Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Kernel-based Virtual Machine driver for Linux |
| 4 | * |
| 5 | * AMD SVM-SEV support |
| 6 | * |
| 7 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 8 | */ |
| 9 | |
| 10 | #include <linux/kvm_types.h> |
| 11 | #include <linux/kvm_host.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/highmem.h> |
| 14 | #include <linux/psp-sev.h> |
| 15 | #include <linux/pagemap.h> |
| 16 | #include <linux/swap.h> |
| 17 | |
| 18 | #include "x86.h" |
| 19 | #include "svm.h" |
| 20 | |
| 21 | static int sev_flush_asids(void); |
| 22 | static DECLARE_RWSEM(sev_deactivate_lock); |
| 23 | static DEFINE_MUTEX(sev_bitmap_lock); |
| 24 | unsigned int max_sev_asid; |
| 25 | static unsigned int min_sev_asid; |
| 26 | static unsigned long *sev_asid_bitmap; |
| 27 | static unsigned long *sev_reclaim_asid_bitmap; |
| 28 | #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) |
| 29 | |
| 30 | struct enc_region { |
| 31 | struct list_head list; |
| 32 | unsigned long npages; |
| 33 | struct page **pages; |
| 34 | unsigned long uaddr; |
| 35 | unsigned long size; |
| 36 | }; |
| 37 | |
| 38 | static int sev_flush_asids(void) |
| 39 | { |
| 40 | int ret, error = 0; |
| 41 | |
| 42 | /* |
| 43 | * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, |
| 44 | * so it must be guarded. |
| 45 | */ |
| 46 | down_write(&sev_deactivate_lock); |
| 47 | |
| 48 | wbinvd_on_all_cpus(); |
| 49 | ret = sev_guest_df_flush(&error); |
| 50 | |
| 51 | up_write(&sev_deactivate_lock); |
| 52 | |
| 53 | if (ret) |
| 54 | pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); |
| 55 | |
| 56 | return ret; |
| 57 | } |
| 58 | |
| 59 | /* Must be called with the sev_bitmap_lock held */ |
| 60 | static bool __sev_recycle_asids(void) |
| 61 | { |
| 62 | int pos; |
| 63 | |
| 64 | /* Check if there are any ASIDs to reclaim before performing a flush */ |
| 65 | pos = find_next_bit(sev_reclaim_asid_bitmap, |
| 66 | max_sev_asid, min_sev_asid - 1); |
| 67 | if (pos >= max_sev_asid) |
| 68 | return false; |
| 69 | |
| 70 | if (sev_flush_asids()) |
| 71 | return false; |
| 72 | |
| 73 | bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, |
| 74 | max_sev_asid); |
| 75 | bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); |
| 76 | |
| 77 | return true; |
| 78 | } |
| 79 | |
| 80 | static int sev_asid_new(void) |
| 81 | { |
| 82 | bool retry = true; |
| 83 | int pos; |
| 84 | |
| 85 | mutex_lock(&sev_bitmap_lock); |
| 86 | |
| 87 | /* |
| 88 | * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. |
| 89 | */ |
| 90 | again: |
| 91 | pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); |
| 92 | if (pos >= max_sev_asid) { |
| 93 | if (retry && __sev_recycle_asids()) { |
| 94 | retry = false; |
| 95 | goto again; |
| 96 | } |
| 97 | mutex_unlock(&sev_bitmap_lock); |
| 98 | return -EBUSY; |
| 99 | } |
| 100 | |
| 101 | __set_bit(pos, sev_asid_bitmap); |
| 102 | |
| 103 | mutex_unlock(&sev_bitmap_lock); |
| 104 | |
| 105 | return pos + 1; |
| 106 | } |
| 107 | |
| 108 | static int sev_get_asid(struct kvm *kvm) |
| 109 | { |
| 110 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 111 | |
| 112 | return sev->asid; |
| 113 | } |
| 114 | |
| 115 | static void sev_asid_free(int asid) |
| 116 | { |
| 117 | struct svm_cpu_data *sd; |
| 118 | int cpu, pos; |
| 119 | |
| 120 | mutex_lock(&sev_bitmap_lock); |
| 121 | |
| 122 | pos = asid - 1; |
| 123 | __set_bit(pos, sev_reclaim_asid_bitmap); |
| 124 | |
| 125 | for_each_possible_cpu(cpu) { |
| 126 | sd = per_cpu(svm_data, cpu); |
| 127 | sd->sev_vmcbs[asid] = NULL; |
| 128 | } |
| 129 | |
| 130 | mutex_unlock(&sev_bitmap_lock); |
| 131 | } |
| 132 | |
| 133 | static void sev_decommission(unsigned int handle) |
| 134 | { |
| 135 | struct sev_data_decommission *decommission; |
| 136 | |
| 137 | if (!handle) |
| 138 | return; |
| 139 | |
| 140 | decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); |
| 141 | if (!decommission) |
| 142 | return; |
| 143 | |
| 144 | decommission->handle = handle; |
| 145 | sev_guest_decommission(decommission, NULL); |
| 146 | |
| 147 | kfree(decommission); |
| 148 | } |
| 149 | |
| 150 | static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) |
| 151 | { |
| 152 | struct sev_data_deactivate *data; |
| 153 | |
| 154 | if (!handle) |
| 155 | return; |
| 156 | |
| 157 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 158 | if (!data) |
| 159 | return; |
| 160 | |
| 161 | /* deactivate handle */ |
| 162 | data->handle = handle; |
| 163 | |
| 164 | /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ |
| 165 | down_read(&sev_deactivate_lock); |
| 166 | sev_guest_deactivate(data, NULL); |
| 167 | up_read(&sev_deactivate_lock); |
| 168 | |
| 169 | kfree(data); |
| 170 | |
| 171 | sev_decommission(handle); |
| 172 | } |
| 173 | |
| 174 | static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 175 | { |
| 176 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 177 | int asid, ret; |
| 178 | |
| 179 | if (kvm->created_vcpus) |
| 180 | return -EINVAL; |
| 181 | |
| 182 | ret = -EBUSY; |
| 183 | if (unlikely(sev->active)) |
| 184 | return ret; |
| 185 | |
| 186 | asid = sev_asid_new(); |
| 187 | if (asid < 0) |
| 188 | return ret; |
| 189 | |
| 190 | ret = sev_platform_init(&argp->error); |
| 191 | if (ret) |
| 192 | goto e_free; |
| 193 | |
| 194 | sev->active = true; |
| 195 | sev->asid = asid; |
| 196 | INIT_LIST_HEAD(&sev->regions_list); |
| 197 | |
| 198 | return 0; |
| 199 | |
| 200 | e_free: |
| 201 | sev_asid_free(asid); |
| 202 | return ret; |
| 203 | } |
| 204 | |
| 205 | static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) |
| 206 | { |
| 207 | struct sev_data_activate *data; |
| 208 | int asid = sev_get_asid(kvm); |
| 209 | int ret; |
| 210 | |
| 211 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| 212 | if (!data) |
| 213 | return -ENOMEM; |
| 214 | |
| 215 | /* activate ASID on the given handle */ |
| 216 | data->handle = handle; |
| 217 | data->asid = asid; |
| 218 | ret = sev_guest_activate(data, error); |
| 219 | kfree(data); |
| 220 | |
| 221 | return ret; |
| 222 | } |
| 223 | |
| 224 | static int __sev_issue_cmd(int fd, int id, void *data, int *error) |
| 225 | { |
| 226 | struct fd f; |
| 227 | int ret; |
| 228 | |
| 229 | f = fdget(fd); |
| 230 | if (!f.file) |
| 231 | return -EBADF; |
| 232 | |
| 233 | ret = sev_issue_cmd_external_user(f.file, id, data, error); |
| 234 | |
| 235 | fdput(f); |
| 236 | return ret; |
| 237 | } |
| 238 | |
| 239 | static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) |
| 240 | { |
| 241 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 242 | |
| 243 | return __sev_issue_cmd(sev->fd, id, data, error); |
| 244 | } |
| 245 | |
| 246 | static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 247 | { |
| 248 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 249 | struct sev_data_launch_start *start; |
| 250 | struct kvm_sev_launch_start params; |
| 251 | void *dh_blob, *session_blob; |
| 252 | int *error = &argp->error; |
| 253 | int ret; |
| 254 | |
| 255 | if (!sev_guest(kvm)) |
| 256 | return -ENOTTY; |
| 257 | |
| 258 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| 259 | return -EFAULT; |
| 260 | |
| 261 | start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); |
| 262 | if (!start) |
| 263 | return -ENOMEM; |
| 264 | |
| 265 | dh_blob = NULL; |
| 266 | if (params.dh_uaddr) { |
| 267 | dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); |
| 268 | if (IS_ERR(dh_blob)) { |
| 269 | ret = PTR_ERR(dh_blob); |
| 270 | goto e_free; |
| 271 | } |
| 272 | |
| 273 | start->dh_cert_address = __sme_set(__pa(dh_blob)); |
| 274 | start->dh_cert_len = params.dh_len; |
| 275 | } |
| 276 | |
| 277 | session_blob = NULL; |
| 278 | if (params.session_uaddr) { |
| 279 | session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); |
| 280 | if (IS_ERR(session_blob)) { |
| 281 | ret = PTR_ERR(session_blob); |
| 282 | goto e_free_dh; |
| 283 | } |
| 284 | |
| 285 | start->session_address = __sme_set(__pa(session_blob)); |
| 286 | start->session_len = params.session_len; |
| 287 | } |
| 288 | |
| 289 | start->handle = params.handle; |
| 290 | start->policy = params.policy; |
| 291 | |
| 292 | /* create memory encryption context */ |
| 293 | ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); |
| 294 | if (ret) |
| 295 | goto e_free_session; |
| 296 | |
| 297 | /* Bind ASID to this guest */ |
| 298 | ret = sev_bind_asid(kvm, start->handle, error); |
| 299 | if (ret) { |
| 300 | sev_decommission(start->handle); |
| 301 | goto e_free_session; |
| 302 | } |
| 303 | |
| 304 | /* return handle to userspace */ |
| 305 | params.handle = start->handle; |
| 306 | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { |
| 307 | sev_unbind_asid(kvm, start->handle); |
| 308 | ret = -EFAULT; |
| 309 | goto e_free_session; |
| 310 | } |
| 311 | |
| 312 | sev->handle = start->handle; |
| 313 | sev->fd = argp->sev_fd; |
| 314 | |
| 315 | e_free_session: |
| 316 | kfree(session_blob); |
| 317 | e_free_dh: |
| 318 | kfree(dh_blob); |
| 319 | e_free: |
| 320 | kfree(start); |
| 321 | return ret; |
| 322 | } |
| 323 | |
| 324 | static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, |
| 325 | unsigned long ulen, unsigned long *n, |
| 326 | int write) |
| 327 | { |
| 328 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 329 | unsigned long npages, size; |
| 330 | int npinned; |
| 331 | unsigned long locked, lock_limit; |
| 332 | struct page **pages; |
| 333 | unsigned long first, last; |
| 334 | int ret; |
| 335 | |
| 336 | lockdep_assert_held(&kvm->lock); |
| 337 | |
| 338 | if (ulen == 0 || uaddr + ulen < uaddr) |
| 339 | return ERR_PTR(-EINVAL); |
| 340 | |
| 341 | /* Calculate number of pages. */ |
| 342 | first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; |
| 343 | last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; |
| 344 | npages = (last - first + 1); |
| 345 | |
| 346 | locked = sev->pages_locked + npages; |
| 347 | lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; |
| 348 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { |
| 349 | pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); |
| 350 | return ERR_PTR(-ENOMEM); |
| 351 | } |
| 352 | |
| 353 | if (WARN_ON_ONCE(npages > INT_MAX)) |
| 354 | return ERR_PTR(-EINVAL); |
| 355 | |
| 356 | /* Avoid using vmalloc for smaller buffers. */ |
| 357 | size = npages * sizeof(struct page *); |
| 358 | if (size > PAGE_SIZE) |
| 359 | pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| 360 | else |
| 361 | pages = kmalloc(size, GFP_KERNEL_ACCOUNT); |
| 362 | |
| 363 | if (!pages) |
| 364 | return ERR_PTR(-ENOMEM); |
| 365 | |
| 366 | /* Pin the user virtual address. */ |
| 367 | npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); |
| 368 | if (npinned != npages) { |
| 369 | pr_err("SEV: Failure locking %lu pages.\n", npages); |
| 370 | ret = -ENOMEM; |
| 371 | goto err; |
| 372 | } |
| 373 | |
| 374 | *n = npages; |
| 375 | sev->pages_locked = locked; |
| 376 | |
| 377 | return pages; |
| 378 | |
| 379 | err: |
| 380 | if (npinned > 0) |
| 381 | unpin_user_pages(pages, npinned); |
| 382 | |
| 383 | kvfree(pages); |
| 384 | return ERR_PTR(ret); |
| 385 | } |
| 386 | |
| 387 | static void sev_unpin_memory(struct kvm *kvm, struct page **pages, |
| 388 | unsigned long npages) |
| 389 | { |
| 390 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 391 | |
| 392 | unpin_user_pages(pages, npages); |
| 393 | kvfree(pages); |
| 394 | sev->pages_locked -= npages; |
| 395 | } |
| 396 | |
| 397 | static void sev_clflush_pages(struct page *pages[], unsigned long npages) |
| 398 | { |
| 399 | uint8_t *page_virtual; |
| 400 | unsigned long i; |
| 401 | |
| 402 | if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || |
| 403 | pages == NULL) |
| 404 | return; |
| 405 | |
| 406 | for (i = 0; i < npages; i++) { |
| 407 | page_virtual = kmap_atomic(pages[i]); |
| 408 | clflush_cache_range(page_virtual, PAGE_SIZE); |
| 409 | kunmap_atomic(page_virtual); |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | static unsigned long get_num_contig_pages(unsigned long idx, |
| 414 | struct page **inpages, unsigned long npages) |
| 415 | { |
| 416 | unsigned long paddr, next_paddr; |
| 417 | unsigned long i = idx + 1, pages = 1; |
| 418 | |
| 419 | /* find the number of contiguous pages starting from idx */ |
| 420 | paddr = __sme_page_pa(inpages[idx]); |
| 421 | while (i < npages) { |
| 422 | next_paddr = __sme_page_pa(inpages[i++]); |
| 423 | if ((paddr + PAGE_SIZE) == next_paddr) { |
| 424 | pages++; |
| 425 | paddr = next_paddr; |
| 426 | continue; |
| 427 | } |
| 428 | break; |
| 429 | } |
| 430 | |
| 431 | return pages; |
| 432 | } |
| 433 | |
| 434 | static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 435 | { |
| 436 | unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; |
| 437 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 438 | struct kvm_sev_launch_update_data params; |
| 439 | struct sev_data_launch_update_data *data; |
| 440 | struct page **inpages; |
| 441 | int ret; |
| 442 | |
| 443 | if (!sev_guest(kvm)) |
| 444 | return -ENOTTY; |
| 445 | |
| 446 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| 447 | return -EFAULT; |
| 448 | |
| 449 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| 450 | if (!data) |
| 451 | return -ENOMEM; |
| 452 | |
| 453 | vaddr = params.uaddr; |
| 454 | size = params.len; |
| 455 | vaddr_end = vaddr + size; |
| 456 | |
| 457 | /* Lock the user memory. */ |
| 458 | inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); |
| 459 | if (IS_ERR(inpages)) { |
| 460 | ret = PTR_ERR(inpages); |
| 461 | goto e_free; |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in |
| 466 | * place; the cache may contain the data that was written unencrypted. |
| 467 | */ |
| 468 | sev_clflush_pages(inpages, npages); |
| 469 | |
| 470 | for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { |
| 471 | int offset, len; |
| 472 | |
| 473 | /* |
| 474 | * If the user buffer is not page-aligned, calculate the offset |
| 475 | * within the page. |
| 476 | */ |
| 477 | offset = vaddr & (PAGE_SIZE - 1); |
| 478 | |
| 479 | /* Calculate the number of pages that can be encrypted in one go. */ |
| 480 | pages = get_num_contig_pages(i, inpages, npages); |
| 481 | |
| 482 | len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); |
| 483 | |
| 484 | data->handle = sev->handle; |
| 485 | data->len = len; |
| 486 | data->address = __sme_page_pa(inpages[i]) + offset; |
| 487 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); |
| 488 | if (ret) |
| 489 | goto e_unpin; |
| 490 | |
| 491 | size -= len; |
| 492 | next_vaddr = vaddr + len; |
| 493 | } |
| 494 | |
| 495 | e_unpin: |
| 496 | /* content of memory is updated, mark pages dirty */ |
| 497 | for (i = 0; i < npages; i++) { |
| 498 | set_page_dirty_lock(inpages[i]); |
| 499 | mark_page_accessed(inpages[i]); |
| 500 | } |
| 501 | /* unlock the user pages */ |
| 502 | sev_unpin_memory(kvm, inpages, npages); |
| 503 | e_free: |
| 504 | kfree(data); |
| 505 | return ret; |
| 506 | } |
| 507 | |
| 508 | static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 509 | { |
| 510 | void __user *measure = (void __user *)(uintptr_t)argp->data; |
| 511 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 512 | struct sev_data_launch_measure *data; |
| 513 | struct kvm_sev_launch_measure params; |
| 514 | void __user *p = NULL; |
| 515 | void *blob = NULL; |
| 516 | int ret; |
| 517 | |
| 518 | if (!sev_guest(kvm)) |
| 519 | return -ENOTTY; |
| 520 | |
| 521 | if (copy_from_user(¶ms, measure, sizeof(params))) |
| 522 | return -EFAULT; |
| 523 | |
| 524 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| 525 | if (!data) |
| 526 | return -ENOMEM; |
| 527 | |
| 528 | /* User wants to query the blob length */ |
| 529 | if (!params.len) |
| 530 | goto cmd; |
| 531 | |
| 532 | p = (void __user *)(uintptr_t)params.uaddr; |
| 533 | if (p) { |
| 534 | if (params.len > SEV_FW_BLOB_MAX_SIZE) { |
| 535 | ret = -EINVAL; |
| 536 | goto e_free; |
| 537 | } |
| 538 | |
| 539 | ret = -ENOMEM; |
| 540 | blob = kmalloc(params.len, GFP_KERNEL); |
| 541 | if (!blob) |
| 542 | goto e_free; |
| 543 | |
| 544 | data->address = __psp_pa(blob); |
| 545 | data->len = params.len; |
| 546 | } |
| 547 | |
| 548 | cmd: |
| 549 | data->handle = sev->handle; |
| 550 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); |
| 551 | |
| 552 | /* |
| 553 | * If we query the session length, FW responded with expected data. |
| 554 | */ |
| 555 | if (!params.len) |
| 556 | goto done; |
| 557 | |
| 558 | if (ret) |
| 559 | goto e_free_blob; |
| 560 | |
| 561 | if (blob) { |
| 562 | if (copy_to_user(p, blob, params.len)) |
| 563 | ret = -EFAULT; |
| 564 | } |
| 565 | |
| 566 | done: |
| 567 | params.len = data->len; |
| 568 | if (copy_to_user(measure, ¶ms, sizeof(params))) |
| 569 | ret = -EFAULT; |
| 570 | e_free_blob: |
| 571 | kfree(blob); |
| 572 | e_free: |
| 573 | kfree(data); |
| 574 | return ret; |
| 575 | } |
| 576 | |
| 577 | static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 578 | { |
| 579 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 580 | struct sev_data_launch_finish *data; |
| 581 | int ret; |
| 582 | |
| 583 | if (!sev_guest(kvm)) |
| 584 | return -ENOTTY; |
| 585 | |
| 586 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| 587 | if (!data) |
| 588 | return -ENOMEM; |
| 589 | |
| 590 | data->handle = sev->handle; |
| 591 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); |
| 592 | |
| 593 | kfree(data); |
| 594 | return ret; |
| 595 | } |
| 596 | |
| 597 | static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 598 | { |
| 599 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 600 | struct kvm_sev_guest_status params; |
| 601 | struct sev_data_guest_status *data; |
| 602 | int ret; |
| 603 | |
| 604 | if (!sev_guest(kvm)) |
| 605 | return -ENOTTY; |
| 606 | |
| 607 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| 608 | if (!data) |
| 609 | return -ENOMEM; |
| 610 | |
| 611 | data->handle = sev->handle; |
| 612 | ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); |
| 613 | if (ret) |
| 614 | goto e_free; |
| 615 | |
| 616 | params.policy = data->policy; |
| 617 | params.state = data->state; |
| 618 | params.handle = data->handle; |
| 619 | |
| 620 | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) |
| 621 | ret = -EFAULT; |
| 622 | e_free: |
| 623 | kfree(data); |
| 624 | return ret; |
| 625 | } |
| 626 | |
| 627 | static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, |
| 628 | unsigned long dst, int size, |
| 629 | int *error, bool enc) |
| 630 | { |
| 631 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 632 | struct sev_data_dbg *data; |
| 633 | int ret; |
| 634 | |
| 635 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| 636 | if (!data) |
| 637 | return -ENOMEM; |
| 638 | |
| 639 | data->handle = sev->handle; |
| 640 | data->dst_addr = dst; |
| 641 | data->src_addr = src; |
| 642 | data->len = size; |
| 643 | |
| 644 | ret = sev_issue_cmd(kvm, |
| 645 | enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, |
| 646 | data, error); |
| 647 | kfree(data); |
| 648 | return ret; |
| 649 | } |
| 650 | |
| 651 | static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, |
| 652 | unsigned long dst_paddr, int sz, int *err) |
| 653 | { |
| 654 | int offset; |
| 655 | |
| 656 | /* |
| 657 | * Its safe to read more than we are asked, caller should ensure that |
| 658 | * destination has enough space. |
| 659 | */ |
| 660 | offset = src_paddr & 15; |
| 661 | src_paddr = round_down(src_paddr, 16); |
| 662 | sz = round_up(sz + offset, 16); |
| 663 | |
| 664 | return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); |
| 665 | } |
| 666 | |
| 667 | static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, |
| 668 | unsigned long __user dst_uaddr, |
| 669 | unsigned long dst_paddr, |
| 670 | int size, int *err) |
| 671 | { |
| 672 | struct page *tpage = NULL; |
| 673 | int ret, offset; |
| 674 | |
| 675 | /* if inputs are not 16-byte then use intermediate buffer */ |
| 676 | if (!IS_ALIGNED(dst_paddr, 16) || |
| 677 | !IS_ALIGNED(paddr, 16) || |
| 678 | !IS_ALIGNED(size, 16)) { |
| 679 | tpage = (void *)alloc_page(GFP_KERNEL); |
| 680 | if (!tpage) |
| 681 | return -ENOMEM; |
| 682 | |
| 683 | dst_paddr = __sme_page_pa(tpage); |
| 684 | } |
| 685 | |
| 686 | ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); |
| 687 | if (ret) |
| 688 | goto e_free; |
| 689 | |
| 690 | if (tpage) { |
| 691 | offset = paddr & 15; |
| 692 | if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, |
| 693 | page_address(tpage) + offset, size)) |
| 694 | ret = -EFAULT; |
| 695 | } |
| 696 | |
| 697 | e_free: |
| 698 | if (tpage) |
| 699 | __free_page(tpage); |
| 700 | |
| 701 | return ret; |
| 702 | } |
| 703 | |
| 704 | static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, |
| 705 | unsigned long __user vaddr, |
| 706 | unsigned long dst_paddr, |
| 707 | unsigned long __user dst_vaddr, |
| 708 | int size, int *error) |
| 709 | { |
| 710 | struct page *src_tpage = NULL; |
| 711 | struct page *dst_tpage = NULL; |
| 712 | int ret, len = size; |
| 713 | |
| 714 | /* If source buffer is not aligned then use an intermediate buffer */ |
| 715 | if (!IS_ALIGNED(vaddr, 16)) { |
| 716 | src_tpage = alloc_page(GFP_KERNEL); |
| 717 | if (!src_tpage) |
| 718 | return -ENOMEM; |
| 719 | |
| 720 | if (copy_from_user(page_address(src_tpage), |
| 721 | (void __user *)(uintptr_t)vaddr, size)) { |
| 722 | __free_page(src_tpage); |
| 723 | return -EFAULT; |
| 724 | } |
| 725 | |
| 726 | paddr = __sme_page_pa(src_tpage); |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * If destination buffer or length is not aligned then do read-modify-write: |
| 731 | * - decrypt destination in an intermediate buffer |
| 732 | * - copy the source buffer in an intermediate buffer |
| 733 | * - use the intermediate buffer as source buffer |
| 734 | */ |
| 735 | if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { |
| 736 | int dst_offset; |
| 737 | |
| 738 | dst_tpage = alloc_page(GFP_KERNEL); |
| 739 | if (!dst_tpage) { |
| 740 | ret = -ENOMEM; |
| 741 | goto e_free; |
| 742 | } |
| 743 | |
| 744 | ret = __sev_dbg_decrypt(kvm, dst_paddr, |
| 745 | __sme_page_pa(dst_tpage), size, error); |
| 746 | if (ret) |
| 747 | goto e_free; |
| 748 | |
| 749 | /* |
| 750 | * If source is kernel buffer then use memcpy() otherwise |
| 751 | * copy_from_user(). |
| 752 | */ |
| 753 | dst_offset = dst_paddr & 15; |
| 754 | |
| 755 | if (src_tpage) |
| 756 | memcpy(page_address(dst_tpage) + dst_offset, |
| 757 | page_address(src_tpage), size); |
| 758 | else { |
| 759 | if (copy_from_user(page_address(dst_tpage) + dst_offset, |
| 760 | (void __user *)(uintptr_t)vaddr, size)) { |
| 761 | ret = -EFAULT; |
| 762 | goto e_free; |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | paddr = __sme_page_pa(dst_tpage); |
| 767 | dst_paddr = round_down(dst_paddr, 16); |
| 768 | len = round_up(size, 16); |
| 769 | } |
| 770 | |
| 771 | ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); |
| 772 | |
| 773 | e_free: |
| 774 | if (src_tpage) |
| 775 | __free_page(src_tpage); |
| 776 | if (dst_tpage) |
| 777 | __free_page(dst_tpage); |
| 778 | return ret; |
| 779 | } |
| 780 | |
| 781 | static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) |
| 782 | { |
| 783 | unsigned long vaddr, vaddr_end, next_vaddr; |
| 784 | unsigned long dst_vaddr; |
| 785 | struct page **src_p, **dst_p; |
| 786 | struct kvm_sev_dbg debug; |
| 787 | unsigned long n; |
| 788 | unsigned int size; |
| 789 | int ret; |
| 790 | |
| 791 | if (!sev_guest(kvm)) |
| 792 | return -ENOTTY; |
| 793 | |
| 794 | if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) |
| 795 | return -EFAULT; |
| 796 | |
| 797 | if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) |
| 798 | return -EINVAL; |
| 799 | if (!debug.dst_uaddr) |
| 800 | return -EINVAL; |
| 801 | |
| 802 | vaddr = debug.src_uaddr; |
| 803 | size = debug.len; |
| 804 | vaddr_end = vaddr + size; |
| 805 | dst_vaddr = debug.dst_uaddr; |
| 806 | |
| 807 | for (; vaddr < vaddr_end; vaddr = next_vaddr) { |
| 808 | int len, s_off, d_off; |
| 809 | |
| 810 | /* lock userspace source and destination page */ |
| 811 | src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); |
| 812 | if (IS_ERR(src_p)) |
| 813 | return PTR_ERR(src_p); |
| 814 | |
| 815 | dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); |
| 816 | if (IS_ERR(dst_p)) { |
| 817 | sev_unpin_memory(kvm, src_p, n); |
| 818 | return PTR_ERR(dst_p); |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify |
| 823 | * the pages; flush the destination too so that future accesses do not |
| 824 | * see stale data. |
| 825 | */ |
| 826 | sev_clflush_pages(src_p, 1); |
| 827 | sev_clflush_pages(dst_p, 1); |
| 828 | |
| 829 | /* |
| 830 | * Since user buffer may not be page aligned, calculate the |
| 831 | * offset within the page. |
| 832 | */ |
| 833 | s_off = vaddr & ~PAGE_MASK; |
| 834 | d_off = dst_vaddr & ~PAGE_MASK; |
| 835 | len = min_t(size_t, (PAGE_SIZE - s_off), size); |
| 836 | |
| 837 | if (dec) |
| 838 | ret = __sev_dbg_decrypt_user(kvm, |
| 839 | __sme_page_pa(src_p[0]) + s_off, |
| 840 | dst_vaddr, |
| 841 | __sme_page_pa(dst_p[0]) + d_off, |
| 842 | len, &argp->error); |
| 843 | else |
| 844 | ret = __sev_dbg_encrypt_user(kvm, |
| 845 | __sme_page_pa(src_p[0]) + s_off, |
| 846 | vaddr, |
| 847 | __sme_page_pa(dst_p[0]) + d_off, |
| 848 | dst_vaddr, |
| 849 | len, &argp->error); |
| 850 | |
| 851 | sev_unpin_memory(kvm, src_p, n); |
| 852 | sev_unpin_memory(kvm, dst_p, n); |
| 853 | |
| 854 | if (ret) |
| 855 | goto err; |
| 856 | |
| 857 | next_vaddr = vaddr + len; |
| 858 | dst_vaddr = dst_vaddr + len; |
| 859 | size -= len; |
| 860 | } |
| 861 | err: |
| 862 | return ret; |
| 863 | } |
| 864 | |
| 865 | static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 866 | { |
| 867 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 868 | struct sev_data_launch_secret *data; |
| 869 | struct kvm_sev_launch_secret params; |
| 870 | struct page **pages; |
| 871 | void *blob, *hdr; |
| 872 | unsigned long n, i; |
| 873 | int ret, offset; |
| 874 | |
| 875 | if (!sev_guest(kvm)) |
| 876 | return -ENOTTY; |
| 877 | |
| 878 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| 879 | return -EFAULT; |
| 880 | |
| 881 | pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); |
| 882 | if (IS_ERR(pages)) |
| 883 | return PTR_ERR(pages); |
| 884 | |
| 885 | /* |
| 886 | * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in |
| 887 | * place; the cache may contain the data that was written unencrypted. |
| 888 | */ |
| 889 | sev_clflush_pages(pages, n); |
| 890 | |
| 891 | /* |
| 892 | * The secret must be copied into contiguous memory region, lets verify |
| 893 | * that userspace memory pages are contiguous before we issue command. |
| 894 | */ |
| 895 | if (get_num_contig_pages(0, pages, n) != n) { |
| 896 | ret = -EINVAL; |
| 897 | goto e_unpin_memory; |
| 898 | } |
| 899 | |
| 900 | ret = -ENOMEM; |
| 901 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| 902 | if (!data) |
| 903 | goto e_unpin_memory; |
| 904 | |
| 905 | offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| 906 | data->guest_address = __sme_page_pa(pages[0]) + offset; |
| 907 | data->guest_len = params.guest_len; |
| 908 | |
| 909 | blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); |
| 910 | if (IS_ERR(blob)) { |
| 911 | ret = PTR_ERR(blob); |
| 912 | goto e_free; |
| 913 | } |
| 914 | |
| 915 | data->trans_address = __psp_pa(blob); |
| 916 | data->trans_len = params.trans_len; |
| 917 | |
| 918 | hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); |
| 919 | if (IS_ERR(hdr)) { |
| 920 | ret = PTR_ERR(hdr); |
| 921 | goto e_free_blob; |
| 922 | } |
| 923 | data->hdr_address = __psp_pa(hdr); |
| 924 | data->hdr_len = params.hdr_len; |
| 925 | |
| 926 | data->handle = sev->handle; |
| 927 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); |
| 928 | |
| 929 | kfree(hdr); |
| 930 | |
| 931 | e_free_blob: |
| 932 | kfree(blob); |
| 933 | e_free: |
| 934 | kfree(data); |
| 935 | e_unpin_memory: |
| 936 | /* content of memory is updated, mark pages dirty */ |
| 937 | for (i = 0; i < n; i++) { |
| 938 | set_page_dirty_lock(pages[i]); |
| 939 | mark_page_accessed(pages[i]); |
| 940 | } |
| 941 | sev_unpin_memory(kvm, pages, n); |
| 942 | return ret; |
| 943 | } |
| 944 | |
| 945 | int svm_mem_enc_op(struct kvm *kvm, void __user *argp) |
| 946 | { |
| 947 | struct kvm_sev_cmd sev_cmd; |
| 948 | int r; |
| 949 | |
| 950 | if (!svm_sev_enabled()) |
| 951 | return -ENOTTY; |
| 952 | |
| 953 | if (!argp) |
| 954 | return 0; |
| 955 | |
| 956 | if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) |
| 957 | return -EFAULT; |
| 958 | |
| 959 | mutex_lock(&kvm->lock); |
| 960 | |
| 961 | switch (sev_cmd.id) { |
| 962 | case KVM_SEV_INIT: |
| 963 | r = sev_guest_init(kvm, &sev_cmd); |
| 964 | break; |
| 965 | case KVM_SEV_LAUNCH_START: |
| 966 | r = sev_launch_start(kvm, &sev_cmd); |
| 967 | break; |
| 968 | case KVM_SEV_LAUNCH_UPDATE_DATA: |
| 969 | r = sev_launch_update_data(kvm, &sev_cmd); |
| 970 | break; |
| 971 | case KVM_SEV_LAUNCH_MEASURE: |
| 972 | r = sev_launch_measure(kvm, &sev_cmd); |
| 973 | break; |
| 974 | case KVM_SEV_LAUNCH_FINISH: |
| 975 | r = sev_launch_finish(kvm, &sev_cmd); |
| 976 | break; |
| 977 | case KVM_SEV_GUEST_STATUS: |
| 978 | r = sev_guest_status(kvm, &sev_cmd); |
| 979 | break; |
| 980 | case KVM_SEV_DBG_DECRYPT: |
| 981 | r = sev_dbg_crypt(kvm, &sev_cmd, true); |
| 982 | break; |
| 983 | case KVM_SEV_DBG_ENCRYPT: |
| 984 | r = sev_dbg_crypt(kvm, &sev_cmd, false); |
| 985 | break; |
| 986 | case KVM_SEV_LAUNCH_SECRET: |
| 987 | r = sev_launch_secret(kvm, &sev_cmd); |
| 988 | break; |
| 989 | default: |
| 990 | r = -EINVAL; |
| 991 | goto out; |
| 992 | } |
| 993 | |
| 994 | if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) |
| 995 | r = -EFAULT; |
| 996 | |
| 997 | out: |
| 998 | mutex_unlock(&kvm->lock); |
| 999 | return r; |
| 1000 | } |
| 1001 | |
| 1002 | int svm_register_enc_region(struct kvm *kvm, |
| 1003 | struct kvm_enc_region *range) |
| 1004 | { |
| 1005 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 1006 | struct enc_region *region; |
| 1007 | int ret = 0; |
| 1008 | |
| 1009 | if (!sev_guest(kvm)) |
| 1010 | return -ENOTTY; |
| 1011 | |
| 1012 | if (range->addr > ULONG_MAX || range->size > ULONG_MAX) |
| 1013 | return -EINVAL; |
| 1014 | |
| 1015 | region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); |
| 1016 | if (!region) |
| 1017 | return -ENOMEM; |
| 1018 | |
| 1019 | mutex_lock(&kvm->lock); |
| 1020 | region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); |
| 1021 | if (IS_ERR(region->pages)) { |
| 1022 | ret = PTR_ERR(region->pages); |
| 1023 | mutex_unlock(&kvm->lock); |
| 1024 | goto e_free; |
| 1025 | } |
| 1026 | |
| 1027 | region->uaddr = range->addr; |
| 1028 | region->size = range->size; |
| 1029 | |
| 1030 | list_add_tail(®ion->list, &sev->regions_list); |
| 1031 | mutex_unlock(&kvm->lock); |
| 1032 | |
| 1033 | /* |
| 1034 | * The guest may change the memory encryption attribute from C=0 -> C=1 |
| 1035 | * or vice versa for this memory range. Lets make sure caches are |
| 1036 | * flushed to ensure that guest data gets written into memory with |
| 1037 | * correct C-bit. |
| 1038 | */ |
| 1039 | sev_clflush_pages(region->pages, region->npages); |
| 1040 | |
| 1041 | return ret; |
| 1042 | |
| 1043 | e_free: |
| 1044 | kfree(region); |
| 1045 | return ret; |
| 1046 | } |
| 1047 | |
| 1048 | static struct enc_region * |
| 1049 | find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) |
| 1050 | { |
| 1051 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 1052 | struct list_head *head = &sev->regions_list; |
| 1053 | struct enc_region *i; |
| 1054 | |
| 1055 | list_for_each_entry(i, head, list) { |
| 1056 | if (i->uaddr == range->addr && |
| 1057 | i->size == range->size) |
| 1058 | return i; |
| 1059 | } |
| 1060 | |
| 1061 | return NULL; |
| 1062 | } |
| 1063 | |
| 1064 | static void __unregister_enc_region_locked(struct kvm *kvm, |
| 1065 | struct enc_region *region) |
| 1066 | { |
| 1067 | sev_unpin_memory(kvm, region->pages, region->npages); |
| 1068 | list_del(®ion->list); |
| 1069 | kfree(region); |
| 1070 | } |
| 1071 | |
| 1072 | int svm_unregister_enc_region(struct kvm *kvm, |
| 1073 | struct kvm_enc_region *range) |
| 1074 | { |
| 1075 | struct enc_region *region; |
| 1076 | int ret; |
| 1077 | |
| 1078 | mutex_lock(&kvm->lock); |
| 1079 | |
| 1080 | if (!sev_guest(kvm)) { |
| 1081 | ret = -ENOTTY; |
| 1082 | goto failed; |
| 1083 | } |
| 1084 | |
| 1085 | region = find_enc_region(kvm, range); |
| 1086 | if (!region) { |
| 1087 | ret = -EINVAL; |
| 1088 | goto failed; |
| 1089 | } |
| 1090 | |
| 1091 | /* |
| 1092 | * Ensure that all guest tagged cache entries are flushed before |
| 1093 | * releasing the pages back to the system for use. CLFLUSH will |
| 1094 | * not do this, so issue a WBINVD. |
| 1095 | */ |
| 1096 | wbinvd_on_all_cpus(); |
| 1097 | |
| 1098 | __unregister_enc_region_locked(kvm, region); |
| 1099 | |
| 1100 | mutex_unlock(&kvm->lock); |
| 1101 | return 0; |
| 1102 | |
| 1103 | failed: |
| 1104 | mutex_unlock(&kvm->lock); |
| 1105 | return ret; |
| 1106 | } |
| 1107 | |
| 1108 | void sev_vm_destroy(struct kvm *kvm) |
| 1109 | { |
| 1110 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 1111 | struct list_head *head = &sev->regions_list; |
| 1112 | struct list_head *pos, *q; |
| 1113 | |
| 1114 | if (!sev_guest(kvm)) |
| 1115 | return; |
| 1116 | |
| 1117 | mutex_lock(&kvm->lock); |
| 1118 | |
| 1119 | /* |
| 1120 | * Ensure that all guest tagged cache entries are flushed before |
| 1121 | * releasing the pages back to the system for use. CLFLUSH will |
| 1122 | * not do this, so issue a WBINVD. |
| 1123 | */ |
| 1124 | wbinvd_on_all_cpus(); |
| 1125 | |
| 1126 | /* |
| 1127 | * if userspace was terminated before unregistering the memory regions |
| 1128 | * then lets unpin all the registered memory. |
| 1129 | */ |
| 1130 | if (!list_empty(head)) { |
| 1131 | list_for_each_safe(pos, q, head) { |
| 1132 | __unregister_enc_region_locked(kvm, |
| 1133 | list_entry(pos, struct enc_region, list)); |
| 1134 | cond_resched(); |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | mutex_unlock(&kvm->lock); |
| 1139 | |
| 1140 | sev_unbind_asid(kvm, sev->handle); |
| 1141 | sev_asid_free(sev->asid); |
| 1142 | } |
| 1143 | |
| 1144 | int __init sev_hardware_setup(void) |
| 1145 | { |
| 1146 | /* Maximum number of encrypted guests supported simultaneously */ |
| 1147 | max_sev_asid = cpuid_ecx(0x8000001F); |
| 1148 | |
| 1149 | if (!svm_sev_enabled()) |
| 1150 | return 1; |
| 1151 | |
| 1152 | /* Minimum ASID value that should be used for SEV guest */ |
| 1153 | min_sev_asid = cpuid_edx(0x8000001F); |
| 1154 | |
| 1155 | /* Initialize SEV ASID bitmaps */ |
| 1156 | sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
| 1157 | if (!sev_asid_bitmap) |
| 1158 | return 1; |
| 1159 | |
| 1160 | sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
| 1161 | if (!sev_reclaim_asid_bitmap) |
| 1162 | return 1; |
| 1163 | |
| 1164 | pr_info("SEV supported\n"); |
| 1165 | |
| 1166 | return 0; |
| 1167 | } |
| 1168 | |
| 1169 | void sev_hardware_teardown(void) |
| 1170 | { |
| 1171 | if (!svm_sev_enabled()) |
| 1172 | return; |
| 1173 | |
| 1174 | bitmap_free(sev_asid_bitmap); |
| 1175 | bitmap_free(sev_reclaim_asid_bitmap); |
| 1176 | |
| 1177 | sev_flush_asids(); |
| 1178 | } |
| 1179 | |
| 1180 | void pre_sev_run(struct vcpu_svm *svm, int cpu) |
| 1181 | { |
| 1182 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| 1183 | int asid = sev_get_asid(svm->vcpu.kvm); |
| 1184 | |
| 1185 | /* Assign the asid allocated with this SEV guest */ |
| 1186 | svm->vmcb->control.asid = asid; |
| 1187 | |
| 1188 | /* |
| 1189 | * Flush guest TLB: |
| 1190 | * |
| 1191 | * 1) when different VMCB for the same ASID is to be run on the same host CPU. |
| 1192 | * 2) or this VMCB was executed on different host CPU in previous VMRUNs. |
| 1193 | */ |
| 1194 | if (sd->sev_vmcbs[asid] == svm->vmcb && |
| 1195 | svm->vcpu.arch.last_vmentry_cpu == cpu) |
| 1196 | return; |
| 1197 | |
| 1198 | sd->sev_vmcbs[asid] = svm->vmcb; |
| 1199 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| 1200 | vmcb_mark_dirty(svm->vmcb, VMCB_ASID); |
| 1201 | } |