Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Extensible Firmware Interface |
| 4 | * |
| 5 | * Based on Extensible Firmware Interface Specification version 2.4 |
| 6 | * |
| 7 | * Copyright (C) 2013 - 2015 Linaro Ltd. |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) "efi: " fmt |
| 11 | |
| 12 | #include <linux/efi.h> |
| 13 | #include <linux/fwnode.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/memblock.h> |
| 16 | #include <linux/mm_types.h> |
| 17 | #include <linux/of.h> |
| 18 | #include <linux/of_address.h> |
| 19 | #include <linux/of_fdt.h> |
| 20 | #include <linux/platform_device.h> |
| 21 | #include <linux/screen_info.h> |
| 22 | |
| 23 | #include <asm/efi.h> |
| 24 | |
| 25 | static int __init is_memory(efi_memory_desc_t *md) |
| 26 | { |
| 27 | if (md->attribute & (EFI_MEMORY_WB|EFI_MEMORY_WT|EFI_MEMORY_WC)) |
| 28 | return 1; |
| 29 | return 0; |
| 30 | } |
| 31 | |
| 32 | /* |
| 33 | * Translate a EFI virtual address into a physical address: this is necessary, |
| 34 | * as some data members of the EFI system table are virtually remapped after |
| 35 | * SetVirtualAddressMap() has been called. |
| 36 | */ |
| 37 | static phys_addr_t __init efi_to_phys(unsigned long addr) |
| 38 | { |
| 39 | efi_memory_desc_t *md; |
| 40 | |
| 41 | for_each_efi_memory_desc(md) { |
| 42 | if (!(md->attribute & EFI_MEMORY_RUNTIME)) |
| 43 | continue; |
| 44 | if (md->virt_addr == 0) |
| 45 | /* no virtual mapping has been installed by the stub */ |
| 46 | break; |
| 47 | if (md->virt_addr <= addr && |
| 48 | (addr - md->virt_addr) < (md->num_pages << EFI_PAGE_SHIFT)) |
| 49 | return md->phys_addr + addr - md->virt_addr; |
| 50 | } |
| 51 | return addr; |
| 52 | } |
| 53 | |
| 54 | static __initdata unsigned long screen_info_table = EFI_INVALID_TABLE_ADDR; |
| 55 | static __initdata unsigned long cpu_state_table = EFI_INVALID_TABLE_ADDR; |
| 56 | |
| 57 | static const efi_config_table_type_t arch_tables[] __initconst = { |
| 58 | {LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID, &screen_info_table}, |
| 59 | {LINUX_EFI_ARM_CPU_STATE_TABLE_GUID, &cpu_state_table}, |
| 60 | {} |
| 61 | }; |
| 62 | |
| 63 | static void __init init_screen_info(void) |
| 64 | { |
| 65 | struct screen_info *si; |
| 66 | |
| 67 | if (IS_ENABLED(CONFIG_ARM) && |
| 68 | screen_info_table != EFI_INVALID_TABLE_ADDR) { |
| 69 | si = early_memremap_ro(screen_info_table, sizeof(*si)); |
| 70 | if (!si) { |
| 71 | pr_err("Could not map screen_info config table\n"); |
| 72 | return; |
| 73 | } |
| 74 | screen_info = *si; |
| 75 | early_memunmap(si, sizeof(*si)); |
| 76 | |
| 77 | /* dummycon on ARM needs non-zero values for columns/lines */ |
| 78 | screen_info.orig_video_cols = 80; |
| 79 | screen_info.orig_video_lines = 25; |
| 80 | } |
| 81 | |
| 82 | if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI && |
| 83 | memblock_is_map_memory(screen_info.lfb_base)) |
| 84 | memblock_mark_nomap(screen_info.lfb_base, screen_info.lfb_size); |
| 85 | } |
| 86 | |
| 87 | static int __init uefi_init(u64 efi_system_table) |
| 88 | { |
| 89 | efi_config_table_t *config_tables; |
| 90 | efi_system_table_t *systab; |
| 91 | size_t table_size; |
| 92 | int retval; |
| 93 | |
| 94 | systab = early_memremap_ro(efi_system_table, sizeof(efi_system_table_t)); |
| 95 | if (systab == NULL) { |
| 96 | pr_warn("Unable to map EFI system table.\n"); |
| 97 | return -ENOMEM; |
| 98 | } |
| 99 | |
| 100 | set_bit(EFI_BOOT, &efi.flags); |
| 101 | if (IS_ENABLED(CONFIG_64BIT)) |
| 102 | set_bit(EFI_64BIT, &efi.flags); |
| 103 | |
| 104 | retval = efi_systab_check_header(&systab->hdr, 2); |
| 105 | if (retval) |
| 106 | goto out; |
| 107 | |
| 108 | efi.runtime = systab->runtime; |
| 109 | efi.runtime_version = systab->hdr.revision; |
| 110 | |
| 111 | efi_systab_report_header(&systab->hdr, efi_to_phys(systab->fw_vendor)); |
| 112 | |
| 113 | table_size = sizeof(efi_config_table_t) * systab->nr_tables; |
| 114 | config_tables = early_memremap_ro(efi_to_phys(systab->tables), |
| 115 | table_size); |
| 116 | if (config_tables == NULL) { |
| 117 | pr_warn("Unable to map EFI config table array.\n"); |
| 118 | retval = -ENOMEM; |
| 119 | goto out; |
| 120 | } |
| 121 | retval = efi_config_parse_tables(config_tables, systab->nr_tables, |
| 122 | IS_ENABLED(CONFIG_ARM) ? arch_tables |
| 123 | : NULL); |
| 124 | |
| 125 | early_memunmap(config_tables, table_size); |
| 126 | out: |
| 127 | early_memunmap(systab, sizeof(efi_system_table_t)); |
| 128 | return retval; |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * Return true for regions that can be used as System RAM. |
| 133 | */ |
| 134 | static __init int is_usable_memory(efi_memory_desc_t *md) |
| 135 | { |
| 136 | switch (md->type) { |
| 137 | case EFI_LOADER_CODE: |
| 138 | case EFI_LOADER_DATA: |
| 139 | case EFI_ACPI_RECLAIM_MEMORY: |
| 140 | case EFI_BOOT_SERVICES_CODE: |
| 141 | case EFI_BOOT_SERVICES_DATA: |
| 142 | case EFI_CONVENTIONAL_MEMORY: |
| 143 | case EFI_PERSISTENT_MEMORY: |
| 144 | /* |
| 145 | * Special purpose memory is 'soft reserved', which means it |
| 146 | * is set aside initially, but can be hotplugged back in or |
| 147 | * be assigned to the dax driver after boot. |
| 148 | */ |
| 149 | if (efi_soft_reserve_enabled() && |
| 150 | (md->attribute & EFI_MEMORY_SP)) |
| 151 | return false; |
| 152 | |
| 153 | /* |
| 154 | * According to the spec, these regions are no longer reserved |
| 155 | * after calling ExitBootServices(). However, we can only use |
| 156 | * them as System RAM if they can be mapped writeback cacheable. |
| 157 | */ |
| 158 | return (md->attribute & EFI_MEMORY_WB); |
| 159 | default: |
| 160 | break; |
| 161 | } |
| 162 | return false; |
| 163 | } |
| 164 | |
| 165 | static __init void reserve_regions(void) |
| 166 | { |
| 167 | efi_memory_desc_t *md; |
| 168 | u64 paddr, npages, size; |
| 169 | |
| 170 | if (efi_enabled(EFI_DBG)) |
| 171 | pr_info("Processing EFI memory map:\n"); |
| 172 | |
| 173 | /* |
| 174 | * Discard memblocks discovered so far: if there are any at this |
| 175 | * point, they originate from memory nodes in the DT, and UEFI |
| 176 | * uses its own memory map instead. |
| 177 | */ |
| 178 | memblock_dump_all(); |
| 179 | memblock_remove(0, PHYS_ADDR_MAX); |
| 180 | |
| 181 | for_each_efi_memory_desc(md) { |
| 182 | paddr = md->phys_addr; |
| 183 | npages = md->num_pages; |
| 184 | |
| 185 | if (efi_enabled(EFI_DBG)) { |
| 186 | char buf[64]; |
| 187 | |
| 188 | pr_info(" 0x%012llx-0x%012llx %s\n", |
| 189 | paddr, paddr + (npages << EFI_PAGE_SHIFT) - 1, |
| 190 | efi_md_typeattr_format(buf, sizeof(buf), md)); |
| 191 | } |
| 192 | |
| 193 | memrange_efi_to_native(&paddr, &npages); |
| 194 | size = npages << PAGE_SHIFT; |
| 195 | |
| 196 | if (is_memory(md)) { |
| 197 | early_init_dt_add_memory_arch(paddr, size); |
| 198 | |
| 199 | if (!is_usable_memory(md)) |
| 200 | memblock_mark_nomap(paddr, size); |
| 201 | |
| 202 | /* keep ACPI reclaim memory intact for kexec etc. */ |
| 203 | if (md->type == EFI_ACPI_RECLAIM_MEMORY) |
| 204 | memblock_reserve(paddr, size); |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | void __init efi_init(void) |
| 210 | { |
| 211 | struct efi_memory_map_data data; |
| 212 | u64 efi_system_table; |
| 213 | |
| 214 | /* Grab UEFI information placed in FDT by stub */ |
| 215 | efi_system_table = efi_get_fdt_params(&data); |
| 216 | if (!efi_system_table) |
| 217 | return; |
| 218 | |
| 219 | if (efi_memmap_init_early(&data) < 0) { |
| 220 | /* |
| 221 | * If we are booting via UEFI, the UEFI memory map is the only |
| 222 | * description of memory we have, so there is little point in |
| 223 | * proceeding if we cannot access it. |
| 224 | */ |
| 225 | panic("Unable to map EFI memory map.\n"); |
| 226 | } |
| 227 | |
| 228 | WARN(efi.memmap.desc_version != 1, |
| 229 | "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", |
| 230 | efi.memmap.desc_version); |
| 231 | |
| 232 | if (uefi_init(efi_system_table) < 0) { |
| 233 | efi_memmap_unmap(); |
| 234 | return; |
| 235 | } |
| 236 | |
| 237 | reserve_regions(); |
| 238 | efi_esrt_init(); |
| 239 | efi_mokvar_table_init(); |
| 240 | |
| 241 | memblock_reserve(data.phys_map & PAGE_MASK, |
| 242 | PAGE_ALIGN(data.size + (data.phys_map & ~PAGE_MASK))); |
| 243 | |
| 244 | init_screen_info(); |
| 245 | |
| 246 | #ifdef CONFIG_ARM |
| 247 | /* ARM does not permit early mappings to persist across paging_init() */ |
| 248 | efi_memmap_unmap(); |
| 249 | |
| 250 | if (cpu_state_table != EFI_INVALID_TABLE_ADDR) { |
| 251 | struct efi_arm_entry_state *state; |
| 252 | bool dump_state = true; |
| 253 | |
| 254 | state = early_memremap_ro(cpu_state_table, |
| 255 | sizeof(struct efi_arm_entry_state)); |
| 256 | if (state == NULL) { |
| 257 | pr_warn("Unable to map CPU entry state table.\n"); |
| 258 | return; |
| 259 | } |
| 260 | |
| 261 | if ((state->sctlr_before_ebs & 1) == 0) |
| 262 | pr_warn(FW_BUG "EFI stub was entered with MMU and Dcache disabled, please fix your firmware!\n"); |
| 263 | else if ((state->sctlr_after_ebs & 1) == 0) |
| 264 | pr_warn(FW_BUG "ExitBootServices() returned with MMU and Dcache disabled, please fix your firmware!\n"); |
| 265 | else |
| 266 | dump_state = false; |
| 267 | |
| 268 | if (dump_state || efi_enabled(EFI_DBG)) { |
| 269 | pr_info("CPSR at EFI stub entry : 0x%08x\n", state->cpsr_before_ebs); |
| 270 | pr_info("SCTLR at EFI stub entry : 0x%08x\n", state->sctlr_before_ebs); |
| 271 | pr_info("CPSR after ExitBootServices() : 0x%08x\n", state->cpsr_after_ebs); |
| 272 | pr_info("SCTLR after ExitBootServices(): 0x%08x\n", state->sctlr_after_ebs); |
| 273 | } |
| 274 | early_memunmap(state, sizeof(struct efi_arm_entry_state)); |
| 275 | } |
| 276 | #endif |
| 277 | } |
| 278 | |
| 279 | static bool efifb_overlaps_pci_range(const struct of_pci_range *range) |
| 280 | { |
| 281 | u64 fb_base = screen_info.lfb_base; |
| 282 | |
| 283 | if (screen_info.capabilities & VIDEO_CAPABILITY_64BIT_BASE) |
| 284 | fb_base |= (u64)(unsigned long)screen_info.ext_lfb_base << 32; |
| 285 | |
| 286 | return fb_base >= range->cpu_addr && |
| 287 | fb_base < (range->cpu_addr + range->size); |
| 288 | } |
| 289 | |
| 290 | static struct device_node *find_pci_overlap_node(void) |
| 291 | { |
| 292 | struct device_node *np; |
| 293 | |
| 294 | for_each_node_by_type(np, "pci") { |
| 295 | struct of_pci_range_parser parser; |
| 296 | struct of_pci_range range; |
| 297 | int err; |
| 298 | |
| 299 | err = of_pci_range_parser_init(&parser, np); |
| 300 | if (err) { |
| 301 | pr_warn("of_pci_range_parser_init() failed: %d\n", err); |
| 302 | continue; |
| 303 | } |
| 304 | |
| 305 | for_each_of_pci_range(&parser, &range) |
| 306 | if (efifb_overlaps_pci_range(&range)) |
| 307 | return np; |
| 308 | } |
| 309 | return NULL; |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * If the efifb framebuffer is backed by a PCI graphics controller, we have |
| 314 | * to ensure that this relation is expressed using a device link when |
| 315 | * running in DT mode, or the probe order may be reversed, resulting in a |
| 316 | * resource reservation conflict on the memory window that the efifb |
| 317 | * framebuffer steals from the PCIe host bridge. |
| 318 | */ |
| 319 | static int efifb_add_links(const struct fwnode_handle *fwnode, |
| 320 | struct device *dev) |
| 321 | { |
| 322 | struct device_node *sup_np; |
| 323 | struct device *sup_dev; |
| 324 | |
| 325 | sup_np = find_pci_overlap_node(); |
| 326 | |
| 327 | /* |
| 328 | * If there's no PCI graphics controller backing the efifb, we are |
| 329 | * done here. |
| 330 | */ |
| 331 | if (!sup_np) |
| 332 | return 0; |
| 333 | |
| 334 | sup_dev = get_dev_from_fwnode(&sup_np->fwnode); |
| 335 | of_node_put(sup_np); |
| 336 | |
| 337 | /* |
| 338 | * Return -ENODEV if the PCI graphics controller device hasn't been |
| 339 | * registered yet. This ensures that efifb isn't allowed to probe |
| 340 | * and this function is retried again when new devices are |
| 341 | * registered. |
| 342 | */ |
| 343 | if (!sup_dev) |
| 344 | return -ENODEV; |
| 345 | |
| 346 | /* |
| 347 | * If this fails, retrying this function at a later point won't |
| 348 | * change anything. So, don't return an error after this. |
| 349 | */ |
| 350 | if (!device_link_add(dev, sup_dev, fw_devlink_get_flags())) |
| 351 | dev_warn(dev, "device_link_add() failed\n"); |
| 352 | |
| 353 | put_device(sup_dev); |
| 354 | |
| 355 | return 0; |
| 356 | } |
| 357 | |
| 358 | static const struct fwnode_operations efifb_fwnode_ops = { |
| 359 | .add_links = efifb_add_links, |
| 360 | }; |
| 361 | |
| 362 | static struct fwnode_handle efifb_fwnode = { |
| 363 | .ops = &efifb_fwnode_ops, |
| 364 | }; |
| 365 | |
| 366 | static int __init register_gop_device(void) |
| 367 | { |
| 368 | struct platform_device *pd; |
| 369 | int err; |
| 370 | |
| 371 | if (screen_info.orig_video_isVGA != VIDEO_TYPE_EFI) |
| 372 | return 0; |
| 373 | |
| 374 | pd = platform_device_alloc("efi-framebuffer", 0); |
| 375 | if (!pd) |
| 376 | return -ENOMEM; |
| 377 | |
| 378 | if (IS_ENABLED(CONFIG_PCI)) |
| 379 | pd->dev.fwnode = &efifb_fwnode; |
| 380 | |
| 381 | err = platform_device_add_data(pd, &screen_info, sizeof(screen_info)); |
| 382 | if (err) |
| 383 | return err; |
| 384 | |
| 385 | return platform_device_add(pd); |
| 386 | } |
| 387 | subsys_initcall(register_gop_device); |