David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Kernel Probes (KProbes) |
| 4 | * arch/mips/kernel/kprobes.c |
| 5 | * |
| 6 | * Copyright 2006 Sony Corp. |
| 7 | * Copyright 2010 Cavium Networks |
| 8 | * |
| 9 | * Some portions copied from the powerpc version. |
| 10 | * |
| 11 | * Copyright (C) IBM Corporation, 2002, 2004 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 12 | */ |
| 13 | |
| 14 | #include <linux/kprobes.h> |
| 15 | #include <linux/preempt.h> |
| 16 | #include <linux/uaccess.h> |
| 17 | #include <linux/kdebug.h> |
| 18 | #include <linux/slab.h> |
| 19 | |
| 20 | #include <asm/ptrace.h> |
| 21 | #include <asm/branch.h> |
| 22 | #include <asm/break.h> |
| 23 | |
| 24 | #include "probes-common.h" |
| 25 | |
| 26 | static const union mips_instruction breakpoint_insn = { |
| 27 | .b_format = { |
| 28 | .opcode = spec_op, |
| 29 | .code = BRK_KPROBE_BP, |
| 30 | .func = break_op |
| 31 | } |
| 32 | }; |
| 33 | |
| 34 | static const union mips_instruction breakpoint2_insn = { |
| 35 | .b_format = { |
| 36 | .opcode = spec_op, |
| 37 | .code = BRK_KPROBE_SSTEPBP, |
| 38 | .func = break_op |
| 39 | } |
| 40 | }; |
| 41 | |
| 42 | DEFINE_PER_CPU(struct kprobe *, current_kprobe); |
| 43 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| 44 | |
| 45 | static int __kprobes insn_has_delayslot(union mips_instruction insn) |
| 46 | { |
| 47 | return __insn_has_delay_slot(insn); |
| 48 | } |
| 49 | |
| 50 | /* |
| 51 | * insn_has_ll_or_sc function checks whether instruction is ll or sc |
| 52 | * one; putting breakpoint on top of atomic ll/sc pair is bad idea; |
| 53 | * so we need to prevent it and refuse kprobes insertion for such |
| 54 | * instructions; cannot do much about breakpoint in the middle of |
| 55 | * ll/sc pair; it is upto user to avoid those places |
| 56 | */ |
| 57 | static int __kprobes insn_has_ll_or_sc(union mips_instruction insn) |
| 58 | { |
| 59 | int ret = 0; |
| 60 | |
| 61 | switch (insn.i_format.opcode) { |
| 62 | case ll_op: |
| 63 | case lld_op: |
| 64 | case sc_op: |
| 65 | case scd_op: |
| 66 | ret = 1; |
| 67 | break; |
| 68 | default: |
| 69 | break; |
| 70 | } |
| 71 | return ret; |
| 72 | } |
| 73 | |
| 74 | int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| 75 | { |
| 76 | union mips_instruction insn; |
| 77 | union mips_instruction prev_insn; |
| 78 | int ret = 0; |
| 79 | |
| 80 | insn = p->addr[0]; |
| 81 | |
| 82 | if (insn_has_ll_or_sc(insn)) { |
| 83 | pr_notice("Kprobes for ll and sc instructions are not" |
| 84 | "supported\n"); |
| 85 | ret = -EINVAL; |
| 86 | goto out; |
| 87 | } |
| 88 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 89 | if (copy_from_kernel_nofault(&prev_insn, p->addr - 1, |
| 90 | sizeof(mips_instruction)) == 0 && |
| 91 | insn_has_delayslot(prev_insn)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 92 | pr_notice("Kprobes for branch delayslot are not supported\n"); |
| 93 | ret = -EINVAL; |
| 94 | goto out; |
| 95 | } |
| 96 | |
| 97 | if (__insn_is_compact_branch(insn)) { |
| 98 | pr_notice("Kprobes for compact branches are not supported\n"); |
| 99 | ret = -EINVAL; |
| 100 | goto out; |
| 101 | } |
| 102 | |
| 103 | /* insn: must be on special executable page on mips. */ |
| 104 | p->ainsn.insn = get_insn_slot(); |
| 105 | if (!p->ainsn.insn) { |
| 106 | ret = -ENOMEM; |
| 107 | goto out; |
| 108 | } |
| 109 | |
| 110 | /* |
| 111 | * In the kprobe->ainsn.insn[] array we store the original |
| 112 | * instruction at index zero and a break trap instruction at |
| 113 | * index one. |
| 114 | * |
| 115 | * On MIPS arch if the instruction at probed address is a |
| 116 | * branch instruction, we need to execute the instruction at |
| 117 | * Branch Delayslot (BD) at the time of probe hit. As MIPS also |
| 118 | * doesn't have single stepping support, the BD instruction can |
| 119 | * not be executed in-line and it would be executed on SSOL slot |
| 120 | * using a normal breakpoint instruction in the next slot. |
| 121 | * So, read the instruction and save it for later execution. |
| 122 | */ |
| 123 | if (insn_has_delayslot(insn)) |
| 124 | memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t)); |
| 125 | else |
| 126 | memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); |
| 127 | |
| 128 | p->ainsn.insn[1] = breakpoint2_insn; |
| 129 | p->opcode = *p->addr; |
| 130 | |
| 131 | out: |
| 132 | return ret; |
| 133 | } |
| 134 | |
| 135 | void __kprobes arch_arm_kprobe(struct kprobe *p) |
| 136 | { |
| 137 | *p->addr = breakpoint_insn; |
| 138 | flush_insn_slot(p); |
| 139 | } |
| 140 | |
| 141 | void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| 142 | { |
| 143 | *p->addr = p->opcode; |
| 144 | flush_insn_slot(p); |
| 145 | } |
| 146 | |
| 147 | void __kprobes arch_remove_kprobe(struct kprobe *p) |
| 148 | { |
| 149 | if (p->ainsn.insn) { |
| 150 | free_insn_slot(p->ainsn.insn, 0); |
| 151 | p->ainsn.insn = NULL; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | static void save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 156 | { |
| 157 | kcb->prev_kprobe.kp = kprobe_running(); |
| 158 | kcb->prev_kprobe.status = kcb->kprobe_status; |
| 159 | kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; |
| 160 | kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; |
| 161 | kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; |
| 162 | } |
| 163 | |
| 164 | static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 165 | { |
| 166 | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| 167 | kcb->kprobe_status = kcb->prev_kprobe.status; |
| 168 | kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; |
| 169 | kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; |
| 170 | kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; |
| 171 | } |
| 172 | |
| 173 | static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| 174 | struct kprobe_ctlblk *kcb) |
| 175 | { |
| 176 | __this_cpu_write(current_kprobe, p); |
| 177 | kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); |
| 178 | kcb->kprobe_saved_epc = regs->cp0_epc; |
| 179 | } |
| 180 | |
| 181 | /** |
| 182 | * evaluate_branch_instrucion - |
| 183 | * |
| 184 | * Evaluate the branch instruction at probed address during probe hit. The |
| 185 | * result of evaluation would be the updated epc. The insturction in delayslot |
| 186 | * would actually be single stepped using a normal breakpoint) on SSOL slot. |
| 187 | * |
| 188 | * The result is also saved in the kprobe control block for later use, |
| 189 | * in case we need to execute the delayslot instruction. The latter will be |
| 190 | * false for NOP instruction in dealyslot and the branch-likely instructions |
| 191 | * when the branch is taken. And for those cases we set a flag as |
| 192 | * SKIP_DELAYSLOT in the kprobe control block |
| 193 | */ |
| 194 | static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs, |
| 195 | struct kprobe_ctlblk *kcb) |
| 196 | { |
| 197 | union mips_instruction insn = p->opcode; |
| 198 | long epc; |
| 199 | int ret = 0; |
| 200 | |
| 201 | epc = regs->cp0_epc; |
| 202 | if (epc & 3) |
| 203 | goto unaligned; |
| 204 | |
| 205 | if (p->ainsn.insn->word == 0) |
| 206 | kcb->flags |= SKIP_DELAYSLOT; |
| 207 | else |
| 208 | kcb->flags &= ~SKIP_DELAYSLOT; |
| 209 | |
| 210 | ret = __compute_return_epc_for_insn(regs, insn); |
| 211 | if (ret < 0) |
| 212 | return ret; |
| 213 | |
| 214 | if (ret == BRANCH_LIKELY_TAKEN) |
| 215 | kcb->flags |= SKIP_DELAYSLOT; |
| 216 | |
| 217 | kcb->target_epc = regs->cp0_epc; |
| 218 | |
| 219 | return 0; |
| 220 | |
| 221 | unaligned: |
| 222 | pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 223 | force_sig(SIGBUS); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 224 | return -EFAULT; |
| 225 | |
| 226 | } |
| 227 | |
| 228 | static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs, |
| 229 | struct kprobe_ctlblk *kcb) |
| 230 | { |
| 231 | int ret = 0; |
| 232 | |
| 233 | regs->cp0_status &= ~ST0_IE; |
| 234 | |
| 235 | /* single step inline if the instruction is a break */ |
| 236 | if (p->opcode.word == breakpoint_insn.word || |
| 237 | p->opcode.word == breakpoint2_insn.word) |
| 238 | regs->cp0_epc = (unsigned long)p->addr; |
| 239 | else if (insn_has_delayslot(p->opcode)) { |
| 240 | ret = evaluate_branch_instruction(p, regs, kcb); |
| 241 | if (ret < 0) { |
| 242 | pr_notice("Kprobes: Error in evaluating branch\n"); |
| 243 | return; |
| 244 | } |
| 245 | } |
| 246 | regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * Called after single-stepping. p->addr is the address of the |
| 251 | * instruction whose first byte has been replaced by the "break 0" |
| 252 | * instruction. To avoid the SMP problems that can occur when we |
| 253 | * temporarily put back the original opcode to single-step, we |
| 254 | * single-stepped a copy of the instruction. The address of this |
| 255 | * copy is p->ainsn.insn. |
| 256 | * |
| 257 | * This function prepares to return from the post-single-step |
| 258 | * breakpoint trap. In case of branch instructions, the target |
| 259 | * epc to be restored. |
| 260 | */ |
| 261 | static void __kprobes resume_execution(struct kprobe *p, |
| 262 | struct pt_regs *regs, |
| 263 | struct kprobe_ctlblk *kcb) |
| 264 | { |
| 265 | if (insn_has_delayslot(p->opcode)) |
| 266 | regs->cp0_epc = kcb->target_epc; |
| 267 | else { |
| 268 | unsigned long orig_epc = kcb->kprobe_saved_epc; |
| 269 | regs->cp0_epc = orig_epc + 4; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | static int __kprobes kprobe_handler(struct pt_regs *regs) |
| 274 | { |
| 275 | struct kprobe *p; |
| 276 | int ret = 0; |
| 277 | kprobe_opcode_t *addr; |
| 278 | struct kprobe_ctlblk *kcb; |
| 279 | |
| 280 | addr = (kprobe_opcode_t *) regs->cp0_epc; |
| 281 | |
| 282 | /* |
| 283 | * We don't want to be preempted for the entire |
| 284 | * duration of kprobe processing |
| 285 | */ |
| 286 | preempt_disable(); |
| 287 | kcb = get_kprobe_ctlblk(); |
| 288 | |
| 289 | /* Check we're not actually recursing */ |
| 290 | if (kprobe_running()) { |
| 291 | p = get_kprobe(addr); |
| 292 | if (p) { |
| 293 | if (kcb->kprobe_status == KPROBE_HIT_SS && |
| 294 | p->ainsn.insn->word == breakpoint_insn.word) { |
| 295 | regs->cp0_status &= ~ST0_IE; |
| 296 | regs->cp0_status |= kcb->kprobe_saved_SR; |
| 297 | goto no_kprobe; |
| 298 | } |
| 299 | /* |
| 300 | * We have reentered the kprobe_handler(), since |
| 301 | * another probe was hit while within the handler. |
| 302 | * We here save the original kprobes variables and |
| 303 | * just single step on the instruction of the new probe |
| 304 | * without calling any user handlers. |
| 305 | */ |
| 306 | save_previous_kprobe(kcb); |
| 307 | set_current_kprobe(p, regs, kcb); |
| 308 | kprobes_inc_nmissed_count(p); |
| 309 | prepare_singlestep(p, regs, kcb); |
| 310 | kcb->kprobe_status = KPROBE_REENTER; |
| 311 | if (kcb->flags & SKIP_DELAYSLOT) { |
| 312 | resume_execution(p, regs, kcb); |
| 313 | restore_previous_kprobe(kcb); |
| 314 | preempt_enable_no_resched(); |
| 315 | } |
| 316 | return 1; |
| 317 | } else if (addr->word != breakpoint_insn.word) { |
| 318 | /* |
| 319 | * The breakpoint instruction was removed by |
| 320 | * another cpu right after we hit, no further |
| 321 | * handling of this interrupt is appropriate |
| 322 | */ |
| 323 | ret = 1; |
| 324 | } |
| 325 | goto no_kprobe; |
| 326 | } |
| 327 | |
| 328 | p = get_kprobe(addr); |
| 329 | if (!p) { |
| 330 | if (addr->word != breakpoint_insn.word) { |
| 331 | /* |
| 332 | * The breakpoint instruction was removed right |
| 333 | * after we hit it. Another cpu has removed |
| 334 | * either a probepoint or a debugger breakpoint |
| 335 | * at this address. In either case, no further |
| 336 | * handling of this interrupt is appropriate. |
| 337 | */ |
| 338 | ret = 1; |
| 339 | } |
| 340 | /* Not one of ours: let kernel handle it */ |
| 341 | goto no_kprobe; |
| 342 | } |
| 343 | |
| 344 | set_current_kprobe(p, regs, kcb); |
| 345 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| 346 | |
| 347 | if (p->pre_handler && p->pre_handler(p, regs)) { |
| 348 | /* handler has already set things up, so skip ss setup */ |
| 349 | reset_current_kprobe(); |
| 350 | preempt_enable_no_resched(); |
| 351 | return 1; |
| 352 | } |
| 353 | |
| 354 | prepare_singlestep(p, regs, kcb); |
| 355 | if (kcb->flags & SKIP_DELAYSLOT) { |
| 356 | kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| 357 | if (p->post_handler) |
| 358 | p->post_handler(p, regs, 0); |
| 359 | resume_execution(p, regs, kcb); |
| 360 | preempt_enable_no_resched(); |
| 361 | } else |
| 362 | kcb->kprobe_status = KPROBE_HIT_SS; |
| 363 | |
| 364 | return 1; |
| 365 | |
| 366 | no_kprobe: |
| 367 | preempt_enable_no_resched(); |
| 368 | return ret; |
| 369 | |
| 370 | } |
| 371 | |
| 372 | static inline int post_kprobe_handler(struct pt_regs *regs) |
| 373 | { |
| 374 | struct kprobe *cur = kprobe_running(); |
| 375 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 376 | |
| 377 | if (!cur) |
| 378 | return 0; |
| 379 | |
| 380 | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| 381 | kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| 382 | cur->post_handler(cur, regs, 0); |
| 383 | } |
| 384 | |
| 385 | resume_execution(cur, regs, kcb); |
| 386 | |
| 387 | regs->cp0_status |= kcb->kprobe_saved_SR; |
| 388 | |
| 389 | /* Restore back the original saved kprobes variables and continue. */ |
| 390 | if (kcb->kprobe_status == KPROBE_REENTER) { |
| 391 | restore_previous_kprobe(kcb); |
| 392 | goto out; |
| 393 | } |
| 394 | reset_current_kprobe(); |
| 395 | out: |
| 396 | preempt_enable_no_resched(); |
| 397 | |
| 398 | return 1; |
| 399 | } |
| 400 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 401 | int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 402 | { |
| 403 | struct kprobe *cur = kprobe_running(); |
| 404 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 405 | |
| 406 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| 407 | return 1; |
| 408 | |
| 409 | if (kcb->kprobe_status & KPROBE_HIT_SS) { |
| 410 | resume_execution(cur, regs, kcb); |
| 411 | regs->cp0_status |= kcb->kprobe_old_SR; |
| 412 | |
| 413 | reset_current_kprobe(); |
| 414 | preempt_enable_no_resched(); |
| 415 | } |
| 416 | return 0; |
| 417 | } |
| 418 | |
| 419 | /* |
| 420 | * Wrapper routine for handling exceptions. |
| 421 | */ |
| 422 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| 423 | unsigned long val, void *data) |
| 424 | { |
| 425 | |
| 426 | struct die_args *args = (struct die_args *)data; |
| 427 | int ret = NOTIFY_DONE; |
| 428 | |
| 429 | switch (val) { |
| 430 | case DIE_BREAK: |
| 431 | if (kprobe_handler(args->regs)) |
| 432 | ret = NOTIFY_STOP; |
| 433 | break; |
| 434 | case DIE_SSTEPBP: |
| 435 | if (post_kprobe_handler(args->regs)) |
| 436 | ret = NOTIFY_STOP; |
| 437 | break; |
| 438 | |
| 439 | case DIE_PAGE_FAULT: |
| 440 | /* kprobe_running() needs smp_processor_id() */ |
| 441 | preempt_disable(); |
| 442 | |
| 443 | if (kprobe_running() |
| 444 | && kprobe_fault_handler(args->regs, args->trapnr)) |
| 445 | ret = NOTIFY_STOP; |
| 446 | preempt_enable(); |
| 447 | break; |
| 448 | default: |
| 449 | break; |
| 450 | } |
| 451 | return ret; |
| 452 | } |
| 453 | |
| 454 | /* |
| 455 | * Function return probe trampoline: |
| 456 | * - init_kprobes() establishes a probepoint here |
| 457 | * - When the probed function returns, this probe causes the |
| 458 | * handlers to fire |
| 459 | */ |
| 460 | static void __used kretprobe_trampoline_holder(void) |
| 461 | { |
| 462 | asm volatile( |
| 463 | ".set push\n\t" |
| 464 | /* Keep the assembler from reordering and placing JR here. */ |
| 465 | ".set noreorder\n\t" |
| 466 | "nop\n\t" |
| 467 | ".global kretprobe_trampoline\n" |
| 468 | "kretprobe_trampoline:\n\t" |
| 469 | "nop\n\t" |
| 470 | ".set pop" |
| 471 | : : : "memory"); |
| 472 | } |
| 473 | |
| 474 | void kretprobe_trampoline(void); |
| 475 | |
| 476 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| 477 | struct pt_regs *regs) |
| 478 | { |
| 479 | ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 480 | ri->fp = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 481 | |
| 482 | /* Replace the return addr with trampoline addr */ |
| 483 | regs->regs[31] = (unsigned long)kretprobe_trampoline; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Called when the probe at kretprobe trampoline is hit |
| 488 | */ |
| 489 | static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| 490 | struct pt_regs *regs) |
| 491 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 492 | instruction_pointer(regs) = __kretprobe_trampoline_handler(regs, |
| 493 | kretprobe_trampoline, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 494 | /* |
| 495 | * By returning a non-zero value, we are telling |
| 496 | * kprobe_handler() that we don't want the post_handler |
| 497 | * to run (and have re-enabled preemption) |
| 498 | */ |
| 499 | return 1; |
| 500 | } |
| 501 | |
| 502 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| 503 | { |
| 504 | if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) |
| 505 | return 1; |
| 506 | |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | static struct kprobe trampoline_p = { |
| 511 | .addr = (kprobe_opcode_t *)kretprobe_trampoline, |
| 512 | .pre_handler = trampoline_probe_handler |
| 513 | }; |
| 514 | |
| 515 | int __init arch_init_kprobes(void) |
| 516 | { |
| 517 | return register_kprobe(&trampoline_p); |
| 518 | } |