Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * EFI stub implementation that is shared by arm and arm64 architectures. |
| 4 | * This should be #included by the EFI stub implementation files. |
| 5 | * |
| 6 | * Copyright (C) 2013,2014 Linaro Limited |
| 7 | * Roy Franz <roy.franz@linaro.org |
| 8 | * Copyright (C) 2013 Red Hat, Inc. |
| 9 | * Mark Salter <msalter@redhat.com> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/efi.h> |
| 13 | #include <linux/libfdt.h> |
| 14 | #include <asm/efi.h> |
| 15 | |
| 16 | #include "efistub.h" |
| 17 | |
| 18 | /* |
| 19 | * This is the base address at which to start allocating virtual memory ranges |
| 20 | * for UEFI Runtime Services. |
| 21 | * |
| 22 | * For ARM/ARM64: |
| 23 | * This is in the low TTBR0 range so that we can use |
| 24 | * any allocation we choose, and eliminate the risk of a conflict after kexec. |
| 25 | * The value chosen is the largest non-zero power of 2 suitable for this purpose |
| 26 | * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can |
| 27 | * be mapped efficiently. |
| 28 | * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, |
| 29 | * map everything below 1 GB. (512 MB is a reasonable upper bound for the |
| 30 | * entire footprint of the UEFI runtime services memory regions) |
| 31 | * |
| 32 | * For RISC-V: |
| 33 | * There is no specific reason for which, this address (512MB) can't be used |
| 34 | * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime |
| 35 | * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V |
| 36 | * as well to minimize the code churn. |
| 37 | */ |
| 38 | #define EFI_RT_VIRTUAL_BASE SZ_512M |
| 39 | #define EFI_RT_VIRTUAL_SIZE SZ_512M |
| 40 | |
| 41 | #ifdef CONFIG_ARM64 |
| 42 | # define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64 |
| 43 | #else |
| 44 | # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE |
| 45 | #endif |
| 46 | |
| 47 | static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; |
| 48 | static bool flat_va_mapping; |
| 49 | |
| 50 | const efi_system_table_t *efi_system_table; |
| 51 | |
| 52 | static struct screen_info *setup_graphics(void) |
| 53 | { |
| 54 | efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; |
| 55 | efi_status_t status; |
| 56 | unsigned long size; |
| 57 | void **gop_handle = NULL; |
| 58 | struct screen_info *si = NULL; |
| 59 | |
| 60 | size = 0; |
| 61 | status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, |
| 62 | &gop_proto, NULL, &size, gop_handle); |
| 63 | if (status == EFI_BUFFER_TOO_SMALL) { |
| 64 | si = alloc_screen_info(); |
| 65 | if (!si) |
| 66 | return NULL; |
| 67 | status = efi_setup_gop(si, &gop_proto, size); |
| 68 | if (status != EFI_SUCCESS) { |
| 69 | free_screen_info(si); |
| 70 | return NULL; |
| 71 | } |
| 72 | } |
| 73 | return si; |
| 74 | } |
| 75 | |
| 76 | static void install_memreserve_table(void) |
| 77 | { |
| 78 | struct linux_efi_memreserve *rsv; |
| 79 | efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; |
| 80 | efi_status_t status; |
| 81 | |
| 82 | status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv), |
| 83 | (void **)&rsv); |
| 84 | if (status != EFI_SUCCESS) { |
| 85 | efi_err("Failed to allocate memreserve entry!\n"); |
| 86 | return; |
| 87 | } |
| 88 | |
| 89 | rsv->next = 0; |
| 90 | rsv->size = 0; |
| 91 | atomic_set(&rsv->count, 0); |
| 92 | |
| 93 | status = efi_bs_call(install_configuration_table, |
| 94 | &memreserve_table_guid, rsv); |
| 95 | if (status != EFI_SUCCESS) |
| 96 | efi_err("Failed to install memreserve config table!\n"); |
| 97 | } |
| 98 | |
| 99 | static u32 get_supported_rt_services(void) |
| 100 | { |
| 101 | const efi_rt_properties_table_t *rt_prop_table; |
| 102 | u32 supported = EFI_RT_SUPPORTED_ALL; |
| 103 | |
| 104 | rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID); |
| 105 | if (rt_prop_table) |
| 106 | supported &= rt_prop_table->runtime_services_supported; |
| 107 | |
| 108 | return supported; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint |
| 113 | * that is described in the PE/COFF header. Most of the code is the same |
| 114 | * for both archictectures, with the arch-specific code provided in the |
| 115 | * handle_kernel_image() function. |
| 116 | */ |
| 117 | efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, |
| 118 | efi_system_table_t *sys_table_arg) |
| 119 | { |
| 120 | efi_loaded_image_t *image; |
| 121 | efi_status_t status; |
| 122 | unsigned long image_addr; |
| 123 | unsigned long image_size = 0; |
| 124 | /* addr/point and size pairs for memory management*/ |
| 125 | unsigned long initrd_addr = 0; |
| 126 | unsigned long initrd_size = 0; |
| 127 | unsigned long fdt_addr = 0; /* Original DTB */ |
| 128 | unsigned long fdt_size = 0; |
| 129 | char *cmdline_ptr = NULL; |
| 130 | int cmdline_size = 0; |
| 131 | efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; |
| 132 | unsigned long reserve_addr = 0; |
| 133 | unsigned long reserve_size = 0; |
| 134 | enum efi_secureboot_mode secure_boot; |
| 135 | struct screen_info *si; |
| 136 | efi_properties_table_t *prop_tbl; |
| 137 | unsigned long max_addr; |
| 138 | |
| 139 | efi_system_table = sys_table_arg; |
| 140 | |
| 141 | /* Check if we were booted by the EFI firmware */ |
| 142 | if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { |
| 143 | status = EFI_INVALID_PARAMETER; |
| 144 | goto fail; |
| 145 | } |
| 146 | |
| 147 | status = check_platform_features(); |
| 148 | if (status != EFI_SUCCESS) |
| 149 | goto fail; |
| 150 | |
| 151 | /* |
| 152 | * Get a handle to the loaded image protocol. This is used to get |
| 153 | * information about the running image, such as size and the command |
| 154 | * line. |
| 155 | */ |
| 156 | status = efi_system_table->boottime->handle_protocol(handle, |
| 157 | &loaded_image_proto, (void *)&image); |
| 158 | if (status != EFI_SUCCESS) { |
| 159 | efi_err("Failed to get loaded image protocol\n"); |
| 160 | goto fail; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Get the command line from EFI, using the LOADED_IMAGE |
| 165 | * protocol. We are going to copy the command line into the |
| 166 | * device tree, so this can be allocated anywhere. |
| 167 | */ |
| 168 | cmdline_ptr = efi_convert_cmdline(image, &cmdline_size); |
| 169 | if (!cmdline_ptr) { |
| 170 | efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n"); |
| 171 | status = EFI_OUT_OF_RESOURCES; |
| 172 | goto fail; |
| 173 | } |
| 174 | |
| 175 | if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || |
| 176 | IS_ENABLED(CONFIG_CMDLINE_FORCE) || |
| 177 | cmdline_size == 0) { |
| 178 | status = efi_parse_options(CONFIG_CMDLINE); |
| 179 | if (status != EFI_SUCCESS) { |
| 180 | efi_err("Failed to parse options\n"); |
| 181 | goto fail_free_cmdline; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) { |
| 186 | status = efi_parse_options(cmdline_ptr); |
| 187 | if (status != EFI_SUCCESS) { |
| 188 | efi_err("Failed to parse options\n"); |
| 189 | goto fail_free_cmdline; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | efi_info("Booting Linux Kernel...\n"); |
| 194 | |
| 195 | si = setup_graphics(); |
| 196 | |
| 197 | status = handle_kernel_image(&image_addr, &image_size, |
| 198 | &reserve_addr, |
| 199 | &reserve_size, |
| 200 | image); |
| 201 | if (status != EFI_SUCCESS) { |
| 202 | efi_err("Failed to relocate kernel\n"); |
| 203 | goto fail_free_screeninfo; |
| 204 | } |
| 205 | |
| 206 | efi_retrieve_tpm2_eventlog(); |
| 207 | |
| 208 | /* Ask the firmware to clear memory on unclean shutdown */ |
| 209 | efi_enable_reset_attack_mitigation(); |
| 210 | |
| 211 | secure_boot = efi_get_secureboot(); |
| 212 | |
| 213 | /* |
| 214 | * Unauthenticated device tree data is a security hazard, so ignore |
| 215 | * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure |
| 216 | * boot is enabled if we can't determine its state. |
| 217 | */ |
| 218 | if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) || |
| 219 | secure_boot != efi_secureboot_mode_disabled) { |
| 220 | if (strstr(cmdline_ptr, "dtb=")) |
| 221 | efi_err("Ignoring DTB from command line.\n"); |
| 222 | } else { |
| 223 | status = efi_load_dtb(image, &fdt_addr, &fdt_size); |
| 224 | |
| 225 | if (status != EFI_SUCCESS) { |
| 226 | efi_err("Failed to load device tree!\n"); |
| 227 | goto fail_free_image; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | if (fdt_addr) { |
| 232 | efi_info("Using DTB from command line\n"); |
| 233 | } else { |
| 234 | /* Look for a device tree configuration table entry. */ |
| 235 | fdt_addr = (uintptr_t)get_fdt(&fdt_size); |
| 236 | if (fdt_addr) |
| 237 | efi_info("Using DTB from configuration table\n"); |
| 238 | } |
| 239 | |
| 240 | if (!fdt_addr) |
| 241 | efi_info("Generating empty DTB\n"); |
| 242 | |
| 243 | if (!efi_noinitrd) { |
| 244 | max_addr = efi_get_max_initrd_addr(image_addr); |
| 245 | status = efi_load_initrd(image, &initrd_addr, &initrd_size, |
| 246 | ULONG_MAX, max_addr); |
| 247 | if (status != EFI_SUCCESS) |
| 248 | efi_err("Failed to load initrd!\n"); |
| 249 | } |
| 250 | |
| 251 | efi_random_get_seed(); |
| 252 | |
| 253 | /* |
| 254 | * If the NX PE data feature is enabled in the properties table, we |
| 255 | * should take care not to create a virtual mapping that changes the |
| 256 | * relative placement of runtime services code and data regions, as |
| 257 | * they may belong to the same PE/COFF executable image in memory. |
| 258 | * The easiest way to achieve that is to simply use a 1:1 mapping. |
| 259 | */ |
| 260 | prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID); |
| 261 | flat_va_mapping = prop_tbl && |
| 262 | (prop_tbl->memory_protection_attribute & |
| 263 | EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA); |
| 264 | |
| 265 | /* force efi_novamap if SetVirtualAddressMap() is unsupported */ |
| 266 | efi_novamap |= !(get_supported_rt_services() & |
| 267 | EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP); |
| 268 | |
| 269 | /* hibernation expects the runtime regions to stay in the same place */ |
| 270 | if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) { |
| 271 | /* |
| 272 | * Randomize the base of the UEFI runtime services region. |
| 273 | * Preserve the 2 MB alignment of the region by taking a |
| 274 | * shift of 21 bit positions into account when scaling |
| 275 | * the headroom value using a 32-bit random value. |
| 276 | */ |
| 277 | static const u64 headroom = EFI_RT_VIRTUAL_LIMIT - |
| 278 | EFI_RT_VIRTUAL_BASE - |
| 279 | EFI_RT_VIRTUAL_SIZE; |
| 280 | u32 rnd; |
| 281 | |
| 282 | status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd); |
| 283 | if (status == EFI_SUCCESS) { |
| 284 | virtmap_base = EFI_RT_VIRTUAL_BASE + |
| 285 | (((headroom >> 21) * rnd) >> (32 - 21)); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | install_memreserve_table(); |
| 290 | |
| 291 | status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr, |
| 292 | efi_get_max_fdt_addr(image_addr), |
| 293 | initrd_addr, initrd_size, |
| 294 | cmdline_ptr, fdt_addr, fdt_size); |
| 295 | if (status != EFI_SUCCESS) |
| 296 | goto fail_free_initrd; |
| 297 | |
| 298 | if (IS_ENABLED(CONFIG_ARM)) |
| 299 | efi_handle_post_ebs_state(); |
| 300 | |
| 301 | efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr)); |
| 302 | /* not reached */ |
| 303 | |
| 304 | fail_free_initrd: |
| 305 | efi_err("Failed to update FDT and exit boot services\n"); |
| 306 | |
| 307 | efi_free(initrd_size, initrd_addr); |
| 308 | efi_free(fdt_size, fdt_addr); |
| 309 | |
| 310 | fail_free_image: |
| 311 | efi_free(image_size, image_addr); |
| 312 | efi_free(reserve_size, reserve_addr); |
| 313 | fail_free_screeninfo: |
| 314 | free_screen_info(si); |
| 315 | fail_free_cmdline: |
| 316 | efi_bs_call(free_pool, cmdline_ptr); |
| 317 | fail: |
| 318 | return status; |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * efi_get_virtmap() - create a virtual mapping for the EFI memory map |
| 323 | * |
| 324 | * This function populates the virt_addr fields of all memory region descriptors |
| 325 | * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors |
| 326 | * are also copied to @runtime_map, and their total count is returned in @count. |
| 327 | */ |
| 328 | void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, |
| 329 | unsigned long desc_size, efi_memory_desc_t *runtime_map, |
| 330 | int *count) |
| 331 | { |
| 332 | u64 efi_virt_base = virtmap_base; |
| 333 | efi_memory_desc_t *in, *out = runtime_map; |
| 334 | int l; |
| 335 | |
| 336 | for (l = 0; l < map_size; l += desc_size) { |
| 337 | u64 paddr, size; |
| 338 | |
| 339 | in = (void *)memory_map + l; |
| 340 | if (!(in->attribute & EFI_MEMORY_RUNTIME)) |
| 341 | continue; |
| 342 | |
| 343 | paddr = in->phys_addr; |
| 344 | size = in->num_pages * EFI_PAGE_SIZE; |
| 345 | |
| 346 | in->virt_addr = in->phys_addr; |
| 347 | if (efi_novamap) { |
| 348 | continue; |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Make the mapping compatible with 64k pages: this allows |
| 353 | * a 4k page size kernel to kexec a 64k page size kernel and |
| 354 | * vice versa. |
| 355 | */ |
| 356 | if (!flat_va_mapping) { |
| 357 | |
| 358 | paddr = round_down(in->phys_addr, SZ_64K); |
| 359 | size += in->phys_addr - paddr; |
| 360 | |
| 361 | /* |
| 362 | * Avoid wasting memory on PTEs by choosing a virtual |
| 363 | * base that is compatible with section mappings if this |
| 364 | * region has the appropriate size and physical |
| 365 | * alignment. (Sections are 2 MB on 4k granule kernels) |
| 366 | */ |
| 367 | if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) |
| 368 | efi_virt_base = round_up(efi_virt_base, SZ_2M); |
| 369 | else |
| 370 | efi_virt_base = round_up(efi_virt_base, SZ_64K); |
| 371 | |
| 372 | in->virt_addr += efi_virt_base - paddr; |
| 373 | efi_virt_base += size; |
| 374 | } |
| 375 | |
| 376 | memcpy(out, in, desc_size); |
| 377 | out = (void *)out + desc_size; |
| 378 | ++*count; |
| 379 | } |
| 380 | } |