Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * KVM/MIPS: Instruction/Exception emulation |
| 7 | * |
| 8 | * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| 9 | * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/errno.h> |
| 13 | #include <linux/err.h> |
| 14 | #include <linux/ktime.h> |
| 15 | #include <linux/kvm_host.h> |
| 16 | #include <linux/vmalloc.h> |
| 17 | #include <linux/fs.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 18 | #include <linux/memblock.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 19 | #include <linux/random.h> |
| 20 | #include <asm/page.h> |
| 21 | #include <asm/cacheflush.h> |
| 22 | #include <asm/cacheops.h> |
| 23 | #include <asm/cpu-info.h> |
| 24 | #include <asm/mmu_context.h> |
| 25 | #include <asm/tlbflush.h> |
| 26 | #include <asm/inst.h> |
| 27 | |
| 28 | #undef CONFIG_MIPS_MT |
| 29 | #include <asm/r4kcache.h> |
| 30 | #define CONFIG_MIPS_MT |
| 31 | |
| 32 | #include "interrupt.h" |
| 33 | #include "commpage.h" |
| 34 | |
| 35 | #include "trace.h" |
| 36 | |
| 37 | /* |
| 38 | * Compute the return address and do emulate branch simulation, if required. |
| 39 | * This function should be called only in branch delay slot active. |
| 40 | */ |
| 41 | static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc, |
| 42 | unsigned long *out) |
| 43 | { |
| 44 | unsigned int dspcontrol; |
| 45 | union mips_instruction insn; |
| 46 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 47 | long epc = instpc; |
| 48 | long nextpc; |
| 49 | int err; |
| 50 | |
| 51 | if (epc & 3) { |
| 52 | kvm_err("%s: unaligned epc\n", __func__); |
| 53 | return -EINVAL; |
| 54 | } |
| 55 | |
| 56 | /* Read the instruction */ |
| 57 | err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word); |
| 58 | if (err) |
| 59 | return err; |
| 60 | |
| 61 | switch (insn.i_format.opcode) { |
| 62 | /* jr and jalr are in r_format format. */ |
| 63 | case spec_op: |
| 64 | switch (insn.r_format.func) { |
| 65 | case jalr_op: |
| 66 | arch->gprs[insn.r_format.rd] = epc + 8; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 67 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 68 | case jr_op: |
| 69 | nextpc = arch->gprs[insn.r_format.rs]; |
| 70 | break; |
| 71 | default: |
| 72 | return -EINVAL; |
| 73 | } |
| 74 | break; |
| 75 | |
| 76 | /* |
| 77 | * This group contains: |
| 78 | * bltz_op, bgez_op, bltzl_op, bgezl_op, |
| 79 | * bltzal_op, bgezal_op, bltzall_op, bgezall_op. |
| 80 | */ |
| 81 | case bcond_op: |
| 82 | switch (insn.i_format.rt) { |
| 83 | case bltz_op: |
| 84 | case bltzl_op: |
| 85 | if ((long)arch->gprs[insn.i_format.rs] < 0) |
| 86 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 87 | else |
| 88 | epc += 8; |
| 89 | nextpc = epc; |
| 90 | break; |
| 91 | |
| 92 | case bgez_op: |
| 93 | case bgezl_op: |
| 94 | if ((long)arch->gprs[insn.i_format.rs] >= 0) |
| 95 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 96 | else |
| 97 | epc += 8; |
| 98 | nextpc = epc; |
| 99 | break; |
| 100 | |
| 101 | case bltzal_op: |
| 102 | case bltzall_op: |
| 103 | arch->gprs[31] = epc + 8; |
| 104 | if ((long)arch->gprs[insn.i_format.rs] < 0) |
| 105 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 106 | else |
| 107 | epc += 8; |
| 108 | nextpc = epc; |
| 109 | break; |
| 110 | |
| 111 | case bgezal_op: |
| 112 | case bgezall_op: |
| 113 | arch->gprs[31] = epc + 8; |
| 114 | if ((long)arch->gprs[insn.i_format.rs] >= 0) |
| 115 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 116 | else |
| 117 | epc += 8; |
| 118 | nextpc = epc; |
| 119 | break; |
| 120 | case bposge32_op: |
| 121 | if (!cpu_has_dsp) { |
| 122 | kvm_err("%s: DSP branch but not DSP ASE\n", |
| 123 | __func__); |
| 124 | return -EINVAL; |
| 125 | } |
| 126 | |
| 127 | dspcontrol = rddsp(0x01); |
| 128 | |
| 129 | if (dspcontrol >= 32) |
| 130 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 131 | else |
| 132 | epc += 8; |
| 133 | nextpc = epc; |
| 134 | break; |
| 135 | default: |
| 136 | return -EINVAL; |
| 137 | } |
| 138 | break; |
| 139 | |
| 140 | /* These are unconditional and in j_format. */ |
| 141 | case jal_op: |
| 142 | arch->gprs[31] = instpc + 8; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 143 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 144 | case j_op: |
| 145 | epc += 4; |
| 146 | epc >>= 28; |
| 147 | epc <<= 28; |
| 148 | epc |= (insn.j_format.target << 2); |
| 149 | nextpc = epc; |
| 150 | break; |
| 151 | |
| 152 | /* These are conditional and in i_format. */ |
| 153 | case beq_op: |
| 154 | case beql_op: |
| 155 | if (arch->gprs[insn.i_format.rs] == |
| 156 | arch->gprs[insn.i_format.rt]) |
| 157 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 158 | else |
| 159 | epc += 8; |
| 160 | nextpc = epc; |
| 161 | break; |
| 162 | |
| 163 | case bne_op: |
| 164 | case bnel_op: |
| 165 | if (arch->gprs[insn.i_format.rs] != |
| 166 | arch->gprs[insn.i_format.rt]) |
| 167 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 168 | else |
| 169 | epc += 8; |
| 170 | nextpc = epc; |
| 171 | break; |
| 172 | |
| 173 | case blez_op: /* POP06 */ |
| 174 | #ifndef CONFIG_CPU_MIPSR6 |
| 175 | case blezl_op: /* removed in R6 */ |
| 176 | #endif |
| 177 | if (insn.i_format.rt != 0) |
| 178 | goto compact_branch; |
| 179 | if ((long)arch->gprs[insn.i_format.rs] <= 0) |
| 180 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 181 | else |
| 182 | epc += 8; |
| 183 | nextpc = epc; |
| 184 | break; |
| 185 | |
| 186 | case bgtz_op: /* POP07 */ |
| 187 | #ifndef CONFIG_CPU_MIPSR6 |
| 188 | case bgtzl_op: /* removed in R6 */ |
| 189 | #endif |
| 190 | if (insn.i_format.rt != 0) |
| 191 | goto compact_branch; |
| 192 | if ((long)arch->gprs[insn.i_format.rs] > 0) |
| 193 | epc = epc + 4 + (insn.i_format.simmediate << 2); |
| 194 | else |
| 195 | epc += 8; |
| 196 | nextpc = epc; |
| 197 | break; |
| 198 | |
| 199 | /* And now the FPA/cp1 branch instructions. */ |
| 200 | case cop1_op: |
| 201 | kvm_err("%s: unsupported cop1_op\n", __func__); |
| 202 | return -EINVAL; |
| 203 | |
| 204 | #ifdef CONFIG_CPU_MIPSR6 |
| 205 | /* R6 added the following compact branches with forbidden slots */ |
| 206 | case blezl_op: /* POP26 */ |
| 207 | case bgtzl_op: /* POP27 */ |
| 208 | /* only rt == 0 isn't compact branch */ |
| 209 | if (insn.i_format.rt != 0) |
| 210 | goto compact_branch; |
| 211 | return -EINVAL; |
| 212 | case pop10_op: |
| 213 | case pop30_op: |
| 214 | /* only rs == rt == 0 is reserved, rest are compact branches */ |
| 215 | if (insn.i_format.rs != 0 || insn.i_format.rt != 0) |
| 216 | goto compact_branch; |
| 217 | return -EINVAL; |
| 218 | case pop66_op: |
| 219 | case pop76_op: |
| 220 | /* only rs == 0 isn't compact branch */ |
| 221 | if (insn.i_format.rs != 0) |
| 222 | goto compact_branch; |
| 223 | return -EINVAL; |
| 224 | compact_branch: |
| 225 | /* |
| 226 | * If we've hit an exception on the forbidden slot, then |
| 227 | * the branch must not have been taken. |
| 228 | */ |
| 229 | epc += 8; |
| 230 | nextpc = epc; |
| 231 | break; |
| 232 | #else |
| 233 | compact_branch: |
| 234 | /* Fall through - Compact branches not supported before R6 */ |
| 235 | #endif |
| 236 | default: |
| 237 | return -EINVAL; |
| 238 | } |
| 239 | |
| 240 | *out = nextpc; |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause) |
| 245 | { |
| 246 | int err; |
| 247 | |
| 248 | if (cause & CAUSEF_BD) { |
| 249 | err = kvm_compute_return_epc(vcpu, vcpu->arch.pc, |
| 250 | &vcpu->arch.pc); |
| 251 | if (err) |
| 252 | return EMULATE_FAIL; |
| 253 | } else { |
| 254 | vcpu->arch.pc += 4; |
| 255 | } |
| 256 | |
| 257 | kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); |
| 258 | |
| 259 | return EMULATE_DONE; |
| 260 | } |
| 261 | |
| 262 | /** |
| 263 | * kvm_get_badinstr() - Get bad instruction encoding. |
| 264 | * @opc: Guest pointer to faulting instruction. |
| 265 | * @vcpu: KVM VCPU information. |
| 266 | * |
| 267 | * Gets the instruction encoding of the faulting instruction, using the saved |
| 268 | * BadInstr register value if it exists, otherwise falling back to reading guest |
| 269 | * memory at @opc. |
| 270 | * |
| 271 | * Returns: The instruction encoding of the faulting instruction. |
| 272 | */ |
| 273 | int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) |
| 274 | { |
| 275 | if (cpu_has_badinstr) { |
| 276 | *out = vcpu->arch.host_cp0_badinstr; |
| 277 | return 0; |
| 278 | } else { |
| 279 | return kvm_get_inst(opc, vcpu, out); |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | /** |
| 284 | * kvm_get_badinstrp() - Get bad prior instruction encoding. |
| 285 | * @opc: Guest pointer to prior faulting instruction. |
| 286 | * @vcpu: KVM VCPU information. |
| 287 | * |
| 288 | * Gets the instruction encoding of the prior faulting instruction (the branch |
| 289 | * containing the delay slot which faulted), using the saved BadInstrP register |
| 290 | * value if it exists, otherwise falling back to reading guest memory at @opc. |
| 291 | * |
| 292 | * Returns: The instruction encoding of the prior faulting instruction. |
| 293 | */ |
| 294 | int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) |
| 295 | { |
| 296 | if (cpu_has_badinstrp) { |
| 297 | *out = vcpu->arch.host_cp0_badinstrp; |
| 298 | return 0; |
| 299 | } else { |
| 300 | return kvm_get_inst(opc, vcpu, out); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | /** |
| 305 | * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. |
| 306 | * @vcpu: Virtual CPU. |
| 307 | * |
| 308 | * Returns: 1 if the CP0_Count timer is disabled by either the guest |
| 309 | * CP0_Cause.DC bit or the count_ctl.DC bit. |
| 310 | * 0 otherwise (in which case CP0_Count timer is running). |
| 311 | */ |
| 312 | int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) |
| 313 | { |
| 314 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 315 | |
| 316 | return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || |
| 317 | (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); |
| 318 | } |
| 319 | |
| 320 | /** |
| 321 | * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. |
| 322 | * |
| 323 | * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. |
| 324 | * |
| 325 | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| 326 | */ |
| 327 | static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) |
| 328 | { |
| 329 | s64 now_ns, periods; |
| 330 | u64 delta; |
| 331 | |
| 332 | now_ns = ktime_to_ns(now); |
| 333 | delta = now_ns + vcpu->arch.count_dyn_bias; |
| 334 | |
| 335 | if (delta >= vcpu->arch.count_period) { |
| 336 | /* If delta is out of safe range the bias needs adjusting */ |
| 337 | periods = div64_s64(now_ns, vcpu->arch.count_period); |
| 338 | vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; |
| 339 | /* Recalculate delta with new bias */ |
| 340 | delta = now_ns + vcpu->arch.count_dyn_bias; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * We've ensured that: |
| 345 | * delta < count_period |
| 346 | * |
| 347 | * Therefore the intermediate delta*count_hz will never overflow since |
| 348 | * at the boundary condition: |
| 349 | * delta = count_period |
| 350 | * delta = NSEC_PER_SEC * 2^32 / count_hz |
| 351 | * delta * count_hz = NSEC_PER_SEC * 2^32 |
| 352 | */ |
| 353 | return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); |
| 354 | } |
| 355 | |
| 356 | /** |
| 357 | * kvm_mips_count_time() - Get effective current time. |
| 358 | * @vcpu: Virtual CPU. |
| 359 | * |
| 360 | * Get effective monotonic ktime. This is usually a straightforward ktime_get(), |
| 361 | * except when the master disable bit is set in count_ctl, in which case it is |
| 362 | * count_resume, i.e. the time that the count was disabled. |
| 363 | * |
| 364 | * Returns: Effective monotonic ktime for CP0_Count. |
| 365 | */ |
| 366 | static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) |
| 367 | { |
| 368 | if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) |
| 369 | return vcpu->arch.count_resume; |
| 370 | |
| 371 | return ktime_get(); |
| 372 | } |
| 373 | |
| 374 | /** |
| 375 | * kvm_mips_read_count_running() - Read the current count value as if running. |
| 376 | * @vcpu: Virtual CPU. |
| 377 | * @now: Kernel time to read CP0_Count at. |
| 378 | * |
| 379 | * Returns the current guest CP0_Count register at time @now and handles if the |
| 380 | * timer interrupt is pending and hasn't been handled yet. |
| 381 | * |
| 382 | * Returns: The current value of the guest CP0_Count register. |
| 383 | */ |
| 384 | static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) |
| 385 | { |
| 386 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 387 | ktime_t expires, threshold; |
| 388 | u32 count, compare; |
| 389 | int running; |
| 390 | |
| 391 | /* Calculate the biased and scaled guest CP0_Count */ |
| 392 | count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); |
| 393 | compare = kvm_read_c0_guest_compare(cop0); |
| 394 | |
| 395 | /* |
| 396 | * Find whether CP0_Count has reached the closest timer interrupt. If |
| 397 | * not, we shouldn't inject it. |
| 398 | */ |
| 399 | if ((s32)(count - compare) < 0) |
| 400 | return count; |
| 401 | |
| 402 | /* |
| 403 | * The CP0_Count we're going to return has already reached the closest |
| 404 | * timer interrupt. Quickly check if it really is a new interrupt by |
| 405 | * looking at whether the interval until the hrtimer expiry time is |
| 406 | * less than 1/4 of the timer period. |
| 407 | */ |
| 408 | expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); |
| 409 | threshold = ktime_add_ns(now, vcpu->arch.count_period / 4); |
| 410 | if (ktime_before(expires, threshold)) { |
| 411 | /* |
| 412 | * Cancel it while we handle it so there's no chance of |
| 413 | * interference with the timeout handler. |
| 414 | */ |
| 415 | running = hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| 416 | |
| 417 | /* Nothing should be waiting on the timeout */ |
| 418 | kvm_mips_callbacks->queue_timer_int(vcpu); |
| 419 | |
| 420 | /* |
| 421 | * Restart the timer if it was running based on the expiry time |
| 422 | * we read, so that we don't push it back 2 periods. |
| 423 | */ |
| 424 | if (running) { |
| 425 | expires = ktime_add_ns(expires, |
| 426 | vcpu->arch.count_period); |
| 427 | hrtimer_start(&vcpu->arch.comparecount_timer, expires, |
| 428 | HRTIMER_MODE_ABS); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | return count; |
| 433 | } |
| 434 | |
| 435 | /** |
| 436 | * kvm_mips_read_count() - Read the current count value. |
| 437 | * @vcpu: Virtual CPU. |
| 438 | * |
| 439 | * Read the current guest CP0_Count value, taking into account whether the timer |
| 440 | * is stopped. |
| 441 | * |
| 442 | * Returns: The current guest CP0_Count value. |
| 443 | */ |
| 444 | u32 kvm_mips_read_count(struct kvm_vcpu *vcpu) |
| 445 | { |
| 446 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 447 | |
| 448 | /* If count disabled just read static copy of count */ |
| 449 | if (kvm_mips_count_disabled(vcpu)) |
| 450 | return kvm_read_c0_guest_count(cop0); |
| 451 | |
| 452 | return kvm_mips_read_count_running(vcpu, ktime_get()); |
| 453 | } |
| 454 | |
| 455 | /** |
| 456 | * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. |
| 457 | * @vcpu: Virtual CPU. |
| 458 | * @count: Output pointer for CP0_Count value at point of freeze. |
| 459 | * |
| 460 | * Freeze the hrtimer safely and return both the ktime and the CP0_Count value |
| 461 | * at the point it was frozen. It is guaranteed that any pending interrupts at |
| 462 | * the point it was frozen are handled, and none after that point. |
| 463 | * |
| 464 | * This is useful where the time/CP0_Count is needed in the calculation of the |
| 465 | * new parameters. |
| 466 | * |
| 467 | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| 468 | * |
| 469 | * Returns: The ktime at the point of freeze. |
| 470 | */ |
| 471 | ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count) |
| 472 | { |
| 473 | ktime_t now; |
| 474 | |
| 475 | /* stop hrtimer before finding time */ |
| 476 | hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| 477 | now = ktime_get(); |
| 478 | |
| 479 | /* find count at this point and handle pending hrtimer */ |
| 480 | *count = kvm_mips_read_count_running(vcpu, now); |
| 481 | |
| 482 | return now; |
| 483 | } |
| 484 | |
| 485 | /** |
| 486 | * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. |
| 487 | * @vcpu: Virtual CPU. |
| 488 | * @now: ktime at point of resume. |
| 489 | * @count: CP0_Count at point of resume. |
| 490 | * |
| 491 | * Resumes the timer and updates the timer expiry based on @now and @count. |
| 492 | * This can be used in conjunction with kvm_mips_freeze_timer() when timer |
| 493 | * parameters need to be changed. |
| 494 | * |
| 495 | * It is guaranteed that a timer interrupt immediately after resume will be |
| 496 | * handled, but not if CP_Compare is exactly at @count. That case is already |
| 497 | * handled by kvm_mips_freeze_timer(). |
| 498 | * |
| 499 | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| 500 | */ |
| 501 | static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, |
| 502 | ktime_t now, u32 count) |
| 503 | { |
| 504 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 505 | u32 compare; |
| 506 | u64 delta; |
| 507 | ktime_t expire; |
| 508 | |
| 509 | /* Calculate timeout (wrap 0 to 2^32) */ |
| 510 | compare = kvm_read_c0_guest_compare(cop0); |
| 511 | delta = (u64)(u32)(compare - count - 1) + 1; |
| 512 | delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); |
| 513 | expire = ktime_add_ns(now, delta); |
| 514 | |
| 515 | /* Update hrtimer to use new timeout */ |
| 516 | hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| 517 | hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); |
| 518 | } |
| 519 | |
| 520 | /** |
| 521 | * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry. |
| 522 | * @vcpu: Virtual CPU. |
| 523 | * @before: Time before Count was saved, lower bound of drift calculation. |
| 524 | * @count: CP0_Count at point of restore. |
| 525 | * @min_drift: Minimum amount of drift permitted before correction. |
| 526 | * Must be <= 0. |
| 527 | * |
| 528 | * Restores the timer from a particular @count, accounting for drift. This can |
| 529 | * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is |
| 530 | * to be used for a period of time, but the exact ktime corresponding to the |
| 531 | * final Count that must be restored is not known. |
| 532 | * |
| 533 | * It is gauranteed that a timer interrupt immediately after restore will be |
| 534 | * handled, but not if CP0_Compare is exactly at @count. That case should |
| 535 | * already be handled when the hardware timer state is saved. |
| 536 | * |
| 537 | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not |
| 538 | * stopped). |
| 539 | * |
| 540 | * Returns: Amount of correction to count_bias due to drift. |
| 541 | */ |
| 542 | int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before, |
| 543 | u32 count, int min_drift) |
| 544 | { |
| 545 | ktime_t now, count_time; |
| 546 | u32 now_count, before_count; |
| 547 | u64 delta; |
| 548 | int drift, ret = 0; |
| 549 | |
| 550 | /* Calculate expected count at before */ |
| 551 | before_count = vcpu->arch.count_bias + |
| 552 | kvm_mips_ktime_to_count(vcpu, before); |
| 553 | |
| 554 | /* |
| 555 | * Detect significantly negative drift, where count is lower than |
| 556 | * expected. Some negative drift is expected when hardware counter is |
| 557 | * set after kvm_mips_freeze_timer(), and it is harmless to allow the |
| 558 | * time to jump forwards a little, within reason. If the drift is too |
| 559 | * significant, adjust the bias to avoid a big Guest.CP0_Count jump. |
| 560 | */ |
| 561 | drift = count - before_count; |
| 562 | if (drift < min_drift) { |
| 563 | count_time = before; |
| 564 | vcpu->arch.count_bias += drift; |
| 565 | ret = drift; |
| 566 | goto resume; |
| 567 | } |
| 568 | |
| 569 | /* Calculate expected count right now */ |
| 570 | now = ktime_get(); |
| 571 | now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); |
| 572 | |
| 573 | /* |
| 574 | * Detect positive drift, where count is higher than expected, and |
| 575 | * adjust the bias to avoid guest time going backwards. |
| 576 | */ |
| 577 | drift = count - now_count; |
| 578 | if (drift > 0) { |
| 579 | count_time = now; |
| 580 | vcpu->arch.count_bias += drift; |
| 581 | ret = drift; |
| 582 | goto resume; |
| 583 | } |
| 584 | |
| 585 | /* Subtract nanosecond delta to find ktime when count was read */ |
| 586 | delta = (u64)(u32)(now_count - count); |
| 587 | delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); |
| 588 | count_time = ktime_sub_ns(now, delta); |
| 589 | |
| 590 | resume: |
| 591 | /* Resume using the calculated ktime */ |
| 592 | kvm_mips_resume_hrtimer(vcpu, count_time, count); |
| 593 | return ret; |
| 594 | } |
| 595 | |
| 596 | /** |
| 597 | * kvm_mips_write_count() - Modify the count and update timer. |
| 598 | * @vcpu: Virtual CPU. |
| 599 | * @count: Guest CP0_Count value to set. |
| 600 | * |
| 601 | * Sets the CP0_Count value and updates the timer accordingly. |
| 602 | */ |
| 603 | void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count) |
| 604 | { |
| 605 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 606 | ktime_t now; |
| 607 | |
| 608 | /* Calculate bias */ |
| 609 | now = kvm_mips_count_time(vcpu); |
| 610 | vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); |
| 611 | |
| 612 | if (kvm_mips_count_disabled(vcpu)) |
| 613 | /* The timer's disabled, adjust the static count */ |
| 614 | kvm_write_c0_guest_count(cop0, count); |
| 615 | else |
| 616 | /* Update timeout */ |
| 617 | kvm_mips_resume_hrtimer(vcpu, now, count); |
| 618 | } |
| 619 | |
| 620 | /** |
| 621 | * kvm_mips_init_count() - Initialise timer. |
| 622 | * @vcpu: Virtual CPU. |
| 623 | * @count_hz: Frequency of timer. |
| 624 | * |
| 625 | * Initialise the timer to the specified frequency, zero it, and set it going if |
| 626 | * it's enabled. |
| 627 | */ |
| 628 | void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz) |
| 629 | { |
| 630 | vcpu->arch.count_hz = count_hz; |
| 631 | vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); |
| 632 | vcpu->arch.count_dyn_bias = 0; |
| 633 | |
| 634 | /* Starting at 0 */ |
| 635 | kvm_mips_write_count(vcpu, 0); |
| 636 | } |
| 637 | |
| 638 | /** |
| 639 | * kvm_mips_set_count_hz() - Update the frequency of the timer. |
| 640 | * @vcpu: Virtual CPU. |
| 641 | * @count_hz: Frequency of CP0_Count timer in Hz. |
| 642 | * |
| 643 | * Change the frequency of the CP0_Count timer. This is done atomically so that |
| 644 | * CP0_Count is continuous and no timer interrupt is lost. |
| 645 | * |
| 646 | * Returns: -EINVAL if @count_hz is out of range. |
| 647 | * 0 on success. |
| 648 | */ |
| 649 | int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) |
| 650 | { |
| 651 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 652 | int dc; |
| 653 | ktime_t now; |
| 654 | u32 count; |
| 655 | |
| 656 | /* ensure the frequency is in a sensible range... */ |
| 657 | if (count_hz <= 0 || count_hz > NSEC_PER_SEC) |
| 658 | return -EINVAL; |
| 659 | /* ... and has actually changed */ |
| 660 | if (vcpu->arch.count_hz == count_hz) |
| 661 | return 0; |
| 662 | |
| 663 | /* Safely freeze timer so we can keep it continuous */ |
| 664 | dc = kvm_mips_count_disabled(vcpu); |
| 665 | if (dc) { |
| 666 | now = kvm_mips_count_time(vcpu); |
| 667 | count = kvm_read_c0_guest_count(cop0); |
| 668 | } else { |
| 669 | now = kvm_mips_freeze_hrtimer(vcpu, &count); |
| 670 | } |
| 671 | |
| 672 | /* Update the frequency */ |
| 673 | vcpu->arch.count_hz = count_hz; |
| 674 | vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); |
| 675 | vcpu->arch.count_dyn_bias = 0; |
| 676 | |
| 677 | /* Calculate adjusted bias so dynamic count is unchanged */ |
| 678 | vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); |
| 679 | |
| 680 | /* Update and resume hrtimer */ |
| 681 | if (!dc) |
| 682 | kvm_mips_resume_hrtimer(vcpu, now, count); |
| 683 | return 0; |
| 684 | } |
| 685 | |
| 686 | /** |
| 687 | * kvm_mips_write_compare() - Modify compare and update timer. |
| 688 | * @vcpu: Virtual CPU. |
| 689 | * @compare: New CP0_Compare value. |
| 690 | * @ack: Whether to acknowledge timer interrupt. |
| 691 | * |
| 692 | * Update CP0_Compare to a new value and update the timeout. |
| 693 | * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure |
| 694 | * any pending timer interrupt is preserved. |
| 695 | */ |
| 696 | void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack) |
| 697 | { |
| 698 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 699 | int dc; |
| 700 | u32 old_compare = kvm_read_c0_guest_compare(cop0); |
| 701 | s32 delta = compare - old_compare; |
| 702 | u32 cause; |
| 703 | ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */ |
| 704 | u32 count; |
| 705 | |
| 706 | /* if unchanged, must just be an ack */ |
| 707 | if (old_compare == compare) { |
| 708 | if (!ack) |
| 709 | return; |
| 710 | kvm_mips_callbacks->dequeue_timer_int(vcpu); |
| 711 | kvm_write_c0_guest_compare(cop0, compare); |
| 712 | return; |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted |
| 717 | * too to prevent guest CP0_Count hitting guest CP0_Compare. |
| 718 | * |
| 719 | * The new GTOffset corresponds to the new value of CP0_Compare, and is |
| 720 | * set prior to it being written into the guest context. We disable |
| 721 | * preemption until the new value is written to prevent restore of a |
| 722 | * GTOffset corresponding to the old CP0_Compare value. |
| 723 | */ |
| 724 | if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) { |
| 725 | preempt_disable(); |
| 726 | write_c0_gtoffset(compare - read_c0_count()); |
| 727 | back_to_back_c0_hazard(); |
| 728 | } |
| 729 | |
| 730 | /* freeze_hrtimer() takes care of timer interrupts <= count */ |
| 731 | dc = kvm_mips_count_disabled(vcpu); |
| 732 | if (!dc) |
| 733 | now = kvm_mips_freeze_hrtimer(vcpu, &count); |
| 734 | |
| 735 | if (ack) |
| 736 | kvm_mips_callbacks->dequeue_timer_int(vcpu); |
| 737 | else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) |
| 738 | /* |
| 739 | * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so |
| 740 | * preserve guest CP0_Cause.TI if we don't want to ack it. |
| 741 | */ |
| 742 | cause = kvm_read_c0_guest_cause(cop0); |
| 743 | |
| 744 | kvm_write_c0_guest_compare(cop0, compare); |
| 745 | |
| 746 | if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { |
| 747 | if (delta > 0) |
| 748 | preempt_enable(); |
| 749 | |
| 750 | back_to_back_c0_hazard(); |
| 751 | |
| 752 | if (!ack && cause & CAUSEF_TI) |
| 753 | kvm_write_c0_guest_cause(cop0, cause); |
| 754 | } |
| 755 | |
| 756 | /* resume_hrtimer() takes care of timer interrupts > count */ |
| 757 | if (!dc) |
| 758 | kvm_mips_resume_hrtimer(vcpu, now, count); |
| 759 | |
| 760 | /* |
| 761 | * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change |
| 762 | * until after the new CP0_Compare is written, otherwise new guest |
| 763 | * CP0_Count could hit new guest CP0_Compare. |
| 764 | */ |
| 765 | if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0) |
| 766 | write_c0_gtoffset(compare - read_c0_count()); |
| 767 | } |
| 768 | |
| 769 | /** |
| 770 | * kvm_mips_count_disable() - Disable count. |
| 771 | * @vcpu: Virtual CPU. |
| 772 | * |
| 773 | * Disable the CP0_Count timer. A timer interrupt on or before the final stop |
| 774 | * time will be handled but not after. |
| 775 | * |
| 776 | * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or |
| 777 | * count_ctl.DC has been set (count disabled). |
| 778 | * |
| 779 | * Returns: The time that the timer was stopped. |
| 780 | */ |
| 781 | static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) |
| 782 | { |
| 783 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 784 | u32 count; |
| 785 | ktime_t now; |
| 786 | |
| 787 | /* Stop hrtimer */ |
| 788 | hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| 789 | |
| 790 | /* Set the static count from the dynamic count, handling pending TI */ |
| 791 | now = ktime_get(); |
| 792 | count = kvm_mips_read_count_running(vcpu, now); |
| 793 | kvm_write_c0_guest_count(cop0, count); |
| 794 | |
| 795 | return now; |
| 796 | } |
| 797 | |
| 798 | /** |
| 799 | * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. |
| 800 | * @vcpu: Virtual CPU. |
| 801 | * |
| 802 | * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or |
| 803 | * before the final stop time will be handled if the timer isn't disabled by |
| 804 | * count_ctl.DC, but not after. |
| 805 | * |
| 806 | * Assumes CP0_Cause.DC is clear (count enabled). |
| 807 | */ |
| 808 | void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) |
| 809 | { |
| 810 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 811 | |
| 812 | kvm_set_c0_guest_cause(cop0, CAUSEF_DC); |
| 813 | if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) |
| 814 | kvm_mips_count_disable(vcpu); |
| 815 | } |
| 816 | |
| 817 | /** |
| 818 | * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. |
| 819 | * @vcpu: Virtual CPU. |
| 820 | * |
| 821 | * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after |
| 822 | * the start time will be handled if the timer isn't disabled by count_ctl.DC, |
| 823 | * potentially before even returning, so the caller should be careful with |
| 824 | * ordering of CP0_Cause modifications so as not to lose it. |
| 825 | * |
| 826 | * Assumes CP0_Cause.DC is set (count disabled). |
| 827 | */ |
| 828 | void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) |
| 829 | { |
| 830 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 831 | u32 count; |
| 832 | |
| 833 | kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); |
| 834 | |
| 835 | /* |
| 836 | * Set the dynamic count to match the static count. |
| 837 | * This starts the hrtimer if count_ctl.DC allows it. |
| 838 | * Otherwise it conveniently updates the biases. |
| 839 | */ |
| 840 | count = kvm_read_c0_guest_count(cop0); |
| 841 | kvm_mips_write_count(vcpu, count); |
| 842 | } |
| 843 | |
| 844 | /** |
| 845 | * kvm_mips_set_count_ctl() - Update the count control KVM register. |
| 846 | * @vcpu: Virtual CPU. |
| 847 | * @count_ctl: Count control register new value. |
| 848 | * |
| 849 | * Set the count control KVM register. The timer is updated accordingly. |
| 850 | * |
| 851 | * Returns: -EINVAL if reserved bits are set. |
| 852 | * 0 on success. |
| 853 | */ |
| 854 | int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) |
| 855 | { |
| 856 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 857 | s64 changed = count_ctl ^ vcpu->arch.count_ctl; |
| 858 | s64 delta; |
| 859 | ktime_t expire, now; |
| 860 | u32 count, compare; |
| 861 | |
| 862 | /* Only allow defined bits to be changed */ |
| 863 | if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) |
| 864 | return -EINVAL; |
| 865 | |
| 866 | /* Apply new value */ |
| 867 | vcpu->arch.count_ctl = count_ctl; |
| 868 | |
| 869 | /* Master CP0_Count disable */ |
| 870 | if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { |
| 871 | /* Is CP0_Cause.DC already disabling CP0_Count? */ |
| 872 | if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { |
| 873 | if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) |
| 874 | /* Just record the current time */ |
| 875 | vcpu->arch.count_resume = ktime_get(); |
| 876 | } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { |
| 877 | /* disable timer and record current time */ |
| 878 | vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); |
| 879 | } else { |
| 880 | /* |
| 881 | * Calculate timeout relative to static count at resume |
| 882 | * time (wrap 0 to 2^32). |
| 883 | */ |
| 884 | count = kvm_read_c0_guest_count(cop0); |
| 885 | compare = kvm_read_c0_guest_compare(cop0); |
| 886 | delta = (u64)(u32)(compare - count - 1) + 1; |
| 887 | delta = div_u64(delta * NSEC_PER_SEC, |
| 888 | vcpu->arch.count_hz); |
| 889 | expire = ktime_add_ns(vcpu->arch.count_resume, delta); |
| 890 | |
| 891 | /* Handle pending interrupt */ |
| 892 | now = ktime_get(); |
| 893 | if (ktime_compare(now, expire) >= 0) |
| 894 | /* Nothing should be waiting on the timeout */ |
| 895 | kvm_mips_callbacks->queue_timer_int(vcpu); |
| 896 | |
| 897 | /* Resume hrtimer without changing bias */ |
| 898 | count = kvm_mips_read_count_running(vcpu, now); |
| 899 | kvm_mips_resume_hrtimer(vcpu, now, count); |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | /** |
| 907 | * kvm_mips_set_count_resume() - Update the count resume KVM register. |
| 908 | * @vcpu: Virtual CPU. |
| 909 | * @count_resume: Count resume register new value. |
| 910 | * |
| 911 | * Set the count resume KVM register. |
| 912 | * |
| 913 | * Returns: -EINVAL if out of valid range (0..now). |
| 914 | * 0 on success. |
| 915 | */ |
| 916 | int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) |
| 917 | { |
| 918 | /* |
| 919 | * It doesn't make sense for the resume time to be in the future, as it |
| 920 | * would be possible for the next interrupt to be more than a full |
| 921 | * period in the future. |
| 922 | */ |
| 923 | if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) |
| 924 | return -EINVAL; |
| 925 | |
| 926 | vcpu->arch.count_resume = ns_to_ktime(count_resume); |
| 927 | return 0; |
| 928 | } |
| 929 | |
| 930 | /** |
| 931 | * kvm_mips_count_timeout() - Push timer forward on timeout. |
| 932 | * @vcpu: Virtual CPU. |
| 933 | * |
| 934 | * Handle an hrtimer event by push the hrtimer forward a period. |
| 935 | * |
| 936 | * Returns: The hrtimer_restart value to return to the hrtimer subsystem. |
| 937 | */ |
| 938 | enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) |
| 939 | { |
| 940 | /* Add the Count period to the current expiry time */ |
| 941 | hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, |
| 942 | vcpu->arch.count_period); |
| 943 | return HRTIMER_RESTART; |
| 944 | } |
| 945 | |
| 946 | enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu) |
| 947 | { |
| 948 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 949 | enum emulation_result er = EMULATE_DONE; |
| 950 | |
| 951 | if (kvm_read_c0_guest_status(cop0) & ST0_ERL) { |
| 952 | kvm_clear_c0_guest_status(cop0, ST0_ERL); |
| 953 | vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0); |
| 954 | } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) { |
| 955 | kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc, |
| 956 | kvm_read_c0_guest_epc(cop0)); |
| 957 | kvm_clear_c0_guest_status(cop0, ST0_EXL); |
| 958 | vcpu->arch.pc = kvm_read_c0_guest_epc(cop0); |
| 959 | |
| 960 | } else { |
| 961 | kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n", |
| 962 | vcpu->arch.pc); |
| 963 | er = EMULATE_FAIL; |
| 964 | } |
| 965 | |
| 966 | return er; |
| 967 | } |
| 968 | |
| 969 | enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) |
| 970 | { |
| 971 | kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, |
| 972 | vcpu->arch.pending_exceptions); |
| 973 | |
| 974 | ++vcpu->stat.wait_exits; |
| 975 | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT); |
| 976 | if (!vcpu->arch.pending_exceptions) { |
| 977 | kvm_vz_lose_htimer(vcpu); |
| 978 | vcpu->arch.wait = 1; |
| 979 | kvm_vcpu_block(vcpu); |
| 980 | |
| 981 | /* |
| 982 | * We we are runnable, then definitely go off to user space to |
| 983 | * check if any I/O interrupts are pending. |
| 984 | */ |
| 985 | if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { |
| 986 | kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| 987 | vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | return EMULATE_DONE; |
| 992 | } |
| 993 | |
| 994 | static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu, |
| 995 | unsigned long entryhi) |
| 996 | { |
| 997 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 998 | struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; |
| 999 | int cpu, i; |
| 1000 | u32 nasid = entryhi & KVM_ENTRYHI_ASID; |
| 1001 | |
| 1002 | if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) { |
| 1003 | trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) & |
| 1004 | KVM_ENTRYHI_ASID, nasid); |
| 1005 | |
| 1006 | /* |
| 1007 | * Flush entries from the GVA page tables. |
| 1008 | * Guest user page table will get flushed lazily on re-entry to |
| 1009 | * guest user if the guest ASID actually changes. |
| 1010 | */ |
| 1011 | kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN); |
| 1012 | |
| 1013 | /* |
| 1014 | * Regenerate/invalidate kernel MMU context. |
| 1015 | * The user MMU context will be regenerated lazily on re-entry |
| 1016 | * to guest user if the guest ASID actually changes. |
| 1017 | */ |
| 1018 | preempt_disable(); |
| 1019 | cpu = smp_processor_id(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1020 | get_new_mmu_context(kern_mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1021 | for_each_possible_cpu(i) |
| 1022 | if (i != cpu) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1023 | set_cpu_context(i, kern_mm, 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1024 | preempt_enable(); |
| 1025 | } |
| 1026 | kvm_write_c0_guest_entryhi(cop0, entryhi); |
| 1027 | } |
| 1028 | |
| 1029 | enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu) |
| 1030 | { |
| 1031 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1032 | struct kvm_mips_tlb *tlb; |
| 1033 | unsigned long pc = vcpu->arch.pc; |
| 1034 | int index; |
| 1035 | |
| 1036 | index = kvm_read_c0_guest_index(cop0); |
| 1037 | if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { |
| 1038 | /* UNDEFINED */ |
| 1039 | kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index); |
| 1040 | index &= KVM_MIPS_GUEST_TLB_SIZE - 1; |
| 1041 | } |
| 1042 | |
| 1043 | tlb = &vcpu->arch.guest_tlb[index]; |
| 1044 | kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask); |
| 1045 | kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]); |
| 1046 | kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]); |
| 1047 | kvm_mips_change_entryhi(vcpu, tlb->tlb_hi); |
| 1048 | |
| 1049 | return EMULATE_DONE; |
| 1050 | } |
| 1051 | |
| 1052 | /** |
| 1053 | * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map. |
| 1054 | * @vcpu: VCPU with changed mappings. |
| 1055 | * @tlb: TLB entry being removed. |
| 1056 | * |
| 1057 | * This is called to indicate a single change in guest MMU mappings, so that we |
| 1058 | * can arrange TLB flushes on this and other CPUs. |
| 1059 | */ |
| 1060 | static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu, |
| 1061 | struct kvm_mips_tlb *tlb) |
| 1062 | { |
| 1063 | struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; |
| 1064 | struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; |
| 1065 | int cpu, i; |
| 1066 | bool user; |
| 1067 | |
| 1068 | /* No need to flush for entries which are already invalid */ |
| 1069 | if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V)) |
| 1070 | return; |
| 1071 | /* Don't touch host kernel page tables or TLB mappings */ |
| 1072 | if ((unsigned long)tlb->tlb_hi > 0x7fffffff) |
| 1073 | return; |
| 1074 | /* User address space doesn't need flushing for KSeg2/3 changes */ |
| 1075 | user = tlb->tlb_hi < KVM_GUEST_KSEG0; |
| 1076 | |
| 1077 | preempt_disable(); |
| 1078 | |
| 1079 | /* Invalidate page table entries */ |
| 1080 | kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user); |
| 1081 | |
| 1082 | /* |
| 1083 | * Probe the shadow host TLB for the entry being overwritten, if one |
| 1084 | * matches, invalidate it |
| 1085 | */ |
| 1086 | kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true); |
| 1087 | |
| 1088 | /* Invalidate the whole ASID on other CPUs */ |
| 1089 | cpu = smp_processor_id(); |
| 1090 | for_each_possible_cpu(i) { |
| 1091 | if (i == cpu) |
| 1092 | continue; |
| 1093 | if (user) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1094 | set_cpu_context(i, user_mm, 0); |
| 1095 | set_cpu_context(i, kern_mm, 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1096 | } |
| 1097 | |
| 1098 | preempt_enable(); |
| 1099 | } |
| 1100 | |
| 1101 | /* Write Guest TLB Entry @ Index */ |
| 1102 | enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu) |
| 1103 | { |
| 1104 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1105 | int index = kvm_read_c0_guest_index(cop0); |
| 1106 | struct kvm_mips_tlb *tlb = NULL; |
| 1107 | unsigned long pc = vcpu->arch.pc; |
| 1108 | |
| 1109 | if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { |
| 1110 | kvm_debug("%s: illegal index: %d\n", __func__, index); |
| 1111 | kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", |
| 1112 | pc, index, kvm_read_c0_guest_entryhi(cop0), |
| 1113 | kvm_read_c0_guest_entrylo0(cop0), |
| 1114 | kvm_read_c0_guest_entrylo1(cop0), |
| 1115 | kvm_read_c0_guest_pagemask(cop0)); |
| 1116 | index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE; |
| 1117 | } |
| 1118 | |
| 1119 | tlb = &vcpu->arch.guest_tlb[index]; |
| 1120 | |
| 1121 | kvm_mips_invalidate_guest_tlb(vcpu, tlb); |
| 1122 | |
| 1123 | tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); |
| 1124 | tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); |
| 1125 | tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); |
| 1126 | tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); |
| 1127 | |
| 1128 | kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", |
| 1129 | pc, index, kvm_read_c0_guest_entryhi(cop0), |
| 1130 | kvm_read_c0_guest_entrylo0(cop0), |
| 1131 | kvm_read_c0_guest_entrylo1(cop0), |
| 1132 | kvm_read_c0_guest_pagemask(cop0)); |
| 1133 | |
| 1134 | return EMULATE_DONE; |
| 1135 | } |
| 1136 | |
| 1137 | /* Write Guest TLB Entry @ Random Index */ |
| 1138 | enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu) |
| 1139 | { |
| 1140 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1141 | struct kvm_mips_tlb *tlb = NULL; |
| 1142 | unsigned long pc = vcpu->arch.pc; |
| 1143 | int index; |
| 1144 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1145 | index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1146 | tlb = &vcpu->arch.guest_tlb[index]; |
| 1147 | |
| 1148 | kvm_mips_invalidate_guest_tlb(vcpu, tlb); |
| 1149 | |
| 1150 | tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); |
| 1151 | tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); |
| 1152 | tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); |
| 1153 | tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); |
| 1154 | |
| 1155 | kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n", |
| 1156 | pc, index, kvm_read_c0_guest_entryhi(cop0), |
| 1157 | kvm_read_c0_guest_entrylo0(cop0), |
| 1158 | kvm_read_c0_guest_entrylo1(cop0)); |
| 1159 | |
| 1160 | return EMULATE_DONE; |
| 1161 | } |
| 1162 | |
| 1163 | enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu) |
| 1164 | { |
| 1165 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1166 | long entryhi = kvm_read_c0_guest_entryhi(cop0); |
| 1167 | unsigned long pc = vcpu->arch.pc; |
| 1168 | int index = -1; |
| 1169 | |
| 1170 | index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); |
| 1171 | |
| 1172 | kvm_write_c0_guest_index(cop0, index); |
| 1173 | |
| 1174 | kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi, |
| 1175 | index); |
| 1176 | |
| 1177 | return EMULATE_DONE; |
| 1178 | } |
| 1179 | |
| 1180 | /** |
| 1181 | * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1 |
| 1182 | * @vcpu: Virtual CPU. |
| 1183 | * |
| 1184 | * Finds the mask of bits which are writable in the guest's Config1 CP0 |
| 1185 | * register, by userland (currently read-only to the guest). |
| 1186 | */ |
| 1187 | unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu) |
| 1188 | { |
| 1189 | unsigned int mask = 0; |
| 1190 | |
| 1191 | /* Permit FPU to be present if FPU is supported */ |
| 1192 | if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) |
| 1193 | mask |= MIPS_CONF1_FP; |
| 1194 | |
| 1195 | return mask; |
| 1196 | } |
| 1197 | |
| 1198 | /** |
| 1199 | * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3 |
| 1200 | * @vcpu: Virtual CPU. |
| 1201 | * |
| 1202 | * Finds the mask of bits which are writable in the guest's Config3 CP0 |
| 1203 | * register, by userland (currently read-only to the guest). |
| 1204 | */ |
| 1205 | unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu) |
| 1206 | { |
| 1207 | /* Config4 and ULRI are optional */ |
| 1208 | unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI; |
| 1209 | |
| 1210 | /* Permit MSA to be present if MSA is supported */ |
| 1211 | if (kvm_mips_guest_can_have_msa(&vcpu->arch)) |
| 1212 | mask |= MIPS_CONF3_MSA; |
| 1213 | |
| 1214 | return mask; |
| 1215 | } |
| 1216 | |
| 1217 | /** |
| 1218 | * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4 |
| 1219 | * @vcpu: Virtual CPU. |
| 1220 | * |
| 1221 | * Finds the mask of bits which are writable in the guest's Config4 CP0 |
| 1222 | * register, by userland (currently read-only to the guest). |
| 1223 | */ |
| 1224 | unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu) |
| 1225 | { |
| 1226 | /* Config5 is optional */ |
| 1227 | unsigned int mask = MIPS_CONF_M; |
| 1228 | |
| 1229 | /* KScrExist */ |
| 1230 | mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT; |
| 1231 | |
| 1232 | return mask; |
| 1233 | } |
| 1234 | |
| 1235 | /** |
| 1236 | * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5 |
| 1237 | * @vcpu: Virtual CPU. |
| 1238 | * |
| 1239 | * Finds the mask of bits which are writable in the guest's Config5 CP0 |
| 1240 | * register, by the guest itself. |
| 1241 | */ |
| 1242 | unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu) |
| 1243 | { |
| 1244 | unsigned int mask = 0; |
| 1245 | |
| 1246 | /* Permit MSAEn changes if MSA supported and enabled */ |
| 1247 | if (kvm_mips_guest_has_msa(&vcpu->arch)) |
| 1248 | mask |= MIPS_CONF5_MSAEN; |
| 1249 | |
| 1250 | /* |
| 1251 | * Permit guest FPU mode changes if FPU is enabled and the relevant |
| 1252 | * feature exists according to FIR register. |
| 1253 | */ |
| 1254 | if (kvm_mips_guest_has_fpu(&vcpu->arch)) { |
| 1255 | if (cpu_has_fre) |
| 1256 | mask |= MIPS_CONF5_FRE; |
| 1257 | /* We don't support UFR or UFE */ |
| 1258 | } |
| 1259 | |
| 1260 | return mask; |
| 1261 | } |
| 1262 | |
| 1263 | enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst, |
| 1264 | u32 *opc, u32 cause, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1265 | struct kvm_vcpu *vcpu) |
| 1266 | { |
| 1267 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1268 | enum emulation_result er = EMULATE_DONE; |
| 1269 | u32 rt, rd, sel; |
| 1270 | unsigned long curr_pc; |
| 1271 | |
| 1272 | /* |
| 1273 | * Update PC and hold onto current PC in case there is |
| 1274 | * an error and we want to rollback the PC |
| 1275 | */ |
| 1276 | curr_pc = vcpu->arch.pc; |
| 1277 | er = update_pc(vcpu, cause); |
| 1278 | if (er == EMULATE_FAIL) |
| 1279 | return er; |
| 1280 | |
| 1281 | if (inst.co_format.co) { |
| 1282 | switch (inst.co_format.func) { |
| 1283 | case tlbr_op: /* Read indexed TLB entry */ |
| 1284 | er = kvm_mips_emul_tlbr(vcpu); |
| 1285 | break; |
| 1286 | case tlbwi_op: /* Write indexed */ |
| 1287 | er = kvm_mips_emul_tlbwi(vcpu); |
| 1288 | break; |
| 1289 | case tlbwr_op: /* Write random */ |
| 1290 | er = kvm_mips_emul_tlbwr(vcpu); |
| 1291 | break; |
| 1292 | case tlbp_op: /* TLB Probe */ |
| 1293 | er = kvm_mips_emul_tlbp(vcpu); |
| 1294 | break; |
| 1295 | case rfe_op: |
| 1296 | kvm_err("!!!COP0_RFE!!!\n"); |
| 1297 | break; |
| 1298 | case eret_op: |
| 1299 | er = kvm_mips_emul_eret(vcpu); |
| 1300 | goto dont_update_pc; |
| 1301 | case wait_op: |
| 1302 | er = kvm_mips_emul_wait(vcpu); |
| 1303 | break; |
| 1304 | case hypcall_op: |
| 1305 | er = kvm_mips_emul_hypcall(vcpu, inst); |
| 1306 | break; |
| 1307 | } |
| 1308 | } else { |
| 1309 | rt = inst.c0r_format.rt; |
| 1310 | rd = inst.c0r_format.rd; |
| 1311 | sel = inst.c0r_format.sel; |
| 1312 | |
| 1313 | switch (inst.c0r_format.rs) { |
| 1314 | case mfc_op: |
| 1315 | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| 1316 | cop0->stat[rd][sel]++; |
| 1317 | #endif |
| 1318 | /* Get reg */ |
| 1319 | if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { |
| 1320 | vcpu->arch.gprs[rt] = |
| 1321 | (s32)kvm_mips_read_count(vcpu); |
| 1322 | } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) { |
| 1323 | vcpu->arch.gprs[rt] = 0x0; |
| 1324 | #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| 1325 | kvm_mips_trans_mfc0(inst, opc, vcpu); |
| 1326 | #endif |
| 1327 | } else { |
| 1328 | vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel]; |
| 1329 | |
| 1330 | #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| 1331 | kvm_mips_trans_mfc0(inst, opc, vcpu); |
| 1332 | #endif |
| 1333 | } |
| 1334 | |
| 1335 | trace_kvm_hwr(vcpu, KVM_TRACE_MFC0, |
| 1336 | KVM_TRACE_COP0(rd, sel), |
| 1337 | vcpu->arch.gprs[rt]); |
| 1338 | break; |
| 1339 | |
| 1340 | case dmfc_op: |
| 1341 | vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; |
| 1342 | |
| 1343 | trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0, |
| 1344 | KVM_TRACE_COP0(rd, sel), |
| 1345 | vcpu->arch.gprs[rt]); |
| 1346 | break; |
| 1347 | |
| 1348 | case mtc_op: |
| 1349 | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| 1350 | cop0->stat[rd][sel]++; |
| 1351 | #endif |
| 1352 | trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, |
| 1353 | KVM_TRACE_COP0(rd, sel), |
| 1354 | vcpu->arch.gprs[rt]); |
| 1355 | |
| 1356 | if ((rd == MIPS_CP0_TLB_INDEX) |
| 1357 | && (vcpu->arch.gprs[rt] >= |
| 1358 | KVM_MIPS_GUEST_TLB_SIZE)) { |
| 1359 | kvm_err("Invalid TLB Index: %ld", |
| 1360 | vcpu->arch.gprs[rt]); |
| 1361 | er = EMULATE_FAIL; |
| 1362 | break; |
| 1363 | } |
| 1364 | if ((rd == MIPS_CP0_PRID) && (sel == 1)) { |
| 1365 | /* |
| 1366 | * Preserve core number, and keep the exception |
| 1367 | * base in guest KSeg0. |
| 1368 | */ |
| 1369 | kvm_change_c0_guest_ebase(cop0, 0x1ffff000, |
| 1370 | vcpu->arch.gprs[rt]); |
| 1371 | } else if (rd == MIPS_CP0_TLB_HI && sel == 0) { |
| 1372 | kvm_mips_change_entryhi(vcpu, |
| 1373 | vcpu->arch.gprs[rt]); |
| 1374 | } |
| 1375 | /* Are we writing to COUNT */ |
| 1376 | else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { |
| 1377 | kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); |
| 1378 | goto done; |
| 1379 | } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) { |
| 1380 | /* If we are writing to COMPARE */ |
| 1381 | /* Clear pending timer interrupt, if any */ |
| 1382 | kvm_mips_write_compare(vcpu, |
| 1383 | vcpu->arch.gprs[rt], |
| 1384 | true); |
| 1385 | } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { |
| 1386 | unsigned int old_val, val, change; |
| 1387 | |
| 1388 | old_val = kvm_read_c0_guest_status(cop0); |
| 1389 | val = vcpu->arch.gprs[rt]; |
| 1390 | change = val ^ old_val; |
| 1391 | |
| 1392 | /* Make sure that the NMI bit is never set */ |
| 1393 | val &= ~ST0_NMI; |
| 1394 | |
| 1395 | /* |
| 1396 | * Don't allow CU1 or FR to be set unless FPU |
| 1397 | * capability enabled and exists in guest |
| 1398 | * configuration. |
| 1399 | */ |
| 1400 | if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| 1401 | val &= ~(ST0_CU1 | ST0_FR); |
| 1402 | |
| 1403 | /* |
| 1404 | * Also don't allow FR to be set if host doesn't |
| 1405 | * support it. |
| 1406 | */ |
| 1407 | if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64)) |
| 1408 | val &= ~ST0_FR; |
| 1409 | |
| 1410 | |
| 1411 | /* Handle changes in FPU mode */ |
| 1412 | preempt_disable(); |
| 1413 | |
| 1414 | /* |
| 1415 | * FPU and Vector register state is made |
| 1416 | * UNPREDICTABLE by a change of FR, so don't |
| 1417 | * even bother saving it. |
| 1418 | */ |
| 1419 | if (change & ST0_FR) |
| 1420 | kvm_drop_fpu(vcpu); |
| 1421 | |
| 1422 | /* |
| 1423 | * If MSA state is already live, it is undefined |
| 1424 | * how it interacts with FR=0 FPU state, and we |
| 1425 | * don't want to hit reserved instruction |
| 1426 | * exceptions trying to save the MSA state later |
| 1427 | * when CU=1 && FR=1, so play it safe and save |
| 1428 | * it first. |
| 1429 | */ |
| 1430 | if (change & ST0_CU1 && !(val & ST0_FR) && |
| 1431 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) |
| 1432 | kvm_lose_fpu(vcpu); |
| 1433 | |
| 1434 | /* |
| 1435 | * Propagate CU1 (FPU enable) changes |
| 1436 | * immediately if the FPU context is already |
| 1437 | * loaded. When disabling we leave the context |
| 1438 | * loaded so it can be quickly enabled again in |
| 1439 | * the near future. |
| 1440 | */ |
| 1441 | if (change & ST0_CU1 && |
| 1442 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) |
| 1443 | change_c0_status(ST0_CU1, val); |
| 1444 | |
| 1445 | preempt_enable(); |
| 1446 | |
| 1447 | kvm_write_c0_guest_status(cop0, val); |
| 1448 | |
| 1449 | #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| 1450 | /* |
| 1451 | * If FPU present, we need CU1/FR bits to take |
| 1452 | * effect fairly soon. |
| 1453 | */ |
| 1454 | if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| 1455 | kvm_mips_trans_mtc0(inst, opc, vcpu); |
| 1456 | #endif |
| 1457 | } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { |
| 1458 | unsigned int old_val, val, change, wrmask; |
| 1459 | |
| 1460 | old_val = kvm_read_c0_guest_config5(cop0); |
| 1461 | val = vcpu->arch.gprs[rt]; |
| 1462 | |
| 1463 | /* Only a few bits are writable in Config5 */ |
| 1464 | wrmask = kvm_mips_config5_wrmask(vcpu); |
| 1465 | change = (val ^ old_val) & wrmask; |
| 1466 | val = old_val ^ change; |
| 1467 | |
| 1468 | |
| 1469 | /* Handle changes in FPU/MSA modes */ |
| 1470 | preempt_disable(); |
| 1471 | |
| 1472 | /* |
| 1473 | * Propagate FRE changes immediately if the FPU |
| 1474 | * context is already loaded. |
| 1475 | */ |
| 1476 | if (change & MIPS_CONF5_FRE && |
| 1477 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) |
| 1478 | change_c0_config5(MIPS_CONF5_FRE, val); |
| 1479 | |
| 1480 | /* |
| 1481 | * Propagate MSAEn changes immediately if the |
| 1482 | * MSA context is already loaded. When disabling |
| 1483 | * we leave the context loaded so it can be |
| 1484 | * quickly enabled again in the near future. |
| 1485 | */ |
| 1486 | if (change & MIPS_CONF5_MSAEN && |
| 1487 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) |
| 1488 | change_c0_config5(MIPS_CONF5_MSAEN, |
| 1489 | val); |
| 1490 | |
| 1491 | preempt_enable(); |
| 1492 | |
| 1493 | kvm_write_c0_guest_config5(cop0, val); |
| 1494 | } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { |
| 1495 | u32 old_cause, new_cause; |
| 1496 | |
| 1497 | old_cause = kvm_read_c0_guest_cause(cop0); |
| 1498 | new_cause = vcpu->arch.gprs[rt]; |
| 1499 | /* Update R/W bits */ |
| 1500 | kvm_change_c0_guest_cause(cop0, 0x08800300, |
| 1501 | new_cause); |
| 1502 | /* DC bit enabling/disabling timer? */ |
| 1503 | if ((old_cause ^ new_cause) & CAUSEF_DC) { |
| 1504 | if (new_cause & CAUSEF_DC) |
| 1505 | kvm_mips_count_disable_cause(vcpu); |
| 1506 | else |
| 1507 | kvm_mips_count_enable_cause(vcpu); |
| 1508 | } |
| 1509 | } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) { |
| 1510 | u32 mask = MIPS_HWRENA_CPUNUM | |
| 1511 | MIPS_HWRENA_SYNCISTEP | |
| 1512 | MIPS_HWRENA_CC | |
| 1513 | MIPS_HWRENA_CCRES; |
| 1514 | |
| 1515 | if (kvm_read_c0_guest_config3(cop0) & |
| 1516 | MIPS_CONF3_ULRI) |
| 1517 | mask |= MIPS_HWRENA_ULR; |
| 1518 | cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask; |
| 1519 | } else { |
| 1520 | cop0->reg[rd][sel] = vcpu->arch.gprs[rt]; |
| 1521 | #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| 1522 | kvm_mips_trans_mtc0(inst, opc, vcpu); |
| 1523 | #endif |
| 1524 | } |
| 1525 | break; |
| 1526 | |
| 1527 | case dmtc_op: |
| 1528 | kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n", |
| 1529 | vcpu->arch.pc, rt, rd, sel); |
| 1530 | trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0, |
| 1531 | KVM_TRACE_COP0(rd, sel), |
| 1532 | vcpu->arch.gprs[rt]); |
| 1533 | er = EMULATE_FAIL; |
| 1534 | break; |
| 1535 | |
| 1536 | case mfmc0_op: |
| 1537 | #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS |
| 1538 | cop0->stat[MIPS_CP0_STATUS][0]++; |
| 1539 | #endif |
| 1540 | if (rt != 0) |
| 1541 | vcpu->arch.gprs[rt] = |
| 1542 | kvm_read_c0_guest_status(cop0); |
| 1543 | /* EI */ |
| 1544 | if (inst.mfmc0_format.sc) { |
| 1545 | kvm_debug("[%#lx] mfmc0_op: EI\n", |
| 1546 | vcpu->arch.pc); |
| 1547 | kvm_set_c0_guest_status(cop0, ST0_IE); |
| 1548 | } else { |
| 1549 | kvm_debug("[%#lx] mfmc0_op: DI\n", |
| 1550 | vcpu->arch.pc); |
| 1551 | kvm_clear_c0_guest_status(cop0, ST0_IE); |
| 1552 | } |
| 1553 | |
| 1554 | break; |
| 1555 | |
| 1556 | case wrpgpr_op: |
| 1557 | { |
| 1558 | u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf; |
| 1559 | u32 pss = |
| 1560 | (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf; |
| 1561 | /* |
| 1562 | * We don't support any shadow register sets, so |
| 1563 | * SRSCtl[PSS] == SRSCtl[CSS] = 0 |
| 1564 | */ |
| 1565 | if (css || pss) { |
| 1566 | er = EMULATE_FAIL; |
| 1567 | break; |
| 1568 | } |
| 1569 | kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd, |
| 1570 | vcpu->arch.gprs[rt]); |
| 1571 | vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt]; |
| 1572 | } |
| 1573 | break; |
| 1574 | default: |
| 1575 | kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n", |
| 1576 | vcpu->arch.pc, inst.c0r_format.rs); |
| 1577 | er = EMULATE_FAIL; |
| 1578 | break; |
| 1579 | } |
| 1580 | } |
| 1581 | |
| 1582 | done: |
| 1583 | /* Rollback PC only if emulation was unsuccessful */ |
| 1584 | if (er == EMULATE_FAIL) |
| 1585 | vcpu->arch.pc = curr_pc; |
| 1586 | |
| 1587 | dont_update_pc: |
| 1588 | /* |
| 1589 | * This is for special instructions whose emulation |
| 1590 | * updates the PC, so do not overwrite the PC under |
| 1591 | * any circumstances |
| 1592 | */ |
| 1593 | |
| 1594 | return er; |
| 1595 | } |
| 1596 | |
| 1597 | enum emulation_result kvm_mips_emulate_store(union mips_instruction inst, |
| 1598 | u32 cause, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1599 | struct kvm_vcpu *vcpu) |
| 1600 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1601 | int r; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1602 | enum emulation_result er; |
| 1603 | u32 rt; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1604 | struct kvm_run *run = vcpu->run; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1605 | void *data = run->mmio.data; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1606 | unsigned int imme; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1607 | unsigned long curr_pc; |
| 1608 | |
| 1609 | /* |
| 1610 | * Update PC and hold onto current PC in case there is |
| 1611 | * an error and we want to rollback the PC |
| 1612 | */ |
| 1613 | curr_pc = vcpu->arch.pc; |
| 1614 | er = update_pc(vcpu, cause); |
| 1615 | if (er == EMULATE_FAIL) |
| 1616 | return er; |
| 1617 | |
| 1618 | rt = inst.i_format.rt; |
| 1619 | |
| 1620 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1621 | vcpu->arch.host_cp0_badvaddr); |
| 1622 | if (run->mmio.phys_addr == KVM_INVALID_ADDR) |
| 1623 | goto out_fail; |
| 1624 | |
| 1625 | switch (inst.i_format.opcode) { |
| 1626 | #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) |
| 1627 | case sd_op: |
| 1628 | run->mmio.len = 8; |
| 1629 | *(u64 *)data = vcpu->arch.gprs[rt]; |
| 1630 | |
| 1631 | kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n", |
| 1632 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1633 | vcpu->arch.gprs[rt], *(u64 *)data); |
| 1634 | break; |
| 1635 | #endif |
| 1636 | |
| 1637 | case sw_op: |
| 1638 | run->mmio.len = 4; |
| 1639 | *(u32 *)data = vcpu->arch.gprs[rt]; |
| 1640 | |
| 1641 | kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1642 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1643 | vcpu->arch.gprs[rt], *(u32 *)data); |
| 1644 | break; |
| 1645 | |
| 1646 | case sh_op: |
| 1647 | run->mmio.len = 2; |
| 1648 | *(u16 *)data = vcpu->arch.gprs[rt]; |
| 1649 | |
| 1650 | kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1651 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1652 | vcpu->arch.gprs[rt], *(u16 *)data); |
| 1653 | break; |
| 1654 | |
| 1655 | case sb_op: |
| 1656 | run->mmio.len = 1; |
| 1657 | *(u8 *)data = vcpu->arch.gprs[rt]; |
| 1658 | |
| 1659 | kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1660 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1661 | vcpu->arch.gprs[rt], *(u8 *)data); |
| 1662 | break; |
| 1663 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1664 | case swl_op: |
| 1665 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1666 | vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| 1667 | run->mmio.len = 4; |
| 1668 | imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| 1669 | switch (imme) { |
| 1670 | case 0: |
| 1671 | *(u32 *)data = ((*(u32 *)data) & 0xffffff00) | |
| 1672 | (vcpu->arch.gprs[rt] >> 24); |
| 1673 | break; |
| 1674 | case 1: |
| 1675 | *(u32 *)data = ((*(u32 *)data) & 0xffff0000) | |
| 1676 | (vcpu->arch.gprs[rt] >> 16); |
| 1677 | break; |
| 1678 | case 2: |
| 1679 | *(u32 *)data = ((*(u32 *)data) & 0xff000000) | |
| 1680 | (vcpu->arch.gprs[rt] >> 8); |
| 1681 | break; |
| 1682 | case 3: |
| 1683 | *(u32 *)data = vcpu->arch.gprs[rt]; |
| 1684 | break; |
| 1685 | default: |
| 1686 | break; |
| 1687 | } |
| 1688 | |
| 1689 | kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1690 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1691 | vcpu->arch.gprs[rt], *(u32 *)data); |
| 1692 | break; |
| 1693 | |
| 1694 | case swr_op: |
| 1695 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1696 | vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| 1697 | run->mmio.len = 4; |
| 1698 | imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| 1699 | switch (imme) { |
| 1700 | case 0: |
| 1701 | *(u32 *)data = vcpu->arch.gprs[rt]; |
| 1702 | break; |
| 1703 | case 1: |
| 1704 | *(u32 *)data = ((*(u32 *)data) & 0xff) | |
| 1705 | (vcpu->arch.gprs[rt] << 8); |
| 1706 | break; |
| 1707 | case 2: |
| 1708 | *(u32 *)data = ((*(u32 *)data) & 0xffff) | |
| 1709 | (vcpu->arch.gprs[rt] << 16); |
| 1710 | break; |
| 1711 | case 3: |
| 1712 | *(u32 *)data = ((*(u32 *)data) & 0xffffff) | |
| 1713 | (vcpu->arch.gprs[rt] << 24); |
| 1714 | break; |
| 1715 | default: |
| 1716 | break; |
| 1717 | } |
| 1718 | |
| 1719 | kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1720 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1721 | vcpu->arch.gprs[rt], *(u32 *)data); |
| 1722 | break; |
| 1723 | |
| 1724 | #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) |
| 1725 | case sdl_op: |
| 1726 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1727 | vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| 1728 | |
| 1729 | run->mmio.len = 8; |
| 1730 | imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| 1731 | switch (imme) { |
| 1732 | case 0: |
| 1733 | *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) | |
| 1734 | ((vcpu->arch.gprs[rt] >> 56) & 0xff); |
| 1735 | break; |
| 1736 | case 1: |
| 1737 | *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) | |
| 1738 | ((vcpu->arch.gprs[rt] >> 48) & 0xffff); |
| 1739 | break; |
| 1740 | case 2: |
| 1741 | *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) | |
| 1742 | ((vcpu->arch.gprs[rt] >> 40) & 0xffffff); |
| 1743 | break; |
| 1744 | case 3: |
| 1745 | *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) | |
| 1746 | ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff); |
| 1747 | break; |
| 1748 | case 4: |
| 1749 | *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) | |
| 1750 | ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff); |
| 1751 | break; |
| 1752 | case 5: |
| 1753 | *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) | |
| 1754 | ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff); |
| 1755 | break; |
| 1756 | case 6: |
| 1757 | *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) | |
| 1758 | ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff); |
| 1759 | break; |
| 1760 | case 7: |
| 1761 | *(u64 *)data = vcpu->arch.gprs[rt]; |
| 1762 | break; |
| 1763 | default: |
| 1764 | break; |
| 1765 | } |
| 1766 | |
| 1767 | kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n", |
| 1768 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1769 | vcpu->arch.gprs[rt], *(u64 *)data); |
| 1770 | break; |
| 1771 | |
| 1772 | case sdr_op: |
| 1773 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1774 | vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| 1775 | |
| 1776 | run->mmio.len = 8; |
| 1777 | imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| 1778 | switch (imme) { |
| 1779 | case 0: |
| 1780 | *(u64 *)data = vcpu->arch.gprs[rt]; |
| 1781 | break; |
| 1782 | case 1: |
| 1783 | *(u64 *)data = ((*(u64 *)data) & 0xff) | |
| 1784 | (vcpu->arch.gprs[rt] << 8); |
| 1785 | break; |
| 1786 | case 2: |
| 1787 | *(u64 *)data = ((*(u64 *)data) & 0xffff) | |
| 1788 | (vcpu->arch.gprs[rt] << 16); |
| 1789 | break; |
| 1790 | case 3: |
| 1791 | *(u64 *)data = ((*(u64 *)data) & 0xffffff) | |
| 1792 | (vcpu->arch.gprs[rt] << 24); |
| 1793 | break; |
| 1794 | case 4: |
| 1795 | *(u64 *)data = ((*(u64 *)data) & 0xffffffff) | |
| 1796 | (vcpu->arch.gprs[rt] << 32); |
| 1797 | break; |
| 1798 | case 5: |
| 1799 | *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) | |
| 1800 | (vcpu->arch.gprs[rt] << 40); |
| 1801 | break; |
| 1802 | case 6: |
| 1803 | *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) | |
| 1804 | (vcpu->arch.gprs[rt] << 48); |
| 1805 | break; |
| 1806 | case 7: |
| 1807 | *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) | |
| 1808 | (vcpu->arch.gprs[rt] << 56); |
| 1809 | break; |
| 1810 | default: |
| 1811 | break; |
| 1812 | } |
| 1813 | |
| 1814 | kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n", |
| 1815 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1816 | vcpu->arch.gprs[rt], *(u64 *)data); |
| 1817 | break; |
| 1818 | #endif |
| 1819 | |
| 1820 | #ifdef CONFIG_CPU_LOONGSON64 |
| 1821 | case sdc2_op: |
| 1822 | rt = inst.loongson3_lsdc2_format.rt; |
| 1823 | switch (inst.loongson3_lsdc2_format.opcode1) { |
| 1824 | /* |
| 1825 | * Loongson-3 overridden sdc2 instructions. |
| 1826 | * opcode1 instruction |
| 1827 | * 0x0 gssbx: store 1 bytes from GPR |
| 1828 | * 0x1 gsshx: store 2 bytes from GPR |
| 1829 | * 0x2 gsswx: store 4 bytes from GPR |
| 1830 | * 0x3 gssdx: store 8 bytes from GPR |
| 1831 | */ |
| 1832 | case 0x0: |
| 1833 | run->mmio.len = 1; |
| 1834 | *(u8 *)data = vcpu->arch.gprs[rt]; |
| 1835 | |
| 1836 | kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1837 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1838 | vcpu->arch.gprs[rt], *(u8 *)data); |
| 1839 | break; |
| 1840 | case 0x1: |
| 1841 | run->mmio.len = 2; |
| 1842 | *(u16 *)data = vcpu->arch.gprs[rt]; |
| 1843 | |
| 1844 | kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1845 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1846 | vcpu->arch.gprs[rt], *(u16 *)data); |
| 1847 | break; |
| 1848 | case 0x2: |
| 1849 | run->mmio.len = 4; |
| 1850 | *(u32 *)data = vcpu->arch.gprs[rt]; |
| 1851 | |
| 1852 | kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| 1853 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1854 | vcpu->arch.gprs[rt], *(u32 *)data); |
| 1855 | break; |
| 1856 | case 0x3: |
| 1857 | run->mmio.len = 8; |
| 1858 | *(u64 *)data = vcpu->arch.gprs[rt]; |
| 1859 | |
| 1860 | kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n", |
| 1861 | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| 1862 | vcpu->arch.gprs[rt], *(u64 *)data); |
| 1863 | break; |
| 1864 | default: |
| 1865 | kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n", |
| 1866 | inst.word); |
| 1867 | break; |
| 1868 | } |
| 1869 | break; |
| 1870 | #endif |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1871 | default: |
| 1872 | kvm_err("Store not yet supported (inst=0x%08x)\n", |
| 1873 | inst.word); |
| 1874 | goto out_fail; |
| 1875 | } |
| 1876 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1877 | vcpu->mmio_needed = 1; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1878 | run->mmio.is_write = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1879 | vcpu->mmio_is_write = 1; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1880 | |
| 1881 | r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, |
| 1882 | run->mmio.phys_addr, run->mmio.len, data); |
| 1883 | |
| 1884 | if (!r) { |
| 1885 | vcpu->mmio_needed = 0; |
| 1886 | return EMULATE_DONE; |
| 1887 | } |
| 1888 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1889 | return EMULATE_DO_MMIO; |
| 1890 | |
| 1891 | out_fail: |
| 1892 | /* Rollback PC if emulation was unsuccessful */ |
| 1893 | vcpu->arch.pc = curr_pc; |
| 1894 | return EMULATE_FAIL; |
| 1895 | } |
| 1896 | |
| 1897 | enum emulation_result kvm_mips_emulate_load(union mips_instruction inst, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1898 | u32 cause, struct kvm_vcpu *vcpu) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1899 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1900 | struct kvm_run *run = vcpu->run; |
| 1901 | int r; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1902 | enum emulation_result er; |
| 1903 | unsigned long curr_pc; |
| 1904 | u32 op, rt; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1905 | unsigned int imme; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1906 | |
| 1907 | rt = inst.i_format.rt; |
| 1908 | op = inst.i_format.opcode; |
| 1909 | |
| 1910 | /* |
| 1911 | * Find the resume PC now while we have safe and easy access to the |
| 1912 | * prior branch instruction, and save it for |
| 1913 | * kvm_mips_complete_mmio_load() to restore later. |
| 1914 | */ |
| 1915 | curr_pc = vcpu->arch.pc; |
| 1916 | er = update_pc(vcpu, cause); |
| 1917 | if (er == EMULATE_FAIL) |
| 1918 | return er; |
| 1919 | vcpu->arch.io_pc = vcpu->arch.pc; |
| 1920 | vcpu->arch.pc = curr_pc; |
| 1921 | |
| 1922 | vcpu->arch.io_gpr = rt; |
| 1923 | |
| 1924 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1925 | vcpu->arch.host_cp0_badvaddr); |
| 1926 | if (run->mmio.phys_addr == KVM_INVALID_ADDR) |
| 1927 | return EMULATE_FAIL; |
| 1928 | |
| 1929 | vcpu->mmio_needed = 2; /* signed */ |
| 1930 | switch (op) { |
| 1931 | #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) |
| 1932 | case ld_op: |
| 1933 | run->mmio.len = 8; |
| 1934 | break; |
| 1935 | |
| 1936 | case lwu_op: |
| 1937 | vcpu->mmio_needed = 1; /* unsigned */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1938 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1939 | #endif |
| 1940 | case lw_op: |
| 1941 | run->mmio.len = 4; |
| 1942 | break; |
| 1943 | |
| 1944 | case lhu_op: |
| 1945 | vcpu->mmio_needed = 1; /* unsigned */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1946 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1947 | case lh_op: |
| 1948 | run->mmio.len = 2; |
| 1949 | break; |
| 1950 | |
| 1951 | case lbu_op: |
| 1952 | vcpu->mmio_needed = 1; /* unsigned */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1953 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1954 | case lb_op: |
| 1955 | run->mmio.len = 1; |
| 1956 | break; |
| 1957 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1958 | case lwl_op: |
| 1959 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1960 | vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| 1961 | |
| 1962 | run->mmio.len = 4; |
| 1963 | imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| 1964 | switch (imme) { |
| 1965 | case 0: |
| 1966 | vcpu->mmio_needed = 3; /* 1 byte */ |
| 1967 | break; |
| 1968 | case 1: |
| 1969 | vcpu->mmio_needed = 4; /* 2 bytes */ |
| 1970 | break; |
| 1971 | case 2: |
| 1972 | vcpu->mmio_needed = 5; /* 3 bytes */ |
| 1973 | break; |
| 1974 | case 3: |
| 1975 | vcpu->mmio_needed = 6; /* 4 bytes */ |
| 1976 | break; |
| 1977 | default: |
| 1978 | break; |
| 1979 | } |
| 1980 | break; |
| 1981 | |
| 1982 | case lwr_op: |
| 1983 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 1984 | vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| 1985 | |
| 1986 | run->mmio.len = 4; |
| 1987 | imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| 1988 | switch (imme) { |
| 1989 | case 0: |
| 1990 | vcpu->mmio_needed = 7; /* 4 bytes */ |
| 1991 | break; |
| 1992 | case 1: |
| 1993 | vcpu->mmio_needed = 8; /* 3 bytes */ |
| 1994 | break; |
| 1995 | case 2: |
| 1996 | vcpu->mmio_needed = 9; /* 2 bytes */ |
| 1997 | break; |
| 1998 | case 3: |
| 1999 | vcpu->mmio_needed = 10; /* 1 byte */ |
| 2000 | break; |
| 2001 | default: |
| 2002 | break; |
| 2003 | } |
| 2004 | break; |
| 2005 | |
| 2006 | #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) |
| 2007 | case ldl_op: |
| 2008 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 2009 | vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| 2010 | |
| 2011 | run->mmio.len = 8; |
| 2012 | imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| 2013 | switch (imme) { |
| 2014 | case 0: |
| 2015 | vcpu->mmio_needed = 11; /* 1 byte */ |
| 2016 | break; |
| 2017 | case 1: |
| 2018 | vcpu->mmio_needed = 12; /* 2 bytes */ |
| 2019 | break; |
| 2020 | case 2: |
| 2021 | vcpu->mmio_needed = 13; /* 3 bytes */ |
| 2022 | break; |
| 2023 | case 3: |
| 2024 | vcpu->mmio_needed = 14; /* 4 bytes */ |
| 2025 | break; |
| 2026 | case 4: |
| 2027 | vcpu->mmio_needed = 15; /* 5 bytes */ |
| 2028 | break; |
| 2029 | case 5: |
| 2030 | vcpu->mmio_needed = 16; /* 6 bytes */ |
| 2031 | break; |
| 2032 | case 6: |
| 2033 | vcpu->mmio_needed = 17; /* 7 bytes */ |
| 2034 | break; |
| 2035 | case 7: |
| 2036 | vcpu->mmio_needed = 18; /* 8 bytes */ |
| 2037 | break; |
| 2038 | default: |
| 2039 | break; |
| 2040 | } |
| 2041 | break; |
| 2042 | |
| 2043 | case ldr_op: |
| 2044 | run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| 2045 | vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| 2046 | |
| 2047 | run->mmio.len = 8; |
| 2048 | imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| 2049 | switch (imme) { |
| 2050 | case 0: |
| 2051 | vcpu->mmio_needed = 19; /* 8 bytes */ |
| 2052 | break; |
| 2053 | case 1: |
| 2054 | vcpu->mmio_needed = 20; /* 7 bytes */ |
| 2055 | break; |
| 2056 | case 2: |
| 2057 | vcpu->mmio_needed = 21; /* 6 bytes */ |
| 2058 | break; |
| 2059 | case 3: |
| 2060 | vcpu->mmio_needed = 22; /* 5 bytes */ |
| 2061 | break; |
| 2062 | case 4: |
| 2063 | vcpu->mmio_needed = 23; /* 4 bytes */ |
| 2064 | break; |
| 2065 | case 5: |
| 2066 | vcpu->mmio_needed = 24; /* 3 bytes */ |
| 2067 | break; |
| 2068 | case 6: |
| 2069 | vcpu->mmio_needed = 25; /* 2 bytes */ |
| 2070 | break; |
| 2071 | case 7: |
| 2072 | vcpu->mmio_needed = 26; /* 1 byte */ |
| 2073 | break; |
| 2074 | default: |
| 2075 | break; |
| 2076 | } |
| 2077 | break; |
| 2078 | #endif |
| 2079 | |
| 2080 | #ifdef CONFIG_CPU_LOONGSON64 |
| 2081 | case ldc2_op: |
| 2082 | rt = inst.loongson3_lsdc2_format.rt; |
| 2083 | switch (inst.loongson3_lsdc2_format.opcode1) { |
| 2084 | /* |
| 2085 | * Loongson-3 overridden ldc2 instructions. |
| 2086 | * opcode1 instruction |
| 2087 | * 0x0 gslbx: store 1 bytes from GPR |
| 2088 | * 0x1 gslhx: store 2 bytes from GPR |
| 2089 | * 0x2 gslwx: store 4 bytes from GPR |
| 2090 | * 0x3 gsldx: store 8 bytes from GPR |
| 2091 | */ |
| 2092 | case 0x0: |
| 2093 | run->mmio.len = 1; |
| 2094 | vcpu->mmio_needed = 27; /* signed */ |
| 2095 | break; |
| 2096 | case 0x1: |
| 2097 | run->mmio.len = 2; |
| 2098 | vcpu->mmio_needed = 28; /* signed */ |
| 2099 | break; |
| 2100 | case 0x2: |
| 2101 | run->mmio.len = 4; |
| 2102 | vcpu->mmio_needed = 29; /* signed */ |
| 2103 | break; |
| 2104 | case 0x3: |
| 2105 | run->mmio.len = 8; |
| 2106 | vcpu->mmio_needed = 30; /* signed */ |
| 2107 | break; |
| 2108 | default: |
| 2109 | kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n", |
| 2110 | inst.word); |
| 2111 | break; |
| 2112 | } |
| 2113 | break; |
| 2114 | #endif |
| 2115 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2116 | default: |
| 2117 | kvm_err("Load not yet supported (inst=0x%08x)\n", |
| 2118 | inst.word); |
| 2119 | vcpu->mmio_needed = 0; |
| 2120 | return EMULATE_FAIL; |
| 2121 | } |
| 2122 | |
| 2123 | run->mmio.is_write = 0; |
| 2124 | vcpu->mmio_is_write = 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2125 | |
| 2126 | r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, |
| 2127 | run->mmio.phys_addr, run->mmio.len, run->mmio.data); |
| 2128 | |
| 2129 | if (!r) { |
| 2130 | kvm_mips_complete_mmio_load(vcpu); |
| 2131 | vcpu->mmio_needed = 0; |
| 2132 | return EMULATE_DONE; |
| 2133 | } |
| 2134 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2135 | return EMULATE_DO_MMIO; |
| 2136 | } |
| 2137 | |
| 2138 | #ifndef CONFIG_KVM_MIPS_VZ |
| 2139 | static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long), |
| 2140 | unsigned long curr_pc, |
| 2141 | unsigned long addr, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2142 | struct kvm_vcpu *vcpu, |
| 2143 | u32 cause) |
| 2144 | { |
| 2145 | int err; |
| 2146 | |
| 2147 | for (;;) { |
| 2148 | /* Carefully attempt the cache operation */ |
| 2149 | kvm_trap_emul_gva_lockless_begin(vcpu); |
| 2150 | err = fn(addr); |
| 2151 | kvm_trap_emul_gva_lockless_end(vcpu); |
| 2152 | |
| 2153 | if (likely(!err)) |
| 2154 | return EMULATE_DONE; |
| 2155 | |
| 2156 | /* |
| 2157 | * Try to handle the fault and retry, maybe we just raced with a |
| 2158 | * GVA invalidation. |
| 2159 | */ |
| 2160 | switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) { |
| 2161 | case KVM_MIPS_GVA: |
| 2162 | case KVM_MIPS_GPA: |
| 2163 | /* bad virtual or physical address */ |
| 2164 | return EMULATE_FAIL; |
| 2165 | case KVM_MIPS_TLB: |
| 2166 | /* no matching guest TLB */ |
| 2167 | vcpu->arch.host_cp0_badvaddr = addr; |
| 2168 | vcpu->arch.pc = curr_pc; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2169 | kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2170 | return EMULATE_EXCEPT; |
| 2171 | case KVM_MIPS_TLBINV: |
| 2172 | /* invalid matching guest TLB */ |
| 2173 | vcpu->arch.host_cp0_badvaddr = addr; |
| 2174 | vcpu->arch.pc = curr_pc; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2175 | kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2176 | return EMULATE_EXCEPT; |
| 2177 | default: |
| 2178 | break; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2179 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2180 | } |
| 2181 | } |
| 2182 | |
| 2183 | enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst, |
| 2184 | u32 *opc, u32 cause, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2185 | struct kvm_vcpu *vcpu) |
| 2186 | { |
| 2187 | enum emulation_result er = EMULATE_DONE; |
| 2188 | u32 cache, op_inst, op, base; |
| 2189 | s16 offset; |
| 2190 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2191 | unsigned long va; |
| 2192 | unsigned long curr_pc; |
| 2193 | |
| 2194 | /* |
| 2195 | * Update PC and hold onto current PC in case there is |
| 2196 | * an error and we want to rollback the PC |
| 2197 | */ |
| 2198 | curr_pc = vcpu->arch.pc; |
| 2199 | er = update_pc(vcpu, cause); |
| 2200 | if (er == EMULATE_FAIL) |
| 2201 | return er; |
| 2202 | |
| 2203 | base = inst.i_format.rs; |
| 2204 | op_inst = inst.i_format.rt; |
| 2205 | if (cpu_has_mips_r6) |
| 2206 | offset = inst.spec3_format.simmediate; |
| 2207 | else |
| 2208 | offset = inst.i_format.simmediate; |
| 2209 | cache = op_inst & CacheOp_Cache; |
| 2210 | op = op_inst & CacheOp_Op; |
| 2211 | |
| 2212 | va = arch->gprs[base] + offset; |
| 2213 | |
| 2214 | kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| 2215 | cache, op, base, arch->gprs[base], offset); |
| 2216 | |
| 2217 | /* |
| 2218 | * Treat INDEX_INV as a nop, basically issued by Linux on startup to |
| 2219 | * invalidate the caches entirely by stepping through all the |
| 2220 | * ways/indexes |
| 2221 | */ |
| 2222 | if (op == Index_Writeback_Inv) { |
| 2223 | kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| 2224 | vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base, |
| 2225 | arch->gprs[base], offset); |
| 2226 | |
| 2227 | if (cache == Cache_D) { |
| 2228 | #ifdef CONFIG_CPU_R4K_CACHE_TLB |
| 2229 | r4k_blast_dcache(); |
| 2230 | #else |
| 2231 | switch (boot_cpu_type()) { |
| 2232 | case CPU_CAVIUM_OCTEON3: |
| 2233 | /* locally flush icache */ |
| 2234 | local_flush_icache_range(0, 0); |
| 2235 | break; |
| 2236 | default: |
| 2237 | __flush_cache_all(); |
| 2238 | break; |
| 2239 | } |
| 2240 | #endif |
| 2241 | } else if (cache == Cache_I) { |
| 2242 | #ifdef CONFIG_CPU_R4K_CACHE_TLB |
| 2243 | r4k_blast_icache(); |
| 2244 | #else |
| 2245 | switch (boot_cpu_type()) { |
| 2246 | case CPU_CAVIUM_OCTEON3: |
| 2247 | /* locally flush icache */ |
| 2248 | local_flush_icache_range(0, 0); |
| 2249 | break; |
| 2250 | default: |
| 2251 | flush_icache_all(); |
| 2252 | break; |
| 2253 | } |
| 2254 | #endif |
| 2255 | } else { |
| 2256 | kvm_err("%s: unsupported CACHE INDEX operation\n", |
| 2257 | __func__); |
| 2258 | return EMULATE_FAIL; |
| 2259 | } |
| 2260 | |
| 2261 | #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| 2262 | kvm_mips_trans_cache_index(inst, opc, vcpu); |
| 2263 | #endif |
| 2264 | goto done; |
| 2265 | } |
| 2266 | |
| 2267 | /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */ |
| 2268 | if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) { |
| 2269 | /* |
| 2270 | * Perform the dcache part of icache synchronisation on the |
| 2271 | * guest's behalf. |
| 2272 | */ |
| 2273 | er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2274 | curr_pc, va, vcpu, cause); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2275 | if (er != EMULATE_DONE) |
| 2276 | goto done; |
| 2277 | #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| 2278 | /* |
| 2279 | * Replace the CACHE instruction, with a SYNCI, not the same, |
| 2280 | * but avoids a trap |
| 2281 | */ |
| 2282 | kvm_mips_trans_cache_va(inst, opc, vcpu); |
| 2283 | #endif |
| 2284 | } else if (op_inst == Hit_Invalidate_I) { |
| 2285 | /* Perform the icache synchronisation on the guest's behalf */ |
| 2286 | er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2287 | curr_pc, va, vcpu, cause); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2288 | if (er != EMULATE_DONE) |
| 2289 | goto done; |
| 2290 | er = kvm_mips_guest_cache_op(protected_flush_icache_line, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2291 | curr_pc, va, vcpu, cause); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2292 | if (er != EMULATE_DONE) |
| 2293 | goto done; |
| 2294 | |
| 2295 | #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| 2296 | /* Replace the CACHE instruction, with a SYNCI */ |
| 2297 | kvm_mips_trans_cache_va(inst, opc, vcpu); |
| 2298 | #endif |
| 2299 | } else { |
| 2300 | kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| 2301 | cache, op, base, arch->gprs[base], offset); |
| 2302 | er = EMULATE_FAIL; |
| 2303 | } |
| 2304 | |
| 2305 | done: |
| 2306 | /* Rollback PC only if emulation was unsuccessful */ |
| 2307 | if (er == EMULATE_FAIL) |
| 2308 | vcpu->arch.pc = curr_pc; |
| 2309 | /* Guest exception needs guest to resume */ |
| 2310 | if (er == EMULATE_EXCEPT) |
| 2311 | er = EMULATE_DONE; |
| 2312 | |
| 2313 | return er; |
| 2314 | } |
| 2315 | |
| 2316 | enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2317 | struct kvm_vcpu *vcpu) |
| 2318 | { |
| 2319 | union mips_instruction inst; |
| 2320 | enum emulation_result er = EMULATE_DONE; |
| 2321 | int err; |
| 2322 | |
| 2323 | /* Fetch the instruction. */ |
| 2324 | if (cause & CAUSEF_BD) |
| 2325 | opc += 1; |
| 2326 | err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| 2327 | if (err) |
| 2328 | return EMULATE_FAIL; |
| 2329 | |
| 2330 | switch (inst.r_format.opcode) { |
| 2331 | case cop0_op: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2332 | er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2333 | break; |
| 2334 | |
| 2335 | #ifndef CONFIG_CPU_MIPSR6 |
| 2336 | case cache_op: |
| 2337 | ++vcpu->stat.cache_exits; |
| 2338 | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2339 | er = kvm_mips_emulate_cache(inst, opc, cause, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2340 | break; |
| 2341 | #else |
| 2342 | case spec3_op: |
| 2343 | switch (inst.spec3_format.func) { |
| 2344 | case cache6_op: |
| 2345 | ++vcpu->stat.cache_exits; |
| 2346 | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2347 | er = kvm_mips_emulate_cache(inst, opc, cause, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2348 | vcpu); |
| 2349 | break; |
| 2350 | default: |
| 2351 | goto unknown; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2352 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2353 | break; |
| 2354 | unknown: |
| 2355 | #endif |
| 2356 | |
| 2357 | default: |
| 2358 | kvm_err("Instruction emulation not supported (%p/%#x)\n", opc, |
| 2359 | inst.word); |
| 2360 | kvm_arch_vcpu_dump_regs(vcpu); |
| 2361 | er = EMULATE_FAIL; |
| 2362 | break; |
| 2363 | } |
| 2364 | |
| 2365 | return er; |
| 2366 | } |
| 2367 | #endif /* CONFIG_KVM_MIPS_VZ */ |
| 2368 | |
| 2369 | /** |
| 2370 | * kvm_mips_guest_exception_base() - Find guest exception vector base address. |
| 2371 | * |
| 2372 | * Returns: The base address of the current guest exception vector, taking |
| 2373 | * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account. |
| 2374 | */ |
| 2375 | long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu) |
| 2376 | { |
| 2377 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2378 | |
| 2379 | if (kvm_read_c0_guest_status(cop0) & ST0_BEV) |
| 2380 | return KVM_GUEST_CKSEG1ADDR(0x1fc00200); |
| 2381 | else |
| 2382 | return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE; |
| 2383 | } |
| 2384 | |
| 2385 | enum emulation_result kvm_mips_emulate_syscall(u32 cause, |
| 2386 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2387 | struct kvm_vcpu *vcpu) |
| 2388 | { |
| 2389 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2390 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2391 | enum emulation_result er = EMULATE_DONE; |
| 2392 | |
| 2393 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2394 | /* save old pc */ |
| 2395 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2396 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2397 | |
| 2398 | if (cause & CAUSEF_BD) |
| 2399 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2400 | else |
| 2401 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2402 | |
| 2403 | kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc); |
| 2404 | |
| 2405 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2406 | (EXCCODE_SYS << CAUSEB_EXCCODE)); |
| 2407 | |
| 2408 | /* Set PC to the exception entry point */ |
| 2409 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2410 | |
| 2411 | } else { |
| 2412 | kvm_err("Trying to deliver SYSCALL when EXL is already set\n"); |
| 2413 | er = EMULATE_FAIL; |
| 2414 | } |
| 2415 | |
| 2416 | return er; |
| 2417 | } |
| 2418 | |
| 2419 | enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause, |
| 2420 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2421 | struct kvm_vcpu *vcpu) |
| 2422 | { |
| 2423 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2424 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2425 | unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) | |
| 2426 | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); |
| 2427 | |
| 2428 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2429 | /* save old pc */ |
| 2430 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2431 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2432 | |
| 2433 | if (cause & CAUSEF_BD) |
| 2434 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2435 | else |
| 2436 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2437 | |
| 2438 | kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n", |
| 2439 | arch->pc); |
| 2440 | |
| 2441 | /* set pc to the exception entry point */ |
| 2442 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; |
| 2443 | |
| 2444 | } else { |
| 2445 | kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", |
| 2446 | arch->pc); |
| 2447 | |
| 2448 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2449 | } |
| 2450 | |
| 2451 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2452 | (EXCCODE_TLBL << CAUSEB_EXCCODE)); |
| 2453 | |
| 2454 | /* setup badvaddr, context and entryhi registers for the guest */ |
| 2455 | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| 2456 | /* XXXKYMA: is the context register used by linux??? */ |
| 2457 | kvm_write_c0_guest_entryhi(cop0, entryhi); |
| 2458 | |
| 2459 | return EMULATE_DONE; |
| 2460 | } |
| 2461 | |
| 2462 | enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause, |
| 2463 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2464 | struct kvm_vcpu *vcpu) |
| 2465 | { |
| 2466 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2467 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2468 | unsigned long entryhi = |
| 2469 | (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| 2470 | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); |
| 2471 | |
| 2472 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2473 | /* save old pc */ |
| 2474 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2475 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2476 | |
| 2477 | if (cause & CAUSEF_BD) |
| 2478 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2479 | else |
| 2480 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2481 | |
| 2482 | kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n", |
| 2483 | arch->pc); |
| 2484 | } else { |
| 2485 | kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", |
| 2486 | arch->pc); |
| 2487 | } |
| 2488 | |
| 2489 | /* set pc to the exception entry point */ |
| 2490 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2491 | |
| 2492 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2493 | (EXCCODE_TLBL << CAUSEB_EXCCODE)); |
| 2494 | |
| 2495 | /* setup badvaddr, context and entryhi registers for the guest */ |
| 2496 | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| 2497 | /* XXXKYMA: is the context register used by linux??? */ |
| 2498 | kvm_write_c0_guest_entryhi(cop0, entryhi); |
| 2499 | |
| 2500 | return EMULATE_DONE; |
| 2501 | } |
| 2502 | |
| 2503 | enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause, |
| 2504 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2505 | struct kvm_vcpu *vcpu) |
| 2506 | { |
| 2507 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2508 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2509 | unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| 2510 | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); |
| 2511 | |
| 2512 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2513 | /* save old pc */ |
| 2514 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2515 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2516 | |
| 2517 | if (cause & CAUSEF_BD) |
| 2518 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2519 | else |
| 2520 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2521 | |
| 2522 | kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", |
| 2523 | arch->pc); |
| 2524 | |
| 2525 | /* Set PC to the exception entry point */ |
| 2526 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; |
| 2527 | } else { |
| 2528 | kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", |
| 2529 | arch->pc); |
| 2530 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2531 | } |
| 2532 | |
| 2533 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2534 | (EXCCODE_TLBS << CAUSEB_EXCCODE)); |
| 2535 | |
| 2536 | /* setup badvaddr, context and entryhi registers for the guest */ |
| 2537 | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| 2538 | /* XXXKYMA: is the context register used by linux??? */ |
| 2539 | kvm_write_c0_guest_entryhi(cop0, entryhi); |
| 2540 | |
| 2541 | return EMULATE_DONE; |
| 2542 | } |
| 2543 | |
| 2544 | enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause, |
| 2545 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2546 | struct kvm_vcpu *vcpu) |
| 2547 | { |
| 2548 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2549 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2550 | unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| 2551 | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); |
| 2552 | |
| 2553 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2554 | /* save old pc */ |
| 2555 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2556 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2557 | |
| 2558 | if (cause & CAUSEF_BD) |
| 2559 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2560 | else |
| 2561 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2562 | |
| 2563 | kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", |
| 2564 | arch->pc); |
| 2565 | } else { |
| 2566 | kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", |
| 2567 | arch->pc); |
| 2568 | } |
| 2569 | |
| 2570 | /* Set PC to the exception entry point */ |
| 2571 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2572 | |
| 2573 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2574 | (EXCCODE_TLBS << CAUSEB_EXCCODE)); |
| 2575 | |
| 2576 | /* setup badvaddr, context and entryhi registers for the guest */ |
| 2577 | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| 2578 | /* XXXKYMA: is the context register used by linux??? */ |
| 2579 | kvm_write_c0_guest_entryhi(cop0, entryhi); |
| 2580 | |
| 2581 | return EMULATE_DONE; |
| 2582 | } |
| 2583 | |
| 2584 | enum emulation_result kvm_mips_emulate_tlbmod(u32 cause, |
| 2585 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2586 | struct kvm_vcpu *vcpu) |
| 2587 | { |
| 2588 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2589 | unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| 2590 | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); |
| 2591 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2592 | |
| 2593 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2594 | /* save old pc */ |
| 2595 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2596 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2597 | |
| 2598 | if (cause & CAUSEF_BD) |
| 2599 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2600 | else |
| 2601 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2602 | |
| 2603 | kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n", |
| 2604 | arch->pc); |
| 2605 | } else { |
| 2606 | kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n", |
| 2607 | arch->pc); |
| 2608 | } |
| 2609 | |
| 2610 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2611 | |
| 2612 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2613 | (EXCCODE_MOD << CAUSEB_EXCCODE)); |
| 2614 | |
| 2615 | /* setup badvaddr, context and entryhi registers for the guest */ |
| 2616 | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| 2617 | /* XXXKYMA: is the context register used by linux??? */ |
| 2618 | kvm_write_c0_guest_entryhi(cop0, entryhi); |
| 2619 | |
| 2620 | return EMULATE_DONE; |
| 2621 | } |
| 2622 | |
| 2623 | enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause, |
| 2624 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2625 | struct kvm_vcpu *vcpu) |
| 2626 | { |
| 2627 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2628 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2629 | |
| 2630 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2631 | /* save old pc */ |
| 2632 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2633 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2634 | |
| 2635 | if (cause & CAUSEF_BD) |
| 2636 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2637 | else |
| 2638 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2639 | |
| 2640 | } |
| 2641 | |
| 2642 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2643 | |
| 2644 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2645 | (EXCCODE_CPU << CAUSEB_EXCCODE)); |
| 2646 | kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE)); |
| 2647 | |
| 2648 | return EMULATE_DONE; |
| 2649 | } |
| 2650 | |
| 2651 | enum emulation_result kvm_mips_emulate_ri_exc(u32 cause, |
| 2652 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2653 | struct kvm_vcpu *vcpu) |
| 2654 | { |
| 2655 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2656 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2657 | enum emulation_result er = EMULATE_DONE; |
| 2658 | |
| 2659 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2660 | /* save old pc */ |
| 2661 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2662 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2663 | |
| 2664 | if (cause & CAUSEF_BD) |
| 2665 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2666 | else |
| 2667 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2668 | |
| 2669 | kvm_debug("Delivering RI @ pc %#lx\n", arch->pc); |
| 2670 | |
| 2671 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2672 | (EXCCODE_RI << CAUSEB_EXCCODE)); |
| 2673 | |
| 2674 | /* Set PC to the exception entry point */ |
| 2675 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2676 | |
| 2677 | } else { |
| 2678 | kvm_err("Trying to deliver RI when EXL is already set\n"); |
| 2679 | er = EMULATE_FAIL; |
| 2680 | } |
| 2681 | |
| 2682 | return er; |
| 2683 | } |
| 2684 | |
| 2685 | enum emulation_result kvm_mips_emulate_bp_exc(u32 cause, |
| 2686 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2687 | struct kvm_vcpu *vcpu) |
| 2688 | { |
| 2689 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2690 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2691 | enum emulation_result er = EMULATE_DONE; |
| 2692 | |
| 2693 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2694 | /* save old pc */ |
| 2695 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2696 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2697 | |
| 2698 | if (cause & CAUSEF_BD) |
| 2699 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2700 | else |
| 2701 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2702 | |
| 2703 | kvm_debug("Delivering BP @ pc %#lx\n", arch->pc); |
| 2704 | |
| 2705 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2706 | (EXCCODE_BP << CAUSEB_EXCCODE)); |
| 2707 | |
| 2708 | /* Set PC to the exception entry point */ |
| 2709 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2710 | |
| 2711 | } else { |
| 2712 | kvm_err("Trying to deliver BP when EXL is already set\n"); |
| 2713 | er = EMULATE_FAIL; |
| 2714 | } |
| 2715 | |
| 2716 | return er; |
| 2717 | } |
| 2718 | |
| 2719 | enum emulation_result kvm_mips_emulate_trap_exc(u32 cause, |
| 2720 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2721 | struct kvm_vcpu *vcpu) |
| 2722 | { |
| 2723 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2724 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2725 | enum emulation_result er = EMULATE_DONE; |
| 2726 | |
| 2727 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2728 | /* save old pc */ |
| 2729 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2730 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2731 | |
| 2732 | if (cause & CAUSEF_BD) |
| 2733 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2734 | else |
| 2735 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2736 | |
| 2737 | kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc); |
| 2738 | |
| 2739 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2740 | (EXCCODE_TR << CAUSEB_EXCCODE)); |
| 2741 | |
| 2742 | /* Set PC to the exception entry point */ |
| 2743 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2744 | |
| 2745 | } else { |
| 2746 | kvm_err("Trying to deliver TRAP when EXL is already set\n"); |
| 2747 | er = EMULATE_FAIL; |
| 2748 | } |
| 2749 | |
| 2750 | return er; |
| 2751 | } |
| 2752 | |
| 2753 | enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause, |
| 2754 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2755 | struct kvm_vcpu *vcpu) |
| 2756 | { |
| 2757 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2758 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2759 | enum emulation_result er = EMULATE_DONE; |
| 2760 | |
| 2761 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2762 | /* save old pc */ |
| 2763 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2764 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2765 | |
| 2766 | if (cause & CAUSEF_BD) |
| 2767 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2768 | else |
| 2769 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2770 | |
| 2771 | kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc); |
| 2772 | |
| 2773 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2774 | (EXCCODE_MSAFPE << CAUSEB_EXCCODE)); |
| 2775 | |
| 2776 | /* Set PC to the exception entry point */ |
| 2777 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2778 | |
| 2779 | } else { |
| 2780 | kvm_err("Trying to deliver MSAFPE when EXL is already set\n"); |
| 2781 | er = EMULATE_FAIL; |
| 2782 | } |
| 2783 | |
| 2784 | return er; |
| 2785 | } |
| 2786 | |
| 2787 | enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause, |
| 2788 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2789 | struct kvm_vcpu *vcpu) |
| 2790 | { |
| 2791 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2792 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2793 | enum emulation_result er = EMULATE_DONE; |
| 2794 | |
| 2795 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2796 | /* save old pc */ |
| 2797 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2798 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2799 | |
| 2800 | if (cause & CAUSEF_BD) |
| 2801 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2802 | else |
| 2803 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2804 | |
| 2805 | kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc); |
| 2806 | |
| 2807 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2808 | (EXCCODE_FPE << CAUSEB_EXCCODE)); |
| 2809 | |
| 2810 | /* Set PC to the exception entry point */ |
| 2811 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2812 | |
| 2813 | } else { |
| 2814 | kvm_err("Trying to deliver FPE when EXL is already set\n"); |
| 2815 | er = EMULATE_FAIL; |
| 2816 | } |
| 2817 | |
| 2818 | return er; |
| 2819 | } |
| 2820 | |
| 2821 | enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause, |
| 2822 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2823 | struct kvm_vcpu *vcpu) |
| 2824 | { |
| 2825 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2826 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2827 | enum emulation_result er = EMULATE_DONE; |
| 2828 | |
| 2829 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 2830 | /* save old pc */ |
| 2831 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 2832 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 2833 | |
| 2834 | if (cause & CAUSEF_BD) |
| 2835 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 2836 | else |
| 2837 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 2838 | |
| 2839 | kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc); |
| 2840 | |
| 2841 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 2842 | (EXCCODE_MSADIS << CAUSEB_EXCCODE)); |
| 2843 | |
| 2844 | /* Set PC to the exception entry point */ |
| 2845 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 2846 | |
| 2847 | } else { |
| 2848 | kvm_err("Trying to deliver MSADIS when EXL is already set\n"); |
| 2849 | er = EMULATE_FAIL; |
| 2850 | } |
| 2851 | |
| 2852 | return er; |
| 2853 | } |
| 2854 | |
| 2855 | enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2856 | struct kvm_vcpu *vcpu) |
| 2857 | { |
| 2858 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2859 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 2860 | enum emulation_result er = EMULATE_DONE; |
| 2861 | unsigned long curr_pc; |
| 2862 | union mips_instruction inst; |
| 2863 | int err; |
| 2864 | |
| 2865 | /* |
| 2866 | * Update PC and hold onto current PC in case there is |
| 2867 | * an error and we want to rollback the PC |
| 2868 | */ |
| 2869 | curr_pc = vcpu->arch.pc; |
| 2870 | er = update_pc(vcpu, cause); |
| 2871 | if (er == EMULATE_FAIL) |
| 2872 | return er; |
| 2873 | |
| 2874 | /* Fetch the instruction. */ |
| 2875 | if (cause & CAUSEF_BD) |
| 2876 | opc += 1; |
| 2877 | err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| 2878 | if (err) { |
| 2879 | kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err); |
| 2880 | return EMULATE_FAIL; |
| 2881 | } |
| 2882 | |
| 2883 | if (inst.r_format.opcode == spec3_op && |
| 2884 | inst.r_format.func == rdhwr_op && |
| 2885 | inst.r_format.rs == 0 && |
| 2886 | (inst.r_format.re >> 3) == 0) { |
| 2887 | int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); |
| 2888 | int rd = inst.r_format.rd; |
| 2889 | int rt = inst.r_format.rt; |
| 2890 | int sel = inst.r_format.re & 0x7; |
| 2891 | |
| 2892 | /* If usermode, check RDHWR rd is allowed by guest HWREna */ |
| 2893 | if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) { |
| 2894 | kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n", |
| 2895 | rd, opc); |
| 2896 | goto emulate_ri; |
| 2897 | } |
| 2898 | switch (rd) { |
| 2899 | case MIPS_HWR_CPUNUM: /* CPU number */ |
| 2900 | arch->gprs[rt] = vcpu->vcpu_id; |
| 2901 | break; |
| 2902 | case MIPS_HWR_SYNCISTEP: /* SYNCI length */ |
| 2903 | arch->gprs[rt] = min(current_cpu_data.dcache.linesz, |
| 2904 | current_cpu_data.icache.linesz); |
| 2905 | break; |
| 2906 | case MIPS_HWR_CC: /* Read count register */ |
| 2907 | arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu); |
| 2908 | break; |
| 2909 | case MIPS_HWR_CCRES: /* Count register resolution */ |
| 2910 | switch (current_cpu_data.cputype) { |
| 2911 | case CPU_20KC: |
| 2912 | case CPU_25KF: |
| 2913 | arch->gprs[rt] = 1; |
| 2914 | break; |
| 2915 | default: |
| 2916 | arch->gprs[rt] = 2; |
| 2917 | } |
| 2918 | break; |
| 2919 | case MIPS_HWR_ULR: /* Read UserLocal register */ |
| 2920 | arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0); |
| 2921 | break; |
| 2922 | |
| 2923 | default: |
| 2924 | kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc); |
| 2925 | goto emulate_ri; |
| 2926 | } |
| 2927 | |
| 2928 | trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel), |
| 2929 | vcpu->arch.gprs[rt]); |
| 2930 | } else { |
| 2931 | kvm_debug("Emulate RI not supported @ %p: %#x\n", |
| 2932 | opc, inst.word); |
| 2933 | goto emulate_ri; |
| 2934 | } |
| 2935 | |
| 2936 | return EMULATE_DONE; |
| 2937 | |
| 2938 | emulate_ri: |
| 2939 | /* |
| 2940 | * Rollback PC (if in branch delay slot then the PC already points to |
| 2941 | * branch target), and pass the RI exception to the guest OS. |
| 2942 | */ |
| 2943 | vcpu->arch.pc = curr_pc; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2944 | return kvm_mips_emulate_ri_exc(cause, opc, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2945 | } |
| 2946 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2947 | enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2948 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2949 | struct kvm_run *run = vcpu->run; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2950 | unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; |
| 2951 | enum emulation_result er = EMULATE_DONE; |
| 2952 | |
| 2953 | if (run->mmio.len > sizeof(*gpr)) { |
| 2954 | kvm_err("Bad MMIO length: %d", run->mmio.len); |
| 2955 | er = EMULATE_FAIL; |
| 2956 | goto done; |
| 2957 | } |
| 2958 | |
| 2959 | /* Restore saved resume PC */ |
| 2960 | vcpu->arch.pc = vcpu->arch.io_pc; |
| 2961 | |
| 2962 | switch (run->mmio.len) { |
| 2963 | case 8: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2964 | switch (vcpu->mmio_needed) { |
| 2965 | case 11: |
| 2966 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) | |
| 2967 | (((*(s64 *)run->mmio.data) & 0xff) << 56); |
| 2968 | break; |
| 2969 | case 12: |
| 2970 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) | |
| 2971 | (((*(s64 *)run->mmio.data) & 0xffff) << 48); |
| 2972 | break; |
| 2973 | case 13: |
| 2974 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) | |
| 2975 | (((*(s64 *)run->mmio.data) & 0xffffff) << 40); |
| 2976 | break; |
| 2977 | case 14: |
| 2978 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) | |
| 2979 | (((*(s64 *)run->mmio.data) & 0xffffffff) << 32); |
| 2980 | break; |
| 2981 | case 15: |
| 2982 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | |
| 2983 | (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24); |
| 2984 | break; |
| 2985 | case 16: |
| 2986 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | |
| 2987 | (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16); |
| 2988 | break; |
| 2989 | case 17: |
| 2990 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | |
| 2991 | (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8); |
| 2992 | break; |
| 2993 | case 18: |
| 2994 | case 19: |
| 2995 | *gpr = *(s64 *)run->mmio.data; |
| 2996 | break; |
| 2997 | case 20: |
| 2998 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) | |
| 2999 | ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff); |
| 3000 | break; |
| 3001 | case 21: |
| 3002 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) | |
| 3003 | ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff); |
| 3004 | break; |
| 3005 | case 22: |
| 3006 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) | |
| 3007 | ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff); |
| 3008 | break; |
| 3009 | case 23: |
| 3010 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) | |
| 3011 | ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff); |
| 3012 | break; |
| 3013 | case 24: |
| 3014 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) | |
| 3015 | ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff); |
| 3016 | break; |
| 3017 | case 25: |
| 3018 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) | |
| 3019 | ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff); |
| 3020 | break; |
| 3021 | case 26: |
| 3022 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) | |
| 3023 | ((((*(s64 *)run->mmio.data)) >> 56) & 0xff); |
| 3024 | break; |
| 3025 | default: |
| 3026 | *gpr = *(s64 *)run->mmio.data; |
| 3027 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3028 | break; |
| 3029 | |
| 3030 | case 4: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3031 | switch (vcpu->mmio_needed) { |
| 3032 | case 1: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3033 | *gpr = *(u32 *)run->mmio.data; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3034 | break; |
| 3035 | case 2: |
| 3036 | *gpr = *(s32 *)run->mmio.data; |
| 3037 | break; |
| 3038 | case 3: |
| 3039 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | |
| 3040 | (((*(s32 *)run->mmio.data) & 0xff) << 24); |
| 3041 | break; |
| 3042 | case 4: |
| 3043 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | |
| 3044 | (((*(s32 *)run->mmio.data) & 0xffff) << 16); |
| 3045 | break; |
| 3046 | case 5: |
| 3047 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | |
| 3048 | (((*(s32 *)run->mmio.data) & 0xffffff) << 8); |
| 3049 | break; |
| 3050 | case 6: |
| 3051 | case 7: |
| 3052 | *gpr = *(s32 *)run->mmio.data; |
| 3053 | break; |
| 3054 | case 8: |
| 3055 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) | |
| 3056 | ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff); |
| 3057 | break; |
| 3058 | case 9: |
| 3059 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) | |
| 3060 | ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff); |
| 3061 | break; |
| 3062 | case 10: |
| 3063 | *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) | |
| 3064 | ((((*(s32 *)run->mmio.data)) >> 24) & 0xff); |
| 3065 | break; |
| 3066 | default: |
| 3067 | *gpr = *(s32 *)run->mmio.data; |
| 3068 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3069 | break; |
| 3070 | |
| 3071 | case 2: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3072 | if (vcpu->mmio_needed == 1) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3073 | *gpr = *(u16 *)run->mmio.data; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3074 | else |
| 3075 | *gpr = *(s16 *)run->mmio.data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3076 | |
| 3077 | break; |
| 3078 | case 1: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3079 | if (vcpu->mmio_needed == 1) |
| 3080 | *gpr = *(u8 *)run->mmio.data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3081 | else |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3082 | *gpr = *(s8 *)run->mmio.data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3083 | break; |
| 3084 | } |
| 3085 | |
| 3086 | done: |
| 3087 | return er; |
| 3088 | } |
| 3089 | |
| 3090 | static enum emulation_result kvm_mips_emulate_exc(u32 cause, |
| 3091 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3092 | struct kvm_vcpu *vcpu) |
| 3093 | { |
| 3094 | u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; |
| 3095 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 3096 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 3097 | enum emulation_result er = EMULATE_DONE; |
| 3098 | |
| 3099 | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| 3100 | /* save old pc */ |
| 3101 | kvm_write_c0_guest_epc(cop0, arch->pc); |
| 3102 | kvm_set_c0_guest_status(cop0, ST0_EXL); |
| 3103 | |
| 3104 | if (cause & CAUSEF_BD) |
| 3105 | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| 3106 | else |
| 3107 | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| 3108 | |
| 3109 | kvm_change_c0_guest_cause(cop0, (0xff), |
| 3110 | (exccode << CAUSEB_EXCCODE)); |
| 3111 | |
| 3112 | /* Set PC to the exception entry point */ |
| 3113 | arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; |
| 3114 | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| 3115 | |
| 3116 | kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n", |
| 3117 | exccode, kvm_read_c0_guest_epc(cop0), |
| 3118 | kvm_read_c0_guest_badvaddr(cop0)); |
| 3119 | } else { |
| 3120 | kvm_err("Trying to deliver EXC when EXL is already set\n"); |
| 3121 | er = EMULATE_FAIL; |
| 3122 | } |
| 3123 | |
| 3124 | return er; |
| 3125 | } |
| 3126 | |
| 3127 | enum emulation_result kvm_mips_check_privilege(u32 cause, |
| 3128 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3129 | struct kvm_vcpu *vcpu) |
| 3130 | { |
| 3131 | enum emulation_result er = EMULATE_DONE; |
| 3132 | u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; |
| 3133 | unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| 3134 | |
| 3135 | int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); |
| 3136 | |
| 3137 | if (usermode) { |
| 3138 | switch (exccode) { |
| 3139 | case EXCCODE_INT: |
| 3140 | case EXCCODE_SYS: |
| 3141 | case EXCCODE_BP: |
| 3142 | case EXCCODE_RI: |
| 3143 | case EXCCODE_TR: |
| 3144 | case EXCCODE_MSAFPE: |
| 3145 | case EXCCODE_FPE: |
| 3146 | case EXCCODE_MSADIS: |
| 3147 | break; |
| 3148 | |
| 3149 | case EXCCODE_CPU: |
| 3150 | if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0) |
| 3151 | er = EMULATE_PRIV_FAIL; |
| 3152 | break; |
| 3153 | |
| 3154 | case EXCCODE_MOD: |
| 3155 | break; |
| 3156 | |
| 3157 | case EXCCODE_TLBL: |
| 3158 | /* |
| 3159 | * We we are accessing Guest kernel space, then send an |
| 3160 | * address error exception to the guest |
| 3161 | */ |
| 3162 | if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { |
| 3163 | kvm_debug("%s: LD MISS @ %#lx\n", __func__, |
| 3164 | badvaddr); |
| 3165 | cause &= ~0xff; |
| 3166 | cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE); |
| 3167 | er = EMULATE_PRIV_FAIL; |
| 3168 | } |
| 3169 | break; |
| 3170 | |
| 3171 | case EXCCODE_TLBS: |
| 3172 | /* |
| 3173 | * We we are accessing Guest kernel space, then send an |
| 3174 | * address error exception to the guest |
| 3175 | */ |
| 3176 | if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { |
| 3177 | kvm_debug("%s: ST MISS @ %#lx\n", __func__, |
| 3178 | badvaddr); |
| 3179 | cause &= ~0xff; |
| 3180 | cause |= (EXCCODE_ADES << CAUSEB_EXCCODE); |
| 3181 | er = EMULATE_PRIV_FAIL; |
| 3182 | } |
| 3183 | break; |
| 3184 | |
| 3185 | case EXCCODE_ADES: |
| 3186 | kvm_debug("%s: address error ST @ %#lx\n", __func__, |
| 3187 | badvaddr); |
| 3188 | if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { |
| 3189 | cause &= ~0xff; |
| 3190 | cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE); |
| 3191 | } |
| 3192 | er = EMULATE_PRIV_FAIL; |
| 3193 | break; |
| 3194 | case EXCCODE_ADEL: |
| 3195 | kvm_debug("%s: address error LD @ %#lx\n", __func__, |
| 3196 | badvaddr); |
| 3197 | if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { |
| 3198 | cause &= ~0xff; |
| 3199 | cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE); |
| 3200 | } |
| 3201 | er = EMULATE_PRIV_FAIL; |
| 3202 | break; |
| 3203 | default: |
| 3204 | er = EMULATE_PRIV_FAIL; |
| 3205 | break; |
| 3206 | } |
| 3207 | } |
| 3208 | |
| 3209 | if (er == EMULATE_PRIV_FAIL) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3210 | kvm_mips_emulate_exc(cause, opc, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3211 | |
| 3212 | return er; |
| 3213 | } |
| 3214 | |
| 3215 | /* |
| 3216 | * User Address (UA) fault, this could happen if |
| 3217 | * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this |
| 3218 | * case we pass on the fault to the guest kernel and let it handle it. |
| 3219 | * (2) TLB entry is present in the Guest TLB but not in the shadow, in this |
| 3220 | * case we inject the TLB from the Guest TLB into the shadow host TLB |
| 3221 | */ |
| 3222 | enum emulation_result kvm_mips_handle_tlbmiss(u32 cause, |
| 3223 | u32 *opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3224 | struct kvm_vcpu *vcpu, |
| 3225 | bool write_fault) |
| 3226 | { |
| 3227 | enum emulation_result er = EMULATE_DONE; |
| 3228 | u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; |
| 3229 | unsigned long va = vcpu->arch.host_cp0_badvaddr; |
| 3230 | int index; |
| 3231 | |
| 3232 | kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n", |
| 3233 | vcpu->arch.host_cp0_badvaddr); |
| 3234 | |
| 3235 | /* |
| 3236 | * KVM would not have got the exception if this entry was valid in the |
| 3237 | * shadow host TLB. Check the Guest TLB, if the entry is not there then |
| 3238 | * send the guest an exception. The guest exc handler should then inject |
| 3239 | * an entry into the guest TLB. |
| 3240 | */ |
| 3241 | index = kvm_mips_guest_tlb_lookup(vcpu, |
| 3242 | (va & VPN2_MASK) | |
| 3243 | (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & |
| 3244 | KVM_ENTRYHI_ASID)); |
| 3245 | if (index < 0) { |
| 3246 | if (exccode == EXCCODE_TLBL) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3247 | er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3248 | } else if (exccode == EXCCODE_TLBS) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3249 | er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3250 | } else { |
| 3251 | kvm_err("%s: invalid exc code: %d\n", __func__, |
| 3252 | exccode); |
| 3253 | er = EMULATE_FAIL; |
| 3254 | } |
| 3255 | } else { |
| 3256 | struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; |
| 3257 | |
| 3258 | /* |
| 3259 | * Check if the entry is valid, if not then setup a TLB invalid |
| 3260 | * exception to the guest |
| 3261 | */ |
| 3262 | if (!TLB_IS_VALID(*tlb, va)) { |
| 3263 | if (exccode == EXCCODE_TLBL) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3264 | er = kvm_mips_emulate_tlbinv_ld(cause, opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3265 | vcpu); |
| 3266 | } else if (exccode == EXCCODE_TLBS) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 3267 | er = kvm_mips_emulate_tlbinv_st(cause, opc, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3268 | vcpu); |
| 3269 | } else { |
| 3270 | kvm_err("%s: invalid exc code: %d\n", __func__, |
| 3271 | exccode); |
| 3272 | er = EMULATE_FAIL; |
| 3273 | } |
| 3274 | } else { |
| 3275 | kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n", |
| 3276 | tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]); |
| 3277 | /* |
| 3278 | * OK we have a Guest TLB entry, now inject it into the |
| 3279 | * shadow host TLB |
| 3280 | */ |
| 3281 | if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va, |
| 3282 | write_fault)) { |
| 3283 | kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n", |
| 3284 | __func__, va, index, vcpu, |
| 3285 | read_c0_entryhi()); |
| 3286 | er = EMULATE_FAIL; |
| 3287 | } |
| 3288 | } |
| 3289 | } |
| 3290 | |
| 3291 | return er; |
| 3292 | } |