Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2012 ARM Ltd. |
| 4 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 5 | */ |
| 6 | |
| 7 | #include <linux/cpu.h> |
| 8 | #include <linux/kvm.h> |
| 9 | #include <linux/kvm_host.h> |
| 10 | #include <linux/interrupt.h> |
| 11 | #include <linux/irq.h> |
| 12 | #include <linux/uaccess.h> |
| 13 | |
| 14 | #include <clocksource/arm_arch_timer.h> |
| 15 | #include <asm/arch_timer.h> |
| 16 | #include <asm/kvm_emulate.h> |
| 17 | #include <asm/kvm_hyp.h> |
| 18 | |
| 19 | #include <kvm/arm_vgic.h> |
| 20 | #include <kvm/arm_arch_timer.h> |
| 21 | |
| 22 | #include "trace.h" |
| 23 | |
| 24 | static struct timecounter *timecounter; |
| 25 | static unsigned int host_vtimer_irq; |
| 26 | static unsigned int host_ptimer_irq; |
| 27 | static u32 host_vtimer_irq_flags; |
| 28 | static u32 host_ptimer_irq_flags; |
| 29 | |
| 30 | static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); |
| 31 | |
| 32 | static const struct kvm_irq_level default_ptimer_irq = { |
| 33 | .irq = 30, |
| 34 | .level = 1, |
| 35 | }; |
| 36 | |
| 37 | static const struct kvm_irq_level default_vtimer_irq = { |
| 38 | .irq = 27, |
| 39 | .level = 1, |
| 40 | }; |
| 41 | |
| 42 | static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); |
| 43 | static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, |
| 44 | struct arch_timer_context *timer_ctx); |
| 45 | static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); |
| 46 | static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, |
| 47 | struct arch_timer_context *timer, |
| 48 | enum kvm_arch_timer_regs treg, |
| 49 | u64 val); |
| 50 | static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, |
| 51 | struct arch_timer_context *timer, |
| 52 | enum kvm_arch_timer_regs treg); |
| 53 | |
| 54 | u32 timer_get_ctl(struct arch_timer_context *ctxt) |
| 55 | { |
| 56 | struct kvm_vcpu *vcpu = ctxt->vcpu; |
| 57 | |
| 58 | switch(arch_timer_ctx_index(ctxt)) { |
| 59 | case TIMER_VTIMER: |
| 60 | return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0); |
| 61 | case TIMER_PTIMER: |
| 62 | return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0); |
| 63 | default: |
| 64 | WARN_ON(1); |
| 65 | return 0; |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | u64 timer_get_cval(struct arch_timer_context *ctxt) |
| 70 | { |
| 71 | struct kvm_vcpu *vcpu = ctxt->vcpu; |
| 72 | |
| 73 | switch(arch_timer_ctx_index(ctxt)) { |
| 74 | case TIMER_VTIMER: |
| 75 | return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); |
| 76 | case TIMER_PTIMER: |
| 77 | return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); |
| 78 | default: |
| 79 | WARN_ON(1); |
| 80 | return 0; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | static u64 timer_get_offset(struct arch_timer_context *ctxt) |
| 85 | { |
| 86 | struct kvm_vcpu *vcpu = ctxt->vcpu; |
| 87 | |
| 88 | switch(arch_timer_ctx_index(ctxt)) { |
| 89 | case TIMER_VTIMER: |
| 90 | return __vcpu_sys_reg(vcpu, CNTVOFF_EL2); |
| 91 | default: |
| 92 | return 0; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl) |
| 97 | { |
| 98 | struct kvm_vcpu *vcpu = ctxt->vcpu; |
| 99 | |
| 100 | switch(arch_timer_ctx_index(ctxt)) { |
| 101 | case TIMER_VTIMER: |
| 102 | __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl; |
| 103 | break; |
| 104 | case TIMER_PTIMER: |
| 105 | __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl; |
| 106 | break; |
| 107 | default: |
| 108 | WARN_ON(1); |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval) |
| 113 | { |
| 114 | struct kvm_vcpu *vcpu = ctxt->vcpu; |
| 115 | |
| 116 | switch(arch_timer_ctx_index(ctxt)) { |
| 117 | case TIMER_VTIMER: |
| 118 | __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval; |
| 119 | break; |
| 120 | case TIMER_PTIMER: |
| 121 | __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval; |
| 122 | break; |
| 123 | default: |
| 124 | WARN_ON(1); |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset) |
| 129 | { |
| 130 | struct kvm_vcpu *vcpu = ctxt->vcpu; |
| 131 | |
| 132 | switch(arch_timer_ctx_index(ctxt)) { |
| 133 | case TIMER_VTIMER: |
| 134 | __vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset; |
| 135 | break; |
| 136 | default: |
| 137 | WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt)); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | u64 kvm_phys_timer_read(void) |
| 142 | { |
| 143 | return timecounter->cc->read(timecounter->cc); |
| 144 | } |
| 145 | |
| 146 | static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map) |
| 147 | { |
| 148 | if (has_vhe()) { |
| 149 | map->direct_vtimer = vcpu_vtimer(vcpu); |
| 150 | map->direct_ptimer = vcpu_ptimer(vcpu); |
| 151 | map->emul_ptimer = NULL; |
| 152 | } else { |
| 153 | map->direct_vtimer = vcpu_vtimer(vcpu); |
| 154 | map->direct_ptimer = NULL; |
| 155 | map->emul_ptimer = vcpu_ptimer(vcpu); |
| 156 | } |
| 157 | |
| 158 | trace_kvm_get_timer_map(vcpu->vcpu_id, map); |
| 159 | } |
| 160 | |
| 161 | static inline bool userspace_irqchip(struct kvm *kvm) |
| 162 | { |
| 163 | return static_branch_unlikely(&userspace_irqchip_in_use) && |
| 164 | unlikely(!irqchip_in_kernel(kvm)); |
| 165 | } |
| 166 | |
| 167 | static void soft_timer_start(struct hrtimer *hrt, u64 ns) |
| 168 | { |
| 169 | hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), |
| 170 | HRTIMER_MODE_ABS_HARD); |
| 171 | } |
| 172 | |
| 173 | static void soft_timer_cancel(struct hrtimer *hrt) |
| 174 | { |
| 175 | hrtimer_cancel(hrt); |
| 176 | } |
| 177 | |
| 178 | static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) |
| 179 | { |
| 180 | struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; |
| 181 | struct arch_timer_context *ctx; |
| 182 | struct timer_map map; |
| 183 | |
| 184 | /* |
| 185 | * We may see a timer interrupt after vcpu_put() has been called which |
| 186 | * sets the CPU's vcpu pointer to NULL, because even though the timer |
| 187 | * has been disabled in timer_save_state(), the hardware interrupt |
| 188 | * signal may not have been retired from the interrupt controller yet. |
| 189 | */ |
| 190 | if (!vcpu) |
| 191 | return IRQ_HANDLED; |
| 192 | |
| 193 | get_timer_map(vcpu, &map); |
| 194 | |
| 195 | if (irq == host_vtimer_irq) |
| 196 | ctx = map.direct_vtimer; |
| 197 | else |
| 198 | ctx = map.direct_ptimer; |
| 199 | |
| 200 | if (kvm_timer_should_fire(ctx)) |
| 201 | kvm_timer_update_irq(vcpu, true, ctx); |
| 202 | |
| 203 | if (userspace_irqchip(vcpu->kvm) && |
| 204 | !static_branch_unlikely(&has_gic_active_state)) |
| 205 | disable_percpu_irq(host_vtimer_irq); |
| 206 | |
| 207 | return IRQ_HANDLED; |
| 208 | } |
| 209 | |
| 210 | static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) |
| 211 | { |
| 212 | u64 cval, now; |
| 213 | |
| 214 | cval = timer_get_cval(timer_ctx); |
| 215 | now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); |
| 216 | |
| 217 | if (now < cval) { |
| 218 | u64 ns; |
| 219 | |
| 220 | ns = cyclecounter_cyc2ns(timecounter->cc, |
| 221 | cval - now, |
| 222 | timecounter->mask, |
| 223 | &timecounter->frac); |
| 224 | return ns; |
| 225 | } |
| 226 | |
| 227 | return 0; |
| 228 | } |
| 229 | |
| 230 | static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) |
| 231 | { |
| 232 | WARN_ON(timer_ctx && timer_ctx->loaded); |
| 233 | return timer_ctx && |
| 234 | ((timer_get_ctl(timer_ctx) & |
| 235 | (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE); |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * Returns the earliest expiration time in ns among guest timers. |
| 240 | * Note that it will return 0 if none of timers can fire. |
| 241 | */ |
| 242 | static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) |
| 243 | { |
| 244 | u64 min_delta = ULLONG_MAX; |
| 245 | int i; |
| 246 | |
| 247 | for (i = 0; i < NR_KVM_TIMERS; i++) { |
| 248 | struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i]; |
| 249 | |
| 250 | WARN(ctx->loaded, "timer %d loaded\n", i); |
| 251 | if (kvm_timer_irq_can_fire(ctx)) |
| 252 | min_delta = min(min_delta, kvm_timer_compute_delta(ctx)); |
| 253 | } |
| 254 | |
| 255 | /* If none of timers can fire, then return 0 */ |
| 256 | if (min_delta == ULLONG_MAX) |
| 257 | return 0; |
| 258 | |
| 259 | return min_delta; |
| 260 | } |
| 261 | |
| 262 | static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) |
| 263 | { |
| 264 | struct arch_timer_cpu *timer; |
| 265 | struct kvm_vcpu *vcpu; |
| 266 | u64 ns; |
| 267 | |
| 268 | timer = container_of(hrt, struct arch_timer_cpu, bg_timer); |
| 269 | vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); |
| 270 | |
| 271 | /* |
| 272 | * Check that the timer has really expired from the guest's |
| 273 | * PoV (NTP on the host may have forced it to expire |
| 274 | * early). If we should have slept longer, restart it. |
| 275 | */ |
| 276 | ns = kvm_timer_earliest_exp(vcpu); |
| 277 | if (unlikely(ns)) { |
| 278 | hrtimer_forward_now(hrt, ns_to_ktime(ns)); |
| 279 | return HRTIMER_RESTART; |
| 280 | } |
| 281 | |
| 282 | kvm_vcpu_wake_up(vcpu); |
| 283 | return HRTIMER_NORESTART; |
| 284 | } |
| 285 | |
| 286 | static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt) |
| 287 | { |
| 288 | struct arch_timer_context *ctx; |
| 289 | struct kvm_vcpu *vcpu; |
| 290 | u64 ns; |
| 291 | |
| 292 | ctx = container_of(hrt, struct arch_timer_context, hrtimer); |
| 293 | vcpu = ctx->vcpu; |
| 294 | |
| 295 | trace_kvm_timer_hrtimer_expire(ctx); |
| 296 | |
| 297 | /* |
| 298 | * Check that the timer has really expired from the guest's |
| 299 | * PoV (NTP on the host may have forced it to expire |
| 300 | * early). If not ready, schedule for a later time. |
| 301 | */ |
| 302 | ns = kvm_timer_compute_delta(ctx); |
| 303 | if (unlikely(ns)) { |
| 304 | hrtimer_forward_now(hrt, ns_to_ktime(ns)); |
| 305 | return HRTIMER_RESTART; |
| 306 | } |
| 307 | |
| 308 | kvm_timer_update_irq(vcpu, true, ctx); |
| 309 | return HRTIMER_NORESTART; |
| 310 | } |
| 311 | |
| 312 | static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) |
| 313 | { |
| 314 | enum kvm_arch_timers index; |
| 315 | u64 cval, now; |
| 316 | |
| 317 | if (!timer_ctx) |
| 318 | return false; |
| 319 | |
| 320 | index = arch_timer_ctx_index(timer_ctx); |
| 321 | |
| 322 | if (timer_ctx->loaded) { |
| 323 | u32 cnt_ctl = 0; |
| 324 | |
| 325 | switch (index) { |
| 326 | case TIMER_VTIMER: |
| 327 | cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL); |
| 328 | break; |
| 329 | case TIMER_PTIMER: |
| 330 | cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL); |
| 331 | break; |
| 332 | case NR_KVM_TIMERS: |
| 333 | /* GCC is braindead */ |
| 334 | cnt_ctl = 0; |
| 335 | break; |
| 336 | } |
| 337 | |
| 338 | return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && |
| 339 | (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && |
| 340 | !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); |
| 341 | } |
| 342 | |
| 343 | if (!kvm_timer_irq_can_fire(timer_ctx)) |
| 344 | return false; |
| 345 | |
| 346 | cval = timer_get_cval(timer_ctx); |
| 347 | now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); |
| 348 | |
| 349 | return cval <= now; |
| 350 | } |
| 351 | |
| 352 | bool kvm_timer_is_pending(struct kvm_vcpu *vcpu) |
| 353 | { |
| 354 | struct timer_map map; |
| 355 | |
| 356 | get_timer_map(vcpu, &map); |
| 357 | |
| 358 | return kvm_timer_should_fire(map.direct_vtimer) || |
| 359 | kvm_timer_should_fire(map.direct_ptimer) || |
| 360 | kvm_timer_should_fire(map.emul_ptimer); |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * Reflect the timer output level into the kvm_run structure |
| 365 | */ |
| 366 | void kvm_timer_update_run(struct kvm_vcpu *vcpu) |
| 367 | { |
| 368 | struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| 369 | struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| 370 | struct kvm_sync_regs *regs = &vcpu->run->s.regs; |
| 371 | |
| 372 | /* Populate the device bitmap with the timer states */ |
| 373 | regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | |
| 374 | KVM_ARM_DEV_EL1_PTIMER); |
| 375 | if (kvm_timer_should_fire(vtimer)) |
| 376 | regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; |
| 377 | if (kvm_timer_should_fire(ptimer)) |
| 378 | regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; |
| 379 | } |
| 380 | |
| 381 | static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, |
| 382 | struct arch_timer_context *timer_ctx) |
| 383 | { |
| 384 | int ret; |
| 385 | |
| 386 | timer_ctx->irq.level = new_level; |
| 387 | trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq, |
| 388 | timer_ctx->irq.level); |
| 389 | |
| 390 | if (!userspace_irqchip(vcpu->kvm)) { |
| 391 | ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, |
| 392 | timer_ctx->irq.irq, |
| 393 | timer_ctx->irq.level, |
| 394 | timer_ctx); |
| 395 | WARN_ON(ret); |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | /* Only called for a fully emulated timer */ |
| 400 | static void timer_emulate(struct arch_timer_context *ctx) |
| 401 | { |
| 402 | bool should_fire = kvm_timer_should_fire(ctx); |
| 403 | |
| 404 | trace_kvm_timer_emulate(ctx, should_fire); |
| 405 | |
| 406 | if (should_fire != ctx->irq.level) { |
| 407 | kvm_timer_update_irq(ctx->vcpu, should_fire, ctx); |
| 408 | return; |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * If the timer can fire now, we don't need to have a soft timer |
| 413 | * scheduled for the future. If the timer cannot fire at all, |
| 414 | * then we also don't need a soft timer. |
| 415 | */ |
| 416 | if (!kvm_timer_irq_can_fire(ctx)) { |
| 417 | soft_timer_cancel(&ctx->hrtimer); |
| 418 | return; |
| 419 | } |
| 420 | |
| 421 | soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx)); |
| 422 | } |
| 423 | |
| 424 | static void timer_save_state(struct arch_timer_context *ctx) |
| 425 | { |
| 426 | struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); |
| 427 | enum kvm_arch_timers index = arch_timer_ctx_index(ctx); |
| 428 | unsigned long flags; |
| 429 | |
| 430 | if (!timer->enabled) |
| 431 | return; |
| 432 | |
| 433 | local_irq_save(flags); |
| 434 | |
| 435 | if (!ctx->loaded) |
| 436 | goto out; |
| 437 | |
| 438 | switch (index) { |
| 439 | case TIMER_VTIMER: |
| 440 | timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL)); |
| 441 | timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL)); |
| 442 | |
| 443 | /* Disable the timer */ |
| 444 | write_sysreg_el0(0, SYS_CNTV_CTL); |
| 445 | isb(); |
| 446 | |
| 447 | break; |
| 448 | case TIMER_PTIMER: |
| 449 | timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL)); |
| 450 | timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL)); |
| 451 | |
| 452 | /* Disable the timer */ |
| 453 | write_sysreg_el0(0, SYS_CNTP_CTL); |
| 454 | isb(); |
| 455 | |
| 456 | break; |
| 457 | case NR_KVM_TIMERS: |
| 458 | BUG(); |
| 459 | } |
| 460 | |
| 461 | trace_kvm_timer_save_state(ctx); |
| 462 | |
| 463 | ctx->loaded = false; |
| 464 | out: |
| 465 | local_irq_restore(flags); |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Schedule the background timer before calling kvm_vcpu_block, so that this |
| 470 | * thread is removed from its waitqueue and made runnable when there's a timer |
| 471 | * interrupt to handle. |
| 472 | */ |
| 473 | static void kvm_timer_blocking(struct kvm_vcpu *vcpu) |
| 474 | { |
| 475 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 476 | struct timer_map map; |
| 477 | |
| 478 | get_timer_map(vcpu, &map); |
| 479 | |
| 480 | /* |
| 481 | * If no timers are capable of raising interrupts (disabled or |
| 482 | * masked), then there's no more work for us to do. |
| 483 | */ |
| 484 | if (!kvm_timer_irq_can_fire(map.direct_vtimer) && |
| 485 | !kvm_timer_irq_can_fire(map.direct_ptimer) && |
| 486 | !kvm_timer_irq_can_fire(map.emul_ptimer)) |
| 487 | return; |
| 488 | |
| 489 | /* |
| 490 | * At least one guest time will expire. Schedule a background timer. |
| 491 | * Set the earliest expiration time among the guest timers. |
| 492 | */ |
| 493 | soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); |
| 494 | } |
| 495 | |
| 496 | static void kvm_timer_unblocking(struct kvm_vcpu *vcpu) |
| 497 | { |
| 498 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 499 | |
| 500 | soft_timer_cancel(&timer->bg_timer); |
| 501 | } |
| 502 | |
| 503 | static void timer_restore_state(struct arch_timer_context *ctx) |
| 504 | { |
| 505 | struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); |
| 506 | enum kvm_arch_timers index = arch_timer_ctx_index(ctx); |
| 507 | unsigned long flags; |
| 508 | |
| 509 | if (!timer->enabled) |
| 510 | return; |
| 511 | |
| 512 | local_irq_save(flags); |
| 513 | |
| 514 | if (ctx->loaded) |
| 515 | goto out; |
| 516 | |
| 517 | switch (index) { |
| 518 | case TIMER_VTIMER: |
| 519 | write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL); |
| 520 | isb(); |
| 521 | write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL); |
| 522 | break; |
| 523 | case TIMER_PTIMER: |
| 524 | write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL); |
| 525 | isb(); |
| 526 | write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL); |
| 527 | break; |
| 528 | case NR_KVM_TIMERS: |
| 529 | BUG(); |
| 530 | } |
| 531 | |
| 532 | trace_kvm_timer_restore_state(ctx); |
| 533 | |
| 534 | ctx->loaded = true; |
| 535 | out: |
| 536 | local_irq_restore(flags); |
| 537 | } |
| 538 | |
| 539 | static void set_cntvoff(u64 cntvoff) |
| 540 | { |
| 541 | kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff); |
| 542 | } |
| 543 | |
| 544 | static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active) |
| 545 | { |
| 546 | int r; |
| 547 | r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active); |
| 548 | WARN_ON(r); |
| 549 | } |
| 550 | |
| 551 | static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx) |
| 552 | { |
| 553 | struct kvm_vcpu *vcpu = ctx->vcpu; |
| 554 | bool phys_active = false; |
| 555 | |
| 556 | /* |
| 557 | * Update the timer output so that it is likely to match the |
| 558 | * state we're about to restore. If the timer expires between |
| 559 | * this point and the register restoration, we'll take the |
| 560 | * interrupt anyway. |
| 561 | */ |
| 562 | kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx); |
| 563 | |
| 564 | if (irqchip_in_kernel(vcpu->kvm)) |
| 565 | phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq); |
| 566 | |
| 567 | phys_active |= ctx->irq.level; |
| 568 | |
| 569 | set_timer_irq_phys_active(ctx, phys_active); |
| 570 | } |
| 571 | |
| 572 | static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) |
| 573 | { |
| 574 | struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| 575 | |
| 576 | /* |
| 577 | * Update the timer output so that it is likely to match the |
| 578 | * state we're about to restore. If the timer expires between |
| 579 | * this point and the register restoration, we'll take the |
| 580 | * interrupt anyway. |
| 581 | */ |
| 582 | kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer); |
| 583 | |
| 584 | /* |
| 585 | * When using a userspace irqchip with the architected timers and a |
| 586 | * host interrupt controller that doesn't support an active state, we |
| 587 | * must still prevent continuously exiting from the guest, and |
| 588 | * therefore mask the physical interrupt by disabling it on the host |
| 589 | * interrupt controller when the virtual level is high, such that the |
| 590 | * guest can make forward progress. Once we detect the output level |
| 591 | * being de-asserted, we unmask the interrupt again so that we exit |
| 592 | * from the guest when the timer fires. |
| 593 | */ |
| 594 | if (vtimer->irq.level) |
| 595 | disable_percpu_irq(host_vtimer_irq); |
| 596 | else |
| 597 | enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| 598 | } |
| 599 | |
| 600 | void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) |
| 601 | { |
| 602 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 603 | struct timer_map map; |
| 604 | |
| 605 | if (unlikely(!timer->enabled)) |
| 606 | return; |
| 607 | |
| 608 | get_timer_map(vcpu, &map); |
| 609 | |
| 610 | if (static_branch_likely(&has_gic_active_state)) { |
| 611 | kvm_timer_vcpu_load_gic(map.direct_vtimer); |
| 612 | if (map.direct_ptimer) |
| 613 | kvm_timer_vcpu_load_gic(map.direct_ptimer); |
| 614 | } else { |
| 615 | kvm_timer_vcpu_load_nogic(vcpu); |
| 616 | } |
| 617 | |
| 618 | set_cntvoff(timer_get_offset(map.direct_vtimer)); |
| 619 | |
| 620 | kvm_timer_unblocking(vcpu); |
| 621 | |
| 622 | timer_restore_state(map.direct_vtimer); |
| 623 | if (map.direct_ptimer) |
| 624 | timer_restore_state(map.direct_ptimer); |
| 625 | |
| 626 | if (map.emul_ptimer) |
| 627 | timer_emulate(map.emul_ptimer); |
| 628 | } |
| 629 | |
| 630 | bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) |
| 631 | { |
| 632 | struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| 633 | struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| 634 | struct kvm_sync_regs *sregs = &vcpu->run->s.regs; |
| 635 | bool vlevel, plevel; |
| 636 | |
| 637 | if (likely(irqchip_in_kernel(vcpu->kvm))) |
| 638 | return false; |
| 639 | |
| 640 | vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; |
| 641 | plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; |
| 642 | |
| 643 | return kvm_timer_should_fire(vtimer) != vlevel || |
| 644 | kvm_timer_should_fire(ptimer) != plevel; |
| 645 | } |
| 646 | |
| 647 | void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) |
| 648 | { |
| 649 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 650 | struct timer_map map; |
| 651 | struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); |
| 652 | |
| 653 | if (unlikely(!timer->enabled)) |
| 654 | return; |
| 655 | |
| 656 | get_timer_map(vcpu, &map); |
| 657 | |
| 658 | timer_save_state(map.direct_vtimer); |
| 659 | if (map.direct_ptimer) |
| 660 | timer_save_state(map.direct_ptimer); |
| 661 | |
| 662 | /* |
| 663 | * Cancel soft timer emulation, because the only case where we |
| 664 | * need it after a vcpu_put is in the context of a sleeping VCPU, and |
| 665 | * in that case we already factor in the deadline for the physical |
| 666 | * timer when scheduling the bg_timer. |
| 667 | * |
| 668 | * In any case, we re-schedule the hrtimer for the physical timer when |
| 669 | * coming back to the VCPU thread in kvm_timer_vcpu_load(). |
| 670 | */ |
| 671 | if (map.emul_ptimer) |
| 672 | soft_timer_cancel(&map.emul_ptimer->hrtimer); |
| 673 | |
| 674 | if (rcuwait_active(wait)) |
| 675 | kvm_timer_blocking(vcpu); |
| 676 | |
| 677 | /* |
| 678 | * The kernel may decide to run userspace after calling vcpu_put, so |
| 679 | * we reset cntvoff to 0 to ensure a consistent read between user |
| 680 | * accesses to the virtual counter and kernel access to the physical |
| 681 | * counter of non-VHE case. For VHE, the virtual counter uses a fixed |
| 682 | * virtual offset of zero, so no need to zero CNTVOFF_EL2 register. |
| 683 | */ |
| 684 | set_cntvoff(0); |
| 685 | } |
| 686 | |
| 687 | /* |
| 688 | * With a userspace irqchip we have to check if the guest de-asserted the |
| 689 | * timer and if so, unmask the timer irq signal on the host interrupt |
| 690 | * controller to ensure that we see future timer signals. |
| 691 | */ |
| 692 | static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) |
| 693 | { |
| 694 | struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| 695 | |
| 696 | if (!kvm_timer_should_fire(vtimer)) { |
| 697 | kvm_timer_update_irq(vcpu, false, vtimer); |
| 698 | if (static_branch_likely(&has_gic_active_state)) |
| 699 | set_timer_irq_phys_active(vtimer, false); |
| 700 | else |
| 701 | enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | void kvm_timer_sync_user(struct kvm_vcpu *vcpu) |
| 706 | { |
| 707 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 708 | |
| 709 | if (unlikely(!timer->enabled)) |
| 710 | return; |
| 711 | |
| 712 | if (unlikely(!irqchip_in_kernel(vcpu->kvm))) |
| 713 | unmask_vtimer_irq_user(vcpu); |
| 714 | } |
| 715 | |
| 716 | int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) |
| 717 | { |
| 718 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 719 | struct timer_map map; |
| 720 | |
| 721 | get_timer_map(vcpu, &map); |
| 722 | |
| 723 | /* |
| 724 | * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 |
| 725 | * and to 0 for ARMv7. We provide an implementation that always |
| 726 | * resets the timer to be disabled and unmasked and is compliant with |
| 727 | * the ARMv7 architecture. |
| 728 | */ |
| 729 | timer_set_ctl(vcpu_vtimer(vcpu), 0); |
| 730 | timer_set_ctl(vcpu_ptimer(vcpu), 0); |
| 731 | |
| 732 | if (timer->enabled) { |
| 733 | kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu)); |
| 734 | kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu)); |
| 735 | |
| 736 | if (irqchip_in_kernel(vcpu->kvm)) { |
| 737 | kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq); |
| 738 | if (map.direct_ptimer) |
| 739 | kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | if (map.emul_ptimer) |
| 744 | soft_timer_cancel(&map.emul_ptimer->hrtimer); |
| 745 | |
| 746 | return 0; |
| 747 | } |
| 748 | |
| 749 | /* Make the updates of cntvoff for all vtimer contexts atomic */ |
| 750 | static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff) |
| 751 | { |
| 752 | int i; |
| 753 | struct kvm *kvm = vcpu->kvm; |
| 754 | struct kvm_vcpu *tmp; |
| 755 | |
| 756 | mutex_lock(&kvm->lock); |
| 757 | kvm_for_each_vcpu(i, tmp, kvm) |
| 758 | timer_set_offset(vcpu_vtimer(tmp), cntvoff); |
| 759 | |
| 760 | /* |
| 761 | * When called from the vcpu create path, the CPU being created is not |
| 762 | * included in the loop above, so we just set it here as well. |
| 763 | */ |
| 764 | timer_set_offset(vcpu_vtimer(vcpu), cntvoff); |
| 765 | mutex_unlock(&kvm->lock); |
| 766 | } |
| 767 | |
| 768 | void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) |
| 769 | { |
| 770 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 771 | struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| 772 | struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| 773 | |
| 774 | vtimer->vcpu = vcpu; |
| 775 | ptimer->vcpu = vcpu; |
| 776 | |
| 777 | /* Synchronize cntvoff across all vtimers of a VM. */ |
| 778 | update_vtimer_cntvoff(vcpu, kvm_phys_timer_read()); |
| 779 | timer_set_offset(ptimer, 0); |
| 780 | |
| 781 | hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); |
| 782 | timer->bg_timer.function = kvm_bg_timer_expire; |
| 783 | |
| 784 | hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); |
| 785 | hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); |
| 786 | vtimer->hrtimer.function = kvm_hrtimer_expire; |
| 787 | ptimer->hrtimer.function = kvm_hrtimer_expire; |
| 788 | |
| 789 | vtimer->irq.irq = default_vtimer_irq.irq; |
| 790 | ptimer->irq.irq = default_ptimer_irq.irq; |
| 791 | |
| 792 | vtimer->host_timer_irq = host_vtimer_irq; |
| 793 | ptimer->host_timer_irq = host_ptimer_irq; |
| 794 | |
| 795 | vtimer->host_timer_irq_flags = host_vtimer_irq_flags; |
| 796 | ptimer->host_timer_irq_flags = host_ptimer_irq_flags; |
| 797 | } |
| 798 | |
| 799 | static void kvm_timer_init_interrupt(void *info) |
| 800 | { |
| 801 | enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| 802 | enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags); |
| 803 | } |
| 804 | |
| 805 | int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) |
| 806 | { |
| 807 | struct arch_timer_context *timer; |
| 808 | |
| 809 | switch (regid) { |
| 810 | case KVM_REG_ARM_TIMER_CTL: |
| 811 | timer = vcpu_vtimer(vcpu); |
| 812 | kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); |
| 813 | break; |
| 814 | case KVM_REG_ARM_TIMER_CNT: |
| 815 | timer = vcpu_vtimer(vcpu); |
| 816 | update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value); |
| 817 | break; |
| 818 | case KVM_REG_ARM_TIMER_CVAL: |
| 819 | timer = vcpu_vtimer(vcpu); |
| 820 | kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); |
| 821 | break; |
| 822 | case KVM_REG_ARM_PTIMER_CTL: |
| 823 | timer = vcpu_ptimer(vcpu); |
| 824 | kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); |
| 825 | break; |
| 826 | case KVM_REG_ARM_PTIMER_CVAL: |
| 827 | timer = vcpu_ptimer(vcpu); |
| 828 | kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); |
| 829 | break; |
| 830 | |
| 831 | default: |
| 832 | return -1; |
| 833 | } |
| 834 | |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | static u64 read_timer_ctl(struct arch_timer_context *timer) |
| 839 | { |
| 840 | /* |
| 841 | * Set ISTATUS bit if it's expired. |
| 842 | * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is |
| 843 | * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit |
| 844 | * regardless of ENABLE bit for our implementation convenience. |
| 845 | */ |
| 846 | u32 ctl = timer_get_ctl(timer); |
| 847 | |
| 848 | if (!kvm_timer_compute_delta(timer)) |
| 849 | ctl |= ARCH_TIMER_CTRL_IT_STAT; |
| 850 | |
| 851 | return ctl; |
| 852 | } |
| 853 | |
| 854 | u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) |
| 855 | { |
| 856 | switch (regid) { |
| 857 | case KVM_REG_ARM_TIMER_CTL: |
| 858 | return kvm_arm_timer_read(vcpu, |
| 859 | vcpu_vtimer(vcpu), TIMER_REG_CTL); |
| 860 | case KVM_REG_ARM_TIMER_CNT: |
| 861 | return kvm_arm_timer_read(vcpu, |
| 862 | vcpu_vtimer(vcpu), TIMER_REG_CNT); |
| 863 | case KVM_REG_ARM_TIMER_CVAL: |
| 864 | return kvm_arm_timer_read(vcpu, |
| 865 | vcpu_vtimer(vcpu), TIMER_REG_CVAL); |
| 866 | case KVM_REG_ARM_PTIMER_CTL: |
| 867 | return kvm_arm_timer_read(vcpu, |
| 868 | vcpu_ptimer(vcpu), TIMER_REG_CTL); |
| 869 | case KVM_REG_ARM_PTIMER_CNT: |
| 870 | return kvm_arm_timer_read(vcpu, |
| 871 | vcpu_ptimer(vcpu), TIMER_REG_CNT); |
| 872 | case KVM_REG_ARM_PTIMER_CVAL: |
| 873 | return kvm_arm_timer_read(vcpu, |
| 874 | vcpu_ptimer(vcpu), TIMER_REG_CVAL); |
| 875 | } |
| 876 | return (u64)-1; |
| 877 | } |
| 878 | |
| 879 | static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, |
| 880 | struct arch_timer_context *timer, |
| 881 | enum kvm_arch_timer_regs treg) |
| 882 | { |
| 883 | u64 val; |
| 884 | |
| 885 | switch (treg) { |
| 886 | case TIMER_REG_TVAL: |
| 887 | val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer); |
| 888 | val = lower_32_bits(val); |
| 889 | break; |
| 890 | |
| 891 | case TIMER_REG_CTL: |
| 892 | val = read_timer_ctl(timer); |
| 893 | break; |
| 894 | |
| 895 | case TIMER_REG_CVAL: |
| 896 | val = timer_get_cval(timer); |
| 897 | break; |
| 898 | |
| 899 | case TIMER_REG_CNT: |
| 900 | val = kvm_phys_timer_read() - timer_get_offset(timer); |
| 901 | break; |
| 902 | |
| 903 | default: |
| 904 | BUG(); |
| 905 | } |
| 906 | |
| 907 | return val; |
| 908 | } |
| 909 | |
| 910 | u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, |
| 911 | enum kvm_arch_timers tmr, |
| 912 | enum kvm_arch_timer_regs treg) |
| 913 | { |
| 914 | u64 val; |
| 915 | |
| 916 | preempt_disable(); |
| 917 | kvm_timer_vcpu_put(vcpu); |
| 918 | |
| 919 | val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg); |
| 920 | |
| 921 | kvm_timer_vcpu_load(vcpu); |
| 922 | preempt_enable(); |
| 923 | |
| 924 | return val; |
| 925 | } |
| 926 | |
| 927 | static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, |
| 928 | struct arch_timer_context *timer, |
| 929 | enum kvm_arch_timer_regs treg, |
| 930 | u64 val) |
| 931 | { |
| 932 | switch (treg) { |
| 933 | case TIMER_REG_TVAL: |
| 934 | timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val); |
| 935 | break; |
| 936 | |
| 937 | case TIMER_REG_CTL: |
| 938 | timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT); |
| 939 | break; |
| 940 | |
| 941 | case TIMER_REG_CVAL: |
| 942 | timer_set_cval(timer, val); |
| 943 | break; |
| 944 | |
| 945 | default: |
| 946 | BUG(); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, |
| 951 | enum kvm_arch_timers tmr, |
| 952 | enum kvm_arch_timer_regs treg, |
| 953 | u64 val) |
| 954 | { |
| 955 | preempt_disable(); |
| 956 | kvm_timer_vcpu_put(vcpu); |
| 957 | |
| 958 | kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val); |
| 959 | |
| 960 | kvm_timer_vcpu_load(vcpu); |
| 961 | preempt_enable(); |
| 962 | } |
| 963 | |
| 964 | static int kvm_timer_starting_cpu(unsigned int cpu) |
| 965 | { |
| 966 | kvm_timer_init_interrupt(NULL); |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | static int kvm_timer_dying_cpu(unsigned int cpu) |
| 971 | { |
| 972 | disable_percpu_irq(host_vtimer_irq); |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | int kvm_timer_hyp_init(bool has_gic) |
| 977 | { |
| 978 | struct arch_timer_kvm_info *info; |
| 979 | int err; |
| 980 | |
| 981 | info = arch_timer_get_kvm_info(); |
| 982 | timecounter = &info->timecounter; |
| 983 | |
| 984 | if (!timecounter->cc) { |
| 985 | kvm_err("kvm_arch_timer: uninitialized timecounter\n"); |
| 986 | return -ENODEV; |
| 987 | } |
| 988 | |
| 989 | /* First, do the virtual EL1 timer irq */ |
| 990 | |
| 991 | if (info->virtual_irq <= 0) { |
| 992 | kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", |
| 993 | info->virtual_irq); |
| 994 | return -ENODEV; |
| 995 | } |
| 996 | host_vtimer_irq = info->virtual_irq; |
| 997 | |
| 998 | host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq); |
| 999 | if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH && |
| 1000 | host_vtimer_irq_flags != IRQF_TRIGGER_LOW) { |
| 1001 | kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n", |
| 1002 | host_vtimer_irq); |
| 1003 | host_vtimer_irq_flags = IRQF_TRIGGER_LOW; |
| 1004 | } |
| 1005 | |
| 1006 | err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, |
| 1007 | "kvm guest vtimer", kvm_get_running_vcpus()); |
| 1008 | if (err) { |
| 1009 | kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n", |
| 1010 | host_vtimer_irq, err); |
| 1011 | return err; |
| 1012 | } |
| 1013 | |
| 1014 | if (has_gic) { |
| 1015 | err = irq_set_vcpu_affinity(host_vtimer_irq, |
| 1016 | kvm_get_running_vcpus()); |
| 1017 | if (err) { |
| 1018 | kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); |
| 1019 | goto out_free_irq; |
| 1020 | } |
| 1021 | |
| 1022 | static_branch_enable(&has_gic_active_state); |
| 1023 | } |
| 1024 | |
| 1025 | kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); |
| 1026 | |
| 1027 | /* Now let's do the physical EL1 timer irq */ |
| 1028 | |
| 1029 | if (info->physical_irq > 0) { |
| 1030 | host_ptimer_irq = info->physical_irq; |
| 1031 | host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq); |
| 1032 | if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH && |
| 1033 | host_ptimer_irq_flags != IRQF_TRIGGER_LOW) { |
| 1034 | kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n", |
| 1035 | host_ptimer_irq); |
| 1036 | host_ptimer_irq_flags = IRQF_TRIGGER_LOW; |
| 1037 | } |
| 1038 | |
| 1039 | err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler, |
| 1040 | "kvm guest ptimer", kvm_get_running_vcpus()); |
| 1041 | if (err) { |
| 1042 | kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n", |
| 1043 | host_ptimer_irq, err); |
| 1044 | return err; |
| 1045 | } |
| 1046 | |
| 1047 | if (has_gic) { |
| 1048 | err = irq_set_vcpu_affinity(host_ptimer_irq, |
| 1049 | kvm_get_running_vcpus()); |
| 1050 | if (err) { |
| 1051 | kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); |
| 1052 | goto out_free_irq; |
| 1053 | } |
| 1054 | } |
| 1055 | |
| 1056 | kvm_debug("physical timer IRQ%d\n", host_ptimer_irq); |
| 1057 | } else if (has_vhe()) { |
| 1058 | kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n", |
| 1059 | info->physical_irq); |
| 1060 | err = -ENODEV; |
| 1061 | goto out_free_irq; |
| 1062 | } |
| 1063 | |
| 1064 | cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING, |
| 1065 | "kvm/arm/timer:starting", kvm_timer_starting_cpu, |
| 1066 | kvm_timer_dying_cpu); |
| 1067 | return 0; |
| 1068 | out_free_irq: |
| 1069 | free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); |
| 1070 | return err; |
| 1071 | } |
| 1072 | |
| 1073 | void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) |
| 1074 | { |
| 1075 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 1076 | |
| 1077 | soft_timer_cancel(&timer->bg_timer); |
| 1078 | } |
| 1079 | |
| 1080 | static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) |
| 1081 | { |
| 1082 | int vtimer_irq, ptimer_irq; |
| 1083 | int i, ret; |
| 1084 | |
| 1085 | vtimer_irq = vcpu_vtimer(vcpu)->irq.irq; |
| 1086 | ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu)); |
| 1087 | if (ret) |
| 1088 | return false; |
| 1089 | |
| 1090 | ptimer_irq = vcpu_ptimer(vcpu)->irq.irq; |
| 1091 | ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu)); |
| 1092 | if (ret) |
| 1093 | return false; |
| 1094 | |
| 1095 | kvm_for_each_vcpu(i, vcpu, vcpu->kvm) { |
| 1096 | if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq || |
| 1097 | vcpu_ptimer(vcpu)->irq.irq != ptimer_irq) |
| 1098 | return false; |
| 1099 | } |
| 1100 | |
| 1101 | return true; |
| 1102 | } |
| 1103 | |
| 1104 | bool kvm_arch_timer_get_input_level(int vintid) |
| 1105 | { |
| 1106 | struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); |
| 1107 | struct arch_timer_context *timer; |
| 1108 | |
| 1109 | if (vintid == vcpu_vtimer(vcpu)->irq.irq) |
| 1110 | timer = vcpu_vtimer(vcpu); |
| 1111 | else if (vintid == vcpu_ptimer(vcpu)->irq.irq) |
| 1112 | timer = vcpu_ptimer(vcpu); |
| 1113 | else |
| 1114 | BUG(); |
| 1115 | |
| 1116 | return kvm_timer_should_fire(timer); |
| 1117 | } |
| 1118 | |
| 1119 | int kvm_timer_enable(struct kvm_vcpu *vcpu) |
| 1120 | { |
| 1121 | struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| 1122 | struct timer_map map; |
| 1123 | int ret; |
| 1124 | |
| 1125 | if (timer->enabled) |
| 1126 | return 0; |
| 1127 | |
| 1128 | /* Without a VGIC we do not map virtual IRQs to physical IRQs */ |
| 1129 | if (!irqchip_in_kernel(vcpu->kvm)) |
| 1130 | goto no_vgic; |
| 1131 | |
| 1132 | if (!vgic_initialized(vcpu->kvm)) |
| 1133 | return -ENODEV; |
| 1134 | |
| 1135 | if (!timer_irqs_are_valid(vcpu)) { |
| 1136 | kvm_debug("incorrectly configured timer irqs\n"); |
| 1137 | return -EINVAL; |
| 1138 | } |
| 1139 | |
| 1140 | get_timer_map(vcpu, &map); |
| 1141 | |
| 1142 | ret = kvm_vgic_map_phys_irq(vcpu, |
| 1143 | map.direct_vtimer->host_timer_irq, |
| 1144 | map.direct_vtimer->irq.irq, |
| 1145 | kvm_arch_timer_get_input_level); |
| 1146 | if (ret) |
| 1147 | return ret; |
| 1148 | |
| 1149 | if (map.direct_ptimer) { |
| 1150 | ret = kvm_vgic_map_phys_irq(vcpu, |
| 1151 | map.direct_ptimer->host_timer_irq, |
| 1152 | map.direct_ptimer->irq.irq, |
| 1153 | kvm_arch_timer_get_input_level); |
| 1154 | } |
| 1155 | |
| 1156 | if (ret) |
| 1157 | return ret; |
| 1158 | |
| 1159 | no_vgic: |
| 1160 | timer->enabled = 1; |
| 1161 | return 0; |
| 1162 | } |
| 1163 | |
| 1164 | /* |
| 1165 | * On VHE system, we only need to configure the EL2 timer trap register once, |
| 1166 | * not for every world switch. |
| 1167 | * The host kernel runs at EL2 with HCR_EL2.TGE == 1, |
| 1168 | * and this makes those bits have no effect for the host kernel execution. |
| 1169 | */ |
| 1170 | void kvm_timer_init_vhe(void) |
| 1171 | { |
| 1172 | /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */ |
| 1173 | u32 cnthctl_shift = 10; |
| 1174 | u64 val; |
| 1175 | |
| 1176 | /* |
| 1177 | * VHE systems allow the guest direct access to the EL1 physical |
| 1178 | * timer/counter. |
| 1179 | */ |
| 1180 | val = read_sysreg(cnthctl_el2); |
| 1181 | val |= (CNTHCTL_EL1PCEN << cnthctl_shift); |
| 1182 | val |= (CNTHCTL_EL1PCTEN << cnthctl_shift); |
| 1183 | write_sysreg(val, cnthctl_el2); |
| 1184 | } |
| 1185 | |
| 1186 | static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq) |
| 1187 | { |
| 1188 | struct kvm_vcpu *vcpu; |
| 1189 | int i; |
| 1190 | |
| 1191 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 1192 | vcpu_vtimer(vcpu)->irq.irq = vtimer_irq; |
| 1193 | vcpu_ptimer(vcpu)->irq.irq = ptimer_irq; |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| 1198 | { |
| 1199 | int __user *uaddr = (int __user *)(long)attr->addr; |
| 1200 | struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| 1201 | struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| 1202 | int irq; |
| 1203 | |
| 1204 | if (!irqchip_in_kernel(vcpu->kvm)) |
| 1205 | return -EINVAL; |
| 1206 | |
| 1207 | if (get_user(irq, uaddr)) |
| 1208 | return -EFAULT; |
| 1209 | |
| 1210 | if (!(irq_is_ppi(irq))) |
| 1211 | return -EINVAL; |
| 1212 | |
| 1213 | if (vcpu->arch.timer_cpu.enabled) |
| 1214 | return -EBUSY; |
| 1215 | |
| 1216 | switch (attr->attr) { |
| 1217 | case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| 1218 | set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq); |
| 1219 | break; |
| 1220 | case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| 1221 | set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq); |
| 1222 | break; |
| 1223 | default: |
| 1224 | return -ENXIO; |
| 1225 | } |
| 1226 | |
| 1227 | return 0; |
| 1228 | } |
| 1229 | |
| 1230 | int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| 1231 | { |
| 1232 | int __user *uaddr = (int __user *)(long)attr->addr; |
| 1233 | struct arch_timer_context *timer; |
| 1234 | int irq; |
| 1235 | |
| 1236 | switch (attr->attr) { |
| 1237 | case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| 1238 | timer = vcpu_vtimer(vcpu); |
| 1239 | break; |
| 1240 | case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| 1241 | timer = vcpu_ptimer(vcpu); |
| 1242 | break; |
| 1243 | default: |
| 1244 | return -ENXIO; |
| 1245 | } |
| 1246 | |
| 1247 | irq = timer->irq.irq; |
| 1248 | return put_user(irq, uaddr); |
| 1249 | } |
| 1250 | |
| 1251 | int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| 1252 | { |
| 1253 | switch (attr->attr) { |
| 1254 | case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| 1255 | case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| 1256 | return 0; |
| 1257 | } |
| 1258 | |
| 1259 | return -ENXIO; |
| 1260 | } |