blob: 046b084136c51a0a36972c326f63d65bae5d4e7d [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/cred.h>
19#include <linux/idr.h>
20#include <linux/init.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
David Brazdil0f672f62019-12-10 10:32:29 +000023#include <linux/file.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000024#include <linux/uaccess.h>
25#include <linux/proc_ns.h>
26#include <linux/magic.h>
David Brazdil0f672f62019-12-10 10:32:29 +000027#include <linux/memblock.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000028#include <linux/task_work.h>
29#include <linux/sched/task.h>
David Brazdil0f672f62019-12-10 10:32:29 +000030#include <uapi/linux/mount.h>
31#include <linux/fs_context.h>
32#include <linux/shmem_fs.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000033
34#include "pnode.h"
35#include "internal.h"
36
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
64
65static u64 event;
66static DEFINE_IDA(mnt_id_ida);
67static DEFINE_IDA(mnt_group_ida);
68
69static struct hlist_head *mount_hashtable __read_mostly;
70static struct hlist_head *mountpoint_hashtable __read_mostly;
71static struct kmem_cache *mnt_cache __read_mostly;
72static DECLARE_RWSEM(namespace_sem);
David Brazdil0f672f62019-12-10 10:32:29 +000073static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000075
76/* /sys/fs */
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
79
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91{
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103}
104
105static int mnt_alloc_id(struct mount *mnt)
106{
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113}
114
115static void mnt_free_id(struct mount *mnt)
116{
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118}
119
120/*
121 * Allocate a new peer group ID
122 */
123static int mnt_alloc_group_id(struct mount *mnt)
124{
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131}
132
133/*
134 * Release a peer group ID
135 */
136void mnt_release_group_id(struct mount *mnt)
137{
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140}
141
142/*
143 * vfsmount lock must be held for read
144 */
145static inline void mnt_add_count(struct mount *mnt, int n)
146{
147#ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149#else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153#endif
154}
155
156/*
157 * vfsmount lock must be held for write
158 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200159int mnt_get_count(struct mount *mnt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000160{
161#ifdef CONFIG_SMP
Olivier Deprez0e641232021-09-23 10:07:05 +0200162 int count = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170#else
171 return mnt->mnt_count;
172#endif
173}
174
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000175static struct mount *alloc_vfsmnt(const char *name)
176{
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191#ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197#else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200#endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
David Brazdil0f672f62019-12-10 10:32:29 +0000212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000213 }
214 return mnt;
215
216#ifdef CONFIG_SMP
217out_free_devname:
218 kfree_const(mnt->mnt_devname);
219#endif
220out_free_id:
221 mnt_free_id(mnt);
222out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225}
226
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
David Brazdil0f672f62019-12-10 10:32:29 +0000246bool __mnt_is_readonly(struct vfsmount *mnt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000247{
David Brazdil0f672f62019-12-10 10:32:29 +0000248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
252static inline void mnt_inc_writers(struct mount *mnt)
253{
254#ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256#else
257 mnt->mnt_writers++;
258#endif
259}
260
261static inline void mnt_dec_writers(struct mount *mnt)
262{
263#ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265#else
266 mnt->mnt_writers--;
267#endif
268}
269
270static unsigned int mnt_get_writers(struct mount *mnt)
271{
272#ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
284}
285
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
295/*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301/**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
311int __mnt_want_write(struct vfsmount *m)
312{
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
393int __mnt_want_write_file(struct file *file)
394{
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
400
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417}
418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
420/**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
428void __mnt_drop_write(struct vfsmount *mnt)
429{
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433}
434
435/**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443void mnt_drop_write(struct vfsmount *mnt)
444{
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447}
448EXPORT_SYMBOL_GPL(mnt_drop_write);
449
450void __mnt_drop_write_file(struct file *file)
451{
452 __mnt_drop_write(file->f_path.mnt);
453}
454
455void mnt_drop_write_file(struct file *file)
456{
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
459}
460EXPORT_SYMBOL(mnt_drop_write_file);
461
462static int mnt_make_readonly(struct mount *mnt)
463{
464 int ret = 0;
465
466 lock_mount_hash();
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 /*
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
471 */
472 smp_mb();
473
474 /*
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
489 */
490 if (mnt_get_writers(mnt) > 0)
491 ret = -EBUSY;
492 else
493 mnt->mnt.mnt_flags |= MNT_READONLY;
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 unlock_mount_hash();
501 return ret;
502}
503
David Brazdil0f672f62019-12-10 10:32:29 +0000504static int __mnt_unmake_readonly(struct mount *mnt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000505{
506 lock_mount_hash();
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 unlock_mount_hash();
David Brazdil0f672f62019-12-10 10:32:29 +0000509 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000510}
511
512int sb_prepare_remount_readonly(struct super_block *sb)
513{
514 struct mount *mnt;
515 int err = 0;
516
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
521 lock_mount_hash();
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
543 unlock_mount_hash();
544
545 return err;
546}
547
548static void free_vfsmnt(struct mount *mnt)
549{
550 kfree_const(mnt->mnt_devname);
551#ifdef CONFIG_SMP
552 free_percpu(mnt->mnt_pcp);
553#endif
554 kmem_cache_free(mnt_cache, mnt);
555}
556
557static void delayed_free_vfsmnt(struct rcu_head *head)
558{
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560}
561
562/* call under rcu_read_lock */
563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564{
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
567 return 1;
568 if (bastard == NULL)
569 return 0;
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
574 return 0;
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
577 return 1;
578 }
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
587 return -1;
588}
589
590/* call under rcu_read_lock */
591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592{
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 }
601 return false;
602}
603
604/*
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
607 */
608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609{
610 struct hlist_head *head = m_hash(mnt, dentry);
611 struct mount *p;
612
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
619/*
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
634 */
635struct vfsmount *lookup_mnt(const struct path *path)
636{
637 struct mount *child_mnt;
638 struct vfsmount *m;
639 unsigned seq;
640
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
649}
650
Olivier Deprez157378f2022-04-04 15:47:50 +0200651static inline void lock_ns_list(struct mnt_namespace *ns)
652{
653 spin_lock(&ns->ns_lock);
654}
655
656static inline void unlock_ns_list(struct mnt_namespace *ns)
657{
658 spin_unlock(&ns->ns_lock);
659}
660
661static inline bool mnt_is_cursor(struct mount *mnt)
662{
663 return mnt->mnt.mnt_flags & MNT_CURSOR;
664}
665
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000666/*
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
669 *
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
674 * is a mountpoint.
675 *
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
679 * parent mount.
680 */
681bool __is_local_mountpoint(struct dentry *dentry)
682{
683 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
684 struct mount *mnt;
685 bool is_covered = false;
686
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000687 down_read(&namespace_sem);
Olivier Deprez157378f2022-04-04 15:47:50 +0200688 lock_ns_list(ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000689 list_for_each_entry(mnt, &ns->list, mnt_list) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200690 if (mnt_is_cursor(mnt))
691 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000692 is_covered = (mnt->mnt_mountpoint == dentry);
693 if (is_covered)
694 break;
695 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200696 unlock_ns_list(ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000697 up_read(&namespace_sem);
Olivier Deprez157378f2022-04-04 15:47:50 +0200698
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000699 return is_covered;
700}
701
702static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
703{
704 struct hlist_head *chain = mp_hash(dentry);
705 struct mountpoint *mp;
706
707 hlist_for_each_entry(mp, chain, m_hash) {
708 if (mp->m_dentry == dentry) {
709 mp->m_count++;
710 return mp;
711 }
712 }
713 return NULL;
714}
715
716static struct mountpoint *get_mountpoint(struct dentry *dentry)
717{
718 struct mountpoint *mp, *new = NULL;
719 int ret;
720
721 if (d_mountpoint(dentry)) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
725mountpoint:
726 read_seqlock_excl(&mount_lock);
727 mp = lookup_mountpoint(dentry);
728 read_sequnlock_excl(&mount_lock);
729 if (mp)
730 goto done;
731 }
732
733 if (!new)
734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
735 if (!new)
736 return ERR_PTR(-ENOMEM);
737
738
739 /* Exactly one processes may set d_mounted */
740 ret = d_set_mounted(dentry);
741
742 /* Someone else set d_mounted? */
743 if (ret == -EBUSY)
744 goto mountpoint;
745
746 /* The dentry is not available as a mountpoint? */
747 mp = ERR_PTR(ret);
748 if (ret)
749 goto done;
750
751 /* Add the new mountpoint to the hash table */
752 read_seqlock_excl(&mount_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000753 new->m_dentry = dget(dentry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000754 new->m_count = 1;
755 hlist_add_head(&new->m_hash, mp_hash(dentry));
756 INIT_HLIST_HEAD(&new->m_list);
757 read_sequnlock_excl(&mount_lock);
758
759 mp = new;
760 new = NULL;
761done:
762 kfree(new);
763 return mp;
764}
765
David Brazdil0f672f62019-12-10 10:32:29 +0000766/*
767 * vfsmount lock must be held. Additionally, the caller is responsible
768 * for serializing calls for given disposal list.
769 */
770static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000771{
772 if (!--mp->m_count) {
773 struct dentry *dentry = mp->m_dentry;
774 BUG_ON(!hlist_empty(&mp->m_list));
775 spin_lock(&dentry->d_lock);
776 dentry->d_flags &= ~DCACHE_MOUNTED;
777 spin_unlock(&dentry->d_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000778 dput_to_list(dentry, list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000779 hlist_del(&mp->m_hash);
780 kfree(mp);
781 }
782}
783
David Brazdil0f672f62019-12-10 10:32:29 +0000784/* called with namespace_lock and vfsmount lock */
785static void put_mountpoint(struct mountpoint *mp)
786{
787 __put_mountpoint(mp, &ex_mountpoints);
788}
789
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000790static inline int check_mnt(struct mount *mnt)
791{
792 return mnt->mnt_ns == current->nsproxy->mnt_ns;
793}
794
795/*
796 * vfsmount lock must be held for write
797 */
798static void touch_mnt_namespace(struct mnt_namespace *ns)
799{
800 if (ns) {
801 ns->event = ++event;
802 wake_up_interruptible(&ns->poll);
803 }
804}
805
806/*
807 * vfsmount lock must be held for write
808 */
809static void __touch_mnt_namespace(struct mnt_namespace *ns)
810{
811 if (ns && ns->event != event) {
812 ns->event = event;
813 wake_up_interruptible(&ns->poll);
814 }
815}
816
817/*
818 * vfsmount lock must be held for write
819 */
David Brazdil0f672f62019-12-10 10:32:29 +0000820static struct mountpoint *unhash_mnt(struct mount *mnt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000821{
David Brazdil0f672f62019-12-10 10:32:29 +0000822 struct mountpoint *mp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000823 mnt->mnt_parent = mnt;
824 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
825 list_del_init(&mnt->mnt_child);
826 hlist_del_init_rcu(&mnt->mnt_hash);
827 hlist_del_init(&mnt->mnt_mp_list);
David Brazdil0f672f62019-12-10 10:32:29 +0000828 mp = mnt->mnt_mp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000829 mnt->mnt_mp = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +0000830 return mp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000831}
832
833/*
834 * vfsmount lock must be held for write
835 */
836static void umount_mnt(struct mount *mnt)
837{
David Brazdil0f672f62019-12-10 10:32:29 +0000838 put_mountpoint(unhash_mnt(mnt));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000839}
840
841/*
842 * vfsmount lock must be held for write
843 */
844void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
846 struct mount *child_mnt)
847{
848 mp->m_count++;
849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
David Brazdil0f672f62019-12-10 10:32:29 +0000850 child_mnt->mnt_mountpoint = mp->m_dentry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000851 child_mnt->mnt_parent = mnt;
852 child_mnt->mnt_mp = mp;
853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
854}
855
856static void __attach_mnt(struct mount *mnt, struct mount *parent)
857{
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
861}
862
863/*
864 * vfsmount lock must be held for write
865 */
866static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
869{
870 mnt_set_mountpoint(parent, mp, mnt);
871 __attach_mnt(mnt, parent);
872}
873
874void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
875{
876 struct mountpoint *old_mp = mnt->mnt_mp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000877 struct mount *old_parent = mnt->mnt_parent;
878
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
882
883 attach_mnt(mnt, parent, mp);
884
885 put_mountpoint(old_mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000886 mnt_add_count(old_parent, -1);
887}
888
889/*
890 * vfsmount lock must be held for write
891 */
892static void commit_tree(struct mount *mnt)
893{
894 struct mount *parent = mnt->mnt_parent;
895 struct mount *m;
896 LIST_HEAD(head);
897 struct mnt_namespace *n = parent->mnt_ns;
898
899 BUG_ON(parent == mnt);
900
901 list_add_tail(&head, &mnt->mnt_list);
902 list_for_each_entry(m, &head, mnt_list)
903 m->mnt_ns = n;
904
905 list_splice(&head, n->list.prev);
906
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
909
910 __attach_mnt(mnt, parent);
911 touch_mnt_namespace(n);
912}
913
914static struct mount *next_mnt(struct mount *p, struct mount *root)
915{
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
918 while (1) {
919 if (p == root)
920 return NULL;
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
923 break;
924 p = p->mnt_parent;
925 }
926 }
927 return list_entry(next, struct mount, mnt_child);
928}
929
930static struct mount *skip_mnt_tree(struct mount *p)
931{
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
936 }
937 return p;
938}
939
David Brazdil0f672f62019-12-10 10:32:29 +0000940/**
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
943 *
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
946 *
947 * Note that this does not attach the mount to anything.
948 */
949struct vfsmount *vfs_create_mount(struct fs_context *fc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000950{
951 struct mount *mnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000952
David Brazdil0f672f62019-12-10 10:32:29 +0000953 if (!fc->root)
954 return ERR_PTR(-EINVAL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000955
David Brazdil0f672f62019-12-10 10:32:29 +0000956 mnt = alloc_vfsmnt(fc->source ?: "none");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000957 if (!mnt)
958 return ERR_PTR(-ENOMEM);
959
David Brazdil0f672f62019-12-10 10:32:29 +0000960 if (fc->sb_flags & SB_KERNMOUNT)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000961 mnt->mnt.mnt_flags = MNT_INTERNAL;
962
David Brazdil0f672f62019-12-10 10:32:29 +0000963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000968
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000969 lock_mount_hash();
David Brazdil0f672f62019-12-10 10:32:29 +0000970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000971 unlock_mount_hash();
972 return &mnt->mnt;
973}
David Brazdil0f672f62019-12-10 10:32:29 +0000974EXPORT_SYMBOL(vfs_create_mount);
975
976struct vfsmount *fc_mount(struct fs_context *fc)
977{
978 int err = vfs_get_tree(fc);
979 if (!err) {
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
982 }
983 return ERR_PTR(err);
984}
985EXPORT_SYMBOL(fc_mount);
986
987struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
989 void *data)
990{
991 struct fs_context *fc;
992 struct vfsmount *mnt;
993 int ret = 0;
994
995 if (!type)
996 return ERR_PTR(-EINVAL);
997
998 fc = fs_context_for_mount(type, flags);
999 if (IS_ERR(fc))
1000 return ERR_CAST(fc);
1001
1002 if (name)
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
1005 if (!ret)
1006 ret = parse_monolithic_mount_data(fc, data);
1007 if (!ret)
1008 mnt = fc_mount(fc);
1009 else
1010 mnt = ERR_PTR(ret);
1011
1012 put_fs_context(fc);
1013 return mnt;
1014}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001015EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016
1017struct vfsmount *
1018vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1020{
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1024 */
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1027
1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1029}
1030EXPORT_SYMBOL_GPL(vfs_submount);
1031
1032static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1033 int flag)
1034{
1035 struct super_block *sb = old->mnt.mnt_sb;
1036 struct mount *mnt;
1037 int err;
1038
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
1042
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1045 else
1046 mnt->mnt_group_id = old->mnt_group_id;
1047
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1050 if (err)
1051 goto out_free;
1052 }
1053
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001056
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
1062 lock_mount_hash();
1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 unlock_mount_hash();
1065
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1077 } else {
1078 CLEAR_MNT_SHARED(mnt);
1079 }
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1082
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 }
1089
1090 return mnt;
1091
1092 out_free:
1093 mnt_free_id(mnt);
1094 free_vfsmnt(mnt);
1095 return ERR_PTR(err);
1096}
1097
1098static void cleanup_mnt(struct mount *mnt)
1099{
David Brazdil0f672f62019-12-10 10:32:29 +00001100 struct hlist_node *p;
1101 struct mount *m;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001102 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001103 * The warning here probably indicates that somebody messed
1104 * up a mnt_want/drop_write() pair. If this happens, the
1105 * filesystem was probably unable to make r/w->r/o transitions.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1108 */
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1111 mnt_pin_kill(mnt);
David Brazdil0f672f62019-12-10 10:32:29 +00001112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113 hlist_del(&m->mnt_umount);
1114 mntput(&m->mnt);
1115 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001116 fsnotify_vfsmount_delete(&mnt->mnt);
1117 dput(mnt->mnt.mnt_root);
1118 deactivate_super(mnt->mnt.mnt_sb);
1119 mnt_free_id(mnt);
1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1121}
1122
1123static void __cleanup_mnt(struct rcu_head *head)
1124{
1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1126}
1127
1128static LLIST_HEAD(delayed_mntput_list);
1129static void delayed_mntput(struct work_struct *unused)
1130{
1131 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132 struct mount *m, *t;
1133
1134 llist_for_each_entry_safe(m, t, node, mnt_llist)
1135 cleanup_mnt(m);
1136}
1137static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1138
1139static void mntput_no_expire(struct mount *mnt)
1140{
David Brazdil0f672f62019-12-10 10:32:29 +00001141 LIST_HEAD(list);
Olivier Deprez0e641232021-09-23 10:07:05 +02001142 int count;
David Brazdil0f672f62019-12-10 10:32:29 +00001143
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001144 rcu_read_lock();
1145 if (likely(READ_ONCE(mnt->mnt_ns))) {
1146 /*
1147 * Since we don't do lock_mount_hash() here,
1148 * ->mnt_ns can change under us. However, if it's
1149 * non-NULL, then there's a reference that won't
1150 * be dropped until after an RCU delay done after
1151 * turning ->mnt_ns NULL. So if we observe it
1152 * non-NULL under rcu_read_lock(), the reference
1153 * we are dropping is not the final one.
1154 */
1155 mnt_add_count(mnt, -1);
1156 rcu_read_unlock();
1157 return;
1158 }
1159 lock_mount_hash();
1160 /*
1161 * make sure that if __legitimize_mnt() has not seen us grab
1162 * mount_lock, we'll see their refcount increment here.
1163 */
1164 smp_mb();
1165 mnt_add_count(mnt, -1);
Olivier Deprez0e641232021-09-23 10:07:05 +02001166 count = mnt_get_count(mnt);
1167 if (count != 0) {
1168 WARN_ON(count < 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001169 rcu_read_unlock();
1170 unlock_mount_hash();
1171 return;
1172 }
1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1174 rcu_read_unlock();
1175 unlock_mount_hash();
1176 return;
1177 }
1178 mnt->mnt.mnt_flags |= MNT_DOOMED;
1179 rcu_read_unlock();
1180
1181 list_del(&mnt->mnt_instance);
1182
1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1184 struct mount *p, *tmp;
1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
David Brazdil0f672f62019-12-10 10:32:29 +00001186 __put_mountpoint(unhash_mnt(p), &list);
1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001188 }
1189 }
1190 unlock_mount_hash();
David Brazdil0f672f62019-12-10 10:32:29 +00001191 shrink_dentry_list(&list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001192
1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1194 struct task_struct *task = current;
1195 if (likely(!(task->flags & PF_KTHREAD))) {
1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
Olivier Deprez157378f2022-04-04 15:47:50 +02001197 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001198 return;
1199 }
1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1201 schedule_delayed_work(&delayed_mntput_work, 1);
1202 return;
1203 }
1204 cleanup_mnt(mnt);
1205}
1206
1207void mntput(struct vfsmount *mnt)
1208{
1209 if (mnt) {
1210 struct mount *m = real_mount(mnt);
1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1212 if (unlikely(m->mnt_expiry_mark))
1213 m->mnt_expiry_mark = 0;
1214 mntput_no_expire(m);
1215 }
1216}
1217EXPORT_SYMBOL(mntput);
1218
1219struct vfsmount *mntget(struct vfsmount *mnt)
1220{
1221 if (mnt)
1222 mnt_add_count(real_mount(mnt), 1);
1223 return mnt;
1224}
1225EXPORT_SYMBOL(mntget);
1226
1227/* path_is_mountpoint() - Check if path is a mount in the current
1228 * namespace.
1229 *
1230 * d_mountpoint() can only be used reliably to establish if a dentry is
1231 * not mounted in any namespace and that common case is handled inline.
1232 * d_mountpoint() isn't aware of the possibility there may be multiple
1233 * mounts using a given dentry in a different namespace. This function
1234 * checks if the passed in path is a mountpoint rather than the dentry
1235 * alone.
1236 */
1237bool path_is_mountpoint(const struct path *path)
1238{
1239 unsigned seq;
1240 bool res;
1241
1242 if (!d_mountpoint(path->dentry))
1243 return false;
1244
1245 rcu_read_lock();
1246 do {
1247 seq = read_seqbegin(&mount_lock);
1248 res = __path_is_mountpoint(path);
1249 } while (read_seqretry(&mount_lock, seq));
1250 rcu_read_unlock();
1251
1252 return res;
1253}
1254EXPORT_SYMBOL(path_is_mountpoint);
1255
1256struct vfsmount *mnt_clone_internal(const struct path *path)
1257{
1258 struct mount *p;
1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1260 if (IS_ERR(p))
1261 return ERR_CAST(p);
1262 p->mnt.mnt_flags |= MNT_INTERNAL;
1263 return &p->mnt;
1264}
1265
1266#ifdef CONFIG_PROC_FS
Olivier Deprez157378f2022-04-04 15:47:50 +02001267static struct mount *mnt_list_next(struct mnt_namespace *ns,
1268 struct list_head *p)
1269{
1270 struct mount *mnt, *ret = NULL;
1271
1272 lock_ns_list(ns);
1273 list_for_each_continue(p, &ns->list) {
1274 mnt = list_entry(p, typeof(*mnt), mnt_list);
1275 if (!mnt_is_cursor(mnt)) {
1276 ret = mnt;
1277 break;
1278 }
1279 }
1280 unlock_ns_list(ns);
1281
1282 return ret;
1283}
1284
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001285/* iterator; we want it to have access to namespace_sem, thus here... */
1286static void *m_start(struct seq_file *m, loff_t *pos)
1287{
1288 struct proc_mounts *p = m->private;
Olivier Deprez157378f2022-04-04 15:47:50 +02001289 struct list_head *prev;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001290
1291 down_read(&namespace_sem);
Olivier Deprez157378f2022-04-04 15:47:50 +02001292 if (!*pos) {
1293 prev = &p->ns->list;
1294 } else {
1295 prev = &p->cursor.mnt_list;
1296
1297 /* Read after we'd reached the end? */
1298 if (list_empty(prev))
1299 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001300 }
1301
Olivier Deprez157378f2022-04-04 15:47:50 +02001302 return mnt_list_next(p->ns, prev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001303}
1304
1305static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1306{
1307 struct proc_mounts *p = m->private;
Olivier Deprez157378f2022-04-04 15:47:50 +02001308 struct mount *mnt = v;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001309
Olivier Deprez157378f2022-04-04 15:47:50 +02001310 ++*pos;
1311 return mnt_list_next(p->ns, &mnt->mnt_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001312}
1313
1314static void m_stop(struct seq_file *m, void *v)
1315{
Olivier Deprez157378f2022-04-04 15:47:50 +02001316 struct proc_mounts *p = m->private;
1317 struct mount *mnt = v;
1318
1319 lock_ns_list(p->ns);
1320 if (mnt)
1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1322 else
1323 list_del_init(&p->cursor.mnt_list);
1324 unlock_ns_list(p->ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001325 up_read(&namespace_sem);
1326}
1327
1328static int m_show(struct seq_file *m, void *v)
1329{
1330 struct proc_mounts *p = m->private;
Olivier Deprez157378f2022-04-04 15:47:50 +02001331 struct mount *r = v;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001332 return p->show(m, &r->mnt);
1333}
1334
1335const struct seq_operations mounts_op = {
1336 .start = m_start,
1337 .next = m_next,
1338 .stop = m_stop,
1339 .show = m_show,
1340};
Olivier Deprez157378f2022-04-04 15:47:50 +02001341
1342void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1343{
1344 down_read(&namespace_sem);
1345 lock_ns_list(ns);
1346 list_del(&cursor->mnt_list);
1347 unlock_ns_list(ns);
1348 up_read(&namespace_sem);
1349}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001350#endif /* CONFIG_PROC_FS */
1351
1352/**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
1360int may_umount_tree(struct vfsmount *m)
1361{
1362 struct mount *mnt = real_mount(m);
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
1365 struct mount *p;
1366 BUG_ON(!m);
1367
1368 /* write lock needed for mnt_get_count */
1369 lock_mount_hash();
1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 actual_refs += mnt_get_count(p);
1372 minimum_refs += 2;
1373 }
1374 unlock_mount_hash();
1375
1376 if (actual_refs > minimum_refs)
1377 return 0;
1378
1379 return 1;
1380}
1381
1382EXPORT_SYMBOL(may_umount_tree);
1383
1384/**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397int may_umount(struct vfsmount *mnt)
1398{
1399 int ret = 1;
1400 down_read(&namespace_sem);
1401 lock_mount_hash();
1402 if (propagate_mount_busy(real_mount(mnt), 2))
1403 ret = 0;
1404 unlock_mount_hash();
1405 up_read(&namespace_sem);
1406 return ret;
1407}
1408
1409EXPORT_SYMBOL(may_umount);
1410
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001411static void namespace_unlock(void)
1412{
1413 struct hlist_head head;
David Brazdil0f672f62019-12-10 10:32:29 +00001414 struct hlist_node *p;
1415 struct mount *m;
1416 LIST_HEAD(list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001417
1418 hlist_move_list(&unmounted, &head);
David Brazdil0f672f62019-12-10 10:32:29 +00001419 list_splice_init(&ex_mountpoints, &list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001420
1421 up_write(&namespace_sem);
1422
David Brazdil0f672f62019-12-10 10:32:29 +00001423 shrink_dentry_list(&list);
1424
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001425 if (likely(hlist_empty(&head)))
1426 return;
1427
David Brazdil0f672f62019-12-10 10:32:29 +00001428 synchronize_rcu_expedited();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001429
David Brazdil0f672f62019-12-10 10:32:29 +00001430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1431 hlist_del(&m->mnt_umount);
1432 mntput(&m->mnt);
1433 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001434}
1435
1436static inline void namespace_lock(void)
1437{
1438 down_write(&namespace_sem);
1439}
1440
1441enum umount_tree_flags {
1442 UMOUNT_SYNC = 1,
1443 UMOUNT_PROPAGATE = 2,
1444 UMOUNT_CONNECTED = 4,
1445};
1446
1447static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1448{
1449 /* Leaving mounts connected is only valid for lazy umounts */
1450 if (how & UMOUNT_SYNC)
1451 return true;
1452
1453 /* A mount without a parent has nothing to be connected to */
1454 if (!mnt_has_parent(mnt))
1455 return true;
1456
1457 /* Because the reference counting rules change when mounts are
1458 * unmounted and connected, umounted mounts may not be
1459 * connected to mounted mounts.
1460 */
1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1462 return true;
1463
1464 /* Has it been requested that the mount remain connected? */
1465 if (how & UMOUNT_CONNECTED)
1466 return false;
1467
1468 /* Is the mount locked such that it needs to remain connected? */
1469 if (IS_MNT_LOCKED(mnt))
1470 return false;
1471
1472 /* By default disconnect the mount */
1473 return true;
1474}
1475
1476/*
1477 * mount_lock must be held
1478 * namespace_sem must be held for write
1479 */
1480static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1481{
1482 LIST_HEAD(tmp_list);
1483 struct mount *p;
1484
1485 if (how & UMOUNT_PROPAGATE)
1486 propagate_mount_unlock(mnt);
1487
1488 /* Gather the mounts to umount */
1489 for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 p->mnt.mnt_flags |= MNT_UMOUNT;
1491 list_move(&p->mnt_list, &tmp_list);
1492 }
1493
1494 /* Hide the mounts from mnt_mounts */
1495 list_for_each_entry(p, &tmp_list, mnt_list) {
1496 list_del_init(&p->mnt_child);
1497 }
1498
1499 /* Add propogated mounts to the tmp_list */
1500 if (how & UMOUNT_PROPAGATE)
1501 propagate_umount(&tmp_list);
1502
1503 while (!list_empty(&tmp_list)) {
1504 struct mnt_namespace *ns;
1505 bool disconnect;
1506 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1507 list_del_init(&p->mnt_expire);
1508 list_del_init(&p->mnt_list);
1509 ns = p->mnt_ns;
1510 if (ns) {
1511 ns->mounts--;
1512 __touch_mnt_namespace(ns);
1513 }
1514 p->mnt_ns = NULL;
1515 if (how & UMOUNT_SYNC)
1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1517
1518 disconnect = disconnect_mount(p, how);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001519 if (mnt_has_parent(p)) {
1520 mnt_add_count(p->mnt_parent, -1);
1521 if (!disconnect) {
1522 /* Don't forget about p */
1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1524 } else {
1525 umount_mnt(p);
1526 }
1527 }
1528 change_mnt_propagation(p, MS_PRIVATE);
David Brazdil0f672f62019-12-10 10:32:29 +00001529 if (disconnect)
1530 hlist_add_head(&p->mnt_umount, &unmounted);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001531 }
1532}
1533
1534static void shrink_submounts(struct mount *mnt);
1535
David Brazdil0f672f62019-12-10 10:32:29 +00001536static int do_umount_root(struct super_block *sb)
1537{
1538 int ret = 0;
1539
1540 down_write(&sb->s_umount);
1541 if (!sb_rdonly(sb)) {
1542 struct fs_context *fc;
1543
1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1545 SB_RDONLY);
1546 if (IS_ERR(fc)) {
1547 ret = PTR_ERR(fc);
1548 } else {
1549 ret = parse_monolithic_mount_data(fc, NULL);
1550 if (!ret)
1551 ret = reconfigure_super(fc);
1552 put_fs_context(fc);
1553 }
1554 }
1555 up_write(&sb->s_umount);
1556 return ret;
1557}
1558
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001559static int do_umount(struct mount *mnt, int flags)
1560{
1561 struct super_block *sb = mnt->mnt.mnt_sb;
1562 int retval;
1563
1564 retval = security_sb_umount(&mnt->mnt, flags);
1565 if (retval)
1566 return retval;
1567
1568 /*
1569 * Allow userspace to request a mountpoint be expired rather than
1570 * unmounting unconditionally. Unmount only happens if:
1571 * (1) the mark is already set (the mark is cleared by mntput())
1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1573 */
1574 if (flags & MNT_EXPIRE) {
1575 if (&mnt->mnt == current->fs->root.mnt ||
1576 flags & (MNT_FORCE | MNT_DETACH))
1577 return -EINVAL;
1578
1579 /*
1580 * probably don't strictly need the lock here if we examined
1581 * all race cases, but it's a slowpath.
1582 */
1583 lock_mount_hash();
1584 if (mnt_get_count(mnt) != 2) {
1585 unlock_mount_hash();
1586 return -EBUSY;
1587 }
1588 unlock_mount_hash();
1589
1590 if (!xchg(&mnt->mnt_expiry_mark, 1))
1591 return -EAGAIN;
1592 }
1593
1594 /*
1595 * If we may have to abort operations to get out of this
1596 * mount, and they will themselves hold resources we must
1597 * allow the fs to do things. In the Unix tradition of
1598 * 'Gee thats tricky lets do it in userspace' the umount_begin
1599 * might fail to complete on the first run through as other tasks
1600 * must return, and the like. Thats for the mount program to worry
1601 * about for the moment.
1602 */
1603
1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1605 sb->s_op->umount_begin(sb);
1606 }
1607
1608 /*
1609 * No sense to grab the lock for this test, but test itself looks
1610 * somewhat bogus. Suggestions for better replacement?
1611 * Ho-hum... In principle, we might treat that as umount + switch
1612 * to rootfs. GC would eventually take care of the old vfsmount.
1613 * Actually it makes sense, especially if rootfs would contain a
1614 * /reboot - static binary that would close all descriptors and
1615 * call reboot(9). Then init(8) could umount root and exec /reboot.
1616 */
1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1618 /*
1619 * Special case for "unmounting" root ...
1620 * we just try to remount it readonly.
1621 */
1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1623 return -EPERM;
David Brazdil0f672f62019-12-10 10:32:29 +00001624 return do_umount_root(sb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001625 }
1626
1627 namespace_lock();
1628 lock_mount_hash();
1629
1630 /* Recheck MNT_LOCKED with the locks held */
1631 retval = -EINVAL;
1632 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1633 goto out;
1634
1635 event++;
1636 if (flags & MNT_DETACH) {
1637 if (!list_empty(&mnt->mnt_list))
1638 umount_tree(mnt, UMOUNT_PROPAGATE);
1639 retval = 0;
1640 } else {
1641 shrink_submounts(mnt);
1642 retval = -EBUSY;
1643 if (!propagate_mount_busy(mnt, 2)) {
1644 if (!list_empty(&mnt->mnt_list))
1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1646 retval = 0;
1647 }
1648 }
1649out:
1650 unlock_mount_hash();
1651 namespace_unlock();
1652 return retval;
1653}
1654
1655/*
1656 * __detach_mounts - lazily unmount all mounts on the specified dentry
1657 *
1658 * During unlink, rmdir, and d_drop it is possible to loose the path
1659 * to an existing mountpoint, and wind up leaking the mount.
1660 * detach_mounts allows lazily unmounting those mounts instead of
1661 * leaking them.
1662 *
1663 * The caller may hold dentry->d_inode->i_mutex.
1664 */
1665void __detach_mounts(struct dentry *dentry)
1666{
1667 struct mountpoint *mp;
1668 struct mount *mnt;
1669
1670 namespace_lock();
1671 lock_mount_hash();
1672 mp = lookup_mountpoint(dentry);
David Brazdil0f672f62019-12-10 10:32:29 +00001673 if (!mp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001674 goto out_unlock;
1675
1676 event++;
1677 while (!hlist_empty(&mp->m_list)) {
1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001680 umount_mnt(mnt);
David Brazdil0f672f62019-12-10 10:32:29 +00001681 hlist_add_head(&mnt->mnt_umount, &unmounted);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001682 }
1683 else umount_tree(mnt, UMOUNT_CONNECTED);
1684 }
1685 put_mountpoint(mp);
1686out_unlock:
1687 unlock_mount_hash();
1688 namespace_unlock();
1689}
1690
1691/*
1692 * Is the caller allowed to modify his namespace?
1693 */
1694static inline bool may_mount(void)
1695{
1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1697}
1698
David Brazdil0f672f62019-12-10 10:32:29 +00001699#ifdef CONFIG_MANDATORY_FILE_LOCKING
Olivier Deprez0e641232021-09-23 10:07:05 +02001700static bool may_mandlock(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001701{
Olivier Deprez0e641232021-09-23 10:07:05 +02001702 pr_warn_once("======================================================\n"
1703 "WARNING: the mand mount option is being deprecated and\n"
1704 " will be removed in v5.15!\n"
1705 "======================================================\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001706 return capable(CAP_SYS_ADMIN);
1707}
David Brazdil0f672f62019-12-10 10:32:29 +00001708#else
1709static inline bool may_mandlock(void)
1710{
1711 pr_warn("VFS: \"mand\" mount option not supported");
1712 return false;
1713}
1714#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001715
Olivier Deprez157378f2022-04-04 15:47:50 +02001716static int can_umount(const struct path *path, int flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001717{
Olivier Deprez157378f2022-04-04 15:47:50 +02001718 struct mount *mnt = real_mount(path->mnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001719
1720 if (!may_mount())
1721 return -EPERM;
Olivier Deprez157378f2022-04-04 15:47:50 +02001722 if (path->dentry != path->mnt->mnt_root)
1723 return -EINVAL;
1724 if (!check_mnt(mnt))
1725 return -EINVAL;
1726 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1727 return -EINVAL;
1728 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1729 return -EPERM;
1730 return 0;
1731}
1732
1733// caller is responsible for flags being sane
1734int path_umount(struct path *path, int flags)
1735{
1736 struct mount *mnt = real_mount(path->mnt);
1737 int ret;
1738
1739 ret = can_umount(path, flags);
1740 if (!ret)
1741 ret = do_umount(mnt, flags);
1742
1743 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1744 dput(path->dentry);
1745 mntput_no_expire(mnt);
1746 return ret;
1747}
1748
1749static int ksys_umount(char __user *name, int flags)
1750{
1751 int lookup_flags = LOOKUP_MOUNTPOINT;
1752 struct path path;
1753 int ret;
1754
1755 // basic validity checks done first
1756 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1757 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001758
1759 if (!(flags & UMOUNT_NOFOLLOW))
1760 lookup_flags |= LOOKUP_FOLLOW;
Olivier Deprez157378f2022-04-04 15:47:50 +02001761 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1762 if (ret)
1763 return ret;
1764 return path_umount(&path, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001765}
1766
1767SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1768{
1769 return ksys_umount(name, flags);
1770}
1771
1772#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1773
1774/*
1775 * The 2.0 compatible umount. No flags.
1776 */
1777SYSCALL_DEFINE1(oldumount, char __user *, name)
1778{
1779 return ksys_umount(name, 0);
1780}
1781
1782#endif
1783
1784static bool is_mnt_ns_file(struct dentry *dentry)
1785{
1786 /* Is this a proxy for a mount namespace? */
1787 return dentry->d_op == &ns_dentry_operations &&
1788 dentry->d_fsdata == &mntns_operations;
1789}
1790
Olivier Deprez157378f2022-04-04 15:47:50 +02001791static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001792{
1793 return container_of(ns, struct mnt_namespace, ns);
1794}
1795
Olivier Deprez157378f2022-04-04 15:47:50 +02001796struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1797{
1798 return &mnt->ns;
1799}
1800
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001801static bool mnt_ns_loop(struct dentry *dentry)
1802{
1803 /* Could bind mounting the mount namespace inode cause a
1804 * mount namespace loop?
1805 */
1806 struct mnt_namespace *mnt_ns;
1807 if (!is_mnt_ns_file(dentry))
1808 return false;
1809
1810 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1811 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1812}
1813
1814struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1815 int flag)
1816{
1817 struct mount *res, *p, *q, *r, *parent;
1818
1819 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1820 return ERR_PTR(-EINVAL);
1821
1822 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1823 return ERR_PTR(-EINVAL);
1824
1825 res = q = clone_mnt(mnt, dentry, flag);
1826 if (IS_ERR(q))
1827 return q;
1828
1829 q->mnt_mountpoint = mnt->mnt_mountpoint;
1830
1831 p = mnt;
1832 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1833 struct mount *s;
1834 if (!is_subdir(r->mnt_mountpoint, dentry))
1835 continue;
1836
1837 for (s = r; s; s = next_mnt(s, r)) {
1838 if (!(flag & CL_COPY_UNBINDABLE) &&
1839 IS_MNT_UNBINDABLE(s)) {
1840 if (s->mnt.mnt_flags & MNT_LOCKED) {
1841 /* Both unbindable and locked. */
1842 q = ERR_PTR(-EPERM);
1843 goto out;
1844 } else {
1845 s = skip_mnt_tree(s);
1846 continue;
1847 }
1848 }
1849 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1850 is_mnt_ns_file(s->mnt.mnt_root)) {
1851 s = skip_mnt_tree(s);
1852 continue;
1853 }
1854 while (p != s->mnt_parent) {
1855 p = p->mnt_parent;
1856 q = q->mnt_parent;
1857 }
1858 p = s;
1859 parent = q;
1860 q = clone_mnt(p, p->mnt.mnt_root, flag);
1861 if (IS_ERR(q))
1862 goto out;
1863 lock_mount_hash();
1864 list_add_tail(&q->mnt_list, &res->mnt_list);
1865 attach_mnt(q, parent, p->mnt_mp);
1866 unlock_mount_hash();
1867 }
1868 }
1869 return res;
1870out:
1871 if (res) {
1872 lock_mount_hash();
1873 umount_tree(res, UMOUNT_SYNC);
1874 unlock_mount_hash();
1875 }
1876 return q;
1877}
1878
1879/* Caller should check returned pointer for errors */
1880
1881struct vfsmount *collect_mounts(const struct path *path)
1882{
1883 struct mount *tree;
1884 namespace_lock();
1885 if (!check_mnt(real_mount(path->mnt)))
1886 tree = ERR_PTR(-EINVAL);
1887 else
1888 tree = copy_tree(real_mount(path->mnt), path->dentry,
1889 CL_COPY_ALL | CL_PRIVATE);
1890 namespace_unlock();
1891 if (IS_ERR(tree))
1892 return ERR_CAST(tree);
1893 return &tree->mnt;
1894}
1895
David Brazdil0f672f62019-12-10 10:32:29 +00001896static void free_mnt_ns(struct mnt_namespace *);
1897static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1898
1899void dissolve_on_fput(struct vfsmount *mnt)
1900{
1901 struct mnt_namespace *ns;
1902 namespace_lock();
1903 lock_mount_hash();
1904 ns = real_mount(mnt)->mnt_ns;
1905 if (ns) {
1906 if (is_anon_ns(ns))
1907 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1908 else
1909 ns = NULL;
1910 }
1911 unlock_mount_hash();
1912 namespace_unlock();
1913 if (ns)
1914 free_mnt_ns(ns);
1915}
1916
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001917void drop_collected_mounts(struct vfsmount *mnt)
1918{
1919 namespace_lock();
1920 lock_mount_hash();
1921 umount_tree(real_mount(mnt), 0);
1922 unlock_mount_hash();
1923 namespace_unlock();
1924}
1925
Olivier Deprez0e641232021-09-23 10:07:05 +02001926static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1927{
1928 struct mount *child;
1929
1930 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1931 if (!is_subdir(child->mnt_mountpoint, dentry))
1932 continue;
1933
1934 if (child->mnt.mnt_flags & MNT_LOCKED)
1935 return true;
1936 }
1937 return false;
1938}
1939
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001940/**
1941 * clone_private_mount - create a private clone of a path
1942 *
1943 * This creates a new vfsmount, which will be the clone of @path. The new will
1944 * not be attached anywhere in the namespace and will be private (i.e. changes
1945 * to the originating mount won't be propagated into this).
1946 *
1947 * Release with mntput().
1948 */
1949struct vfsmount *clone_private_mount(const struct path *path)
1950{
1951 struct mount *old_mnt = real_mount(path->mnt);
1952 struct mount *new_mnt;
1953
Olivier Deprez0e641232021-09-23 10:07:05 +02001954 down_read(&namespace_sem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001955 if (IS_MNT_UNBINDABLE(old_mnt))
Olivier Deprez0e641232021-09-23 10:07:05 +02001956 goto invalid;
1957
1958 if (!check_mnt(old_mnt))
1959 goto invalid;
1960
1961 if (has_locked_children(old_mnt, path->dentry))
1962 goto invalid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001963
1964 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
Olivier Deprez0e641232021-09-23 10:07:05 +02001965 up_read(&namespace_sem);
1966
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001967 if (IS_ERR(new_mnt))
1968 return ERR_CAST(new_mnt);
1969
Olivier Deprez157378f2022-04-04 15:47:50 +02001970 /* Longterm mount to be removed by kern_unmount*() */
1971 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1972
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001973 return &new_mnt->mnt;
Olivier Deprez0e641232021-09-23 10:07:05 +02001974
1975invalid:
1976 up_read(&namespace_sem);
1977 return ERR_PTR(-EINVAL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001978}
1979EXPORT_SYMBOL_GPL(clone_private_mount);
1980
1981int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1982 struct vfsmount *root)
1983{
1984 struct mount *mnt;
1985 int res = f(root, arg);
1986 if (res)
1987 return res;
1988 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1989 res = f(&mnt->mnt, arg);
1990 if (res)
1991 return res;
1992 }
1993 return 0;
1994}
1995
David Brazdil0f672f62019-12-10 10:32:29 +00001996static void lock_mnt_tree(struct mount *mnt)
1997{
1998 struct mount *p;
1999
2000 for (p = mnt; p; p = next_mnt(p, mnt)) {
2001 int flags = p->mnt.mnt_flags;
2002 /* Don't allow unprivileged users to change mount flags */
2003 flags |= MNT_LOCK_ATIME;
2004
2005 if (flags & MNT_READONLY)
2006 flags |= MNT_LOCK_READONLY;
2007
2008 if (flags & MNT_NODEV)
2009 flags |= MNT_LOCK_NODEV;
2010
2011 if (flags & MNT_NOSUID)
2012 flags |= MNT_LOCK_NOSUID;
2013
2014 if (flags & MNT_NOEXEC)
2015 flags |= MNT_LOCK_NOEXEC;
2016 /* Don't allow unprivileged users to reveal what is under a mount */
2017 if (list_empty(&p->mnt_expire))
2018 flags |= MNT_LOCKED;
2019 p->mnt.mnt_flags = flags;
2020 }
2021}
2022
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002023static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2024{
2025 struct mount *p;
2026
2027 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2028 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2029 mnt_release_group_id(p);
2030 }
2031}
2032
2033static int invent_group_ids(struct mount *mnt, bool recurse)
2034{
2035 struct mount *p;
2036
2037 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2038 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2039 int err = mnt_alloc_group_id(p);
2040 if (err) {
2041 cleanup_group_ids(mnt, p);
2042 return err;
2043 }
2044 }
2045 }
2046
2047 return 0;
2048}
2049
2050int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2051{
2052 unsigned int max = READ_ONCE(sysctl_mount_max);
2053 unsigned int mounts = 0, old, pending, sum;
2054 struct mount *p;
2055
2056 for (p = mnt; p; p = next_mnt(p, mnt))
2057 mounts++;
2058
2059 old = ns->mounts;
2060 pending = ns->pending_mounts;
2061 sum = old + pending;
2062 if ((old > sum) ||
2063 (pending > sum) ||
2064 (max < sum) ||
2065 (mounts > (max - sum)))
2066 return -ENOSPC;
2067
2068 ns->pending_mounts = pending + mounts;
2069 return 0;
2070}
2071
2072/*
2073 * @source_mnt : mount tree to be attached
2074 * @nd : place the mount tree @source_mnt is attached
2075 * @parent_nd : if non-null, detach the source_mnt from its parent and
2076 * store the parent mount and mountpoint dentry.
2077 * (done when source_mnt is moved)
2078 *
2079 * NOTE: in the table below explains the semantics when a source mount
2080 * of a given type is attached to a destination mount of a given type.
2081 * ---------------------------------------------------------------------------
2082 * | BIND MOUNT OPERATION |
2083 * |**************************************************************************
2084 * | source-->| shared | private | slave | unbindable |
2085 * | dest | | | | |
2086 * | | | | | | |
2087 * | v | | | | |
2088 * |**************************************************************************
2089 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2090 * | | | | | |
2091 * |non-shared| shared (+) | private | slave (*) | invalid |
2092 * ***************************************************************************
2093 * A bind operation clones the source mount and mounts the clone on the
2094 * destination mount.
2095 *
2096 * (++) the cloned mount is propagated to all the mounts in the propagation
2097 * tree of the destination mount and the cloned mount is added to
2098 * the peer group of the source mount.
2099 * (+) the cloned mount is created under the destination mount and is marked
2100 * as shared. The cloned mount is added to the peer group of the source
2101 * mount.
2102 * (+++) the mount is propagated to all the mounts in the propagation tree
2103 * of the destination mount and the cloned mount is made slave
2104 * of the same master as that of the source mount. The cloned mount
2105 * is marked as 'shared and slave'.
2106 * (*) the cloned mount is made a slave of the same master as that of the
2107 * source mount.
2108 *
2109 * ---------------------------------------------------------------------------
2110 * | MOVE MOUNT OPERATION |
2111 * |**************************************************************************
2112 * | source-->| shared | private | slave | unbindable |
2113 * | dest | | | | |
2114 * | | | | | | |
2115 * | v | | | | |
2116 * |**************************************************************************
2117 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2118 * | | | | | |
2119 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2120 * ***************************************************************************
2121 *
2122 * (+) the mount is moved to the destination. And is then propagated to
2123 * all the mounts in the propagation tree of the destination mount.
2124 * (+*) the mount is moved to the destination.
2125 * (+++) the mount is moved to the destination and is then propagated to
2126 * all the mounts belonging to the destination mount's propagation tree.
2127 * the mount is marked as 'shared and slave'.
2128 * (*) the mount continues to be a slave at the new location.
2129 *
2130 * if the source mount is a tree, the operations explained above is
2131 * applied to each mount in the tree.
2132 * Must be called without spinlocks held, since this function can sleep
2133 * in allocations.
2134 */
2135static int attach_recursive_mnt(struct mount *source_mnt,
2136 struct mount *dest_mnt,
2137 struct mountpoint *dest_mp,
David Brazdil0f672f62019-12-10 10:32:29 +00002138 bool moving)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002139{
David Brazdil0f672f62019-12-10 10:32:29 +00002140 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002141 HLIST_HEAD(tree_list);
2142 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2143 struct mountpoint *smp;
2144 struct mount *child, *p;
2145 struct hlist_node *n;
2146 int err;
2147
2148 /* Preallocate a mountpoint in case the new mounts need
2149 * to be tucked under other mounts.
2150 */
2151 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2152 if (IS_ERR(smp))
2153 return PTR_ERR(smp);
2154
2155 /* Is there space to add these mounts to the mount namespace? */
David Brazdil0f672f62019-12-10 10:32:29 +00002156 if (!moving) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002157 err = count_mounts(ns, source_mnt);
2158 if (err)
2159 goto out;
2160 }
2161
2162 if (IS_MNT_SHARED(dest_mnt)) {
2163 err = invent_group_ids(source_mnt, true);
2164 if (err)
2165 goto out;
2166 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2167 lock_mount_hash();
2168 if (err)
2169 goto out_cleanup_ids;
2170 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2171 set_mnt_shared(p);
2172 } else {
2173 lock_mount_hash();
2174 }
David Brazdil0f672f62019-12-10 10:32:29 +00002175 if (moving) {
2176 unhash_mnt(source_mnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002177 attach_mnt(source_mnt, dest_mnt, dest_mp);
2178 touch_mnt_namespace(source_mnt->mnt_ns);
2179 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00002180 if (source_mnt->mnt_ns) {
2181 /* move from anon - the caller will destroy */
2182 list_del_init(&source_mnt->mnt_ns->list);
2183 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002184 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2185 commit_tree(source_mnt);
2186 }
2187
2188 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2189 struct mount *q;
2190 hlist_del_init(&child->mnt_hash);
2191 q = __lookup_mnt(&child->mnt_parent->mnt,
2192 child->mnt_mountpoint);
2193 if (q)
2194 mnt_change_mountpoint(child, smp, q);
David Brazdil0f672f62019-12-10 10:32:29 +00002195 /* Notice when we are propagating across user namespaces */
2196 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2197 lock_mnt_tree(child);
2198 child->mnt.mnt_flags &= ~MNT_LOCKED;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002199 commit_tree(child);
2200 }
2201 put_mountpoint(smp);
2202 unlock_mount_hash();
2203
2204 return 0;
2205
2206 out_cleanup_ids:
2207 while (!hlist_empty(&tree_list)) {
2208 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2209 child->mnt_parent->mnt_ns->pending_mounts = 0;
2210 umount_tree(child, UMOUNT_SYNC);
2211 }
2212 unlock_mount_hash();
2213 cleanup_group_ids(source_mnt, NULL);
2214 out:
2215 ns->pending_mounts = 0;
2216
2217 read_seqlock_excl(&mount_lock);
2218 put_mountpoint(smp);
2219 read_sequnlock_excl(&mount_lock);
2220
2221 return err;
2222}
2223
2224static struct mountpoint *lock_mount(struct path *path)
2225{
2226 struct vfsmount *mnt;
2227 struct dentry *dentry = path->dentry;
2228retry:
2229 inode_lock(dentry->d_inode);
2230 if (unlikely(cant_mount(dentry))) {
2231 inode_unlock(dentry->d_inode);
2232 return ERR_PTR(-ENOENT);
2233 }
2234 namespace_lock();
2235 mnt = lookup_mnt(path);
2236 if (likely(!mnt)) {
2237 struct mountpoint *mp = get_mountpoint(dentry);
2238 if (IS_ERR(mp)) {
2239 namespace_unlock();
2240 inode_unlock(dentry->d_inode);
2241 return mp;
2242 }
2243 return mp;
2244 }
2245 namespace_unlock();
2246 inode_unlock(path->dentry->d_inode);
2247 path_put(path);
2248 path->mnt = mnt;
2249 dentry = path->dentry = dget(mnt->mnt_root);
2250 goto retry;
2251}
2252
2253static void unlock_mount(struct mountpoint *where)
2254{
2255 struct dentry *dentry = where->m_dentry;
2256
2257 read_seqlock_excl(&mount_lock);
2258 put_mountpoint(where);
2259 read_sequnlock_excl(&mount_lock);
2260
2261 namespace_unlock();
2262 inode_unlock(dentry->d_inode);
2263}
2264
2265static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2266{
2267 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2268 return -EINVAL;
2269
2270 if (d_is_dir(mp->m_dentry) !=
2271 d_is_dir(mnt->mnt.mnt_root))
2272 return -ENOTDIR;
2273
David Brazdil0f672f62019-12-10 10:32:29 +00002274 return attach_recursive_mnt(mnt, p, mp, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002275}
2276
2277/*
2278 * Sanity check the flags to change_mnt_propagation.
2279 */
2280
2281static int flags_to_propagation_type(int ms_flags)
2282{
2283 int type = ms_flags & ~(MS_REC | MS_SILENT);
2284
2285 /* Fail if any non-propagation flags are set */
2286 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2287 return 0;
2288 /* Only one propagation flag should be set */
2289 if (!is_power_of_2(type))
2290 return 0;
2291 return type;
2292}
2293
2294/*
2295 * recursively change the type of the mountpoint.
2296 */
2297static int do_change_type(struct path *path, int ms_flags)
2298{
2299 struct mount *m;
2300 struct mount *mnt = real_mount(path->mnt);
2301 int recurse = ms_flags & MS_REC;
2302 int type;
2303 int err = 0;
2304
2305 if (path->dentry != path->mnt->mnt_root)
2306 return -EINVAL;
2307
2308 type = flags_to_propagation_type(ms_flags);
2309 if (!type)
2310 return -EINVAL;
2311
2312 namespace_lock();
2313 if (type == MS_SHARED) {
2314 err = invent_group_ids(mnt, recurse);
2315 if (err)
2316 goto out_unlock;
2317 }
2318
2319 lock_mount_hash();
2320 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2321 change_mnt_propagation(m, type);
2322 unlock_mount_hash();
2323
2324 out_unlock:
2325 namespace_unlock();
2326 return err;
2327}
2328
David Brazdil0f672f62019-12-10 10:32:29 +00002329static struct mount *__do_loopback(struct path *old_path, int recurse)
2330{
2331 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2332
2333 if (IS_MNT_UNBINDABLE(old))
2334 return mnt;
2335
2336 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2337 return mnt;
2338
2339 if (!recurse && has_locked_children(old, old_path->dentry))
2340 return mnt;
2341
2342 if (recurse)
2343 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2344 else
2345 mnt = clone_mnt(old, old_path->dentry, 0);
2346
2347 if (!IS_ERR(mnt))
2348 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2349
2350 return mnt;
2351}
2352
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002353/*
2354 * do loopback mount.
2355 */
2356static int do_loopback(struct path *path, const char *old_name,
2357 int recurse)
2358{
2359 struct path old_path;
David Brazdil0f672f62019-12-10 10:32:29 +00002360 struct mount *mnt = NULL, *parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002361 struct mountpoint *mp;
2362 int err;
2363 if (!old_name || !*old_name)
2364 return -EINVAL;
2365 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2366 if (err)
2367 return err;
2368
2369 err = -EINVAL;
2370 if (mnt_ns_loop(old_path.dentry))
2371 goto out;
2372
2373 mp = lock_mount(path);
David Brazdil0f672f62019-12-10 10:32:29 +00002374 if (IS_ERR(mp)) {
2375 err = PTR_ERR(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002376 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00002377 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002378
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002379 parent = real_mount(path->mnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002380 if (!check_mnt(parent))
2381 goto out2;
2382
David Brazdil0f672f62019-12-10 10:32:29 +00002383 mnt = __do_loopback(&old_path, recurse);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002384 if (IS_ERR(mnt)) {
2385 err = PTR_ERR(mnt);
2386 goto out2;
2387 }
2388
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002389 err = graft_tree(mnt, parent, mp);
2390 if (err) {
2391 lock_mount_hash();
2392 umount_tree(mnt, UMOUNT_SYNC);
2393 unlock_mount_hash();
2394 }
2395out2:
2396 unlock_mount(mp);
2397out:
2398 path_put(&old_path);
2399 return err;
2400}
2401
David Brazdil0f672f62019-12-10 10:32:29 +00002402static struct file *open_detached_copy(struct path *path, bool recursive)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002403{
David Brazdil0f672f62019-12-10 10:32:29 +00002404 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2405 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2406 struct mount *mnt, *p;
2407 struct file *file;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002408
David Brazdil0f672f62019-12-10 10:32:29 +00002409 if (IS_ERR(ns))
2410 return ERR_CAST(ns);
2411
2412 namespace_lock();
2413 mnt = __do_loopback(path, recursive);
2414 if (IS_ERR(mnt)) {
2415 namespace_unlock();
2416 free_mnt_ns(ns);
2417 return ERR_CAST(mnt);
2418 }
2419
2420 lock_mount_hash();
2421 for (p = mnt; p; p = next_mnt(p, mnt)) {
2422 p->mnt_ns = ns;
2423 ns->mounts++;
2424 }
2425 ns->root = mnt;
2426 list_add_tail(&ns->list, &mnt->mnt_list);
2427 mntget(&mnt->mnt);
2428 unlock_mount_hash();
2429 namespace_unlock();
2430
2431 mntput(path->mnt);
2432 path->mnt = &mnt->mnt;
2433 file = dentry_open(path, O_PATH, current_cred());
2434 if (IS_ERR(file))
2435 dissolve_on_fput(path->mnt);
2436 else
2437 file->f_mode |= FMODE_NEED_UNMOUNT;
2438 return file;
2439}
2440
Olivier Deprez157378f2022-04-04 15:47:50 +02002441SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
David Brazdil0f672f62019-12-10 10:32:29 +00002442{
2443 struct file *file;
2444 struct path path;
2445 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2446 bool detached = flags & OPEN_TREE_CLONE;
2447 int error;
2448 int fd;
2449
2450 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2451
2452 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2453 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2454 OPEN_TREE_CLOEXEC))
2455 return -EINVAL;
2456
2457 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2458 return -EINVAL;
2459
2460 if (flags & AT_NO_AUTOMOUNT)
2461 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2462 if (flags & AT_SYMLINK_NOFOLLOW)
2463 lookup_flags &= ~LOOKUP_FOLLOW;
2464 if (flags & AT_EMPTY_PATH)
2465 lookup_flags |= LOOKUP_EMPTY;
2466
2467 if (detached && !may_mount())
2468 return -EPERM;
2469
2470 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2471 if (fd < 0)
2472 return fd;
2473
2474 error = user_path_at(dfd, filename, lookup_flags, &path);
2475 if (unlikely(error)) {
2476 file = ERR_PTR(error);
2477 } else {
2478 if (detached)
2479 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2480 else
2481 file = dentry_open(&path, O_PATH, current_cred());
2482 path_put(&path);
2483 }
2484 if (IS_ERR(file)) {
2485 put_unused_fd(fd);
2486 return PTR_ERR(file);
2487 }
2488 fd_install(fd, file);
2489 return fd;
2490}
2491
2492/*
2493 * Don't allow locked mount flags to be cleared.
2494 *
2495 * No locks need to be held here while testing the various MNT_LOCK
2496 * flags because those flags can never be cleared once they are set.
2497 */
2498static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2499{
2500 unsigned int fl = mnt->mnt.mnt_flags;
2501
2502 if ((fl & MNT_LOCK_READONLY) &&
2503 !(mnt_flags & MNT_READONLY))
2504 return false;
2505
2506 if ((fl & MNT_LOCK_NODEV) &&
2507 !(mnt_flags & MNT_NODEV))
2508 return false;
2509
2510 if ((fl & MNT_LOCK_NOSUID) &&
2511 !(mnt_flags & MNT_NOSUID))
2512 return false;
2513
2514 if ((fl & MNT_LOCK_NOEXEC) &&
2515 !(mnt_flags & MNT_NOEXEC))
2516 return false;
2517
2518 if ((fl & MNT_LOCK_ATIME) &&
2519 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2520 return false;
2521
2522 return true;
2523}
2524
2525static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2526{
2527 bool readonly_request = (mnt_flags & MNT_READONLY);
2528
2529 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002530 return 0;
2531
2532 if (readonly_request)
David Brazdil0f672f62019-12-10 10:32:29 +00002533 return mnt_make_readonly(mnt);
2534
2535 return __mnt_unmake_readonly(mnt);
2536}
2537
2538/*
2539 * Update the user-settable attributes on a mount. The caller must hold
2540 * sb->s_umount for writing.
2541 */
2542static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2543{
2544 lock_mount_hash();
2545 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2546 mnt->mnt.mnt_flags = mnt_flags;
2547 touch_mnt_namespace(mnt->mnt_ns);
2548 unlock_mount_hash();
2549}
2550
2551static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2552{
2553 struct super_block *sb = mnt->mnt_sb;
2554
2555 if (!__mnt_is_readonly(mnt) &&
2556 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2557 char *buf = (char *)__get_free_page(GFP_KERNEL);
2558 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2559 struct tm tm;
2560
2561 time64_to_tm(sb->s_time_max, 0, &tm);
2562
2563 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2564 sb->s_type->name,
2565 is_mounted(mnt) ? "remounted" : "mounted",
2566 mntpath,
2567 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2568
2569 free_page((unsigned long)buf);
2570 }
2571}
2572
2573/*
2574 * Handle reconfiguration of the mountpoint only without alteration of the
2575 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2576 * to mount(2).
2577 */
2578static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2579{
2580 struct super_block *sb = path->mnt->mnt_sb;
2581 struct mount *mnt = real_mount(path->mnt);
2582 int ret;
2583
2584 if (!check_mnt(mnt))
2585 return -EINVAL;
2586
2587 if (path->dentry != mnt->mnt.mnt_root)
2588 return -EINVAL;
2589
2590 if (!can_change_locked_flags(mnt, mnt_flags))
2591 return -EPERM;
2592
2593 down_write(&sb->s_umount);
2594 ret = change_mount_ro_state(mnt, mnt_flags);
2595 if (ret == 0)
2596 set_mount_attributes(mnt, mnt_flags);
2597 up_write(&sb->s_umount);
2598
2599 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2600
2601 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002602}
2603
2604/*
2605 * change filesystem flags. dir should be a physical root of filesystem.
2606 * If you've mounted a non-root directory somewhere and want to do remount
2607 * on it - tough luck.
2608 */
2609static int do_remount(struct path *path, int ms_flags, int sb_flags,
2610 int mnt_flags, void *data)
2611{
2612 int err;
2613 struct super_block *sb = path->mnt->mnt_sb;
2614 struct mount *mnt = real_mount(path->mnt);
David Brazdil0f672f62019-12-10 10:32:29 +00002615 struct fs_context *fc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002616
2617 if (!check_mnt(mnt))
2618 return -EINVAL;
2619
2620 if (path->dentry != path->mnt->mnt_root)
2621 return -EINVAL;
2622
David Brazdil0f672f62019-12-10 10:32:29 +00002623 if (!can_change_locked_flags(mnt, mnt_flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002624 return -EPERM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002625
David Brazdil0f672f62019-12-10 10:32:29 +00002626 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2627 if (IS_ERR(fc))
2628 return PTR_ERR(fc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002629
Olivier Deprez157378f2022-04-04 15:47:50 +02002630 fc->oldapi = true;
David Brazdil0f672f62019-12-10 10:32:29 +00002631 err = parse_monolithic_mount_data(fc, data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002632 if (!err) {
David Brazdil0f672f62019-12-10 10:32:29 +00002633 down_write(&sb->s_umount);
2634 err = -EPERM;
2635 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2636 err = reconfigure_super(fc);
2637 if (!err)
2638 set_mount_attributes(mnt, mnt_flags);
2639 }
2640 up_write(&sb->s_umount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002641 }
David Brazdil0f672f62019-12-10 10:32:29 +00002642
2643 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2644
2645 put_fs_context(fc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002646 return err;
2647}
2648
2649static inline int tree_contains_unbindable(struct mount *mnt)
2650{
2651 struct mount *p;
2652 for (p = mnt; p; p = next_mnt(p, mnt)) {
2653 if (IS_MNT_UNBINDABLE(p))
2654 return 1;
2655 }
2656 return 0;
2657}
2658
David Brazdil0f672f62019-12-10 10:32:29 +00002659/*
2660 * Check that there aren't references to earlier/same mount namespaces in the
2661 * specified subtree. Such references can act as pins for mount namespaces
2662 * that aren't checked by the mount-cycle checking code, thereby allowing
2663 * cycles to be made.
2664 */
2665static bool check_for_nsfs_mounts(struct mount *subtree)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002666{
David Brazdil0f672f62019-12-10 10:32:29 +00002667 struct mount *p;
2668 bool ret = false;
2669
2670 lock_mount_hash();
2671 for (p = subtree; p; p = next_mnt(p, subtree))
2672 if (mnt_ns_loop(p->mnt.mnt_root))
2673 goto out;
2674
2675 ret = true;
2676out:
2677 unlock_mount_hash();
2678 return ret;
2679}
2680
2681static int do_move_mount(struct path *old_path, struct path *new_path)
2682{
2683 struct mnt_namespace *ns;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002684 struct mount *p;
2685 struct mount *old;
David Brazdil0f672f62019-12-10 10:32:29 +00002686 struct mount *parent;
2687 struct mountpoint *mp, *old_mp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002688 int err;
David Brazdil0f672f62019-12-10 10:32:29 +00002689 bool attached;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002690
David Brazdil0f672f62019-12-10 10:32:29 +00002691 mp = lock_mount(new_path);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002692 if (IS_ERR(mp))
David Brazdil0f672f62019-12-10 10:32:29 +00002693 return PTR_ERR(mp);
2694
2695 old = real_mount(old_path->mnt);
2696 p = real_mount(new_path->mnt);
2697 parent = old->mnt_parent;
2698 attached = mnt_has_parent(old);
2699 old_mp = old->mnt_mp;
2700 ns = old->mnt_ns;
2701
2702 err = -EINVAL;
2703 /* The mountpoint must be in our namespace. */
2704 if (!check_mnt(p))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002705 goto out;
2706
David Brazdil0f672f62019-12-10 10:32:29 +00002707 /* The thing moved must be mounted... */
2708 if (!is_mounted(&old->mnt))
2709 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002710
David Brazdil0f672f62019-12-10 10:32:29 +00002711 /* ... and either ours or the root of anon namespace */
2712 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2713 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002714
2715 if (old->mnt.mnt_flags & MNT_LOCKED)
David Brazdil0f672f62019-12-10 10:32:29 +00002716 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002717
David Brazdil0f672f62019-12-10 10:32:29 +00002718 if (old_path->dentry != old_path->mnt->mnt_root)
2719 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002720
David Brazdil0f672f62019-12-10 10:32:29 +00002721 if (d_is_dir(new_path->dentry) !=
2722 d_is_dir(old_path->dentry))
2723 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002724 /*
2725 * Don't move a mount residing in a shared parent.
2726 */
David Brazdil0f672f62019-12-10 10:32:29 +00002727 if (attached && IS_MNT_SHARED(parent))
2728 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002729 /*
2730 * Don't move a mount tree containing unbindable mounts to a destination
2731 * mount which is shared.
2732 */
2733 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
David Brazdil0f672f62019-12-10 10:32:29 +00002734 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002735 err = -ELOOP;
David Brazdil0f672f62019-12-10 10:32:29 +00002736 if (!check_for_nsfs_mounts(old))
2737 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002738 for (; mnt_has_parent(p); p = p->mnt_parent)
2739 if (p == old)
David Brazdil0f672f62019-12-10 10:32:29 +00002740 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002741
David Brazdil0f672f62019-12-10 10:32:29 +00002742 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2743 attached);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002744 if (err)
David Brazdil0f672f62019-12-10 10:32:29 +00002745 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002746
2747 /* if the mount is moved, it should no longer be expire
2748 * automatically */
2749 list_del_init(&old->mnt_expire);
David Brazdil0f672f62019-12-10 10:32:29 +00002750 if (attached)
2751 put_mountpoint(old_mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002752out:
David Brazdil0f672f62019-12-10 10:32:29 +00002753 unlock_mount(mp);
2754 if (!err) {
2755 if (attached)
2756 mntput_no_expire(parent);
2757 else
2758 free_mnt_ns(ns);
2759 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002760 return err;
2761}
2762
David Brazdil0f672f62019-12-10 10:32:29 +00002763static int do_move_mount_old(struct path *path, const char *old_name)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002764{
David Brazdil0f672f62019-12-10 10:32:29 +00002765 struct path old_path;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002766 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002767
David Brazdil0f672f62019-12-10 10:32:29 +00002768 if (!old_name || !*old_name)
2769 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002770
David Brazdil0f672f62019-12-10 10:32:29 +00002771 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2772 if (err)
2773 return err;
2774
2775 err = do_move_mount(&old_path, path);
2776 path_put(&old_path);
2777 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002778}
2779
2780/*
2781 * add a mount into a namespace's mount tree
2782 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002783static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2784 struct path *path, int mnt_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002785{
Olivier Deprez157378f2022-04-04 15:47:50 +02002786 struct mount *parent = real_mount(path->mnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002787
2788 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2789
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002790 if (unlikely(!check_mnt(parent))) {
2791 /* that's acceptable only for automounts done in private ns */
2792 if (!(mnt_flags & MNT_SHRINKABLE))
Olivier Deprez157378f2022-04-04 15:47:50 +02002793 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002794 /* ... and for those we'd better have mountpoint still alive */
2795 if (!parent->mnt_ns)
Olivier Deprez157378f2022-04-04 15:47:50 +02002796 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002797 }
2798
2799 /* Refuse the same filesystem on the same mount point */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002800 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2801 path->mnt->mnt_root == path->dentry)
Olivier Deprez157378f2022-04-04 15:47:50 +02002802 return -EBUSY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002803
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002804 if (d_is_symlink(newmnt->mnt.mnt_root))
Olivier Deprez157378f2022-04-04 15:47:50 +02002805 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002806
2807 newmnt->mnt.mnt_flags = mnt_flags;
Olivier Deprez157378f2022-04-04 15:47:50 +02002808 return graft_tree(newmnt, parent, mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002809}
2810
David Brazdil0f672f62019-12-10 10:32:29 +00002811static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2812
2813/*
2814 * Create a new mount using a superblock configuration and request it
2815 * be added to the namespace tree.
2816 */
2817static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2818 unsigned int mnt_flags)
2819{
2820 struct vfsmount *mnt;
Olivier Deprez157378f2022-04-04 15:47:50 +02002821 struct mountpoint *mp;
David Brazdil0f672f62019-12-10 10:32:29 +00002822 struct super_block *sb = fc->root->d_sb;
2823 int error;
2824
2825 error = security_sb_kern_mount(sb);
2826 if (!error && mount_too_revealing(sb, &mnt_flags))
2827 error = -EPERM;
2828
2829 if (unlikely(error)) {
2830 fc_drop_locked(fc);
2831 return error;
2832 }
2833
2834 up_write(&sb->s_umount);
2835
2836 mnt = vfs_create_mount(fc);
2837 if (IS_ERR(mnt))
2838 return PTR_ERR(mnt);
2839
2840 mnt_warn_timestamp_expiry(mountpoint, mnt);
2841
Olivier Deprez157378f2022-04-04 15:47:50 +02002842 mp = lock_mount(mountpoint);
2843 if (IS_ERR(mp)) {
2844 mntput(mnt);
2845 return PTR_ERR(mp);
2846 }
2847 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2848 unlock_mount(mp);
David Brazdil0f672f62019-12-10 10:32:29 +00002849 if (error < 0)
2850 mntput(mnt);
2851 return error;
2852}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002853
2854/*
2855 * create a new mount for userspace and request it to be added into the
2856 * namespace's tree
2857 */
2858static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2859 int mnt_flags, const char *name, void *data)
2860{
2861 struct file_system_type *type;
David Brazdil0f672f62019-12-10 10:32:29 +00002862 struct fs_context *fc;
2863 const char *subtype = NULL;
2864 int err = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002865
2866 if (!fstype)
2867 return -EINVAL;
2868
2869 type = get_fs_type(fstype);
2870 if (!type)
2871 return -ENODEV;
2872
David Brazdil0f672f62019-12-10 10:32:29 +00002873 if (type->fs_flags & FS_HAS_SUBTYPE) {
2874 subtype = strchr(fstype, '.');
2875 if (subtype) {
2876 subtype++;
2877 if (!*subtype) {
2878 put_filesystem(type);
2879 return -EINVAL;
2880 }
2881 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002882 }
2883
David Brazdil0f672f62019-12-10 10:32:29 +00002884 fc = fs_context_for_mount(type, sb_flags);
2885 put_filesystem(type);
2886 if (IS_ERR(fc))
2887 return PTR_ERR(fc);
2888
2889 if (subtype)
2890 err = vfs_parse_fs_string(fc, "subtype",
2891 subtype, strlen(subtype));
2892 if (!err && name)
2893 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2894 if (!err)
2895 err = parse_monolithic_mount_data(fc, data);
2896 if (!err && !mount_capable(fc))
2897 err = -EPERM;
2898 if (!err)
2899 err = vfs_get_tree(fc);
2900 if (!err)
2901 err = do_new_mount_fc(fc, path, mnt_flags);
2902
2903 put_fs_context(fc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002904 return err;
2905}
2906
2907int finish_automount(struct vfsmount *m, struct path *path)
2908{
Olivier Deprez157378f2022-04-04 15:47:50 +02002909 struct dentry *dentry = path->dentry;
2910 struct mountpoint *mp;
2911 struct mount *mnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002912 int err;
Olivier Deprez157378f2022-04-04 15:47:50 +02002913
2914 if (!m)
2915 return 0;
2916 if (IS_ERR(m))
2917 return PTR_ERR(m);
2918
2919 mnt = real_mount(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002920 /* The new mount record should have at least 2 refs to prevent it being
2921 * expired before we get a chance to add it
2922 */
2923 BUG_ON(mnt_get_count(mnt) < 2);
2924
2925 if (m->mnt_sb == path->mnt->mnt_sb &&
Olivier Deprez157378f2022-04-04 15:47:50 +02002926 m->mnt_root == dentry) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002927 err = -ELOOP;
Olivier Deprez157378f2022-04-04 15:47:50 +02002928 goto discard;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002929 }
2930
Olivier Deprez157378f2022-04-04 15:47:50 +02002931 /*
2932 * we don't want to use lock_mount() - in this case finding something
2933 * that overmounts our mountpoint to be means "quitely drop what we've
2934 * got", not "try to mount it on top".
2935 */
2936 inode_lock(dentry->d_inode);
2937 namespace_lock();
2938 if (unlikely(cant_mount(dentry))) {
2939 err = -ENOENT;
2940 goto discard_locked;
2941 }
2942 rcu_read_lock();
2943 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2944 rcu_read_unlock();
2945 err = 0;
2946 goto discard_locked;
2947 }
2948 rcu_read_unlock();
2949 mp = get_mountpoint(dentry);
2950 if (IS_ERR(mp)) {
2951 err = PTR_ERR(mp);
2952 goto discard_locked;
2953 }
2954
2955 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2956 unlock_mount(mp);
2957 if (unlikely(err))
2958 goto discard;
2959 mntput(m);
2960 return 0;
2961
2962discard_locked:
2963 namespace_unlock();
2964 inode_unlock(dentry->d_inode);
2965discard:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002966 /* remove m from any expiration list it may be on */
2967 if (!list_empty(&mnt->mnt_expire)) {
2968 namespace_lock();
2969 list_del_init(&mnt->mnt_expire);
2970 namespace_unlock();
2971 }
2972 mntput(m);
2973 mntput(m);
2974 return err;
2975}
2976
2977/**
2978 * mnt_set_expiry - Put a mount on an expiration list
2979 * @mnt: The mount to list.
2980 * @expiry_list: The list to add the mount to.
2981 */
2982void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2983{
2984 namespace_lock();
2985
2986 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2987
2988 namespace_unlock();
2989}
2990EXPORT_SYMBOL(mnt_set_expiry);
2991
2992/*
2993 * process a list of expirable mountpoints with the intent of discarding any
2994 * mountpoints that aren't in use and haven't been touched since last we came
2995 * here
2996 */
2997void mark_mounts_for_expiry(struct list_head *mounts)
2998{
2999 struct mount *mnt, *next;
3000 LIST_HEAD(graveyard);
3001
3002 if (list_empty(mounts))
3003 return;
3004
3005 namespace_lock();
3006 lock_mount_hash();
3007
3008 /* extract from the expiration list every vfsmount that matches the
3009 * following criteria:
3010 * - only referenced by its parent vfsmount
3011 * - still marked for expiry (marked on the last call here; marks are
3012 * cleared by mntput())
3013 */
3014 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3015 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3016 propagate_mount_busy(mnt, 1))
3017 continue;
3018 list_move(&mnt->mnt_expire, &graveyard);
3019 }
3020 while (!list_empty(&graveyard)) {
3021 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3022 touch_mnt_namespace(mnt->mnt_ns);
3023 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3024 }
3025 unlock_mount_hash();
3026 namespace_unlock();
3027}
3028
3029EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3030
3031/*
3032 * Ripoff of 'select_parent()'
3033 *
3034 * search the list of submounts for a given mountpoint, and move any
3035 * shrinkable submounts to the 'graveyard' list.
3036 */
3037static int select_submounts(struct mount *parent, struct list_head *graveyard)
3038{
3039 struct mount *this_parent = parent;
3040 struct list_head *next;
3041 int found = 0;
3042
3043repeat:
3044 next = this_parent->mnt_mounts.next;
3045resume:
3046 while (next != &this_parent->mnt_mounts) {
3047 struct list_head *tmp = next;
3048 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3049
3050 next = tmp->next;
3051 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3052 continue;
3053 /*
3054 * Descend a level if the d_mounts list is non-empty.
3055 */
3056 if (!list_empty(&mnt->mnt_mounts)) {
3057 this_parent = mnt;
3058 goto repeat;
3059 }
3060
3061 if (!propagate_mount_busy(mnt, 1)) {
3062 list_move_tail(&mnt->mnt_expire, graveyard);
3063 found++;
3064 }
3065 }
3066 /*
3067 * All done at this level ... ascend and resume the search
3068 */
3069 if (this_parent != parent) {
3070 next = this_parent->mnt_child.next;
3071 this_parent = this_parent->mnt_parent;
3072 goto resume;
3073 }
3074 return found;
3075}
3076
3077/*
3078 * process a list of expirable mountpoints with the intent of discarding any
3079 * submounts of a specific parent mountpoint
3080 *
3081 * mount_lock must be held for write
3082 */
3083static void shrink_submounts(struct mount *mnt)
3084{
3085 LIST_HEAD(graveyard);
3086 struct mount *m;
3087
3088 /* extract submounts of 'mountpoint' from the expiration list */
3089 while (select_submounts(mnt, &graveyard)) {
3090 while (!list_empty(&graveyard)) {
3091 m = list_first_entry(&graveyard, struct mount,
3092 mnt_expire);
3093 touch_mnt_namespace(m->mnt_ns);
3094 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3095 }
3096 }
3097}
3098
Olivier Deprez157378f2022-04-04 15:47:50 +02003099static void *copy_mount_options(const void __user * data)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003100{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003101 char *copy;
Olivier Deprez157378f2022-04-04 15:47:50 +02003102 unsigned left, offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003103
3104 if (!data)
3105 return NULL;
3106
3107 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3108 if (!copy)
3109 return ERR_PTR(-ENOMEM);
3110
Olivier Deprez157378f2022-04-04 15:47:50 +02003111 left = copy_from_user(copy, data, PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003112
Olivier Deprez157378f2022-04-04 15:47:50 +02003113 /*
3114 * Not all architectures have an exact copy_from_user(). Resort to
3115 * byte at a time.
3116 */
3117 offset = PAGE_SIZE - left;
3118 while (left) {
3119 char c;
3120 if (get_user(c, (const char __user *)data + offset))
3121 break;
3122 copy[offset] = c;
3123 left--;
3124 offset++;
3125 }
3126
3127 if (left == PAGE_SIZE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003128 kfree(copy);
3129 return ERR_PTR(-EFAULT);
3130 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003131
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003132 return copy;
3133}
3134
Olivier Deprez157378f2022-04-04 15:47:50 +02003135static char *copy_mount_string(const void __user *data)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003136{
David Brazdil0f672f62019-12-10 10:32:29 +00003137 return data ? strndup_user(data, PATH_MAX) : NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003138}
3139
3140/*
3141 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3142 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3143 *
3144 * data is a (void *) that can point to any structure up to
3145 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3146 * information (or be NULL).
3147 *
3148 * Pre-0.97 versions of mount() didn't have a flags word.
3149 * When the flags word was introduced its top half was required
3150 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3151 * Therefore, if this magic number is present, it carries no information
3152 * and must be discarded.
3153 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003154int path_mount(const char *dev_name, struct path *path,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003155 const char *type_page, unsigned long flags, void *data_page)
3156{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003157 unsigned int mnt_flags = 0, sb_flags;
Olivier Deprez157378f2022-04-04 15:47:50 +02003158 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003159
3160 /* Discard magic */
3161 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3162 flags &= ~MS_MGC_MSK;
3163
3164 /* Basic sanity checks */
3165 if (data_page)
3166 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3167
3168 if (flags & MS_NOUSER)
3169 return -EINVAL;
3170
Olivier Deprez157378f2022-04-04 15:47:50 +02003171 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3172 if (ret)
3173 return ret;
3174 if (!may_mount())
3175 return -EPERM;
3176 if ((flags & SB_MANDLOCK) && !may_mandlock())
3177 return -EPERM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003178
3179 /* Default to relatime unless overriden */
3180 if (!(flags & MS_NOATIME))
3181 mnt_flags |= MNT_RELATIME;
3182
3183 /* Separate the per-mountpoint flags */
3184 if (flags & MS_NOSUID)
3185 mnt_flags |= MNT_NOSUID;
3186 if (flags & MS_NODEV)
3187 mnt_flags |= MNT_NODEV;
3188 if (flags & MS_NOEXEC)
3189 mnt_flags |= MNT_NOEXEC;
3190 if (flags & MS_NOATIME)
3191 mnt_flags |= MNT_NOATIME;
3192 if (flags & MS_NODIRATIME)
3193 mnt_flags |= MNT_NODIRATIME;
3194 if (flags & MS_STRICTATIME)
3195 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3196 if (flags & MS_RDONLY)
3197 mnt_flags |= MNT_READONLY;
Olivier Deprez157378f2022-04-04 15:47:50 +02003198 if (flags & MS_NOSYMFOLLOW)
3199 mnt_flags |= MNT_NOSYMFOLLOW;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003200
3201 /* The default atime for remount is preservation */
3202 if ((flags & MS_REMOUNT) &&
3203 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3204 MS_STRICTATIME)) == 0)) {
3205 mnt_flags &= ~MNT_ATIME_MASK;
Olivier Deprez157378f2022-04-04 15:47:50 +02003206 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003207 }
3208
3209 sb_flags = flags & (SB_RDONLY |
3210 SB_SYNCHRONOUS |
3211 SB_MANDLOCK |
3212 SB_DIRSYNC |
3213 SB_SILENT |
3214 SB_POSIXACL |
3215 SB_LAZYTIME |
3216 SB_I_VERSION);
3217
David Brazdil0f672f62019-12-10 10:32:29 +00003218 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
Olivier Deprez157378f2022-04-04 15:47:50 +02003219 return do_reconfigure_mnt(path, mnt_flags);
3220 if (flags & MS_REMOUNT)
3221 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3222 if (flags & MS_BIND)
3223 return do_loopback(path, dev_name, flags & MS_REC);
3224 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3225 return do_change_type(path, flags);
3226 if (flags & MS_MOVE)
3227 return do_move_mount_old(path, dev_name);
3228
3229 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3230 data_page);
3231}
3232
3233long do_mount(const char *dev_name, const char __user *dir_name,
3234 const char *type_page, unsigned long flags, void *data_page)
3235{
3236 struct path path;
3237 int ret;
3238
3239 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3240 if (ret)
3241 return ret;
3242 ret = path_mount(dev_name, &path, type_page, flags, data_page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003243 path_put(&path);
Olivier Deprez157378f2022-04-04 15:47:50 +02003244 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003245}
3246
3247static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3248{
3249 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3250}
3251
3252static void dec_mnt_namespaces(struct ucounts *ucounts)
3253{
3254 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3255}
3256
3257static void free_mnt_ns(struct mnt_namespace *ns)
3258{
David Brazdil0f672f62019-12-10 10:32:29 +00003259 if (!is_anon_ns(ns))
3260 ns_free_inum(&ns->ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003261 dec_mnt_namespaces(ns->ucounts);
3262 put_user_ns(ns->user_ns);
3263 kfree(ns);
3264}
3265
3266/*
3267 * Assign a sequence number so we can detect when we attempt to bind
3268 * mount a reference to an older mount namespace into the current
3269 * mount namespace, preventing reference counting loops. A 64bit
3270 * number incrementing at 10Ghz will take 12,427 years to wrap which
3271 * is effectively never, so we can ignore the possibility.
3272 */
3273static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3274
David Brazdil0f672f62019-12-10 10:32:29 +00003275static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003276{
3277 struct mnt_namespace *new_ns;
3278 struct ucounts *ucounts;
3279 int ret;
3280
3281 ucounts = inc_mnt_namespaces(user_ns);
3282 if (!ucounts)
3283 return ERR_PTR(-ENOSPC);
3284
David Brazdil0f672f62019-12-10 10:32:29 +00003285 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003286 if (!new_ns) {
3287 dec_mnt_namespaces(ucounts);
3288 return ERR_PTR(-ENOMEM);
3289 }
David Brazdil0f672f62019-12-10 10:32:29 +00003290 if (!anon) {
3291 ret = ns_alloc_inum(&new_ns->ns);
3292 if (ret) {
3293 kfree(new_ns);
3294 dec_mnt_namespaces(ucounts);
3295 return ERR_PTR(ret);
3296 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003297 }
3298 new_ns->ns.ops = &mntns_operations;
David Brazdil0f672f62019-12-10 10:32:29 +00003299 if (!anon)
3300 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003301 atomic_set(&new_ns->count, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003302 INIT_LIST_HEAD(&new_ns->list);
3303 init_waitqueue_head(&new_ns->poll);
Olivier Deprez157378f2022-04-04 15:47:50 +02003304 spin_lock_init(&new_ns->ns_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003305 new_ns->user_ns = get_user_ns(user_ns);
3306 new_ns->ucounts = ucounts;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003307 return new_ns;
3308}
3309
3310__latent_entropy
3311struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3312 struct user_namespace *user_ns, struct fs_struct *new_fs)
3313{
3314 struct mnt_namespace *new_ns;
3315 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3316 struct mount *p, *q;
3317 struct mount *old;
3318 struct mount *new;
3319 int copy_flags;
3320
3321 BUG_ON(!ns);
3322
3323 if (likely(!(flags & CLONE_NEWNS))) {
3324 get_mnt_ns(ns);
3325 return ns;
3326 }
3327
3328 old = ns->root;
3329
David Brazdil0f672f62019-12-10 10:32:29 +00003330 new_ns = alloc_mnt_ns(user_ns, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003331 if (IS_ERR(new_ns))
3332 return new_ns;
3333
3334 namespace_lock();
3335 /* First pass: copy the tree topology */
3336 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3337 if (user_ns != ns->user_ns)
David Brazdil0f672f62019-12-10 10:32:29 +00003338 copy_flags |= CL_SHARED_TO_SLAVE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003339 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3340 if (IS_ERR(new)) {
3341 namespace_unlock();
3342 free_mnt_ns(new_ns);
3343 return ERR_CAST(new);
3344 }
David Brazdil0f672f62019-12-10 10:32:29 +00003345 if (user_ns != ns->user_ns) {
3346 lock_mount_hash();
3347 lock_mnt_tree(new);
3348 unlock_mount_hash();
3349 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003350 new_ns->root = new;
3351 list_add_tail(&new_ns->list, &new->mnt_list);
3352
3353 /*
3354 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3355 * as belonging to new namespace. We have already acquired a private
3356 * fs_struct, so tsk->fs->lock is not needed.
3357 */
3358 p = old;
3359 q = new;
3360 while (p) {
3361 q->mnt_ns = new_ns;
3362 new_ns->mounts++;
3363 if (new_fs) {
3364 if (&p->mnt == new_fs->root.mnt) {
3365 new_fs->root.mnt = mntget(&q->mnt);
3366 rootmnt = &p->mnt;
3367 }
3368 if (&p->mnt == new_fs->pwd.mnt) {
3369 new_fs->pwd.mnt = mntget(&q->mnt);
3370 pwdmnt = &p->mnt;
3371 }
3372 }
3373 p = next_mnt(p, old);
3374 q = next_mnt(q, new);
3375 if (!q)
3376 break;
3377 while (p->mnt.mnt_root != q->mnt.mnt_root)
3378 p = next_mnt(p, old);
3379 }
3380 namespace_unlock();
3381
3382 if (rootmnt)
3383 mntput(rootmnt);
3384 if (pwdmnt)
3385 mntput(pwdmnt);
3386
3387 return new_ns;
3388}
3389
David Brazdil0f672f62019-12-10 10:32:29 +00003390struct dentry *mount_subtree(struct vfsmount *m, const char *name)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003391{
David Brazdil0f672f62019-12-10 10:32:29 +00003392 struct mount *mnt = real_mount(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003393 struct mnt_namespace *ns;
3394 struct super_block *s;
3395 struct path path;
3396 int err;
3397
David Brazdil0f672f62019-12-10 10:32:29 +00003398 ns = alloc_mnt_ns(&init_user_ns, true);
3399 if (IS_ERR(ns)) {
3400 mntput(m);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003401 return ERR_CAST(ns);
David Brazdil0f672f62019-12-10 10:32:29 +00003402 }
3403 mnt->mnt_ns = ns;
3404 ns->root = mnt;
3405 ns->mounts++;
3406 list_add(&mnt->mnt_list, &ns->list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003407
David Brazdil0f672f62019-12-10 10:32:29 +00003408 err = vfs_path_lookup(m->mnt_root, m,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003409 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3410
3411 put_mnt_ns(ns);
3412
3413 if (err)
3414 return ERR_PTR(err);
3415
3416 /* trade a vfsmount reference for active sb one */
3417 s = path.mnt->mnt_sb;
3418 atomic_inc(&s->s_active);
3419 mntput(path.mnt);
3420 /* lock the sucker */
3421 down_write(&s->s_umount);
3422 /* ... and return the root of (sub)tree on it */
3423 return path.dentry;
3424}
3425EXPORT_SYMBOL(mount_subtree);
3426
Olivier Deprez157378f2022-04-04 15:47:50 +02003427SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3428 char __user *, type, unsigned long, flags, void __user *, data)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003429{
3430 int ret;
3431 char *kernel_type;
3432 char *kernel_dev;
3433 void *options;
3434
3435 kernel_type = copy_mount_string(type);
3436 ret = PTR_ERR(kernel_type);
3437 if (IS_ERR(kernel_type))
3438 goto out_type;
3439
3440 kernel_dev = copy_mount_string(dev_name);
3441 ret = PTR_ERR(kernel_dev);
3442 if (IS_ERR(kernel_dev))
3443 goto out_dev;
3444
3445 options = copy_mount_options(data);
3446 ret = PTR_ERR(options);
3447 if (IS_ERR(options))
3448 goto out_data;
3449
3450 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3451
3452 kfree(options);
3453out_data:
3454 kfree(kernel_dev);
3455out_dev:
3456 kfree(kernel_type);
3457out_type:
3458 return ret;
3459}
3460
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003461/*
David Brazdil0f672f62019-12-10 10:32:29 +00003462 * Create a kernel mount representation for a new, prepared superblock
3463 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3464 */
3465SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3466 unsigned int, attr_flags)
3467{
3468 struct mnt_namespace *ns;
3469 struct fs_context *fc;
3470 struct file *file;
3471 struct path newmount;
3472 struct mount *mnt;
3473 struct fd f;
3474 unsigned int mnt_flags = 0;
3475 long ret;
3476
3477 if (!may_mount())
3478 return -EPERM;
3479
3480 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3481 return -EINVAL;
3482
3483 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3484 MOUNT_ATTR_NOSUID |
3485 MOUNT_ATTR_NODEV |
3486 MOUNT_ATTR_NOEXEC |
3487 MOUNT_ATTR__ATIME |
3488 MOUNT_ATTR_NODIRATIME))
3489 return -EINVAL;
3490
3491 if (attr_flags & MOUNT_ATTR_RDONLY)
3492 mnt_flags |= MNT_READONLY;
3493 if (attr_flags & MOUNT_ATTR_NOSUID)
3494 mnt_flags |= MNT_NOSUID;
3495 if (attr_flags & MOUNT_ATTR_NODEV)
3496 mnt_flags |= MNT_NODEV;
3497 if (attr_flags & MOUNT_ATTR_NOEXEC)
3498 mnt_flags |= MNT_NOEXEC;
3499 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3500 mnt_flags |= MNT_NODIRATIME;
3501
3502 switch (attr_flags & MOUNT_ATTR__ATIME) {
3503 case MOUNT_ATTR_STRICTATIME:
3504 break;
3505 case MOUNT_ATTR_NOATIME:
3506 mnt_flags |= MNT_NOATIME;
3507 break;
3508 case MOUNT_ATTR_RELATIME:
3509 mnt_flags |= MNT_RELATIME;
3510 break;
3511 default:
3512 return -EINVAL;
3513 }
3514
3515 f = fdget(fs_fd);
3516 if (!f.file)
3517 return -EBADF;
3518
3519 ret = -EINVAL;
3520 if (f.file->f_op != &fscontext_fops)
3521 goto err_fsfd;
3522
3523 fc = f.file->private_data;
3524
3525 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3526 if (ret < 0)
3527 goto err_fsfd;
3528
3529 /* There must be a valid superblock or we can't mount it */
3530 ret = -EINVAL;
3531 if (!fc->root)
3532 goto err_unlock;
3533
3534 ret = -EPERM;
3535 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3536 pr_warn("VFS: Mount too revealing\n");
3537 goto err_unlock;
3538 }
3539
3540 ret = -EBUSY;
3541 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3542 goto err_unlock;
3543
3544 ret = -EPERM;
3545 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3546 goto err_unlock;
3547
3548 newmount.mnt = vfs_create_mount(fc);
3549 if (IS_ERR(newmount.mnt)) {
3550 ret = PTR_ERR(newmount.mnt);
3551 goto err_unlock;
3552 }
3553 newmount.dentry = dget(fc->root);
3554 newmount.mnt->mnt_flags = mnt_flags;
3555
3556 /* We've done the mount bit - now move the file context into more or
3557 * less the same state as if we'd done an fspick(). We don't want to
3558 * do any memory allocation or anything like that at this point as we
3559 * don't want to have to handle any errors incurred.
3560 */
3561 vfs_clean_context(fc);
3562
3563 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3564 if (IS_ERR(ns)) {
3565 ret = PTR_ERR(ns);
3566 goto err_path;
3567 }
3568 mnt = real_mount(newmount.mnt);
3569 mnt->mnt_ns = ns;
3570 ns->root = mnt;
3571 ns->mounts = 1;
3572 list_add(&mnt->mnt_list, &ns->list);
3573 mntget(newmount.mnt);
3574
3575 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3576 * it, not just simply put it.
3577 */
3578 file = dentry_open(&newmount, O_PATH, fc->cred);
3579 if (IS_ERR(file)) {
3580 dissolve_on_fput(newmount.mnt);
3581 ret = PTR_ERR(file);
3582 goto err_path;
3583 }
3584 file->f_mode |= FMODE_NEED_UNMOUNT;
3585
3586 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3587 if (ret >= 0)
3588 fd_install(ret, file);
3589 else
3590 fput(file);
3591
3592err_path:
3593 path_put(&newmount);
3594err_unlock:
3595 mutex_unlock(&fc->uapi_mutex);
3596err_fsfd:
3597 fdput(f);
3598 return ret;
3599}
3600
3601/*
3602 * Move a mount from one place to another. In combination with
3603 * fsopen()/fsmount() this is used to install a new mount and in combination
3604 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3605 * a mount subtree.
3606 *
3607 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3608 */
3609SYSCALL_DEFINE5(move_mount,
Olivier Deprez157378f2022-04-04 15:47:50 +02003610 int, from_dfd, const char __user *, from_pathname,
3611 int, to_dfd, const char __user *, to_pathname,
David Brazdil0f672f62019-12-10 10:32:29 +00003612 unsigned int, flags)
3613{
3614 struct path from_path, to_path;
3615 unsigned int lflags;
3616 int ret = 0;
3617
3618 if (!may_mount())
3619 return -EPERM;
3620
3621 if (flags & ~MOVE_MOUNT__MASK)
3622 return -EINVAL;
3623
3624 /* If someone gives a pathname, they aren't permitted to move
3625 * from an fd that requires unmount as we can't get at the flag
3626 * to clear it afterwards.
3627 */
3628 lflags = 0;
3629 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3630 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3631 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3632
3633 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3634 if (ret < 0)
3635 return ret;
3636
3637 lflags = 0;
3638 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3639 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3640 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3641
3642 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3643 if (ret < 0)
3644 goto out_from;
3645
3646 ret = security_move_mount(&from_path, &to_path);
3647 if (ret < 0)
3648 goto out_to;
3649
3650 ret = do_move_mount(&from_path, &to_path);
3651
3652out_to:
3653 path_put(&to_path);
3654out_from:
3655 path_put(&from_path);
3656 return ret;
3657}
3658
3659/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003660 * Return true if path is reachable from root
3661 *
3662 * namespace_sem or mount_lock is held
3663 */
3664bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3665 const struct path *root)
3666{
3667 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3668 dentry = mnt->mnt_mountpoint;
3669 mnt = mnt->mnt_parent;
3670 }
3671 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3672}
3673
3674bool path_is_under(const struct path *path1, const struct path *path2)
3675{
3676 bool res;
3677 read_seqlock_excl(&mount_lock);
3678 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3679 read_sequnlock_excl(&mount_lock);
3680 return res;
3681}
3682EXPORT_SYMBOL(path_is_under);
3683
3684/*
3685 * pivot_root Semantics:
3686 * Moves the root file system of the current process to the directory put_old,
3687 * makes new_root as the new root file system of the current process, and sets
3688 * root/cwd of all processes which had them on the current root to new_root.
3689 *
3690 * Restrictions:
3691 * The new_root and put_old must be directories, and must not be on the
3692 * same file system as the current process root. The put_old must be
3693 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3694 * pointed to by put_old must yield the same directory as new_root. No other
3695 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3696 *
3697 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
Olivier Deprez157378f2022-04-04 15:47:50 +02003698 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003699 * in this situation.
3700 *
3701 * Notes:
3702 * - we don't move root/cwd if they are not at the root (reason: if something
3703 * cared enough to change them, it's probably wrong to force them elsewhere)
3704 * - it's okay to pick a root that isn't the root of a file system, e.g.
3705 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3706 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3707 * first.
3708 */
3709SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3710 const char __user *, put_old)
3711{
David Brazdil0f672f62019-12-10 10:32:29 +00003712 struct path new, old, root;
3713 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003714 struct mountpoint *old_mp, *root_mp;
3715 int error;
3716
3717 if (!may_mount())
3718 return -EPERM;
3719
David Brazdil0f672f62019-12-10 10:32:29 +00003720 error = user_path_at(AT_FDCWD, new_root,
3721 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003722 if (error)
3723 goto out0;
3724
David Brazdil0f672f62019-12-10 10:32:29 +00003725 error = user_path_at(AT_FDCWD, put_old,
3726 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003727 if (error)
3728 goto out1;
3729
3730 error = security_sb_pivotroot(&old, &new);
3731 if (error)
3732 goto out2;
3733
3734 get_fs_root(current->fs, &root);
3735 old_mp = lock_mount(&old);
3736 error = PTR_ERR(old_mp);
3737 if (IS_ERR(old_mp))
3738 goto out3;
3739
3740 error = -EINVAL;
3741 new_mnt = real_mount(new.mnt);
3742 root_mnt = real_mount(root.mnt);
3743 old_mnt = real_mount(old.mnt);
David Brazdil0f672f62019-12-10 10:32:29 +00003744 ex_parent = new_mnt->mnt_parent;
3745 root_parent = root_mnt->mnt_parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003746 if (IS_MNT_SHARED(old_mnt) ||
David Brazdil0f672f62019-12-10 10:32:29 +00003747 IS_MNT_SHARED(ex_parent) ||
3748 IS_MNT_SHARED(root_parent))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003749 goto out4;
3750 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3751 goto out4;
3752 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3753 goto out4;
3754 error = -ENOENT;
3755 if (d_unlinked(new.dentry))
3756 goto out4;
3757 error = -EBUSY;
3758 if (new_mnt == root_mnt || old_mnt == root_mnt)
3759 goto out4; /* loop, on the same file system */
3760 error = -EINVAL;
3761 if (root.mnt->mnt_root != root.dentry)
3762 goto out4; /* not a mountpoint */
3763 if (!mnt_has_parent(root_mnt))
3764 goto out4; /* not attached */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003765 if (new.mnt->mnt_root != new.dentry)
3766 goto out4; /* not a mountpoint */
3767 if (!mnt_has_parent(new_mnt))
3768 goto out4; /* not attached */
3769 /* make sure we can reach put_old from new_root */
3770 if (!is_path_reachable(old_mnt, old.dentry, &new))
3771 goto out4;
3772 /* make certain new is below the root */
3773 if (!is_path_reachable(new_mnt, new.dentry, &root))
3774 goto out4;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003775 lock_mount_hash();
David Brazdil0f672f62019-12-10 10:32:29 +00003776 umount_mnt(new_mnt);
3777 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003778 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3779 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3780 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3781 }
3782 /* mount old root on put_old */
3783 attach_mnt(root_mnt, old_mnt, old_mp);
3784 /* mount new_root on / */
David Brazdil0f672f62019-12-10 10:32:29 +00003785 attach_mnt(new_mnt, root_parent, root_mp);
3786 mnt_add_count(root_parent, -1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003787 touch_mnt_namespace(current->nsproxy->mnt_ns);
3788 /* A moved mount should not expire automatically */
3789 list_del_init(&new_mnt->mnt_expire);
3790 put_mountpoint(root_mp);
3791 unlock_mount_hash();
3792 chroot_fs_refs(&root, &new);
3793 error = 0;
3794out4:
3795 unlock_mount(old_mp);
David Brazdil0f672f62019-12-10 10:32:29 +00003796 if (!error)
3797 mntput_no_expire(ex_parent);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003798out3:
3799 path_put(&root);
3800out2:
3801 path_put(&old);
3802out1:
3803 path_put(&new);
3804out0:
3805 return error;
3806}
3807
3808static void __init init_mount_tree(void)
3809{
3810 struct vfsmount *mnt;
David Brazdil0f672f62019-12-10 10:32:29 +00003811 struct mount *m;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003812 struct mnt_namespace *ns;
3813 struct path root;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003814
David Brazdil0f672f62019-12-10 10:32:29 +00003815 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003816 if (IS_ERR(mnt))
3817 panic("Can't create rootfs");
3818
David Brazdil0f672f62019-12-10 10:32:29 +00003819 ns = alloc_mnt_ns(&init_user_ns, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003820 if (IS_ERR(ns))
3821 panic("Can't allocate initial namespace");
David Brazdil0f672f62019-12-10 10:32:29 +00003822 m = real_mount(mnt);
3823 m->mnt_ns = ns;
3824 ns->root = m;
3825 ns->mounts = 1;
3826 list_add(&m->mnt_list, &ns->list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003827 init_task.nsproxy->mnt_ns = ns;
3828 get_mnt_ns(ns);
3829
3830 root.mnt = mnt;
3831 root.dentry = mnt->mnt_root;
3832 mnt->mnt_flags |= MNT_LOCKED;
3833
3834 set_fs_pwd(current->fs, &root);
3835 set_fs_root(current->fs, &root);
3836}
3837
3838void __init mnt_init(void)
3839{
3840 int err;
3841
3842 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3843 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3844
3845 mount_hashtable = alloc_large_system_hash("Mount-cache",
3846 sizeof(struct hlist_head),
3847 mhash_entries, 19,
3848 HASH_ZERO,
3849 &m_hash_shift, &m_hash_mask, 0, 0);
3850 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3851 sizeof(struct hlist_head),
3852 mphash_entries, 19,
3853 HASH_ZERO,
3854 &mp_hash_shift, &mp_hash_mask, 0, 0);
3855
3856 if (!mount_hashtable || !mountpoint_hashtable)
3857 panic("Failed to allocate mount hash table\n");
3858
3859 kernfs_init();
3860
3861 err = sysfs_init();
3862 if (err)
3863 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3864 __func__, err);
3865 fs_kobj = kobject_create_and_add("fs", NULL);
3866 if (!fs_kobj)
3867 printk(KERN_WARNING "%s: kobj create error\n", __func__);
David Brazdil0f672f62019-12-10 10:32:29 +00003868 shmem_init();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003869 init_rootfs();
3870 init_mount_tree();
3871}
3872
3873void put_mnt_ns(struct mnt_namespace *ns)
3874{
3875 if (!atomic_dec_and_test(&ns->count))
3876 return;
3877 drop_collected_mounts(&ns->root->mnt);
3878 free_mnt_ns(ns);
3879}
3880
David Brazdil0f672f62019-12-10 10:32:29 +00003881struct vfsmount *kern_mount(struct file_system_type *type)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003882{
3883 struct vfsmount *mnt;
David Brazdil0f672f62019-12-10 10:32:29 +00003884 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003885 if (!IS_ERR(mnt)) {
3886 /*
3887 * it is a longterm mount, don't release mnt until
3888 * we unmount before file sys is unregistered
3889 */
3890 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3891 }
3892 return mnt;
3893}
David Brazdil0f672f62019-12-10 10:32:29 +00003894EXPORT_SYMBOL_GPL(kern_mount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003895
3896void kern_unmount(struct vfsmount *mnt)
3897{
3898 /* release long term mount so mount point can be released */
3899 if (!IS_ERR_OR_NULL(mnt)) {
3900 real_mount(mnt)->mnt_ns = NULL;
3901 synchronize_rcu(); /* yecchhh... */
3902 mntput(mnt);
3903 }
3904}
3905EXPORT_SYMBOL(kern_unmount);
3906
Olivier Deprez157378f2022-04-04 15:47:50 +02003907void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3908{
3909 unsigned int i;
3910
3911 for (i = 0; i < num; i++)
3912 if (mnt[i])
3913 real_mount(mnt[i])->mnt_ns = NULL;
3914 synchronize_rcu_expedited();
3915 for (i = 0; i < num; i++)
3916 mntput(mnt[i]);
3917}
3918EXPORT_SYMBOL(kern_unmount_array);
3919
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003920bool our_mnt(struct vfsmount *mnt)
3921{
3922 return check_mnt(real_mount(mnt));
3923}
3924
3925bool current_chrooted(void)
3926{
3927 /* Does the current process have a non-standard root */
3928 struct path ns_root;
3929 struct path fs_root;
3930 bool chrooted;
3931
3932 /* Find the namespace root */
3933 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3934 ns_root.dentry = ns_root.mnt->mnt_root;
3935 path_get(&ns_root);
3936 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3937 ;
3938
3939 get_fs_root(current->fs, &fs_root);
3940
3941 chrooted = !path_equal(&fs_root, &ns_root);
3942
3943 path_put(&fs_root);
3944 path_put(&ns_root);
3945
3946 return chrooted;
3947}
3948
David Brazdil0f672f62019-12-10 10:32:29 +00003949static bool mnt_already_visible(struct mnt_namespace *ns,
3950 const struct super_block *sb,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003951 int *new_mnt_flags)
3952{
3953 int new_flags = *new_mnt_flags;
3954 struct mount *mnt;
3955 bool visible = false;
3956
3957 down_read(&namespace_sem);
Olivier Deprez157378f2022-04-04 15:47:50 +02003958 lock_ns_list(ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003959 list_for_each_entry(mnt, &ns->list, mnt_list) {
3960 struct mount *child;
3961 int mnt_flags;
3962
Olivier Deprez157378f2022-04-04 15:47:50 +02003963 if (mnt_is_cursor(mnt))
3964 continue;
3965
David Brazdil0f672f62019-12-10 10:32:29 +00003966 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003967 continue;
3968
3969 /* This mount is not fully visible if it's root directory
3970 * is not the root directory of the filesystem.
3971 */
3972 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3973 continue;
3974
3975 /* A local view of the mount flags */
3976 mnt_flags = mnt->mnt.mnt_flags;
3977
3978 /* Don't miss readonly hidden in the superblock flags */
3979 if (sb_rdonly(mnt->mnt.mnt_sb))
3980 mnt_flags |= MNT_LOCK_READONLY;
3981
3982 /* Verify the mount flags are equal to or more permissive
3983 * than the proposed new mount.
3984 */
3985 if ((mnt_flags & MNT_LOCK_READONLY) &&
3986 !(new_flags & MNT_READONLY))
3987 continue;
3988 if ((mnt_flags & MNT_LOCK_ATIME) &&
3989 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3990 continue;
3991
3992 /* This mount is not fully visible if there are any
3993 * locked child mounts that cover anything except for
3994 * empty directories.
3995 */
3996 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3997 struct inode *inode = child->mnt_mountpoint->d_inode;
3998 /* Only worry about locked mounts */
3999 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4000 continue;
4001 /* Is the directory permanetly empty? */
4002 if (!is_empty_dir_inode(inode))
4003 goto next;
4004 }
4005 /* Preserve the locked attributes */
4006 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4007 MNT_LOCK_ATIME);
4008 visible = true;
4009 goto found;
4010 next: ;
4011 }
4012found:
Olivier Deprez157378f2022-04-04 15:47:50 +02004013 unlock_ns_list(ns);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004014 up_read(&namespace_sem);
4015 return visible;
4016}
4017
David Brazdil0f672f62019-12-10 10:32:29 +00004018static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004019{
4020 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4021 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4022 unsigned long s_iflags;
4023
4024 if (ns->user_ns == &init_user_ns)
4025 return false;
4026
4027 /* Can this filesystem be too revealing? */
David Brazdil0f672f62019-12-10 10:32:29 +00004028 s_iflags = sb->s_iflags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004029 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4030 return false;
4031
4032 if ((s_iflags & required_iflags) != required_iflags) {
4033 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4034 required_iflags);
4035 return true;
4036 }
4037
David Brazdil0f672f62019-12-10 10:32:29 +00004038 return !mnt_already_visible(ns, sb, new_mnt_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004039}
4040
4041bool mnt_may_suid(struct vfsmount *mnt)
4042{
4043 /*
4044 * Foreign mounts (accessed via fchdir or through /proc
4045 * symlinks) are always treated as if they are nosuid. This
4046 * prevents namespaces from trusting potentially unsafe
4047 * suid/sgid bits, file caps, or security labels that originate
4048 * in other namespaces.
4049 */
4050 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4051 current_in_userns(mnt->mnt_sb->s_user_ns);
4052}
4053
4054static struct ns_common *mntns_get(struct task_struct *task)
4055{
4056 struct ns_common *ns = NULL;
4057 struct nsproxy *nsproxy;
4058
4059 task_lock(task);
4060 nsproxy = task->nsproxy;
4061 if (nsproxy) {
4062 ns = &nsproxy->mnt_ns->ns;
4063 get_mnt_ns(to_mnt_ns(ns));
4064 }
4065 task_unlock(task);
4066
4067 return ns;
4068}
4069
4070static void mntns_put(struct ns_common *ns)
4071{
4072 put_mnt_ns(to_mnt_ns(ns));
4073}
4074
Olivier Deprez157378f2022-04-04 15:47:50 +02004075static int mntns_install(struct nsset *nsset, struct ns_common *ns)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004076{
Olivier Deprez157378f2022-04-04 15:47:50 +02004077 struct nsproxy *nsproxy = nsset->nsproxy;
4078 struct fs_struct *fs = nsset->fs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004079 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
Olivier Deprez157378f2022-04-04 15:47:50 +02004080 struct user_namespace *user_ns = nsset->cred->user_ns;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004081 struct path root;
4082 int err;
4083
4084 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
Olivier Deprez157378f2022-04-04 15:47:50 +02004085 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4086 !ns_capable(user_ns, CAP_SYS_ADMIN))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004087 return -EPERM;
4088
David Brazdil0f672f62019-12-10 10:32:29 +00004089 if (is_anon_ns(mnt_ns))
4090 return -EINVAL;
4091
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004092 if (fs->users != 1)
4093 return -EINVAL;
4094
4095 get_mnt_ns(mnt_ns);
4096 old_mnt_ns = nsproxy->mnt_ns;
4097 nsproxy->mnt_ns = mnt_ns;
4098
4099 /* Find the root */
4100 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4101 "/", LOOKUP_DOWN, &root);
4102 if (err) {
4103 /* revert to old namespace */
4104 nsproxy->mnt_ns = old_mnt_ns;
4105 put_mnt_ns(mnt_ns);
4106 return err;
4107 }
4108
4109 put_mnt_ns(old_mnt_ns);
4110
4111 /* Update the pwd and root */
4112 set_fs_pwd(fs, &root);
4113 set_fs_root(fs, &root);
4114
4115 path_put(&root);
4116 return 0;
4117}
4118
4119static struct user_namespace *mntns_owner(struct ns_common *ns)
4120{
4121 return to_mnt_ns(ns)->user_ns;
4122}
4123
4124const struct proc_ns_operations mntns_operations = {
4125 .name = "mnt",
4126 .type = CLONE_NEWNS,
4127 .get = mntns_get,
4128 .put = mntns_put,
4129 .install = mntns_install,
4130 .owner = mntns_owner,
4131};