Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | |
| 3 | /* ----------------------------------------------------------------------- |
| 4 | * |
| 5 | * Copyright 2011 Intel Corporation; author Matt Fleming |
| 6 | * |
| 7 | * ----------------------------------------------------------------------- */ |
| 8 | |
| 9 | #include <linux/efi.h> |
| 10 | #include <linux/pci.h> |
| 11 | #include <linux/stddef.h> |
| 12 | |
| 13 | #include <asm/efi.h> |
| 14 | #include <asm/e820/types.h> |
| 15 | #include <asm/setup.h> |
| 16 | #include <asm/desc.h> |
| 17 | #include <asm/boot.h> |
| 18 | |
| 19 | #include "efistub.h" |
| 20 | |
| 21 | /* Maximum physical address for 64-bit kernel with 4-level paging */ |
| 22 | #define MAXMEM_X86_64_4LEVEL (1ull << 46) |
| 23 | |
| 24 | const efi_system_table_t *efi_system_table; |
| 25 | extern u32 image_offset; |
| 26 | static efi_loaded_image_t *image = NULL; |
| 27 | |
| 28 | static efi_status_t |
| 29 | preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom) |
| 30 | { |
| 31 | struct pci_setup_rom *rom = NULL; |
| 32 | efi_status_t status; |
| 33 | unsigned long size; |
| 34 | uint64_t romsize; |
| 35 | void *romimage; |
| 36 | |
| 37 | /* |
| 38 | * Some firmware images contain EFI function pointers at the place where |
| 39 | * the romimage and romsize fields are supposed to be. Typically the EFI |
| 40 | * code is mapped at high addresses, translating to an unrealistically |
| 41 | * large romsize. The UEFI spec limits the size of option ROMs to 16 |
| 42 | * MiB so we reject any ROMs over 16 MiB in size to catch this. |
| 43 | */ |
| 44 | romimage = efi_table_attr(pci, romimage); |
| 45 | romsize = efi_table_attr(pci, romsize); |
| 46 | if (!romimage || !romsize || romsize > SZ_16M) |
| 47 | return EFI_INVALID_PARAMETER; |
| 48 | |
| 49 | size = romsize + sizeof(*rom); |
| 50 | |
| 51 | status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, |
| 52 | (void **)&rom); |
| 53 | if (status != EFI_SUCCESS) { |
| 54 | efi_err("Failed to allocate memory for 'rom'\n"); |
| 55 | return status; |
| 56 | } |
| 57 | |
| 58 | memset(rom, 0, sizeof(*rom)); |
| 59 | |
| 60 | rom->data.type = SETUP_PCI; |
| 61 | rom->data.len = size - sizeof(struct setup_data); |
| 62 | rom->data.next = 0; |
| 63 | rom->pcilen = pci->romsize; |
| 64 | *__rom = rom; |
| 65 | |
| 66 | status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, |
| 67 | PCI_VENDOR_ID, 1, &rom->vendor); |
| 68 | |
| 69 | if (status != EFI_SUCCESS) { |
| 70 | efi_err("Failed to read rom->vendor\n"); |
| 71 | goto free_struct; |
| 72 | } |
| 73 | |
| 74 | status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16, |
| 75 | PCI_DEVICE_ID, 1, &rom->devid); |
| 76 | |
| 77 | if (status != EFI_SUCCESS) { |
| 78 | efi_err("Failed to read rom->devid\n"); |
| 79 | goto free_struct; |
| 80 | } |
| 81 | |
| 82 | status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus, |
| 83 | &rom->device, &rom->function); |
| 84 | |
| 85 | if (status != EFI_SUCCESS) |
| 86 | goto free_struct; |
| 87 | |
| 88 | memcpy(rom->romdata, romimage, romsize); |
| 89 | return status; |
| 90 | |
| 91 | free_struct: |
| 92 | efi_bs_call(free_pool, rom); |
| 93 | return status; |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * There's no way to return an informative status from this function, |
| 98 | * because any analysis (and printing of error messages) needs to be |
| 99 | * done directly at the EFI function call-site. |
| 100 | * |
| 101 | * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we |
| 102 | * just didn't find any PCI devices, but there's no way to tell outside |
| 103 | * the context of the call. |
| 104 | */ |
| 105 | static void setup_efi_pci(struct boot_params *params) |
| 106 | { |
| 107 | efi_status_t status; |
| 108 | void **pci_handle = NULL; |
| 109 | efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; |
| 110 | unsigned long size = 0; |
| 111 | struct setup_data *data; |
| 112 | efi_handle_t h; |
| 113 | int i; |
| 114 | |
| 115 | status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, |
| 116 | &pci_proto, NULL, &size, pci_handle); |
| 117 | |
| 118 | if (status == EFI_BUFFER_TOO_SMALL) { |
| 119 | status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, |
| 120 | (void **)&pci_handle); |
| 121 | |
| 122 | if (status != EFI_SUCCESS) { |
| 123 | efi_err("Failed to allocate memory for 'pci_handle'\n"); |
| 124 | return; |
| 125 | } |
| 126 | |
| 127 | status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, |
| 128 | &pci_proto, NULL, &size, pci_handle); |
| 129 | } |
| 130 | |
| 131 | if (status != EFI_SUCCESS) |
| 132 | goto free_handle; |
| 133 | |
| 134 | data = (struct setup_data *)(unsigned long)params->hdr.setup_data; |
| 135 | |
| 136 | while (data && data->next) |
| 137 | data = (struct setup_data *)(unsigned long)data->next; |
| 138 | |
| 139 | for_each_efi_handle(h, pci_handle, size, i) { |
| 140 | efi_pci_io_protocol_t *pci = NULL; |
| 141 | struct pci_setup_rom *rom; |
| 142 | |
| 143 | status = efi_bs_call(handle_protocol, h, &pci_proto, |
| 144 | (void **)&pci); |
| 145 | if (status != EFI_SUCCESS || !pci) |
| 146 | continue; |
| 147 | |
| 148 | status = preserve_pci_rom_image(pci, &rom); |
| 149 | if (status != EFI_SUCCESS) |
| 150 | continue; |
| 151 | |
| 152 | if (data) |
| 153 | data->next = (unsigned long)rom; |
| 154 | else |
| 155 | params->hdr.setup_data = (unsigned long)rom; |
| 156 | |
| 157 | data = (struct setup_data *)rom; |
| 158 | } |
| 159 | |
| 160 | free_handle: |
| 161 | efi_bs_call(free_pool, pci_handle); |
| 162 | } |
| 163 | |
| 164 | static void retrieve_apple_device_properties(struct boot_params *boot_params) |
| 165 | { |
| 166 | efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID; |
| 167 | struct setup_data *data, *new; |
| 168 | efi_status_t status; |
| 169 | u32 size = 0; |
| 170 | apple_properties_protocol_t *p; |
| 171 | |
| 172 | status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p); |
| 173 | if (status != EFI_SUCCESS) |
| 174 | return; |
| 175 | |
| 176 | if (efi_table_attr(p, version) != 0x10000) { |
| 177 | efi_err("Unsupported properties proto version\n"); |
| 178 | return; |
| 179 | } |
| 180 | |
| 181 | efi_call_proto(p, get_all, NULL, &size); |
| 182 | if (!size) |
| 183 | return; |
| 184 | |
| 185 | do { |
| 186 | status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, |
| 187 | size + sizeof(struct setup_data), |
| 188 | (void **)&new); |
| 189 | if (status != EFI_SUCCESS) { |
| 190 | efi_err("Failed to allocate memory for 'properties'\n"); |
| 191 | return; |
| 192 | } |
| 193 | |
| 194 | status = efi_call_proto(p, get_all, new->data, &size); |
| 195 | |
| 196 | if (status == EFI_BUFFER_TOO_SMALL) |
| 197 | efi_bs_call(free_pool, new); |
| 198 | } while (status == EFI_BUFFER_TOO_SMALL); |
| 199 | |
| 200 | new->type = SETUP_APPLE_PROPERTIES; |
| 201 | new->len = size; |
| 202 | new->next = 0; |
| 203 | |
| 204 | data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; |
| 205 | if (!data) { |
| 206 | boot_params->hdr.setup_data = (unsigned long)new; |
| 207 | } else { |
| 208 | while (data->next) |
| 209 | data = (struct setup_data *)(unsigned long)data->next; |
| 210 | data->next = (unsigned long)new; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | static const efi_char16_t apple[] = L"Apple"; |
| 215 | |
| 216 | static void setup_quirks(struct boot_params *boot_params) |
| 217 | { |
| 218 | efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long) |
| 219 | efi_table_attr(efi_system_table, fw_vendor); |
| 220 | |
| 221 | if (!memcmp(fw_vendor, apple, sizeof(apple))) { |
| 222 | if (IS_ENABLED(CONFIG_APPLE_PROPERTIES)) |
| 223 | retrieve_apple_device_properties(boot_params); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * See if we have Universal Graphics Adapter (UGA) protocol |
| 229 | */ |
| 230 | static efi_status_t |
| 231 | setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size) |
| 232 | { |
| 233 | efi_status_t status; |
| 234 | u32 width, height; |
| 235 | void **uga_handle = NULL; |
| 236 | efi_uga_draw_protocol_t *uga = NULL, *first_uga; |
| 237 | efi_handle_t handle; |
| 238 | int i; |
| 239 | |
| 240 | status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, |
| 241 | (void **)&uga_handle); |
| 242 | if (status != EFI_SUCCESS) |
| 243 | return status; |
| 244 | |
| 245 | status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, |
| 246 | uga_proto, NULL, &size, uga_handle); |
| 247 | if (status != EFI_SUCCESS) |
| 248 | goto free_handle; |
| 249 | |
| 250 | height = 0; |
| 251 | width = 0; |
| 252 | |
| 253 | first_uga = NULL; |
| 254 | for_each_efi_handle(handle, uga_handle, size, i) { |
| 255 | efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID; |
| 256 | u32 w, h, depth, refresh; |
| 257 | void *pciio; |
| 258 | |
| 259 | status = efi_bs_call(handle_protocol, handle, uga_proto, |
| 260 | (void **)&uga); |
| 261 | if (status != EFI_SUCCESS) |
| 262 | continue; |
| 263 | |
| 264 | pciio = NULL; |
| 265 | efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio); |
| 266 | |
| 267 | status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh); |
| 268 | if (status == EFI_SUCCESS && (!first_uga || pciio)) { |
| 269 | width = w; |
| 270 | height = h; |
| 271 | |
| 272 | /* |
| 273 | * Once we've found a UGA supporting PCIIO, |
| 274 | * don't bother looking any further. |
| 275 | */ |
| 276 | if (pciio) |
| 277 | break; |
| 278 | |
| 279 | first_uga = uga; |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | if (!width && !height) |
| 284 | goto free_handle; |
| 285 | |
| 286 | /* EFI framebuffer */ |
| 287 | si->orig_video_isVGA = VIDEO_TYPE_EFI; |
| 288 | |
| 289 | si->lfb_depth = 32; |
| 290 | si->lfb_width = width; |
| 291 | si->lfb_height = height; |
| 292 | |
| 293 | si->red_size = 8; |
| 294 | si->red_pos = 16; |
| 295 | si->green_size = 8; |
| 296 | si->green_pos = 8; |
| 297 | si->blue_size = 8; |
| 298 | si->blue_pos = 0; |
| 299 | si->rsvd_size = 8; |
| 300 | si->rsvd_pos = 24; |
| 301 | |
| 302 | free_handle: |
| 303 | efi_bs_call(free_pool, uga_handle); |
| 304 | |
| 305 | return status; |
| 306 | } |
| 307 | |
| 308 | static void setup_graphics(struct boot_params *boot_params) |
| 309 | { |
| 310 | efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; |
| 311 | struct screen_info *si; |
| 312 | efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; |
| 313 | efi_status_t status; |
| 314 | unsigned long size; |
| 315 | void **gop_handle = NULL; |
| 316 | void **uga_handle = NULL; |
| 317 | |
| 318 | si = &boot_params->screen_info; |
| 319 | memset(si, 0, sizeof(*si)); |
| 320 | |
| 321 | size = 0; |
| 322 | status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, |
| 323 | &graphics_proto, NULL, &size, gop_handle); |
| 324 | if (status == EFI_BUFFER_TOO_SMALL) |
| 325 | status = efi_setup_gop(si, &graphics_proto, size); |
| 326 | |
| 327 | if (status != EFI_SUCCESS) { |
| 328 | size = 0; |
| 329 | status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, |
| 330 | &uga_proto, NULL, &size, uga_handle); |
| 331 | if (status == EFI_BUFFER_TOO_SMALL) |
| 332 | setup_uga(si, &uga_proto, size); |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | |
| 337 | static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status) |
| 338 | { |
| 339 | efi_bs_call(exit, handle, status, 0, NULL); |
| 340 | for(;;) |
| 341 | asm("hlt"); |
| 342 | } |
| 343 | |
| 344 | void startup_32(struct boot_params *boot_params); |
| 345 | |
| 346 | void __noreturn efi_stub_entry(efi_handle_t handle, |
| 347 | efi_system_table_t *sys_table_arg, |
| 348 | struct boot_params *boot_params); |
| 349 | |
| 350 | /* |
| 351 | * Because the x86 boot code expects to be passed a boot_params we |
| 352 | * need to create one ourselves (usually the bootloader would create |
| 353 | * one for us). |
| 354 | */ |
| 355 | efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, |
| 356 | efi_system_table_t *sys_table_arg) |
| 357 | { |
| 358 | struct boot_params *boot_params; |
| 359 | struct setup_header *hdr; |
| 360 | void *image_base; |
| 361 | efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID; |
| 362 | int options_size = 0; |
| 363 | efi_status_t status; |
| 364 | char *cmdline_ptr; |
| 365 | |
| 366 | efi_system_table = sys_table_arg; |
| 367 | |
| 368 | /* Check if we were booted by the EFI firmware */ |
| 369 | if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| 370 | efi_exit(handle, EFI_INVALID_PARAMETER); |
| 371 | |
| 372 | status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image); |
| 373 | if (status != EFI_SUCCESS) { |
| 374 | efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n"); |
| 375 | efi_exit(handle, status); |
| 376 | } |
| 377 | |
| 378 | image_base = efi_table_attr(image, image_base); |
| 379 | image_offset = (void *)startup_32 - image_base; |
| 380 | |
| 381 | status = efi_allocate_pages(sizeof(struct boot_params), |
| 382 | (unsigned long *)&boot_params, ULONG_MAX); |
| 383 | if (status != EFI_SUCCESS) { |
| 384 | efi_err("Failed to allocate lowmem for boot params\n"); |
| 385 | efi_exit(handle, status); |
| 386 | } |
| 387 | |
| 388 | memset(boot_params, 0x0, sizeof(struct boot_params)); |
| 389 | |
| 390 | hdr = &boot_params->hdr; |
| 391 | |
| 392 | /* Copy the setup header from the second sector to boot_params */ |
| 393 | memcpy(&hdr->jump, image_base + 512, |
| 394 | sizeof(struct setup_header) - offsetof(struct setup_header, jump)); |
| 395 | |
| 396 | /* |
| 397 | * Fill out some of the header fields ourselves because the |
| 398 | * EFI firmware loader doesn't load the first sector. |
| 399 | */ |
| 400 | hdr->root_flags = 1; |
| 401 | hdr->vid_mode = 0xffff; |
| 402 | hdr->boot_flag = 0xAA55; |
| 403 | |
| 404 | hdr->type_of_loader = 0x21; |
| 405 | |
| 406 | /* Convert unicode cmdline to ascii */ |
| 407 | cmdline_ptr = efi_convert_cmdline(image, &options_size); |
| 408 | if (!cmdline_ptr) |
| 409 | goto fail; |
| 410 | |
| 411 | efi_set_u64_split((unsigned long)cmdline_ptr, |
| 412 | &hdr->cmd_line_ptr, &boot_params->ext_cmd_line_ptr); |
| 413 | |
| 414 | hdr->ramdisk_image = 0; |
| 415 | hdr->ramdisk_size = 0; |
| 416 | |
| 417 | efi_stub_entry(handle, sys_table_arg, boot_params); |
| 418 | /* not reached */ |
| 419 | |
| 420 | fail: |
| 421 | efi_free(sizeof(struct boot_params), (unsigned long)boot_params); |
| 422 | |
| 423 | efi_exit(handle, status); |
| 424 | } |
| 425 | |
| 426 | static void add_e820ext(struct boot_params *params, |
| 427 | struct setup_data *e820ext, u32 nr_entries) |
| 428 | { |
| 429 | struct setup_data *data; |
| 430 | |
| 431 | e820ext->type = SETUP_E820_EXT; |
| 432 | e820ext->len = nr_entries * sizeof(struct boot_e820_entry); |
| 433 | e820ext->next = 0; |
| 434 | |
| 435 | data = (struct setup_data *)(unsigned long)params->hdr.setup_data; |
| 436 | |
| 437 | while (data && data->next) |
| 438 | data = (struct setup_data *)(unsigned long)data->next; |
| 439 | |
| 440 | if (data) |
| 441 | data->next = (unsigned long)e820ext; |
| 442 | else |
| 443 | params->hdr.setup_data = (unsigned long)e820ext; |
| 444 | } |
| 445 | |
| 446 | static efi_status_t |
| 447 | setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size) |
| 448 | { |
| 449 | struct boot_e820_entry *entry = params->e820_table; |
| 450 | struct efi_info *efi = ¶ms->efi_info; |
| 451 | struct boot_e820_entry *prev = NULL; |
| 452 | u32 nr_entries; |
| 453 | u32 nr_desc; |
| 454 | int i; |
| 455 | |
| 456 | nr_entries = 0; |
| 457 | nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size; |
| 458 | |
| 459 | for (i = 0; i < nr_desc; i++) { |
| 460 | efi_memory_desc_t *d; |
| 461 | unsigned int e820_type = 0; |
| 462 | unsigned long m = efi->efi_memmap; |
| 463 | |
| 464 | #ifdef CONFIG_X86_64 |
| 465 | m |= (u64)efi->efi_memmap_hi << 32; |
| 466 | #endif |
| 467 | |
| 468 | d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i); |
| 469 | switch (d->type) { |
| 470 | case EFI_RESERVED_TYPE: |
| 471 | case EFI_RUNTIME_SERVICES_CODE: |
| 472 | case EFI_RUNTIME_SERVICES_DATA: |
| 473 | case EFI_MEMORY_MAPPED_IO: |
| 474 | case EFI_MEMORY_MAPPED_IO_PORT_SPACE: |
| 475 | case EFI_PAL_CODE: |
| 476 | e820_type = E820_TYPE_RESERVED; |
| 477 | break; |
| 478 | |
| 479 | case EFI_UNUSABLE_MEMORY: |
| 480 | e820_type = E820_TYPE_UNUSABLE; |
| 481 | break; |
| 482 | |
| 483 | case EFI_ACPI_RECLAIM_MEMORY: |
| 484 | e820_type = E820_TYPE_ACPI; |
| 485 | break; |
| 486 | |
| 487 | case EFI_LOADER_CODE: |
| 488 | case EFI_LOADER_DATA: |
| 489 | case EFI_BOOT_SERVICES_CODE: |
| 490 | case EFI_BOOT_SERVICES_DATA: |
| 491 | case EFI_CONVENTIONAL_MEMORY: |
| 492 | if (efi_soft_reserve_enabled() && |
| 493 | (d->attribute & EFI_MEMORY_SP)) |
| 494 | e820_type = E820_TYPE_SOFT_RESERVED; |
| 495 | else |
| 496 | e820_type = E820_TYPE_RAM; |
| 497 | break; |
| 498 | |
| 499 | case EFI_ACPI_MEMORY_NVS: |
| 500 | e820_type = E820_TYPE_NVS; |
| 501 | break; |
| 502 | |
| 503 | case EFI_PERSISTENT_MEMORY: |
| 504 | e820_type = E820_TYPE_PMEM; |
| 505 | break; |
| 506 | |
| 507 | default: |
| 508 | continue; |
| 509 | } |
| 510 | |
| 511 | /* Merge adjacent mappings */ |
| 512 | if (prev && prev->type == e820_type && |
| 513 | (prev->addr + prev->size) == d->phys_addr) { |
| 514 | prev->size += d->num_pages << 12; |
| 515 | continue; |
| 516 | } |
| 517 | |
| 518 | if (nr_entries == ARRAY_SIZE(params->e820_table)) { |
| 519 | u32 need = (nr_desc - i) * sizeof(struct e820_entry) + |
| 520 | sizeof(struct setup_data); |
| 521 | |
| 522 | if (!e820ext || e820ext_size < need) |
| 523 | return EFI_BUFFER_TOO_SMALL; |
| 524 | |
| 525 | /* boot_params map full, switch to e820 extended */ |
| 526 | entry = (struct boot_e820_entry *)e820ext->data; |
| 527 | } |
| 528 | |
| 529 | entry->addr = d->phys_addr; |
| 530 | entry->size = d->num_pages << PAGE_SHIFT; |
| 531 | entry->type = e820_type; |
| 532 | prev = entry++; |
| 533 | nr_entries++; |
| 534 | } |
| 535 | |
| 536 | if (nr_entries > ARRAY_SIZE(params->e820_table)) { |
| 537 | u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table); |
| 538 | |
| 539 | add_e820ext(params, e820ext, nr_e820ext); |
| 540 | nr_entries -= nr_e820ext; |
| 541 | } |
| 542 | |
| 543 | params->e820_entries = (u8)nr_entries; |
| 544 | |
| 545 | return EFI_SUCCESS; |
| 546 | } |
| 547 | |
| 548 | static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext, |
| 549 | u32 *e820ext_size) |
| 550 | { |
| 551 | efi_status_t status; |
| 552 | unsigned long size; |
| 553 | |
| 554 | size = sizeof(struct setup_data) + |
| 555 | sizeof(struct e820_entry) * nr_desc; |
| 556 | |
| 557 | if (*e820ext) { |
| 558 | efi_bs_call(free_pool, *e820ext); |
| 559 | *e820ext = NULL; |
| 560 | *e820ext_size = 0; |
| 561 | } |
| 562 | |
| 563 | status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, |
| 564 | (void **)e820ext); |
| 565 | if (status == EFI_SUCCESS) |
| 566 | *e820ext_size = size; |
| 567 | |
| 568 | return status; |
| 569 | } |
| 570 | |
| 571 | static efi_status_t allocate_e820(struct boot_params *params, |
| 572 | struct setup_data **e820ext, |
| 573 | u32 *e820ext_size) |
| 574 | { |
| 575 | unsigned long map_size, desc_size, map_key; |
| 576 | efi_status_t status; |
| 577 | __u32 nr_desc, desc_version; |
| 578 | |
| 579 | /* Only need the size of the mem map and size of each mem descriptor */ |
| 580 | map_size = 0; |
| 581 | status = efi_bs_call(get_memory_map, &map_size, NULL, &map_key, |
| 582 | &desc_size, &desc_version); |
| 583 | if (status != EFI_BUFFER_TOO_SMALL) |
| 584 | return (status != EFI_SUCCESS) ? status : EFI_UNSUPPORTED; |
| 585 | |
| 586 | nr_desc = map_size / desc_size + EFI_MMAP_NR_SLACK_SLOTS; |
| 587 | |
| 588 | if (nr_desc > ARRAY_SIZE(params->e820_table)) { |
| 589 | u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table); |
| 590 | |
| 591 | status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size); |
| 592 | if (status != EFI_SUCCESS) |
| 593 | return status; |
| 594 | } |
| 595 | |
| 596 | return EFI_SUCCESS; |
| 597 | } |
| 598 | |
| 599 | struct exit_boot_struct { |
| 600 | struct boot_params *boot_params; |
| 601 | struct efi_info *efi; |
| 602 | }; |
| 603 | |
| 604 | static efi_status_t exit_boot_func(struct efi_boot_memmap *map, |
| 605 | void *priv) |
| 606 | { |
| 607 | const char *signature; |
| 608 | struct exit_boot_struct *p = priv; |
| 609 | |
| 610 | signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE |
| 611 | : EFI32_LOADER_SIGNATURE; |
| 612 | memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32)); |
| 613 | |
| 614 | efi_set_u64_split((unsigned long)efi_system_table, |
| 615 | &p->efi->efi_systab, &p->efi->efi_systab_hi); |
| 616 | p->efi->efi_memdesc_size = *map->desc_size; |
| 617 | p->efi->efi_memdesc_version = *map->desc_ver; |
| 618 | efi_set_u64_split((unsigned long)*map->map, |
| 619 | &p->efi->efi_memmap, &p->efi->efi_memmap_hi); |
| 620 | p->efi->efi_memmap_size = *map->map_size; |
| 621 | |
| 622 | return EFI_SUCCESS; |
| 623 | } |
| 624 | |
| 625 | static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) |
| 626 | { |
| 627 | unsigned long map_sz, key, desc_size, buff_size; |
| 628 | efi_memory_desc_t *mem_map; |
| 629 | struct setup_data *e820ext = NULL; |
| 630 | __u32 e820ext_size = 0; |
| 631 | efi_status_t status; |
| 632 | __u32 desc_version; |
| 633 | struct efi_boot_memmap map; |
| 634 | struct exit_boot_struct priv; |
| 635 | |
| 636 | map.map = &mem_map; |
| 637 | map.map_size = &map_sz; |
| 638 | map.desc_size = &desc_size; |
| 639 | map.desc_ver = &desc_version; |
| 640 | map.key_ptr = &key; |
| 641 | map.buff_size = &buff_size; |
| 642 | priv.boot_params = boot_params; |
| 643 | priv.efi = &boot_params->efi_info; |
| 644 | |
| 645 | status = allocate_e820(boot_params, &e820ext, &e820ext_size); |
| 646 | if (status != EFI_SUCCESS) |
| 647 | return status; |
| 648 | |
| 649 | /* Might as well exit boot services now */ |
| 650 | status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func); |
| 651 | if (status != EFI_SUCCESS) |
| 652 | return status; |
| 653 | |
| 654 | /* Historic? */ |
| 655 | boot_params->alt_mem_k = 32 * 1024; |
| 656 | |
| 657 | status = setup_e820(boot_params, e820ext, e820ext_size); |
| 658 | if (status != EFI_SUCCESS) |
| 659 | return status; |
| 660 | |
| 661 | return EFI_SUCCESS; |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * On success, we return the address of startup_32, which has potentially been |
| 666 | * relocated by efi_relocate_kernel. |
| 667 | * On failure, we exit to the firmware via efi_exit instead of returning. |
| 668 | */ |
| 669 | unsigned long efi_main(efi_handle_t handle, |
| 670 | efi_system_table_t *sys_table_arg, |
| 671 | struct boot_params *boot_params) |
| 672 | { |
| 673 | unsigned long bzimage_addr = (unsigned long)startup_32; |
| 674 | unsigned long buffer_start, buffer_end; |
| 675 | struct setup_header *hdr = &boot_params->hdr; |
| 676 | efi_status_t status; |
| 677 | |
| 678 | efi_system_table = sys_table_arg; |
| 679 | |
| 680 | /* Check if we were booted by the EFI firmware */ |
| 681 | if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| 682 | efi_exit(handle, EFI_INVALID_PARAMETER); |
| 683 | |
| 684 | /* |
| 685 | * If the kernel isn't already loaded at a suitable address, |
| 686 | * relocate it. |
| 687 | * |
| 688 | * It must be loaded above LOAD_PHYSICAL_ADDR. |
| 689 | * |
| 690 | * The maximum address for 64-bit is 1 << 46 for 4-level paging. This |
| 691 | * is defined as the macro MAXMEM, but unfortunately that is not a |
| 692 | * compile-time constant if 5-level paging is configured, so we instead |
| 693 | * define our own macro for use here. |
| 694 | * |
| 695 | * For 32-bit, the maximum address is complicated to figure out, for |
| 696 | * now use KERNEL_IMAGE_SIZE, which will be 512MiB, the same as what |
| 697 | * KASLR uses. |
| 698 | * |
| 699 | * Also relocate it if image_offset is zero, i.e. the kernel wasn't |
| 700 | * loaded by LoadImage, but rather by a bootloader that called the |
| 701 | * handover entry. The reason we must always relocate in this case is |
| 702 | * to handle the case of systemd-boot booting a unified kernel image, |
| 703 | * which is a PE executable that contains the bzImage and an initrd as |
| 704 | * COFF sections. The initrd section is placed after the bzImage |
| 705 | * without ensuring that there are at least init_size bytes available |
| 706 | * for the bzImage, and thus the compressed kernel's startup code may |
| 707 | * overwrite the initrd unless it is moved out of the way. |
| 708 | */ |
| 709 | |
| 710 | buffer_start = ALIGN(bzimage_addr - image_offset, |
| 711 | hdr->kernel_alignment); |
| 712 | buffer_end = buffer_start + hdr->init_size; |
| 713 | |
| 714 | if ((buffer_start < LOAD_PHYSICAL_ADDR) || |
| 715 | (IS_ENABLED(CONFIG_X86_32) && buffer_end > KERNEL_IMAGE_SIZE) || |
| 716 | (IS_ENABLED(CONFIG_X86_64) && buffer_end > MAXMEM_X86_64_4LEVEL) || |
| 717 | (image_offset == 0)) { |
| 718 | status = efi_relocate_kernel(&bzimage_addr, |
| 719 | hdr->init_size, hdr->init_size, |
| 720 | hdr->pref_address, |
| 721 | hdr->kernel_alignment, |
| 722 | LOAD_PHYSICAL_ADDR); |
| 723 | if (status != EFI_SUCCESS) { |
| 724 | efi_err("efi_relocate_kernel() failed!\n"); |
| 725 | goto fail; |
| 726 | } |
| 727 | /* |
| 728 | * Now that we've copied the kernel elsewhere, we no longer |
| 729 | * have a set up block before startup_32(), so reset image_offset |
| 730 | * to zero in case it was set earlier. |
| 731 | */ |
| 732 | image_offset = 0; |
| 733 | } |
| 734 | |
| 735 | #ifdef CONFIG_CMDLINE_BOOL |
| 736 | status = efi_parse_options(CONFIG_CMDLINE); |
| 737 | if (status != EFI_SUCCESS) { |
| 738 | efi_err("Failed to parse options\n"); |
| 739 | goto fail; |
| 740 | } |
| 741 | #endif |
| 742 | if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { |
| 743 | unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr | |
| 744 | ((u64)boot_params->ext_cmd_line_ptr << 32)); |
| 745 | status = efi_parse_options((char *)cmdline_paddr); |
| 746 | if (status != EFI_SUCCESS) { |
| 747 | efi_err("Failed to parse options\n"); |
| 748 | goto fail; |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * At this point, an initrd may already have been loaded by the |
| 754 | * bootloader and passed via bootparams. We permit an initrd loaded |
| 755 | * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it. |
| 756 | * |
| 757 | * If the device path is not present, any command-line initrd= |
| 758 | * arguments will be processed only if image is not NULL, which will be |
| 759 | * the case only if we were loaded via the PE entry point. |
| 760 | */ |
| 761 | if (!efi_noinitrd) { |
| 762 | unsigned long addr, size; |
| 763 | |
| 764 | status = efi_load_initrd(image, &addr, &size, |
| 765 | hdr->initrd_addr_max, ULONG_MAX); |
| 766 | |
| 767 | if (status != EFI_SUCCESS) { |
| 768 | efi_err("Failed to load initrd!\n"); |
| 769 | goto fail; |
| 770 | } |
| 771 | if (size > 0) { |
| 772 | efi_set_u64_split(addr, &hdr->ramdisk_image, |
| 773 | &boot_params->ext_ramdisk_image); |
| 774 | efi_set_u64_split(size, &hdr->ramdisk_size, |
| 775 | &boot_params->ext_ramdisk_size); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | /* |
| 780 | * If the boot loader gave us a value for secure_boot then we use that, |
| 781 | * otherwise we ask the BIOS. |
| 782 | */ |
| 783 | if (boot_params->secure_boot == efi_secureboot_mode_unset) |
| 784 | boot_params->secure_boot = efi_get_secureboot(); |
| 785 | |
| 786 | /* Ask the firmware to clear memory on unclean shutdown */ |
| 787 | efi_enable_reset_attack_mitigation(); |
| 788 | |
| 789 | efi_random_get_seed(); |
| 790 | |
| 791 | efi_retrieve_tpm2_eventlog(); |
| 792 | |
| 793 | setup_graphics(boot_params); |
| 794 | |
| 795 | setup_efi_pci(boot_params); |
| 796 | |
| 797 | setup_quirks(boot_params); |
| 798 | |
| 799 | status = exit_boot(boot_params, handle); |
| 800 | if (status != EFI_SUCCESS) { |
| 801 | efi_err("exit_boot() failed!\n"); |
| 802 | goto fail; |
| 803 | } |
| 804 | |
| 805 | return bzimage_addr; |
| 806 | fail: |
| 807 | efi_err("efi_main() failed!\n"); |
| 808 | |
| 809 | efi_exit(handle, status); |
| 810 | } |