; j++) |
| 3257 | strs.ptrs[j].new_off = new_off; |
| 3258 | p += len + 1; |
| 3259 | } |
| 3260 | |
| 3261 | if (i < strs.cnt) { |
| 3262 | grp_idx = i; |
| 3263 | grp_used = strs.ptrs[i].used; |
| 3264 | } |
| 3265 | } |
| 3266 | |
| 3267 | /* replace original strings with deduped ones */ |
| 3268 | d->btf->hdr->str_len = p - tmp_strs; |
| 3269 | memmove(start, tmp_strs, d->btf->hdr->str_len); |
| 3270 | end = start + d->btf->hdr->str_len; |
| 3271 | |
| 3272 | /* restore original order for further binary search lookups */ |
| 3273 | qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); |
| 3274 | |
| 3275 | /* remap string offsets */ |
| 3276 | err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); |
| 3277 | if (err) |
| 3278 | goto done; |
| 3279 | |
| 3280 | d->btf->hdr->str_len = end - start; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3281 | d->btf->strs_deduped = true; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3282 | |
| 3283 | done: |
| 3284 | free(tmp_strs); |
| 3285 | free(strs.ptrs); |
| 3286 | return err; |
| 3287 | } |
| 3288 | |
| 3289 | static long btf_hash_common(struct btf_type *t) |
| 3290 | { |
| 3291 | long h; |
| 3292 | |
| 3293 | h = hash_combine(0, t->name_off); |
| 3294 | h = hash_combine(h, t->info); |
| 3295 | h = hash_combine(h, t->size); |
| 3296 | return h; |
| 3297 | } |
| 3298 | |
| 3299 | static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) |
| 3300 | { |
| 3301 | return t1->name_off == t2->name_off && |
| 3302 | t1->info == t2->info && |
| 3303 | t1->size == t2->size; |
| 3304 | } |
| 3305 | |
| 3306 | /* Calculate type signature hash of INT. */ |
| 3307 | static long btf_hash_int(struct btf_type *t) |
| 3308 | { |
| 3309 | __u32 info = *(__u32 *)(t + 1); |
| 3310 | long h; |
| 3311 | |
| 3312 | h = btf_hash_common(t); |
| 3313 | h = hash_combine(h, info); |
| 3314 | return h; |
| 3315 | } |
| 3316 | |
| 3317 | /* Check structural equality of two INTs. */ |
| 3318 | static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) |
| 3319 | { |
| 3320 | __u32 info1, info2; |
| 3321 | |
| 3322 | if (!btf_equal_common(t1, t2)) |
| 3323 | return false; |
| 3324 | info1 = *(__u32 *)(t1 + 1); |
| 3325 | info2 = *(__u32 *)(t2 + 1); |
| 3326 | return info1 == info2; |
| 3327 | } |
| 3328 | |
| 3329 | /* Calculate type signature hash of ENUM. */ |
| 3330 | static long btf_hash_enum(struct btf_type *t) |
| 3331 | { |
| 3332 | long h; |
| 3333 | |
| 3334 | /* don't hash vlen and enum members to support enum fwd resolving */ |
| 3335 | h = hash_combine(0, t->name_off); |
| 3336 | h = hash_combine(h, t->info & ~0xffff); |
| 3337 | h = hash_combine(h, t->size); |
| 3338 | return h; |
| 3339 | } |
| 3340 | |
| 3341 | /* Check structural equality of two ENUMs. */ |
| 3342 | static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) |
| 3343 | { |
| 3344 | const struct btf_enum *m1, *m2; |
| 3345 | __u16 vlen; |
| 3346 | int i; |
| 3347 | |
| 3348 | if (!btf_equal_common(t1, t2)) |
| 3349 | return false; |
| 3350 | |
| 3351 | vlen = btf_vlen(t1); |
| 3352 | m1 = btf_enum(t1); |
| 3353 | m2 = btf_enum(t2); |
| 3354 | for (i = 0; i < vlen; i++) { |
| 3355 | if (m1->name_off != m2->name_off || m1->val != m2->val) |
| 3356 | return false; |
| 3357 | m1++; |
| 3358 | m2++; |
| 3359 | } |
| 3360 | return true; |
| 3361 | } |
| 3362 | |
| 3363 | static inline bool btf_is_enum_fwd(struct btf_type *t) |
| 3364 | { |
| 3365 | return btf_is_enum(t) && btf_vlen(t) == 0; |
| 3366 | } |
| 3367 | |
| 3368 | static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) |
| 3369 | { |
| 3370 | if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) |
| 3371 | return btf_equal_enum(t1, t2); |
| 3372 | /* ignore vlen when comparing */ |
| 3373 | return t1->name_off == t2->name_off && |
| 3374 | (t1->info & ~0xffff) == (t2->info & ~0xffff) && |
| 3375 | t1->size == t2->size; |
| 3376 | } |
| 3377 | |
| 3378 | /* |
| 3379 | * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, |
| 3380 | * as referenced type IDs equivalence is established separately during type |
| 3381 | * graph equivalence check algorithm. |
| 3382 | */ |
| 3383 | static long btf_hash_struct(struct btf_type *t) |
| 3384 | { |
| 3385 | const struct btf_member *member = btf_members(t); |
| 3386 | __u32 vlen = btf_vlen(t); |
| 3387 | long h = btf_hash_common(t); |
| 3388 | int i; |
| 3389 | |
| 3390 | for (i = 0; i < vlen; i++) { |
| 3391 | h = hash_combine(h, member->name_off); |
| 3392 | h = hash_combine(h, member->offset); |
| 3393 | /* no hashing of referenced type ID, it can be unresolved yet */ |
| 3394 | member++; |
| 3395 | } |
| 3396 | return h; |
| 3397 | } |
| 3398 | |
| 3399 | /* |
| 3400 | * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type |
| 3401 | * IDs. This check is performed during type graph equivalence check and |
| 3402 | * referenced types equivalence is checked separately. |
| 3403 | */ |
| 3404 | static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) |
| 3405 | { |
| 3406 | const struct btf_member *m1, *m2; |
| 3407 | __u16 vlen; |
| 3408 | int i; |
| 3409 | |
| 3410 | if (!btf_equal_common(t1, t2)) |
| 3411 | return false; |
| 3412 | |
| 3413 | vlen = btf_vlen(t1); |
| 3414 | m1 = btf_members(t1); |
| 3415 | m2 = btf_members(t2); |
| 3416 | for (i = 0; i < vlen; i++) { |
| 3417 | if (m1->name_off != m2->name_off || m1->offset != m2->offset) |
| 3418 | return false; |
| 3419 | m1++; |
| 3420 | m2++; |
| 3421 | } |
| 3422 | return true; |
| 3423 | } |
| 3424 | |
| 3425 | /* |
| 3426 | * Calculate type signature hash of ARRAY, including referenced type IDs, |
| 3427 | * under assumption that they were already resolved to canonical type IDs and |
| 3428 | * are not going to change. |
| 3429 | */ |
| 3430 | static long btf_hash_array(struct btf_type *t) |
| 3431 | { |
| 3432 | const struct btf_array *info = btf_array(t); |
| 3433 | long h = btf_hash_common(t); |
| 3434 | |
| 3435 | h = hash_combine(h, info->type); |
| 3436 | h = hash_combine(h, info->index_type); |
| 3437 | h = hash_combine(h, info->nelems); |
| 3438 | return h; |
| 3439 | } |
| 3440 | |
| 3441 | /* |
| 3442 | * Check exact equality of two ARRAYs, taking into account referenced |
| 3443 | * type IDs, under assumption that they were already resolved to canonical |
| 3444 | * type IDs and are not going to change. |
| 3445 | * This function is called during reference types deduplication to compare |
| 3446 | * ARRAY to potential canonical representative. |
| 3447 | */ |
| 3448 | static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) |
| 3449 | { |
| 3450 | const struct btf_array *info1, *info2; |
| 3451 | |
| 3452 | if (!btf_equal_common(t1, t2)) |
| 3453 | return false; |
| 3454 | |
| 3455 | info1 = btf_array(t1); |
| 3456 | info2 = btf_array(t2); |
| 3457 | return info1->type == info2->type && |
| 3458 | info1->index_type == info2->index_type && |
| 3459 | info1->nelems == info2->nelems; |
| 3460 | } |
| 3461 | |
| 3462 | /* |
| 3463 | * Check structural compatibility of two ARRAYs, ignoring referenced type |
| 3464 | * IDs. This check is performed during type graph equivalence check and |
| 3465 | * referenced types equivalence is checked separately. |
| 3466 | */ |
| 3467 | static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) |
| 3468 | { |
| 3469 | if (!btf_equal_common(t1, t2)) |
| 3470 | return false; |
| 3471 | |
| 3472 | return btf_array(t1)->nelems == btf_array(t2)->nelems; |
| 3473 | } |
| 3474 | |
| 3475 | /* |
| 3476 | * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, |
| 3477 | * under assumption that they were already resolved to canonical type IDs and |
| 3478 | * are not going to change. |
| 3479 | */ |
| 3480 | static long btf_hash_fnproto(struct btf_type *t) |
| 3481 | { |
| 3482 | const struct btf_param *member = btf_params(t); |
| 3483 | __u16 vlen = btf_vlen(t); |
| 3484 | long h = btf_hash_common(t); |
| 3485 | int i; |
| 3486 | |
| 3487 | for (i = 0; i < vlen; i++) { |
| 3488 | h = hash_combine(h, member->name_off); |
| 3489 | h = hash_combine(h, member->type); |
| 3490 | member++; |
| 3491 | } |
| 3492 | return h; |
| 3493 | } |
| 3494 | |
| 3495 | /* |
| 3496 | * Check exact equality of two FUNC_PROTOs, taking into account referenced |
| 3497 | * type IDs, under assumption that they were already resolved to canonical |
| 3498 | * type IDs and are not going to change. |
| 3499 | * This function is called during reference types deduplication to compare |
| 3500 | * FUNC_PROTO to potential canonical representative. |
| 3501 | */ |
| 3502 | static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) |
| 3503 | { |
| 3504 | const struct btf_param *m1, *m2; |
| 3505 | __u16 vlen; |
| 3506 | int i; |
| 3507 | |
| 3508 | if (!btf_equal_common(t1, t2)) |
| 3509 | return false; |
| 3510 | |
| 3511 | vlen = btf_vlen(t1); |
| 3512 | m1 = btf_params(t1); |
| 3513 | m2 = btf_params(t2); |
| 3514 | for (i = 0; i < vlen; i++) { |
| 3515 | if (m1->name_off != m2->name_off || m1->type != m2->type) |
| 3516 | return false; |
| 3517 | m1++; |
| 3518 | m2++; |
| 3519 | } |
| 3520 | return true; |
| 3521 | } |
| 3522 | |
| 3523 | /* |
| 3524 | * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type |
| 3525 | * IDs. This check is performed during type graph equivalence check and |
| 3526 | * referenced types equivalence is checked separately. |
| 3527 | */ |
| 3528 | static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) |
| 3529 | { |
| 3530 | const struct btf_param *m1, *m2; |
| 3531 | __u16 vlen; |
| 3532 | int i; |
| 3533 | |
| 3534 | /* skip return type ID */ |
| 3535 | if (t1->name_off != t2->name_off || t1->info != t2->info) |
| 3536 | return false; |
| 3537 | |
| 3538 | vlen = btf_vlen(t1); |
| 3539 | m1 = btf_params(t1); |
| 3540 | m2 = btf_params(t2); |
| 3541 | for (i = 0; i < vlen; i++) { |
| 3542 | if (m1->name_off != m2->name_off) |
| 3543 | return false; |
| 3544 | m1++; |
| 3545 | m2++; |
| 3546 | } |
| 3547 | return true; |
| 3548 | } |
| 3549 | |
| 3550 | /* |
| 3551 | * Deduplicate primitive types, that can't reference other types, by calculating |
| 3552 | * their type signature hash and comparing them with any possible canonical |
| 3553 | * candidate. If no canonical candidate matches, type itself is marked as |
| 3554 | * canonical and is added into `btf_dedup->dedup_table` as another candidate. |
| 3555 | */ |
| 3556 | static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) |
| 3557 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3558 | struct btf_type *t = btf_type_by_id(d->btf, type_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3559 | struct hashmap_entry *hash_entry; |
| 3560 | struct btf_type *cand; |
| 3561 | /* if we don't find equivalent type, then we are canonical */ |
| 3562 | __u32 new_id = type_id; |
| 3563 | __u32 cand_id; |
| 3564 | long h; |
| 3565 | |
| 3566 | switch (btf_kind(t)) { |
| 3567 | case BTF_KIND_CONST: |
| 3568 | case BTF_KIND_VOLATILE: |
| 3569 | case BTF_KIND_RESTRICT: |
| 3570 | case BTF_KIND_PTR: |
| 3571 | case BTF_KIND_TYPEDEF: |
| 3572 | case BTF_KIND_ARRAY: |
| 3573 | case BTF_KIND_STRUCT: |
| 3574 | case BTF_KIND_UNION: |
| 3575 | case BTF_KIND_FUNC: |
| 3576 | case BTF_KIND_FUNC_PROTO: |
| 3577 | case BTF_KIND_VAR: |
| 3578 | case BTF_KIND_DATASEC: |
| 3579 | return 0; |
| 3580 | |
| 3581 | case BTF_KIND_INT: |
| 3582 | h = btf_hash_int(t); |
| 3583 | for_each_dedup_cand(d, hash_entry, h) { |
| 3584 | cand_id = (__u32)(long)hash_entry->value; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3585 | cand = btf_type_by_id(d->btf, cand_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3586 | if (btf_equal_int(t, cand)) { |
| 3587 | new_id = cand_id; |
| 3588 | break; |
| 3589 | } |
| 3590 | } |
| 3591 | break; |
| 3592 | |
| 3593 | case BTF_KIND_ENUM: |
| 3594 | h = btf_hash_enum(t); |
| 3595 | for_each_dedup_cand(d, hash_entry, h) { |
| 3596 | cand_id = (__u32)(long)hash_entry->value; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3597 | cand = btf_type_by_id(d->btf, cand_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3598 | if (btf_equal_enum(t, cand)) { |
| 3599 | new_id = cand_id; |
| 3600 | break; |
| 3601 | } |
| 3602 | if (d->opts.dont_resolve_fwds) |
| 3603 | continue; |
| 3604 | if (btf_compat_enum(t, cand)) { |
| 3605 | if (btf_is_enum_fwd(t)) { |
| 3606 | /* resolve fwd to full enum */ |
| 3607 | new_id = cand_id; |
| 3608 | break; |
| 3609 | } |
| 3610 | /* resolve canonical enum fwd to full enum */ |
| 3611 | d->map[cand_id] = type_id; |
| 3612 | } |
| 3613 | } |
| 3614 | break; |
| 3615 | |
| 3616 | case BTF_KIND_FWD: |
| 3617 | h = btf_hash_common(t); |
| 3618 | for_each_dedup_cand(d, hash_entry, h) { |
| 3619 | cand_id = (__u32)(long)hash_entry->value; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3620 | cand = btf_type_by_id(d->btf, cand_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3621 | if (btf_equal_common(t, cand)) { |
| 3622 | new_id = cand_id; |
| 3623 | break; |
| 3624 | } |
| 3625 | } |
| 3626 | break; |
| 3627 | |
| 3628 | default: |
| 3629 | return -EINVAL; |
| 3630 | } |
| 3631 | |
| 3632 | d->map[type_id] = new_id; |
| 3633 | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) |
| 3634 | return -ENOMEM; |
| 3635 | |
| 3636 | return 0; |
| 3637 | } |
| 3638 | |
| 3639 | static int btf_dedup_prim_types(struct btf_dedup *d) |
| 3640 | { |
| 3641 | int i, err; |
| 3642 | |
| 3643 | for (i = 1; i <= d->btf->nr_types; i++) { |
| 3644 | err = btf_dedup_prim_type(d, i); |
| 3645 | if (err) |
| 3646 | return err; |
| 3647 | } |
| 3648 | return 0; |
| 3649 | } |
| 3650 | |
| 3651 | /* |
| 3652 | * Check whether type is already mapped into canonical one (could be to itself). |
| 3653 | */ |
| 3654 | static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) |
| 3655 | { |
| 3656 | return d->map[type_id] <= BTF_MAX_NR_TYPES; |
| 3657 | } |
| 3658 | |
| 3659 | /* |
| 3660 | * Resolve type ID into its canonical type ID, if any; otherwise return original |
| 3661 | * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow |
| 3662 | * STRUCT/UNION link and resolve it into canonical type ID as well. |
| 3663 | */ |
| 3664 | static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) |
| 3665 | { |
| 3666 | while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) |
| 3667 | type_id = d->map[type_id]; |
| 3668 | return type_id; |
| 3669 | } |
| 3670 | |
| 3671 | /* |
| 3672 | * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original |
| 3673 | * type ID. |
| 3674 | */ |
| 3675 | static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) |
| 3676 | { |
| 3677 | __u32 orig_type_id = type_id; |
| 3678 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3679 | if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3680 | return type_id; |
| 3681 | |
| 3682 | while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) |
| 3683 | type_id = d->map[type_id]; |
| 3684 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3685 | if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3686 | return type_id; |
| 3687 | |
| 3688 | return orig_type_id; |
| 3689 | } |
| 3690 | |
| 3691 | |
| 3692 | static inline __u16 btf_fwd_kind(struct btf_type *t) |
| 3693 | { |
| 3694 | return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; |
| 3695 | } |
| 3696 | |
| 3697 | /* |
| 3698 | * Check equivalence of BTF type graph formed by candidate struct/union (we'll |
| 3699 | * call it "candidate graph" in this description for brevity) to a type graph |
| 3700 | * formed by (potential) canonical struct/union ("canonical graph" for brevity |
| 3701 | * here, though keep in mind that not all types in canonical graph are |
| 3702 | * necessarily canonical representatives themselves, some of them might be |
| 3703 | * duplicates or its uniqueness might not have been established yet). |
| 3704 | * Returns: |
| 3705 | * - >0, if type graphs are equivalent; |
| 3706 | * - 0, if not equivalent; |
| 3707 | * - <0, on error. |
| 3708 | * |
| 3709 | * Algorithm performs side-by-side DFS traversal of both type graphs and checks |
| 3710 | * equivalence of BTF types at each step. If at any point BTF types in candidate |
| 3711 | * and canonical graphs are not compatible structurally, whole graphs are |
| 3712 | * incompatible. If types are structurally equivalent (i.e., all information |
| 3713 | * except referenced type IDs is exactly the same), a mapping from `canon_id` to |
| 3714 | * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). |
| 3715 | * If a type references other types, then those referenced types are checked |
| 3716 | * for equivalence recursively. |
| 3717 | * |
| 3718 | * During DFS traversal, if we find that for current `canon_id` type we |
| 3719 | * already have some mapping in hypothetical map, we check for two possible |
| 3720 | * situations: |
| 3721 | * - `canon_id` is mapped to exactly the same type as `cand_id`. This will |
| 3722 | * happen when type graphs have cycles. In this case we assume those two |
| 3723 | * types are equivalent. |
| 3724 | * - `canon_id` is mapped to different type. This is contradiction in our |
| 3725 | * hypothetical mapping, because same graph in canonical graph corresponds |
| 3726 | * to two different types in candidate graph, which for equivalent type |
| 3727 | * graphs shouldn't happen. This condition terminates equivalence check |
| 3728 | * with negative result. |
| 3729 | * |
| 3730 | * If type graphs traversal exhausts types to check and find no contradiction, |
| 3731 | * then type graphs are equivalent. |
| 3732 | * |
| 3733 | * When checking types for equivalence, there is one special case: FWD types. |
| 3734 | * If FWD type resolution is allowed and one of the types (either from canonical |
| 3735 | * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind |
| 3736 | * flag) and their names match, hypothetical mapping is updated to point from |
| 3737 | * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, |
| 3738 | * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. |
| 3739 | * |
| 3740 | * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, |
| 3741 | * if there are two exactly named (or anonymous) structs/unions that are |
| 3742 | * compatible structurally, one of which has FWD field, while other is concrete |
| 3743 | * STRUCT/UNION, but according to C sources they are different structs/unions |
| 3744 | * that are referencing different types with the same name. This is extremely |
| 3745 | * unlikely to happen, but btf_dedup API allows to disable FWD resolution if |
| 3746 | * this logic is causing problems. |
| 3747 | * |
| 3748 | * Doing FWD resolution means that both candidate and/or canonical graphs can |
| 3749 | * consists of portions of the graph that come from multiple compilation units. |
| 3750 | * This is due to the fact that types within single compilation unit are always |
| 3751 | * deduplicated and FWDs are already resolved, if referenced struct/union |
| 3752 | * definiton is available. So, if we had unresolved FWD and found corresponding |
| 3753 | * STRUCT/UNION, they will be from different compilation units. This |
| 3754 | * consequently means that when we "link" FWD to corresponding STRUCT/UNION, |
| 3755 | * type graph will likely have at least two different BTF types that describe |
| 3756 | * same type (e.g., most probably there will be two different BTF types for the |
| 3757 | * same 'int' primitive type) and could even have "overlapping" parts of type |
| 3758 | * graph that describe same subset of types. |
| 3759 | * |
| 3760 | * This in turn means that our assumption that each type in canonical graph |
| 3761 | * must correspond to exactly one type in candidate graph might not hold |
| 3762 | * anymore and will make it harder to detect contradictions using hypothetical |
| 3763 | * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION |
| 3764 | * resolution only in canonical graph. FWDs in candidate graphs are never |
| 3765 | * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs |
| 3766 | * that can occur: |
| 3767 | * - Both types in canonical and candidate graphs are FWDs. If they are |
| 3768 | * structurally equivalent, then they can either be both resolved to the |
| 3769 | * same STRUCT/UNION or not resolved at all. In both cases they are |
| 3770 | * equivalent and there is no need to resolve FWD on candidate side. |
| 3771 | * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, |
| 3772 | * so nothing to resolve as well, algorithm will check equivalence anyway. |
| 3773 | * - Type in canonical graph is FWD, while type in candidate is concrete |
| 3774 | * STRUCT/UNION. In this case candidate graph comes from single compilation |
| 3775 | * unit, so there is exactly one BTF type for each unique C type. After |
| 3776 | * resolving FWD into STRUCT/UNION, there might be more than one BTF type |
| 3777 | * in canonical graph mapping to single BTF type in candidate graph, but |
| 3778 | * because hypothetical mapping maps from canonical to candidate types, it's |
| 3779 | * alright, and we still maintain the property of having single `canon_id` |
| 3780 | * mapping to single `cand_id` (there could be two different `canon_id` |
| 3781 | * mapped to the same `cand_id`, but it's not contradictory). |
| 3782 | * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate |
| 3783 | * graph is FWD. In this case we are just going to check compatibility of |
| 3784 | * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll |
| 3785 | * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to |
| 3786 | * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs |
| 3787 | * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from |
| 3788 | * canonical graph. |
| 3789 | */ |
| 3790 | static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, |
| 3791 | __u32 canon_id) |
| 3792 | { |
| 3793 | struct btf_type *cand_type; |
| 3794 | struct btf_type *canon_type; |
| 3795 | __u32 hypot_type_id; |
| 3796 | __u16 cand_kind; |
| 3797 | __u16 canon_kind; |
| 3798 | int i, eq; |
| 3799 | |
| 3800 | /* if both resolve to the same canonical, they must be equivalent */ |
| 3801 | if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) |
| 3802 | return 1; |
| 3803 | |
| 3804 | canon_id = resolve_fwd_id(d, canon_id); |
| 3805 | |
| 3806 | hypot_type_id = d->hypot_map[canon_id]; |
| 3807 | if (hypot_type_id <= BTF_MAX_NR_TYPES) |
| 3808 | return hypot_type_id == cand_id; |
| 3809 | |
| 3810 | if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) |
| 3811 | return -ENOMEM; |
| 3812 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3813 | cand_type = btf_type_by_id(d->btf, cand_id); |
| 3814 | canon_type = btf_type_by_id(d->btf, canon_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3815 | cand_kind = btf_kind(cand_type); |
| 3816 | canon_kind = btf_kind(canon_type); |
| 3817 | |
| 3818 | if (cand_type->name_off != canon_type->name_off) |
| 3819 | return 0; |
| 3820 | |
| 3821 | /* FWD <--> STRUCT/UNION equivalence check, if enabled */ |
| 3822 | if (!d->opts.dont_resolve_fwds |
| 3823 | && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) |
| 3824 | && cand_kind != canon_kind) { |
| 3825 | __u16 real_kind; |
| 3826 | __u16 fwd_kind; |
| 3827 | |
| 3828 | if (cand_kind == BTF_KIND_FWD) { |
| 3829 | real_kind = canon_kind; |
| 3830 | fwd_kind = btf_fwd_kind(cand_type); |
| 3831 | } else { |
| 3832 | real_kind = cand_kind; |
| 3833 | fwd_kind = btf_fwd_kind(canon_type); |
| 3834 | } |
| 3835 | return fwd_kind == real_kind; |
| 3836 | } |
| 3837 | |
| 3838 | if (cand_kind != canon_kind) |
| 3839 | return 0; |
| 3840 | |
| 3841 | switch (cand_kind) { |
| 3842 | case BTF_KIND_INT: |
| 3843 | return btf_equal_int(cand_type, canon_type); |
| 3844 | |
| 3845 | case BTF_KIND_ENUM: |
| 3846 | if (d->opts.dont_resolve_fwds) |
| 3847 | return btf_equal_enum(cand_type, canon_type); |
| 3848 | else |
| 3849 | return btf_compat_enum(cand_type, canon_type); |
| 3850 | |
| 3851 | case BTF_KIND_FWD: |
| 3852 | return btf_equal_common(cand_type, canon_type); |
| 3853 | |
| 3854 | case BTF_KIND_CONST: |
| 3855 | case BTF_KIND_VOLATILE: |
| 3856 | case BTF_KIND_RESTRICT: |
| 3857 | case BTF_KIND_PTR: |
| 3858 | case BTF_KIND_TYPEDEF: |
| 3859 | case BTF_KIND_FUNC: |
| 3860 | if (cand_type->info != canon_type->info) |
| 3861 | return 0; |
| 3862 | return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); |
| 3863 | |
| 3864 | case BTF_KIND_ARRAY: { |
| 3865 | const struct btf_array *cand_arr, *canon_arr; |
| 3866 | |
| 3867 | if (!btf_compat_array(cand_type, canon_type)) |
| 3868 | return 0; |
| 3869 | cand_arr = btf_array(cand_type); |
| 3870 | canon_arr = btf_array(canon_type); |
| 3871 | eq = btf_dedup_is_equiv(d, |
| 3872 | cand_arr->index_type, canon_arr->index_type); |
| 3873 | if (eq <= 0) |
| 3874 | return eq; |
| 3875 | return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); |
| 3876 | } |
| 3877 | |
| 3878 | case BTF_KIND_STRUCT: |
| 3879 | case BTF_KIND_UNION: { |
| 3880 | const struct btf_member *cand_m, *canon_m; |
| 3881 | __u16 vlen; |
| 3882 | |
| 3883 | if (!btf_shallow_equal_struct(cand_type, canon_type)) |
| 3884 | return 0; |
| 3885 | vlen = btf_vlen(cand_type); |
| 3886 | cand_m = btf_members(cand_type); |
| 3887 | canon_m = btf_members(canon_type); |
| 3888 | for (i = 0; i < vlen; i++) { |
| 3889 | eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); |
| 3890 | if (eq <= 0) |
| 3891 | return eq; |
| 3892 | cand_m++; |
| 3893 | canon_m++; |
| 3894 | } |
| 3895 | |
| 3896 | return 1; |
| 3897 | } |
| 3898 | |
| 3899 | case BTF_KIND_FUNC_PROTO: { |
| 3900 | const struct btf_param *cand_p, *canon_p; |
| 3901 | __u16 vlen; |
| 3902 | |
| 3903 | if (!btf_compat_fnproto(cand_type, canon_type)) |
| 3904 | return 0; |
| 3905 | eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); |
| 3906 | if (eq <= 0) |
| 3907 | return eq; |
| 3908 | vlen = btf_vlen(cand_type); |
| 3909 | cand_p = btf_params(cand_type); |
| 3910 | canon_p = btf_params(canon_type); |
| 3911 | for (i = 0; i < vlen; i++) { |
| 3912 | eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); |
| 3913 | if (eq <= 0) |
| 3914 | return eq; |
| 3915 | cand_p++; |
| 3916 | canon_p++; |
| 3917 | } |
| 3918 | return 1; |
| 3919 | } |
| 3920 | |
| 3921 | default: |
| 3922 | return -EINVAL; |
| 3923 | } |
| 3924 | return 0; |
| 3925 | } |
| 3926 | |
| 3927 | /* |
| 3928 | * Use hypothetical mapping, produced by successful type graph equivalence |
| 3929 | * check, to augment existing struct/union canonical mapping, where possible. |
| 3930 | * |
| 3931 | * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record |
| 3932 | * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: |
| 3933 | * it doesn't matter if FWD type was part of canonical graph or candidate one, |
| 3934 | * we are recording the mapping anyway. As opposed to carefulness required |
| 3935 | * for struct/union correspondence mapping (described below), for FWD resolution |
| 3936 | * it's not important, as by the time that FWD type (reference type) will be |
| 3937 | * deduplicated all structs/unions will be deduped already anyway. |
| 3938 | * |
| 3939 | * Recording STRUCT/UNION mapping is purely a performance optimization and is |
| 3940 | * not required for correctness. It needs to be done carefully to ensure that |
| 3941 | * struct/union from candidate's type graph is not mapped into corresponding |
| 3942 | * struct/union from canonical type graph that itself hasn't been resolved into |
| 3943 | * canonical representative. The only guarantee we have is that canonical |
| 3944 | * struct/union was determined as canonical and that won't change. But any |
| 3945 | * types referenced through that struct/union fields could have been not yet |
| 3946 | * resolved, so in case like that it's too early to establish any kind of |
| 3947 | * correspondence between structs/unions. |
| 3948 | * |
| 3949 | * No canonical correspondence is derived for primitive types (they are already |
| 3950 | * deduplicated completely already anyway) or reference types (they rely on |
| 3951 | * stability of struct/union canonical relationship for equivalence checks). |
| 3952 | */ |
| 3953 | static void btf_dedup_merge_hypot_map(struct btf_dedup *d) |
| 3954 | { |
| 3955 | __u32 cand_type_id, targ_type_id; |
| 3956 | __u16 t_kind, c_kind; |
| 3957 | __u32 t_id, c_id; |
| 3958 | int i; |
| 3959 | |
| 3960 | for (i = 0; i < d->hypot_cnt; i++) { |
| 3961 | cand_type_id = d->hypot_list[i]; |
| 3962 | targ_type_id = d->hypot_map[cand_type_id]; |
| 3963 | t_id = resolve_type_id(d, targ_type_id); |
| 3964 | c_id = resolve_type_id(d, cand_type_id); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3965 | t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); |
| 3966 | c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3967 | /* |
| 3968 | * Resolve FWD into STRUCT/UNION. |
| 3969 | * It's ok to resolve FWD into STRUCT/UNION that's not yet |
| 3970 | * mapped to canonical representative (as opposed to |
| 3971 | * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because |
| 3972 | * eventually that struct is going to be mapped and all resolved |
| 3973 | * FWDs will automatically resolve to correct canonical |
| 3974 | * representative. This will happen before ref type deduping, |
| 3975 | * which critically depends on stability of these mapping. This |
| 3976 | * stability is not a requirement for STRUCT/UNION equivalence |
| 3977 | * checks, though. |
| 3978 | */ |
| 3979 | if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) |
| 3980 | d->map[c_id] = t_id; |
| 3981 | else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) |
| 3982 | d->map[t_id] = c_id; |
| 3983 | |
| 3984 | if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && |
| 3985 | c_kind != BTF_KIND_FWD && |
| 3986 | is_type_mapped(d, c_id) && |
| 3987 | !is_type_mapped(d, t_id)) { |
| 3988 | /* |
| 3989 | * as a perf optimization, we can map struct/union |
| 3990 | * that's part of type graph we just verified for |
| 3991 | * equivalence. We can do that for struct/union that has |
| 3992 | * canonical representative only, though. |
| 3993 | */ |
| 3994 | d->map[t_id] = c_id; |
| 3995 | } |
| 3996 | } |
| 3997 | } |
| 3998 | |
| 3999 | /* |
| 4000 | * Deduplicate struct/union types. |
| 4001 | * |
| 4002 | * For each struct/union type its type signature hash is calculated, taking |
| 4003 | * into account type's name, size, number, order and names of fields, but |
| 4004 | * ignoring type ID's referenced from fields, because they might not be deduped |
| 4005 | * completely until after reference types deduplication phase. This type hash |
| 4006 | * is used to iterate over all potential canonical types, sharing same hash. |
| 4007 | * For each canonical candidate we check whether type graphs that they form |
| 4008 | * (through referenced types in fields and so on) are equivalent using algorithm |
| 4009 | * implemented in `btf_dedup_is_equiv`. If such equivalence is found and |
| 4010 | * BTF_KIND_FWD resolution is allowed, then hypothetical mapping |
| 4011 | * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence |
| 4012 | * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to |
| 4013 | * potentially map other structs/unions to their canonical representatives, |
| 4014 | * if such relationship hasn't yet been established. This speeds up algorithm |
| 4015 | * by eliminating some of the duplicate work. |
| 4016 | * |
| 4017 | * If no matching canonical representative was found, struct/union is marked |
| 4018 | * as canonical for itself and is added into btf_dedup->dedup_table hash map |
| 4019 | * for further look ups. |
| 4020 | */ |
| 4021 | static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) |
| 4022 | { |
| 4023 | struct btf_type *cand_type, *t; |
| 4024 | struct hashmap_entry *hash_entry; |
| 4025 | /* if we don't find equivalent type, then we are canonical */ |
| 4026 | __u32 new_id = type_id; |
| 4027 | __u16 kind; |
| 4028 | long h; |
| 4029 | |
| 4030 | /* already deduped or is in process of deduping (loop detected) */ |
| 4031 | if (d->map[type_id] <= BTF_MAX_NR_TYPES) |
| 4032 | return 0; |
| 4033 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4034 | t = btf_type_by_id(d->btf, type_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4035 | kind = btf_kind(t); |
| 4036 | |
| 4037 | if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) |
| 4038 | return 0; |
| 4039 | |
| 4040 | h = btf_hash_struct(t); |
| 4041 | for_each_dedup_cand(d, hash_entry, h) { |
| 4042 | __u32 cand_id = (__u32)(long)hash_entry->value; |
| 4043 | int eq; |
| 4044 | |
| 4045 | /* |
| 4046 | * Even though btf_dedup_is_equiv() checks for |
| 4047 | * btf_shallow_equal_struct() internally when checking two |
| 4048 | * structs (unions) for equivalence, we need to guard here |
| 4049 | * from picking matching FWD type as a dedup candidate. |
| 4050 | * This can happen due to hash collision. In such case just |
| 4051 | * relying on btf_dedup_is_equiv() would lead to potentially |
| 4052 | * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because |
| 4053 | * FWD and compatible STRUCT/UNION are considered equivalent. |
| 4054 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4055 | cand_type = btf_type_by_id(d->btf, cand_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4056 | if (!btf_shallow_equal_struct(t, cand_type)) |
| 4057 | continue; |
| 4058 | |
| 4059 | btf_dedup_clear_hypot_map(d); |
| 4060 | eq = btf_dedup_is_equiv(d, type_id, cand_id); |
| 4061 | if (eq < 0) |
| 4062 | return eq; |
| 4063 | if (!eq) |
| 4064 | continue; |
| 4065 | new_id = cand_id; |
| 4066 | btf_dedup_merge_hypot_map(d); |
| 4067 | break; |
| 4068 | } |
| 4069 | |
| 4070 | d->map[type_id] = new_id; |
| 4071 | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) |
| 4072 | return -ENOMEM; |
| 4073 | |
| 4074 | return 0; |
| 4075 | } |
| 4076 | |
| 4077 | static int btf_dedup_struct_types(struct btf_dedup *d) |
| 4078 | { |
| 4079 | int i, err; |
| 4080 | |
| 4081 | for (i = 1; i <= d->btf->nr_types; i++) { |
| 4082 | err = btf_dedup_struct_type(d, i); |
| 4083 | if (err) |
| 4084 | return err; |
| 4085 | } |
| 4086 | return 0; |
| 4087 | } |
| 4088 | |
| 4089 | /* |
| 4090 | * Deduplicate reference type. |
| 4091 | * |
| 4092 | * Once all primitive and struct/union types got deduplicated, we can easily |
| 4093 | * deduplicate all other (reference) BTF types. This is done in two steps: |
| 4094 | * |
| 4095 | * 1. Resolve all referenced type IDs into their canonical type IDs. This |
| 4096 | * resolution can be done either immediately for primitive or struct/union types |
| 4097 | * (because they were deduped in previous two phases) or recursively for |
| 4098 | * reference types. Recursion will always terminate at either primitive or |
| 4099 | * struct/union type, at which point we can "unwind" chain of reference types |
| 4100 | * one by one. There is no danger of encountering cycles because in C type |
| 4101 | * system the only way to form type cycle is through struct/union, so any chain |
| 4102 | * of reference types, even those taking part in a type cycle, will inevitably |
| 4103 | * reach struct/union at some point. |
| 4104 | * |
| 4105 | * 2. Once all referenced type IDs are resolved into canonical ones, BTF type |
| 4106 | * becomes "stable", in the sense that no further deduplication will cause |
| 4107 | * any changes to it. With that, it's now possible to calculate type's signature |
| 4108 | * hash (this time taking into account referenced type IDs) and loop over all |
| 4109 | * potential canonical representatives. If no match was found, current type |
| 4110 | * will become canonical representative of itself and will be added into |
| 4111 | * btf_dedup->dedup_table as another possible canonical representative. |
| 4112 | */ |
| 4113 | static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) |
| 4114 | { |
| 4115 | struct hashmap_entry *hash_entry; |
| 4116 | __u32 new_id = type_id, cand_id; |
| 4117 | struct btf_type *t, *cand; |
| 4118 | /* if we don't find equivalent type, then we are representative type */ |
| 4119 | int ref_type_id; |
| 4120 | long h; |
| 4121 | |
| 4122 | if (d->map[type_id] == BTF_IN_PROGRESS_ID) |
| 4123 | return -ELOOP; |
| 4124 | if (d->map[type_id] <= BTF_MAX_NR_TYPES) |
| 4125 | return resolve_type_id(d, type_id); |
| 4126 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4127 | t = btf_type_by_id(d->btf, type_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4128 | d->map[type_id] = BTF_IN_PROGRESS_ID; |
| 4129 | |
| 4130 | switch (btf_kind(t)) { |
| 4131 | case BTF_KIND_CONST: |
| 4132 | case BTF_KIND_VOLATILE: |
| 4133 | case BTF_KIND_RESTRICT: |
| 4134 | case BTF_KIND_PTR: |
| 4135 | case BTF_KIND_TYPEDEF: |
| 4136 | case BTF_KIND_FUNC: |
| 4137 | ref_type_id = btf_dedup_ref_type(d, t->type); |
| 4138 | if (ref_type_id < 0) |
| 4139 | return ref_type_id; |
| 4140 | t->type = ref_type_id; |
| 4141 | |
| 4142 | h = btf_hash_common(t); |
| 4143 | for_each_dedup_cand(d, hash_entry, h) { |
| 4144 | cand_id = (__u32)(long)hash_entry->value; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4145 | cand = btf_type_by_id(d->btf, cand_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4146 | if (btf_equal_common(t, cand)) { |
| 4147 | new_id = cand_id; |
| 4148 | break; |
| 4149 | } |
| 4150 | } |
| 4151 | break; |
| 4152 | |
| 4153 | case BTF_KIND_ARRAY: { |
| 4154 | struct btf_array *info = btf_array(t); |
| 4155 | |
| 4156 | ref_type_id = btf_dedup_ref_type(d, info->type); |
| 4157 | if (ref_type_id < 0) |
| 4158 | return ref_type_id; |
| 4159 | info->type = ref_type_id; |
| 4160 | |
| 4161 | ref_type_id = btf_dedup_ref_type(d, info->index_type); |
| 4162 | if (ref_type_id < 0) |
| 4163 | return ref_type_id; |
| 4164 | info->index_type = ref_type_id; |
| 4165 | |
| 4166 | h = btf_hash_array(t); |
| 4167 | for_each_dedup_cand(d, hash_entry, h) { |
| 4168 | cand_id = (__u32)(long)hash_entry->value; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4169 | cand = btf_type_by_id(d->btf, cand_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4170 | if (btf_equal_array(t, cand)) { |
| 4171 | new_id = cand_id; |
| 4172 | break; |
| 4173 | } |
| 4174 | } |
| 4175 | break; |
| 4176 | } |
| 4177 | |
| 4178 | case BTF_KIND_FUNC_PROTO: { |
| 4179 | struct btf_param *param; |
| 4180 | __u16 vlen; |
| 4181 | int i; |
| 4182 | |
| 4183 | ref_type_id = btf_dedup_ref_type(d, t->type); |
| 4184 | if (ref_type_id < 0) |
| 4185 | return ref_type_id; |
| 4186 | t->type = ref_type_id; |
| 4187 | |
| 4188 | vlen = btf_vlen(t); |
| 4189 | param = btf_params(t); |
| 4190 | for (i = 0; i < vlen; i++) { |
| 4191 | ref_type_id = btf_dedup_ref_type(d, param->type); |
| 4192 | if (ref_type_id < 0) |
| 4193 | return ref_type_id; |
| 4194 | param->type = ref_type_id; |
| 4195 | param++; |
| 4196 | } |
| 4197 | |
| 4198 | h = btf_hash_fnproto(t); |
| 4199 | for_each_dedup_cand(d, hash_entry, h) { |
| 4200 | cand_id = (__u32)(long)hash_entry->value; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4201 | cand = btf_type_by_id(d->btf, cand_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4202 | if (btf_equal_fnproto(t, cand)) { |
| 4203 | new_id = cand_id; |
| 4204 | break; |
| 4205 | } |
| 4206 | } |
| 4207 | break; |
| 4208 | } |
| 4209 | |
| 4210 | default: |
| 4211 | return -EINVAL; |
| 4212 | } |
| 4213 | |
| 4214 | d->map[type_id] = new_id; |
| 4215 | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) |
| 4216 | return -ENOMEM; |
| 4217 | |
| 4218 | return new_id; |
| 4219 | } |
| 4220 | |
| 4221 | static int btf_dedup_ref_types(struct btf_dedup *d) |
| 4222 | { |
| 4223 | int i, err; |
| 4224 | |
| 4225 | for (i = 1; i <= d->btf->nr_types; i++) { |
| 4226 | err = btf_dedup_ref_type(d, i); |
| 4227 | if (err < 0) |
| 4228 | return err; |
| 4229 | } |
| 4230 | /* we won't need d->dedup_table anymore */ |
| 4231 | hashmap__free(d->dedup_table); |
| 4232 | d->dedup_table = NULL; |
| 4233 | return 0; |
| 4234 | } |
| 4235 | |
| 4236 | /* |
| 4237 | * Compact types. |
| 4238 | * |
| 4239 | * After we established for each type its corresponding canonical representative |
| 4240 | * type, we now can eliminate types that are not canonical and leave only |
| 4241 | * canonical ones layed out sequentially in memory by copying them over |
| 4242 | * duplicates. During compaction btf_dedup->hypot_map array is reused to store |
| 4243 | * a map from original type ID to a new compacted type ID, which will be used |
| 4244 | * during next phase to "fix up" type IDs, referenced from struct/union and |
| 4245 | * reference types. |
| 4246 | */ |
| 4247 | static int btf_dedup_compact_types(struct btf_dedup *d) |
| 4248 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4249 | __u32 *new_offs; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4250 | __u32 next_type_id = 1; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4251 | void *p; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4252 | int i, len; |
| 4253 | |
| 4254 | /* we are going to reuse hypot_map to store compaction remapping */ |
| 4255 | d->hypot_map[0] = 0; |
| 4256 | for (i = 1; i <= d->btf->nr_types; i++) |
| 4257 | d->hypot_map[i] = BTF_UNPROCESSED_ID; |
| 4258 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4259 | p = d->btf->types_data; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4260 | |
| 4261 | for (i = 1; i <= d->btf->nr_types; i++) { |
| 4262 | if (d->map[i] != i) |
| 4263 | continue; |
| 4264 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4265 | len = btf_type_size(btf__type_by_id(d->btf, i)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4266 | if (len < 0) |
| 4267 | return len; |
| 4268 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4269 | memmove(p, btf__type_by_id(d->btf, i), len); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4270 | d->hypot_map[i] = next_type_id; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4271 | d->btf->type_offs[next_type_id] = p - d->btf->types_data; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4272 | p += len; |
| 4273 | next_type_id++; |
| 4274 | } |
| 4275 | |
| 4276 | /* shrink struct btf's internal types index and update btf_header */ |
| 4277 | d->btf->nr_types = next_type_id - 1; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4278 | d->btf->type_offs_cap = d->btf->nr_types + 1; |
| 4279 | d->btf->hdr->type_len = p - d->btf->types_data; |
| 4280 | new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, |
| 4281 | sizeof(*new_offs)); |
| 4282 | if (!new_offs) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4283 | return -ENOMEM; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4284 | d->btf->type_offs = new_offs; |
| 4285 | d->btf->hdr->str_off = d->btf->hdr->type_len; |
| 4286 | d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4287 | return 0; |
| 4288 | } |
| 4289 | |
| 4290 | /* |
| 4291 | * Figure out final (deduplicated and compacted) type ID for provided original |
| 4292 | * `type_id` by first resolving it into corresponding canonical type ID and |
| 4293 | * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, |
| 4294 | * which is populated during compaction phase. |
| 4295 | */ |
| 4296 | static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) |
| 4297 | { |
| 4298 | __u32 resolved_type_id, new_type_id; |
| 4299 | |
| 4300 | resolved_type_id = resolve_type_id(d, type_id); |
| 4301 | new_type_id = d->hypot_map[resolved_type_id]; |
| 4302 | if (new_type_id > BTF_MAX_NR_TYPES) |
| 4303 | return -EINVAL; |
| 4304 | return new_type_id; |
| 4305 | } |
| 4306 | |
| 4307 | /* |
| 4308 | * Remap referenced type IDs into deduped type IDs. |
| 4309 | * |
| 4310 | * After BTF types are deduplicated and compacted, their final type IDs may |
| 4311 | * differ from original ones. The map from original to a corresponding |
| 4312 | * deduped type ID is stored in btf_dedup->hypot_map and is populated during |
| 4313 | * compaction phase. During remapping phase we are rewriting all type IDs |
| 4314 | * referenced from any BTF type (e.g., struct fields, func proto args, etc) to |
| 4315 | * their final deduped type IDs. |
| 4316 | */ |
| 4317 | static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) |
| 4318 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4319 | struct btf_type *t = btf_type_by_id(d->btf, type_id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4320 | int i, r; |
| 4321 | |
| 4322 | switch (btf_kind(t)) { |
| 4323 | case BTF_KIND_INT: |
| 4324 | case BTF_KIND_ENUM: |
| 4325 | break; |
| 4326 | |
| 4327 | case BTF_KIND_FWD: |
| 4328 | case BTF_KIND_CONST: |
| 4329 | case BTF_KIND_VOLATILE: |
| 4330 | case BTF_KIND_RESTRICT: |
| 4331 | case BTF_KIND_PTR: |
| 4332 | case BTF_KIND_TYPEDEF: |
| 4333 | case BTF_KIND_FUNC: |
| 4334 | case BTF_KIND_VAR: |
| 4335 | r = btf_dedup_remap_type_id(d, t->type); |
| 4336 | if (r < 0) |
| 4337 | return r; |
| 4338 | t->type = r; |
| 4339 | break; |
| 4340 | |
| 4341 | case BTF_KIND_ARRAY: { |
| 4342 | struct btf_array *arr_info = btf_array(t); |
| 4343 | |
| 4344 | r = btf_dedup_remap_type_id(d, arr_info->type); |
| 4345 | if (r < 0) |
| 4346 | return r; |
| 4347 | arr_info->type = r; |
| 4348 | r = btf_dedup_remap_type_id(d, arr_info->index_type); |
| 4349 | if (r < 0) |
| 4350 | return r; |
| 4351 | arr_info->index_type = r; |
| 4352 | break; |
| 4353 | } |
| 4354 | |
| 4355 | case BTF_KIND_STRUCT: |
| 4356 | case BTF_KIND_UNION: { |
| 4357 | struct btf_member *member = btf_members(t); |
| 4358 | __u16 vlen = btf_vlen(t); |
| 4359 | |
| 4360 | for (i = 0; i < vlen; i++) { |
| 4361 | r = btf_dedup_remap_type_id(d, member->type); |
| 4362 | if (r < 0) |
| 4363 | return r; |
| 4364 | member->type = r; |
| 4365 | member++; |
| 4366 | } |
| 4367 | break; |
| 4368 | } |
| 4369 | |
| 4370 | case BTF_KIND_FUNC_PROTO: { |
| 4371 | struct btf_param *param = btf_params(t); |
| 4372 | __u16 vlen = btf_vlen(t); |
| 4373 | |
| 4374 | r = btf_dedup_remap_type_id(d, t->type); |
| 4375 | if (r < 0) |
| 4376 | return r; |
| 4377 | t->type = r; |
| 4378 | |
| 4379 | for (i = 0; i < vlen; i++) { |
| 4380 | r = btf_dedup_remap_type_id(d, param->type); |
| 4381 | if (r < 0) |
| 4382 | return r; |
| 4383 | param->type = r; |
| 4384 | param++; |
| 4385 | } |
| 4386 | break; |
| 4387 | } |
| 4388 | |
| 4389 | case BTF_KIND_DATASEC: { |
| 4390 | struct btf_var_secinfo *var = btf_var_secinfos(t); |
| 4391 | __u16 vlen = btf_vlen(t); |
| 4392 | |
| 4393 | for (i = 0; i < vlen; i++) { |
| 4394 | r = btf_dedup_remap_type_id(d, var->type); |
| 4395 | if (r < 0) |
| 4396 | return r; |
| 4397 | var->type = r; |
| 4398 | var++; |
| 4399 | } |
| 4400 | break; |
| 4401 | } |
| 4402 | |
| 4403 | default: |
| 4404 | return -EINVAL; |
| 4405 | } |
| 4406 | |
| 4407 | return 0; |
| 4408 | } |
| 4409 | |
| 4410 | static int btf_dedup_remap_types(struct btf_dedup *d) |
| 4411 | { |
| 4412 | int i, r; |
| 4413 | |
| 4414 | for (i = 1; i <= d->btf->nr_types; i++) { |
| 4415 | r = btf_dedup_remap_type(d, i); |
| 4416 | if (r < 0) |
| 4417 | return r; |
| 4418 | } |
| 4419 | return 0; |
| 4420 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 4421 | |
| 4422 | /* |
| 4423 | * Probe few well-known locations for vmlinux kernel image and try to load BTF |
| 4424 | * data out of it to use for target BTF. |
| 4425 | */ |
| 4426 | struct btf *libbpf_find_kernel_btf(void) |
| 4427 | { |
| 4428 | struct { |
| 4429 | const char *path_fmt; |
| 4430 | bool raw_btf; |
| 4431 | } locations[] = { |
| 4432 | /* try canonical vmlinux BTF through sysfs first */ |
| 4433 | { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, |
| 4434 | /* fall back to trying to find vmlinux ELF on disk otherwise */ |
| 4435 | { "/boot/vmlinux-%1$s" }, |
| 4436 | { "/lib/modules/%1$s/vmlinux-%1$s" }, |
| 4437 | { "/lib/modules/%1$s/build/vmlinux" }, |
| 4438 | { "/usr/lib/modules/%1$s/kernel/vmlinux" }, |
| 4439 | { "/usr/lib/debug/boot/vmlinux-%1$s" }, |
| 4440 | { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, |
| 4441 | { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, |
| 4442 | }; |
| 4443 | char path[PATH_MAX + 1]; |
| 4444 | struct utsname buf; |
| 4445 | struct btf *btf; |
| 4446 | int i; |
| 4447 | |
| 4448 | uname(&buf); |
| 4449 | |
| 4450 | for (i = 0; i < ARRAY_SIZE(locations); i++) { |
| 4451 | snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); |
| 4452 | |
| 4453 | if (access(path, R_OK)) |
| 4454 | continue; |
| 4455 | |
| 4456 | if (locations[i].raw_btf) |
| 4457 | btf = btf__parse_raw(path); |
| 4458 | else |
| 4459 | btf = btf__parse_elf(path, NULL); |
| 4460 | |
| 4461 | pr_debug("loading kernel BTF '%s': %ld\n", |
| 4462 | path, IS_ERR(btf) ? PTR_ERR(btf) : 0); |
| 4463 | if (IS_ERR(btf)) |
| 4464 | continue; |
| 4465 | |
| 4466 | return btf; |
| 4467 | } |
| 4468 | |
| 4469 | pr_warn("failed to find valid kernel BTF\n"); |
| 4470 | return ERR_PTR(-ESRCH); |
| 4471 | } |