blob: 10924f12207202d3fc59fea6471301890136c34b [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48/*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52#include <linux/pci.h>
53#include <linux/delay.h>
54#include <linux/interrupt.h>
55#include <linux/module.h>
56
57#include "hfi.h"
58#include "trace.h"
59#include "mad.h"
60#include "pio.h"
61#include "sdma.h"
62#include "eprom.h"
63#include "efivar.h"
64#include "platform.h"
65#include "aspm.h"
66#include "affinity.h"
67#include "debugfs.h"
68#include "fault.h"
69
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000070uint kdeth_qp;
71module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73
74uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75module_param(num_vls, uint, S_IRUGO);
76MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77
78/*
79 * Default time to aggregate two 10K packets from the idle state
80 * (timer not running). The timer starts at the end of the first packet,
81 * so only the time for one 10K packet and header plus a bit extra is needed.
82 * 10 * 1024 + 64 header byte = 10304 byte
83 * 10304 byte / 12.5 GB/s = 824.32ns
84 */
85uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86module_param(rcv_intr_timeout, uint, S_IRUGO);
87MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88
89uint rcv_intr_count = 16; /* same as qib */
90module_param(rcv_intr_count, uint, S_IRUGO);
91MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92
93ushort link_crc_mask = SUPPORTED_CRCS;
94module_param(link_crc_mask, ushort, S_IRUGO);
95MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96
97uint loopback;
98module_param_named(loopback, loopback, uint, S_IRUGO);
99MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100
101/* Other driver tunables */
102uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103static ushort crc_14b_sideband = 1;
104static uint use_flr = 1;
105uint quick_linkup; /* skip LNI */
106
107struct flag_table {
108 u64 flag; /* the flag */
109 char *str; /* description string */
110 u16 extra; /* extra information */
111 u16 unused0;
112 u32 unused1;
113};
114
115/* str must be a string constant */
116#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117#define FLAG_ENTRY0(str, flag) {flag, str, 0}
118
119/* Send Error Consequences */
120#define SEC_WRITE_DROPPED 0x1
121#define SEC_PACKET_DROPPED 0x2
122#define SEC_SC_HALTED 0x4 /* per-context only */
123#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
124
125#define DEFAULT_KRCVQS 2
126#define MIN_KERNEL_KCTXTS 2
127#define FIRST_KERNEL_KCTXT 1
128
129/*
130 * RSM instance allocation
131 * 0 - Verbs
132 * 1 - User Fecn Handling
133 * 2 - Vnic
134 */
135#define RSM_INS_VERBS 0
136#define RSM_INS_FECN 1
137#define RSM_INS_VNIC 2
138
139/* Bit offset into the GUID which carries HFI id information */
140#define GUID_HFI_INDEX_SHIFT 39
141
142/* extract the emulation revision */
143#define emulator_rev(dd) ((dd)->irev >> 8)
144/* parallel and serial emulation versions are 3 and 4 respectively */
145#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
146#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
147
148/* RSM fields for Verbs */
149/* packet type */
150#define IB_PACKET_TYPE 2ull
151#define QW_SHIFT 6ull
152/* QPN[7..1] */
153#define QPN_WIDTH 7ull
154
155/* LRH.BTH: QW 0, OFFSET 48 - for match */
156#define LRH_BTH_QW 0ull
157#define LRH_BTH_BIT_OFFSET 48ull
158#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
159#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
160#define LRH_BTH_SELECT
161#define LRH_BTH_MASK 3ull
162#define LRH_BTH_VALUE 2ull
163
164/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
165#define LRH_SC_QW 0ull
166#define LRH_SC_BIT_OFFSET 56ull
167#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
168#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
169#define LRH_SC_MASK 128ull
170#define LRH_SC_VALUE 0ull
171
172/* SC[n..0] QW 0, OFFSET 60 - for select */
173#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
174
175/* QPN[m+n:1] QW 1, OFFSET 1 */
176#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
177
178/* RSM fields for Vnic */
179/* L2_TYPE: QW 0, OFFSET 61 - for match */
180#define L2_TYPE_QW 0ull
181#define L2_TYPE_BIT_OFFSET 61ull
182#define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
183#define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
184#define L2_TYPE_MASK 3ull
185#define L2_16B_VALUE 2ull
186
187/* L4_TYPE QW 1, OFFSET 0 - for match */
188#define L4_TYPE_QW 1ull
189#define L4_TYPE_BIT_OFFSET 0ull
190#define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
191#define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
192#define L4_16B_TYPE_MASK 0xFFull
193#define L4_16B_ETH_VALUE 0x78ull
194
195/* 16B VESWID - for select */
196#define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
197/* 16B ENTROPY - for select */
198#define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
199
200/* defines to build power on SC2VL table */
201#define SC2VL_VAL( \
202 num, \
203 sc0, sc0val, \
204 sc1, sc1val, \
205 sc2, sc2val, \
206 sc3, sc3val, \
207 sc4, sc4val, \
208 sc5, sc5val, \
209 sc6, sc6val, \
210 sc7, sc7val) \
211( \
212 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
213 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
214 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
215 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
216 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
217 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
218 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
219 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
220)
221
222#define DC_SC_VL_VAL( \
223 range, \
224 e0, e0val, \
225 e1, e1val, \
226 e2, e2val, \
227 e3, e3val, \
228 e4, e4val, \
229 e5, e5val, \
230 e6, e6val, \
231 e7, e7val, \
232 e8, e8val, \
233 e9, e9val, \
234 e10, e10val, \
235 e11, e11val, \
236 e12, e12val, \
237 e13, e13val, \
238 e14, e14val, \
239 e15, e15val) \
240( \
241 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
242 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
243 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
244 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
245 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
246 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
247 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
248 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
249 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
250 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
251 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
252 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
253 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
254 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
255 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
256 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
257)
258
259/* all CceStatus sub-block freeze bits */
260#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
261 | CCE_STATUS_RXE_FROZE_SMASK \
262 | CCE_STATUS_TXE_FROZE_SMASK \
263 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
264/* all CceStatus sub-block TXE pause bits */
265#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
266 | CCE_STATUS_TXE_PAUSED_SMASK \
267 | CCE_STATUS_SDMA_PAUSED_SMASK)
268/* all CceStatus sub-block RXE pause bits */
269#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
270
271#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
272#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
273
274/*
275 * CCE Error flags.
276 */
277static struct flag_table cce_err_status_flags[] = {
278/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
279 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
280/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
281 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
282/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
283 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
284/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
285 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
286/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
287 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
288/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
289 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
290/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
291 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
292/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
293 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
294/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
295 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
296/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
297 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
298/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
300/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
301 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
302/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
303 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
304/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
305 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
306/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
307 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
308/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
309 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
310/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
311 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
312/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
313 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
314/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
315 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
316/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
317 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
318/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
319 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
320/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
321 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
322/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
323 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
324/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
325 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
326/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
327 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
328/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
329 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
330/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
331 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
332/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
333 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
334/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
335 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
336/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
337 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
338/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
339 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
340/*31*/ FLAG_ENTRY0("LATriggered",
341 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
342/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
343 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
344/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
345 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
346/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
347 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
348/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
349 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
350/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
351 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
352/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
353 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
354/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
355 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
356/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
357 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
358/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
359 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
360/*41-63 reserved*/
361};
362
363/*
364 * Misc Error flags
365 */
366#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
367static struct flag_table misc_err_status_flags[] = {
368/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
369/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
370/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
371/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
372/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
373/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
374/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
375/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
376/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
377/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
378/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
379/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
380/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
381};
382
383/*
384 * TXE PIO Error flags and consequences
385 */
386static struct flag_table pio_err_status_flags[] = {
387/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
388 SEC_WRITE_DROPPED,
389 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
390/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
391 SEC_SPC_FREEZE,
392 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
393/* 2*/ FLAG_ENTRY("PioCsrParity",
394 SEC_SPC_FREEZE,
395 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
396/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
397 SEC_SPC_FREEZE,
398 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
399/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
400 SEC_SPC_FREEZE,
401 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
402/* 5*/ FLAG_ENTRY("PioPccFifoParity",
403 SEC_SPC_FREEZE,
404 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
405/* 6*/ FLAG_ENTRY("PioPecFifoParity",
406 SEC_SPC_FREEZE,
407 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
408/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
409 SEC_SPC_FREEZE,
410 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
411/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
412 SEC_SPC_FREEZE,
413 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
414/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
415 SEC_SPC_FREEZE,
416 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
417/*10*/ FLAG_ENTRY("PioSmPktResetParity",
418 SEC_SPC_FREEZE,
419 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
420/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
421 SEC_SPC_FREEZE,
422 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
423/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
424 SEC_SPC_FREEZE,
425 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
426/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
427 0,
428 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
429/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
430 0,
431 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
432/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
433 SEC_SPC_FREEZE,
434 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
435/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
436 SEC_SPC_FREEZE,
437 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
438/*17*/ FLAG_ENTRY("PioInitSmIn",
439 0,
440 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
441/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
442 SEC_SPC_FREEZE,
443 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
444/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
445 SEC_SPC_FREEZE,
446 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
447/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
448 0,
449 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
450/*21*/ FLAG_ENTRY("PioWriteDataParity",
451 SEC_SPC_FREEZE,
452 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
453/*22*/ FLAG_ENTRY("PioStateMachine",
454 SEC_SPC_FREEZE,
455 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
456/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
457 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
458 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
459/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
460 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
461 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
462/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
463 SEC_SPC_FREEZE,
464 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
465/*26*/ FLAG_ENTRY("PioVlfSopParity",
466 SEC_SPC_FREEZE,
467 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
468/*27*/ FLAG_ENTRY("PioVlFifoParity",
469 SEC_SPC_FREEZE,
470 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
471/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
472 SEC_SPC_FREEZE,
473 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
474/*29*/ FLAG_ENTRY("PioPpmcSopLen",
475 SEC_SPC_FREEZE,
476 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
477/*30-31 reserved*/
478/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
479 SEC_SPC_FREEZE,
480 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
481/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
482 SEC_SPC_FREEZE,
483 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
484/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
485 SEC_SPC_FREEZE,
486 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
487/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
488 SEC_SPC_FREEZE,
489 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
490/*36-63 reserved*/
491};
492
493/* TXE PIO errors that cause an SPC freeze */
494#define ALL_PIO_FREEZE_ERR \
495 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
496 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
497 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
499 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
500 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
501 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
503 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
504 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
505 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
507 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
508 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
509 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
510 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
511 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
512 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
513 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
514 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
515 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
516 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
517 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
518 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
519 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
520 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
521 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
522 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
523 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
524
525/*
526 * TXE SDMA Error flags
527 */
528static struct flag_table sdma_err_status_flags[] = {
529/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
530 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
531/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
532 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
533/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
534 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
535/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
536 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
537/*04-63 reserved*/
538};
539
540/* TXE SDMA errors that cause an SPC freeze */
541#define ALL_SDMA_FREEZE_ERR \
542 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
543 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
544 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
545
546/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
547#define PORT_DISCARD_EGRESS_ERRS \
548 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
549 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
550 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
551
552/*
553 * TXE Egress Error flags
554 */
555#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
556static struct flag_table egress_err_status_flags[] = {
557/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
558/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
559/* 2 reserved */
560/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
561 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
562/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
563/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
564/* 6 reserved */
565/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
566 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
567/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
568 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
569/* 9-10 reserved */
570/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
571 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
572/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
573/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
574/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
575/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
576/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
577 SEES(TX_SDMA0_DISALLOWED_PACKET)),
578/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
579 SEES(TX_SDMA1_DISALLOWED_PACKET)),
580/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
581 SEES(TX_SDMA2_DISALLOWED_PACKET)),
582/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
583 SEES(TX_SDMA3_DISALLOWED_PACKET)),
584/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
585 SEES(TX_SDMA4_DISALLOWED_PACKET)),
586/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
587 SEES(TX_SDMA5_DISALLOWED_PACKET)),
588/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
589 SEES(TX_SDMA6_DISALLOWED_PACKET)),
590/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
591 SEES(TX_SDMA7_DISALLOWED_PACKET)),
592/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
593 SEES(TX_SDMA8_DISALLOWED_PACKET)),
594/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
595 SEES(TX_SDMA9_DISALLOWED_PACKET)),
596/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
597 SEES(TX_SDMA10_DISALLOWED_PACKET)),
598/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
599 SEES(TX_SDMA11_DISALLOWED_PACKET)),
600/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
601 SEES(TX_SDMA12_DISALLOWED_PACKET)),
602/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
603 SEES(TX_SDMA13_DISALLOWED_PACKET)),
604/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
605 SEES(TX_SDMA14_DISALLOWED_PACKET)),
606/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
607 SEES(TX_SDMA15_DISALLOWED_PACKET)),
608/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
609 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
610/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
611 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
612/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
613 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
614/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
615 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
616/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
617 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
618/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
619 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
620/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
621 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
622/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
623 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
624/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
625 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
626/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
627/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
628/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
629/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
630/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
631/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
632/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
633/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
634/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
635/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
636/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
637/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
638/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
639/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
640/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
641/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
642/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
643/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
644/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
645/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
646/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
647/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
648 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
649/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
650 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
651};
652
653/*
654 * TXE Egress Error Info flags
655 */
656#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
657static struct flag_table egress_err_info_flags[] = {
658/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
659/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
660/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
661/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
663/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
664/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
665/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
666/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
667/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
668/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
669/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
670/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
671/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
672/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
673/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
674/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
675/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
676/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
677/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
678/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
679/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
680};
681
682/* TXE Egress errors that cause an SPC freeze */
683#define ALL_TXE_EGRESS_FREEZE_ERR \
684 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
685 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
686 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
687 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
688 | SEES(TX_LAUNCH_CSR_PARITY) \
689 | SEES(TX_SBRD_CTL_CSR_PARITY) \
690 | SEES(TX_CONFIG_PARITY) \
691 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
692 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
693 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
694 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
695 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
696 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
697 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
698 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
699 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
700 | SEES(TX_CREDIT_RETURN_PARITY))
701
702/*
703 * TXE Send error flags
704 */
705#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
706static struct flag_table send_err_status_flags[] = {
707/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
708/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
709/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
710};
711
712/*
713 * TXE Send Context Error flags and consequences
714 */
715static struct flag_table sc_err_status_flags[] = {
716/* 0*/ FLAG_ENTRY("InconsistentSop",
717 SEC_PACKET_DROPPED | SEC_SC_HALTED,
718 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
719/* 1*/ FLAG_ENTRY("DisallowedPacket",
720 SEC_PACKET_DROPPED | SEC_SC_HALTED,
721 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
722/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
723 SEC_WRITE_DROPPED | SEC_SC_HALTED,
724 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
725/* 3*/ FLAG_ENTRY("WriteOverflow",
726 SEC_WRITE_DROPPED | SEC_SC_HALTED,
727 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
728/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
729 SEC_WRITE_DROPPED | SEC_SC_HALTED,
730 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
731/* 5-63 reserved*/
732};
733
734/*
735 * RXE Receive Error flags
736 */
737#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
738static struct flag_table rxe_err_status_flags[] = {
739/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
740/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
741/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
742/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
743/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
744/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
745/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
746/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
747/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
748/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
749/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
750/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
751/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
752/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
753/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
754/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
755/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
756 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
757/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
758/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
759/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
760 RXES(RBUF_BLOCK_LIST_READ_UNC)),
761/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
762 RXES(RBUF_BLOCK_LIST_READ_COR)),
763/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
764 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
765/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
766 RXES(RBUF_CSR_QENT_CNT_PARITY)),
767/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
768 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
769/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
770 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
771/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
772/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
773/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
774 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
775/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
776/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
777/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
778/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
779/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
780/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
781/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
782/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
783 RXES(RBUF_FL_INITDONE_PARITY)),
784/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
785 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
786/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
787/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
788/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
789/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
790 RXES(LOOKUP_DES_PART1_UNC_COR)),
791/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
792 RXES(LOOKUP_DES_PART2_PARITY)),
793/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
794/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
795/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
796/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
797/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
798/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
799/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
800/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
801/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
802/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
803/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
804/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
805/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
806/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
807/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
808/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
809/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
810/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
811/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
812/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
813/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
814/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
815};
816
817/* RXE errors that will trigger an SPC freeze */
818#define ALL_RXE_FREEZE_ERR \
819 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
835 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
836 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
837 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
838 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
839 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
840 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
841 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
842 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
843 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
844 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
845 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
848 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
849 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
850 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
851 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
852 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
855 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
856 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
857 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
858 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
859 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
860 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
861 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
862 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
863
864#define RXE_FREEZE_ABORT_MASK \
865 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
866 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
867 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
868
869/*
870 * DCC Error Flags
871 */
872#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
873static struct flag_table dcc_err_flags[] = {
874 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
875 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
876 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
877 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
878 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
879 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
880 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
881 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
882 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
883 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
884 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
885 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
886 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
887 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
888 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
889 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
890 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
891 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
892 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
893 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
894 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
895 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
896 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
897 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
898 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
899 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
900 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
901 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
902 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
903 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
904 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
905 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
906 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
907 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
908 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
909 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
910 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
911 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
912 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
913 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
914 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
915 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
916 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
917 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
918 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
919 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
920};
921
922/*
923 * LCB error flags
924 */
925#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
926static struct flag_table lcb_err_flags[] = {
927/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
928/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
929/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
930/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
931 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
932/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
933/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
934/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
935/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
936/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
937/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
938/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
939/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
940/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
941/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
942 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
943/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
944/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
945/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
946/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
947/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
948/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
949 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
950/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
951/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
952/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
953/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
954/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
955/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
956/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
957 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
958/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
959/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
960 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
961/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
962 LCBE(REDUNDANT_FLIT_PARITY_ERR))
963};
964
965/*
966 * DC8051 Error Flags
967 */
968#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
969static struct flag_table dc8051_err_flags[] = {
970 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
971 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
972 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
973 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
974 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
975 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
976 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
977 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
978 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
979 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
980 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
981};
982
983/*
984 * DC8051 Information Error flags
985 *
986 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
987 */
988static struct flag_table dc8051_info_err_flags[] = {
989 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
990 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
991 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
992 FLAG_ENTRY0("Serdes internal loopback failure",
993 FAILED_SERDES_INTERNAL_LOOPBACK),
994 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
995 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
996 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
997 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
998 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
999 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1000 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1001 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
1002 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
1003 FLAG_ENTRY0("External Device Request Timeout",
1004 EXTERNAL_DEVICE_REQ_TIMEOUT),
1005};
1006
1007/*
1008 * DC8051 Information Host Information flags
1009 *
1010 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1011 */
1012static struct flag_table dc8051_info_host_msg_flags[] = {
1013 FLAG_ENTRY0("Host request done", 0x0001),
1014 FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1015 FLAG_ENTRY0("BC SMA message", 0x0004),
1016 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1017 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1018 FLAG_ENTRY0("External device config request", 0x0020),
1019 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1020 FLAG_ENTRY0("LinkUp achieved", 0x0080),
1021 FLAG_ENTRY0("Link going down", 0x0100),
1022 FLAG_ENTRY0("Link width downgraded", 0x0200),
1023};
1024
1025static u32 encoded_size(u32 size);
1026static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 u8 *continuous);
1030static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 u8 *remote_tx_rate, u16 *link_widths);
1034static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1035 u8 *flag_bits, u16 *link_widths);
1036static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 u8 *device_rev);
1038static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1039static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1040 u8 *tx_polarity_inversion,
1041 u8 *rx_polarity_inversion, u8 *max_rate);
1042static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1043 unsigned int context, u64 err_status);
1044static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1045static void handle_dcc_err(struct hfi1_devdata *dd,
1046 unsigned int context, u64 err_status);
1047static void handle_lcb_err(struct hfi1_devdata *dd,
1048 unsigned int context, u64 err_status);
1049static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1050static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057static void set_partition_keys(struct hfi1_pportdata *ppd);
1058static const char *link_state_name(u32 state);
1059static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1060 u32 state);
1061static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1062 u64 *out_data);
1063static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1064static int thermal_init(struct hfi1_devdata *dd);
1065
1066static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1067static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1068 int msecs);
1069static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 int msecs);
1071static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 int msecs);
David Brazdil0f672f62019-12-10 10:32:29 +00001075static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1076 int msecs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001077static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079static void handle_temp_err(struct hfi1_devdata *dd);
1080static void dc_shutdown(struct hfi1_devdata *dd);
1081static void dc_start(struct hfi1_devdata *dd);
1082static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 unsigned int *np);
1084static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088
1089/*
1090 * Error interrupt table entry. This is used as input to the interrupt
1091 * "clear down" routine used for all second tier error interrupt register.
1092 * Second tier interrupt registers have a single bit representing them
1093 * in the top-level CceIntStatus.
1094 */
1095struct err_reg_info {
1096 u32 status; /* status CSR offset */
1097 u32 clear; /* clear CSR offset */
1098 u32 mask; /* mask CSR offset */
1099 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 const char *desc;
1101};
1102
David Brazdil0f672f62019-12-10 10:32:29 +00001103#define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1104#define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1105#define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001106
1107/*
1108 * Helpers for building HFI and DC error interrupt table entries. Different
1109 * helpers are needed because of inconsistent register names.
1110 */
1111#define EE(reg, handler, desc) \
1112 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 handler, desc }
1114#define DC_EE1(reg, handler, desc) \
1115 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116#define DC_EE2(reg, handler, desc) \
1117 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118
1119/*
1120 * Table of the "misc" grouping of error interrupts. Each entry refers to
1121 * another register containing more information.
1122 */
1123static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1125/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1126/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1127/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1128/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1129/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1130/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1132 /* the rest are reserved */
1133};
1134
1135/*
1136 * Index into the Various section of the interrupt sources
1137 * corresponding to the Critical Temperature interrupt.
1138 */
1139#define TCRIT_INT_SOURCE 4
1140
1141/*
1142 * SDMA error interrupt entry - refers to another register containing more
1143 * information.
1144 */
1145static const struct err_reg_info sdma_eng_err =
1146 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147
1148static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1150/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1151/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1152/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1153/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1154 /* rest are reserved */
1155};
1156
1157/*
1158 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159 * register can not be derived from the MTU value because 10K is not
1160 * a power of 2. Therefore, we need a constant. Everything else can
1161 * be calculated.
1162 */
1163#define DCC_CFG_PORT_MTU_CAP_10240 7
1164
1165/*
1166 * Table of the DC grouping of error interrupts. Each entry refers to
1167 * another register containing more information.
1168 */
1169static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1171/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1172/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1173/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1174 /* the rest are reserved */
1175};
1176
1177struct cntr_entry {
1178 /*
1179 * counter name
1180 */
1181 char *name;
1182
1183 /*
1184 * csr to read for name (if applicable)
1185 */
1186 u64 csr;
1187
1188 /*
1189 * offset into dd or ppd to store the counter's value
1190 */
1191 int offset;
1192
1193 /*
1194 * flags
1195 */
1196 u8 flags;
1197
1198 /*
1199 * accessor for stat element, context either dd or ppd
1200 */
1201 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 int mode, u64 data);
1203};
1204
1205#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207
1208#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209{ \
1210 name, \
1211 csr, \
1212 offset, \
1213 flags, \
1214 accessor \
1215}
1216
1217/* 32bit RXE */
1218#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219CNTR_ELEM(#name, \
1220 (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 0, flags | CNTR_32BIT, \
1222 port_access_u32_csr)
1223
1224#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225CNTR_ELEM(#name, \
1226 (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 0, flags | CNTR_32BIT, \
1228 dev_access_u32_csr)
1229
1230/* 64bit RXE */
1231#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232CNTR_ELEM(#name, \
1233 (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 0, flags, \
1235 port_access_u64_csr)
1236
1237#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238CNTR_ELEM(#name, \
1239 (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 0, flags, \
1241 dev_access_u64_csr)
1242
1243#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244#define OVR_ELM(ctx) \
1245CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 0, CNTR_NORMAL, port_access_u64_csr)
1248
1249/* 32bit TXE */
1250#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251CNTR_ELEM(#name, \
1252 (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 0, flags | CNTR_32BIT, \
1254 port_access_u32_csr)
1255
1256/* 64bit TXE */
1257#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258CNTR_ELEM(#name, \
1259 (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 0, flags, \
1261 port_access_u64_csr)
1262
1263# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264CNTR_ELEM(#name,\
1265 counter * 8 + SEND_COUNTER_ARRAY64, \
1266 0, \
1267 flags, \
1268 dev_access_u64_csr)
1269
1270/* CCE */
1271#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272CNTR_ELEM(#name, \
1273 (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 0, flags | CNTR_32BIT, \
1275 dev_access_u32_csr)
1276
1277#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278CNTR_ELEM(#name, \
1279 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 0, flags | CNTR_32BIT, \
1281 dev_access_u32_csr)
1282
1283/* DC */
1284#define DC_PERF_CNTR(name, counter, flags) \
1285CNTR_ELEM(#name, \
1286 counter, \
1287 0, \
1288 flags, \
1289 dev_access_u64_csr)
1290
1291#define DC_PERF_CNTR_LCB(name, counter, flags) \
1292CNTR_ELEM(#name, \
1293 counter, \
1294 0, \
1295 flags, \
1296 dc_access_lcb_cntr)
1297
1298/* ibp counters */
1299#define SW_IBP_CNTR(name, cntr) \
1300CNTR_ELEM(#name, \
1301 0, \
1302 0, \
1303 CNTR_SYNTH, \
1304 access_ibp_##cntr)
1305
1306/**
1307 * hfi_addr_from_offset - return addr for readq/writeq
1308 * @dd - the dd device
1309 * @offset - the offset of the CSR within bar0
1310 *
1311 * This routine selects the appropriate base address
1312 * based on the indicated offset.
1313 */
1314static inline void __iomem *hfi1_addr_from_offset(
1315 const struct hfi1_devdata *dd,
1316 u32 offset)
1317{
1318 if (offset >= dd->base2_start)
1319 return dd->kregbase2 + (offset - dd->base2_start);
1320 return dd->kregbase1 + offset;
1321}
1322
1323/**
1324 * read_csr - read CSR at the indicated offset
1325 * @dd - the dd device
1326 * @offset - the offset of the CSR within bar0
1327 *
1328 * Return: the value read or all FF's if there
1329 * is no mapping
1330 */
1331u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332{
1333 if (dd->flags & HFI1_PRESENT)
1334 return readq(hfi1_addr_from_offset(dd, offset));
1335 return -1;
1336}
1337
1338/**
1339 * write_csr - write CSR at the indicated offset
1340 * @dd - the dd device
1341 * @offset - the offset of the CSR within bar0
1342 * @value - value to write
1343 */
1344void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345{
1346 if (dd->flags & HFI1_PRESENT) {
1347 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348
1349 /* avoid write to RcvArray */
1350 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 return;
1352 writeq(value, base);
1353 }
1354}
1355
1356/**
1357 * get_csr_addr - return te iomem address for offset
1358 * @dd - the dd device
1359 * @offset - the offset of the CSR within bar0
1360 *
1361 * Return: The iomem address to use in subsequent
1362 * writeq/readq operations.
1363 */
1364void __iomem *get_csr_addr(
1365 const struct hfi1_devdata *dd,
1366 u32 offset)
1367{
1368 if (dd->flags & HFI1_PRESENT)
1369 return hfi1_addr_from_offset(dd, offset);
1370 return NULL;
1371}
1372
1373static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 int mode, u64 value)
1375{
1376 u64 ret;
1377
1378 if (mode == CNTR_MODE_R) {
1379 ret = read_csr(dd, csr);
1380 } else if (mode == CNTR_MODE_W) {
1381 write_csr(dd, csr, value);
1382 ret = value;
1383 } else {
1384 dd_dev_err(dd, "Invalid cntr register access mode");
1385 return 0;
1386 }
1387
1388 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 return ret;
1390}
1391
1392/* Dev Access */
1393static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 void *context, int vl, int mode, u64 data)
1395{
1396 struct hfi1_devdata *dd = context;
1397 u64 csr = entry->csr;
1398
1399 if (entry->flags & CNTR_SDMA) {
1400 if (vl == CNTR_INVALID_VL)
1401 return 0;
1402 csr += 0x100 * vl;
1403 } else {
1404 if (vl != CNTR_INVALID_VL)
1405 return 0;
1406 }
1407 return read_write_csr(dd, csr, mode, data);
1408}
1409
1410static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 void *context, int idx, int mode, u64 data)
1412{
1413 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414
1415 if (dd->per_sdma && idx < dd->num_sdma)
1416 return dd->per_sdma[idx].err_cnt;
1417 return 0;
1418}
1419
1420static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 void *context, int idx, int mode, u64 data)
1422{
1423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424
1425 if (dd->per_sdma && idx < dd->num_sdma)
1426 return dd->per_sdma[idx].sdma_int_cnt;
1427 return 0;
1428}
1429
1430static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 void *context, int idx, int mode, u64 data)
1432{
1433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434
1435 if (dd->per_sdma && idx < dd->num_sdma)
1436 return dd->per_sdma[idx].idle_int_cnt;
1437 return 0;
1438}
1439
1440static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 void *context, int idx, int mode,
1442 u64 data)
1443{
1444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445
1446 if (dd->per_sdma && idx < dd->num_sdma)
1447 return dd->per_sdma[idx].progress_int_cnt;
1448 return 0;
1449}
1450
1451static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 int vl, int mode, u64 data)
1453{
1454 struct hfi1_devdata *dd = context;
1455
1456 u64 val = 0;
1457 u64 csr = entry->csr;
1458
1459 if (entry->flags & CNTR_VL) {
1460 if (vl == CNTR_INVALID_VL)
1461 return 0;
1462 csr += 8 * vl;
1463 } else {
1464 if (vl != CNTR_INVALID_VL)
1465 return 0;
1466 }
1467
1468 val = read_write_csr(dd, csr, mode, data);
1469 return val;
1470}
1471
1472static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 int vl, int mode, u64 data)
1474{
1475 struct hfi1_devdata *dd = context;
1476 u32 csr = entry->csr;
1477 int ret = 0;
1478
1479 if (vl != CNTR_INVALID_VL)
1480 return 0;
1481 if (mode == CNTR_MODE_R)
1482 ret = read_lcb_csr(dd, csr, &data);
1483 else if (mode == CNTR_MODE_W)
1484 ret = write_lcb_csr(dd, csr, data);
1485
1486 if (ret) {
1487 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 return 0;
1489 }
1490
1491 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 return data;
1493}
1494
1495/* Port Access */
1496static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 int vl, int mode, u64 data)
1498{
1499 struct hfi1_pportdata *ppd = context;
1500
1501 if (vl != CNTR_INVALID_VL)
1502 return 0;
1503 return read_write_csr(ppd->dd, entry->csr, mode, data);
1504}
1505
1506static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 void *context, int vl, int mode, u64 data)
1508{
1509 struct hfi1_pportdata *ppd = context;
1510 u64 val;
1511 u64 csr = entry->csr;
1512
1513 if (entry->flags & CNTR_VL) {
1514 if (vl == CNTR_INVALID_VL)
1515 return 0;
1516 csr += 8 * vl;
1517 } else {
1518 if (vl != CNTR_INVALID_VL)
1519 return 0;
1520 }
1521 val = read_write_csr(ppd->dd, csr, mode, data);
1522 return val;
1523}
1524
1525/* Software defined */
1526static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 u64 data)
1528{
1529 u64 ret;
1530
1531 if (mode == CNTR_MODE_R) {
1532 ret = *cntr;
1533 } else if (mode == CNTR_MODE_W) {
1534 *cntr = data;
1535 ret = data;
1536 } else {
1537 dd_dev_err(dd, "Invalid cntr sw access mode");
1538 return 0;
1539 }
1540
1541 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542
1543 return ret;
1544}
1545
1546static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 int vl, int mode, u64 data)
1548{
1549 struct hfi1_pportdata *ppd = context;
1550
1551 if (vl != CNTR_INVALID_VL)
1552 return 0;
1553 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554}
1555
1556static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 int vl, int mode, u64 data)
1558{
1559 struct hfi1_pportdata *ppd = context;
1560
1561 if (vl != CNTR_INVALID_VL)
1562 return 0;
1563 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564}
1565
1566static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 void *context, int vl, int mode,
1568 u64 data)
1569{
1570 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571
1572 if (vl != CNTR_INVALID_VL)
1573 return 0;
1574 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575}
1576
1577static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 void *context, int vl, int mode, u64 data)
1579{
1580 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 u64 zero = 0;
1582 u64 *counter;
1583
1584 if (vl == CNTR_INVALID_VL)
1585 counter = &ppd->port_xmit_discards;
1586 else if (vl >= 0 && vl < C_VL_COUNT)
1587 counter = &ppd->port_xmit_discards_vl[vl];
1588 else
1589 counter = &zero;
1590
1591 return read_write_sw(ppd->dd, counter, mode, data);
1592}
1593
1594static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 void *context, int vl, int mode,
1596 u64 data)
1597{
1598 struct hfi1_pportdata *ppd = context;
1599
1600 if (vl != CNTR_INVALID_VL)
1601 return 0;
1602
1603 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 mode, data);
1605}
1606
1607static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 void *context, int vl, int mode, u64 data)
1609{
1610 struct hfi1_pportdata *ppd = context;
1611
1612 if (vl != CNTR_INVALID_VL)
1613 return 0;
1614
1615 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 mode, data);
1617}
1618
1619u64 get_all_cpu_total(u64 __percpu *cntr)
1620{
1621 int cpu;
1622 u64 counter = 0;
1623
1624 for_each_possible_cpu(cpu)
1625 counter += *per_cpu_ptr(cntr, cpu);
1626 return counter;
1627}
1628
1629static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 u64 __percpu *cntr,
1631 int vl, int mode, u64 data)
1632{
1633 u64 ret = 0;
1634
1635 if (vl != CNTR_INVALID_VL)
1636 return 0;
1637
1638 if (mode == CNTR_MODE_R) {
1639 ret = get_all_cpu_total(cntr) - *z_val;
1640 } else if (mode == CNTR_MODE_W) {
1641 /* A write can only zero the counter */
1642 if (data == 0)
1643 *z_val = get_all_cpu_total(cntr);
1644 else
1645 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 } else {
1647 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 return 0;
1649 }
1650
1651 return ret;
1652}
1653
1654static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 void *context, int vl, int mode, u64 data)
1656{
1657 struct hfi1_devdata *dd = context;
1658
1659 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 mode, data);
1661}
1662
1663static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 void *context, int vl, int mode, u64 data)
1665{
1666 struct hfi1_devdata *dd = context;
1667
1668 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 mode, data);
1670}
1671
1672static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 void *context, int vl, int mode, u64 data)
1674{
1675 struct hfi1_devdata *dd = context;
1676
1677 return dd->verbs_dev.n_piowait;
1678}
1679
1680static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 void *context, int vl, int mode, u64 data)
1682{
1683 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684
1685 return dd->verbs_dev.n_piodrain;
1686}
1687
Olivier Deprez0e641232021-09-23 10:07:05 +02001688static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1689 void *context, int vl, int mode, u64 data)
1690{
1691 struct hfi1_devdata *dd = context;
1692
1693 return dd->ctx0_seq_drop;
1694}
1695
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001696static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1697 void *context, int vl, int mode, u64 data)
1698{
1699 struct hfi1_devdata *dd = context;
1700
1701 return dd->verbs_dev.n_txwait;
1702}
1703
1704static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1705 void *context, int vl, int mode, u64 data)
1706{
1707 struct hfi1_devdata *dd = context;
1708
1709 return dd->verbs_dev.n_kmem_wait;
1710}
1711
1712static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1713 void *context, int vl, int mode, u64 data)
1714{
1715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1716
1717 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1718 mode, data);
1719}
1720
1721/* Software counters for the error status bits within MISC_ERR_STATUS */
1722static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1723 void *context, int vl, int mode,
1724 u64 data)
1725{
1726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727
1728 return dd->misc_err_status_cnt[12];
1729}
1730
1731static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1732 void *context, int vl, int mode,
1733 u64 data)
1734{
1735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736
1737 return dd->misc_err_status_cnt[11];
1738}
1739
1740static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1741 void *context, int vl, int mode,
1742 u64 data)
1743{
1744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746 return dd->misc_err_status_cnt[10];
1747}
1748
1749static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1750 void *context, int vl,
1751 int mode, u64 data)
1752{
1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755 return dd->misc_err_status_cnt[9];
1756}
1757
1758static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1759 void *context, int vl, int mode,
1760 u64 data)
1761{
1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764 return dd->misc_err_status_cnt[8];
1765}
1766
1767static u64 access_misc_efuse_read_bad_addr_err_cnt(
1768 const struct cntr_entry *entry,
1769 void *context, int vl, int mode, u64 data)
1770{
1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773 return dd->misc_err_status_cnt[7];
1774}
1775
1776static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1777 void *context, int vl,
1778 int mode, u64 data)
1779{
1780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781
1782 return dd->misc_err_status_cnt[6];
1783}
1784
1785static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1786 void *context, int vl, int mode,
1787 u64 data)
1788{
1789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790
1791 return dd->misc_err_status_cnt[5];
1792}
1793
1794static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1795 void *context, int vl, int mode,
1796 u64 data)
1797{
1798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799
1800 return dd->misc_err_status_cnt[4];
1801}
1802
1803static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1804 void *context, int vl,
1805 int mode, u64 data)
1806{
1807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808
1809 return dd->misc_err_status_cnt[3];
1810}
1811
1812static u64 access_misc_csr_write_bad_addr_err_cnt(
1813 const struct cntr_entry *entry,
1814 void *context, int vl, int mode, u64 data)
1815{
1816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817
1818 return dd->misc_err_status_cnt[2];
1819}
1820
1821static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1822 void *context, int vl,
1823 int mode, u64 data)
1824{
1825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827 return dd->misc_err_status_cnt[1];
1828}
1829
1830static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1831 void *context, int vl, int mode,
1832 u64 data)
1833{
1834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1835
1836 return dd->misc_err_status_cnt[0];
1837}
1838
1839/*
1840 * Software counter for the aggregate of
1841 * individual CceErrStatus counters
1842 */
1843static u64 access_sw_cce_err_status_aggregated_cnt(
1844 const struct cntr_entry *entry,
1845 void *context, int vl, int mode, u64 data)
1846{
1847 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1848
1849 return dd->sw_cce_err_status_aggregate;
1850}
1851
1852/*
1853 * Software counters corresponding to each of the
1854 * error status bits within CceErrStatus
1855 */
1856static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1857 void *context, int vl, int mode,
1858 u64 data)
1859{
1860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861
1862 return dd->cce_err_status_cnt[40];
1863}
1864
1865static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1866 void *context, int vl, int mode,
1867 u64 data)
1868{
1869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870
1871 return dd->cce_err_status_cnt[39];
1872}
1873
1874static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1875 void *context, int vl, int mode,
1876 u64 data)
1877{
1878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879
1880 return dd->cce_err_status_cnt[38];
1881}
1882
1883static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1884 void *context, int vl, int mode,
1885 u64 data)
1886{
1887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888
1889 return dd->cce_err_status_cnt[37];
1890}
1891
1892static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1893 void *context, int vl, int mode,
1894 u64 data)
1895{
1896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897
1898 return dd->cce_err_status_cnt[36];
1899}
1900
1901static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1902 const struct cntr_entry *entry,
1903 void *context, int vl, int mode, u64 data)
1904{
1905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906
1907 return dd->cce_err_status_cnt[35];
1908}
1909
1910static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1911 const struct cntr_entry *entry,
1912 void *context, int vl, int mode, u64 data)
1913{
1914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915
1916 return dd->cce_err_status_cnt[34];
1917}
1918
1919static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1920 void *context, int vl,
1921 int mode, u64 data)
1922{
1923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924
1925 return dd->cce_err_status_cnt[33];
1926}
1927
1928static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1929 void *context, int vl, int mode,
1930 u64 data)
1931{
1932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933
1934 return dd->cce_err_status_cnt[32];
1935}
1936
1937static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1938 void *context, int vl, int mode, u64 data)
1939{
1940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941
1942 return dd->cce_err_status_cnt[31];
1943}
1944
1945static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1946 void *context, int vl, int mode,
1947 u64 data)
1948{
1949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950
1951 return dd->cce_err_status_cnt[30];
1952}
1953
1954static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1955 void *context, int vl, int mode,
1956 u64 data)
1957{
1958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960 return dd->cce_err_status_cnt[29];
1961}
1962
1963static u64 access_pcic_transmit_back_parity_err_cnt(
1964 const struct cntr_entry *entry,
1965 void *context, int vl, int mode, u64 data)
1966{
1967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969 return dd->cce_err_status_cnt[28];
1970}
1971
1972static u64 access_pcic_transmit_front_parity_err_cnt(
1973 const struct cntr_entry *entry,
1974 void *context, int vl, int mode, u64 data)
1975{
1976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978 return dd->cce_err_status_cnt[27];
1979}
1980
1981static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1982 void *context, int vl, int mode,
1983 u64 data)
1984{
1985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987 return dd->cce_err_status_cnt[26];
1988}
1989
1990static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1991 void *context, int vl, int mode,
1992 u64 data)
1993{
1994 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996 return dd->cce_err_status_cnt[25];
1997}
1998
1999static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2000 void *context, int vl, int mode,
2001 u64 data)
2002{
2003 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005 return dd->cce_err_status_cnt[24];
2006}
2007
2008static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2009 void *context, int vl, int mode,
2010 u64 data)
2011{
2012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014 return dd->cce_err_status_cnt[23];
2015}
2016
2017static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2018 void *context, int vl,
2019 int mode, u64 data)
2020{
2021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023 return dd->cce_err_status_cnt[22];
2024}
2025
2026static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2027 void *context, int vl, int mode,
2028 u64 data)
2029{
2030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032 return dd->cce_err_status_cnt[21];
2033}
2034
2035static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2036 const struct cntr_entry *entry,
2037 void *context, int vl, int mode, u64 data)
2038{
2039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041 return dd->cce_err_status_cnt[20];
2042}
2043
2044static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2045 void *context, int vl,
2046 int mode, u64 data)
2047{
2048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050 return dd->cce_err_status_cnt[19];
2051}
2052
2053static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2054 void *context, int vl, int mode,
2055 u64 data)
2056{
2057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059 return dd->cce_err_status_cnt[18];
2060}
2061
2062static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2063 void *context, int vl, int mode,
2064 u64 data)
2065{
2066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068 return dd->cce_err_status_cnt[17];
2069}
2070
2071static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2072 void *context, int vl, int mode,
2073 u64 data)
2074{
2075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077 return dd->cce_err_status_cnt[16];
2078}
2079
2080static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2081 void *context, int vl, int mode,
2082 u64 data)
2083{
2084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086 return dd->cce_err_status_cnt[15];
2087}
2088
2089static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2090 void *context, int vl,
2091 int mode, u64 data)
2092{
2093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095 return dd->cce_err_status_cnt[14];
2096}
2097
2098static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2099 void *context, int vl, int mode,
2100 u64 data)
2101{
2102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104 return dd->cce_err_status_cnt[13];
2105}
2106
2107static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2108 const struct cntr_entry *entry,
2109 void *context, int vl, int mode, u64 data)
2110{
2111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113 return dd->cce_err_status_cnt[12];
2114}
2115
2116static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2117 const struct cntr_entry *entry,
2118 void *context, int vl, int mode, u64 data)
2119{
2120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122 return dd->cce_err_status_cnt[11];
2123}
2124
2125static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2126 const struct cntr_entry *entry,
2127 void *context, int vl, int mode, u64 data)
2128{
2129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131 return dd->cce_err_status_cnt[10];
2132}
2133
2134static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2135 const struct cntr_entry *entry,
2136 void *context, int vl, int mode, u64 data)
2137{
2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140 return dd->cce_err_status_cnt[9];
2141}
2142
2143static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2144 const struct cntr_entry *entry,
2145 void *context, int vl, int mode, u64 data)
2146{
2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149 return dd->cce_err_status_cnt[8];
2150}
2151
2152static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2153 void *context, int vl,
2154 int mode, u64 data)
2155{
2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158 return dd->cce_err_status_cnt[7];
2159}
2160
2161static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2162 const struct cntr_entry *entry,
2163 void *context, int vl, int mode, u64 data)
2164{
2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166
2167 return dd->cce_err_status_cnt[6];
2168}
2169
2170static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2171 void *context, int vl, int mode,
2172 u64 data)
2173{
2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175
2176 return dd->cce_err_status_cnt[5];
2177}
2178
2179static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2180 void *context, int vl, int mode,
2181 u64 data)
2182{
2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184
2185 return dd->cce_err_status_cnt[4];
2186}
2187
2188static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2189 const struct cntr_entry *entry,
2190 void *context, int vl, int mode, u64 data)
2191{
2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193
2194 return dd->cce_err_status_cnt[3];
2195}
2196
2197static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2198 void *context, int vl,
2199 int mode, u64 data)
2200{
2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202
2203 return dd->cce_err_status_cnt[2];
2204}
2205
2206static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2207 void *context, int vl,
2208 int mode, u64 data)
2209{
2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212 return dd->cce_err_status_cnt[1];
2213}
2214
2215static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2216 void *context, int vl, int mode,
2217 u64 data)
2218{
2219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220
2221 return dd->cce_err_status_cnt[0];
2222}
2223
2224/*
2225 * Software counters corresponding to each of the
2226 * error status bits within RcvErrStatus
2227 */
2228static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2229 void *context, int vl, int mode,
2230 u64 data)
2231{
2232 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233
2234 return dd->rcv_err_status_cnt[63];
2235}
2236
2237static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2238 void *context, int vl,
2239 int mode, u64 data)
2240{
2241 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242
2243 return dd->rcv_err_status_cnt[62];
2244}
2245
2246static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2247 void *context, int vl, int mode,
2248 u64 data)
2249{
2250 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252 return dd->rcv_err_status_cnt[61];
2253}
2254
2255static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2256 void *context, int vl, int mode,
2257 u64 data)
2258{
2259 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261 return dd->rcv_err_status_cnt[60];
2262}
2263
2264static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2265 void *context, int vl,
2266 int mode, u64 data)
2267{
2268 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270 return dd->rcv_err_status_cnt[59];
2271}
2272
2273static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2274 void *context, int vl,
2275 int mode, u64 data)
2276{
2277 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279 return dd->rcv_err_status_cnt[58];
2280}
2281
2282static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2283 void *context, int vl, int mode,
2284 u64 data)
2285{
2286 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288 return dd->rcv_err_status_cnt[57];
2289}
2290
2291static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2292 void *context, int vl, int mode,
2293 u64 data)
2294{
2295 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297 return dd->rcv_err_status_cnt[56];
2298}
2299
2300static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2301 void *context, int vl, int mode,
2302 u64 data)
2303{
2304 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306 return dd->rcv_err_status_cnt[55];
2307}
2308
2309static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2310 const struct cntr_entry *entry,
2311 void *context, int vl, int mode, u64 data)
2312{
2313 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315 return dd->rcv_err_status_cnt[54];
2316}
2317
2318static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2319 const struct cntr_entry *entry,
2320 void *context, int vl, int mode, u64 data)
2321{
2322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324 return dd->rcv_err_status_cnt[53];
2325}
2326
2327static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2328 void *context, int vl,
2329 int mode, u64 data)
2330{
2331 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333 return dd->rcv_err_status_cnt[52];
2334}
2335
2336static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2337 void *context, int vl,
2338 int mode, u64 data)
2339{
2340 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342 return dd->rcv_err_status_cnt[51];
2343}
2344
2345static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2346 void *context, int vl,
2347 int mode, u64 data)
2348{
2349 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351 return dd->rcv_err_status_cnt[50];
2352}
2353
2354static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2355 void *context, int vl,
2356 int mode, u64 data)
2357{
2358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360 return dd->rcv_err_status_cnt[49];
2361}
2362
2363static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2364 void *context, int vl,
2365 int mode, u64 data)
2366{
2367 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369 return dd->rcv_err_status_cnt[48];
2370}
2371
2372static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2373 void *context, int vl,
2374 int mode, u64 data)
2375{
2376 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378 return dd->rcv_err_status_cnt[47];
2379}
2380
2381static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2382 void *context, int vl, int mode,
2383 u64 data)
2384{
2385 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387 return dd->rcv_err_status_cnt[46];
2388}
2389
2390static u64 access_rx_hq_intr_csr_parity_err_cnt(
2391 const struct cntr_entry *entry,
2392 void *context, int vl, int mode, u64 data)
2393{
2394 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396 return dd->rcv_err_status_cnt[45];
2397}
2398
2399static u64 access_rx_lookup_csr_parity_err_cnt(
2400 const struct cntr_entry *entry,
2401 void *context, int vl, int mode, u64 data)
2402{
2403 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405 return dd->rcv_err_status_cnt[44];
2406}
2407
2408static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2409 const struct cntr_entry *entry,
2410 void *context, int vl, int mode, u64 data)
2411{
2412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414 return dd->rcv_err_status_cnt[43];
2415}
2416
2417static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2418 const struct cntr_entry *entry,
2419 void *context, int vl, int mode, u64 data)
2420{
2421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423 return dd->rcv_err_status_cnt[42];
2424}
2425
2426static u64 access_rx_lookup_des_part2_parity_err_cnt(
2427 const struct cntr_entry *entry,
2428 void *context, int vl, int mode, u64 data)
2429{
2430 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432 return dd->rcv_err_status_cnt[41];
2433}
2434
2435static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2436 const struct cntr_entry *entry,
2437 void *context, int vl, int mode, u64 data)
2438{
2439 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441 return dd->rcv_err_status_cnt[40];
2442}
2443
2444static u64 access_rx_lookup_des_part1_unc_err_cnt(
2445 const struct cntr_entry *entry,
2446 void *context, int vl, int mode, u64 data)
2447{
2448 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450 return dd->rcv_err_status_cnt[39];
2451}
2452
2453static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2454 const struct cntr_entry *entry,
2455 void *context, int vl, int mode, u64 data)
2456{
2457 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459 return dd->rcv_err_status_cnt[38];
2460}
2461
2462static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2463 const struct cntr_entry *entry,
2464 void *context, int vl, int mode, u64 data)
2465{
2466 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468 return dd->rcv_err_status_cnt[37];
2469}
2470
2471static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2472 const struct cntr_entry *entry,
2473 void *context, int vl, int mode, u64 data)
2474{
2475 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477 return dd->rcv_err_status_cnt[36];
2478}
2479
2480static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2481 const struct cntr_entry *entry,
2482 void *context, int vl, int mode, u64 data)
2483{
2484 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486 return dd->rcv_err_status_cnt[35];
2487}
2488
2489static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2490 const struct cntr_entry *entry,
2491 void *context, int vl, int mode, u64 data)
2492{
2493 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495 return dd->rcv_err_status_cnt[34];
2496}
2497
2498static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2499 const struct cntr_entry *entry,
2500 void *context, int vl, int mode, u64 data)
2501{
2502 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504 return dd->rcv_err_status_cnt[33];
2505}
2506
2507static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2508 void *context, int vl, int mode,
2509 u64 data)
2510{
2511 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513 return dd->rcv_err_status_cnt[32];
2514}
2515
2516static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2517 void *context, int vl, int mode,
2518 u64 data)
2519{
2520 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522 return dd->rcv_err_status_cnt[31];
2523}
2524
2525static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2526 void *context, int vl, int mode,
2527 u64 data)
2528{
2529 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531 return dd->rcv_err_status_cnt[30];
2532}
2533
2534static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2535 void *context, int vl, int mode,
2536 u64 data)
2537{
2538 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540 return dd->rcv_err_status_cnt[29];
2541}
2542
2543static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2544 void *context, int vl,
2545 int mode, u64 data)
2546{
2547 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549 return dd->rcv_err_status_cnt[28];
2550}
2551
2552static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2553 const struct cntr_entry *entry,
2554 void *context, int vl, int mode, u64 data)
2555{
2556 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558 return dd->rcv_err_status_cnt[27];
2559}
2560
2561static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2562 const struct cntr_entry *entry,
2563 void *context, int vl, int mode, u64 data)
2564{
2565 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567 return dd->rcv_err_status_cnt[26];
2568}
2569
2570static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2571 const struct cntr_entry *entry,
2572 void *context, int vl, int mode, u64 data)
2573{
2574 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576 return dd->rcv_err_status_cnt[25];
2577}
2578
2579static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2580 const struct cntr_entry *entry,
2581 void *context, int vl, int mode, u64 data)
2582{
2583 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585 return dd->rcv_err_status_cnt[24];
2586}
2587
2588static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2589 const struct cntr_entry *entry,
2590 void *context, int vl, int mode, u64 data)
2591{
2592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594 return dd->rcv_err_status_cnt[23];
2595}
2596
2597static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2598 const struct cntr_entry *entry,
2599 void *context, int vl, int mode, u64 data)
2600{
2601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603 return dd->rcv_err_status_cnt[22];
2604}
2605
2606static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2607 const struct cntr_entry *entry,
2608 void *context, int vl, int mode, u64 data)
2609{
2610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612 return dd->rcv_err_status_cnt[21];
2613}
2614
2615static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2616 const struct cntr_entry *entry,
2617 void *context, int vl, int mode, u64 data)
2618{
2619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621 return dd->rcv_err_status_cnt[20];
2622}
2623
2624static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2625 const struct cntr_entry *entry,
2626 void *context, int vl, int mode, u64 data)
2627{
2628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630 return dd->rcv_err_status_cnt[19];
2631}
2632
2633static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2634 void *context, int vl,
2635 int mode, u64 data)
2636{
2637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639 return dd->rcv_err_status_cnt[18];
2640}
2641
2642static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2643 void *context, int vl,
2644 int mode, u64 data)
2645{
2646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648 return dd->rcv_err_status_cnt[17];
2649}
2650
2651static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2652 const struct cntr_entry *entry,
2653 void *context, int vl, int mode, u64 data)
2654{
2655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657 return dd->rcv_err_status_cnt[16];
2658}
2659
2660static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2661 const struct cntr_entry *entry,
2662 void *context, int vl, int mode, u64 data)
2663{
2664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666 return dd->rcv_err_status_cnt[15];
2667}
2668
2669static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2670 void *context, int vl,
2671 int mode, u64 data)
2672{
2673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675 return dd->rcv_err_status_cnt[14];
2676}
2677
2678static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2679 void *context, int vl,
2680 int mode, u64 data)
2681{
2682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684 return dd->rcv_err_status_cnt[13];
2685}
2686
2687static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2688 void *context, int vl, int mode,
2689 u64 data)
2690{
2691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693 return dd->rcv_err_status_cnt[12];
2694}
2695
2696static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2697 void *context, int vl, int mode,
2698 u64 data)
2699{
2700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702 return dd->rcv_err_status_cnt[11];
2703}
2704
2705static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2706 void *context, int vl, int mode,
2707 u64 data)
2708{
2709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711 return dd->rcv_err_status_cnt[10];
2712}
2713
2714static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2715 void *context, int vl, int mode,
2716 u64 data)
2717{
2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720 return dd->rcv_err_status_cnt[9];
2721}
2722
2723static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2724 void *context, int vl, int mode,
2725 u64 data)
2726{
2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729 return dd->rcv_err_status_cnt[8];
2730}
2731
2732static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2733 const struct cntr_entry *entry,
2734 void *context, int vl, int mode, u64 data)
2735{
2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738 return dd->rcv_err_status_cnt[7];
2739}
2740
2741static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2742 const struct cntr_entry *entry,
2743 void *context, int vl, int mode, u64 data)
2744{
2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746
2747 return dd->rcv_err_status_cnt[6];
2748}
2749
2750static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2751 void *context, int vl, int mode,
2752 u64 data)
2753{
2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755
2756 return dd->rcv_err_status_cnt[5];
2757}
2758
2759static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2760 void *context, int vl, int mode,
2761 u64 data)
2762{
2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764
2765 return dd->rcv_err_status_cnt[4];
2766}
2767
2768static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2769 void *context, int vl, int mode,
2770 u64 data)
2771{
2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773
2774 return dd->rcv_err_status_cnt[3];
2775}
2776
2777static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2778 void *context, int vl, int mode,
2779 u64 data)
2780{
2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782
2783 return dd->rcv_err_status_cnt[2];
2784}
2785
2786static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2787 void *context, int vl, int mode,
2788 u64 data)
2789{
2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792 return dd->rcv_err_status_cnt[1];
2793}
2794
2795static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2796 void *context, int vl, int mode,
2797 u64 data)
2798{
2799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800
2801 return dd->rcv_err_status_cnt[0];
2802}
2803
2804/*
2805 * Software counters corresponding to each of the
2806 * error status bits within SendPioErrStatus
2807 */
2808static u64 access_pio_pec_sop_head_parity_err_cnt(
2809 const struct cntr_entry *entry,
2810 void *context, int vl, int mode, u64 data)
2811{
2812 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813
2814 return dd->send_pio_err_status_cnt[35];
2815}
2816
2817static u64 access_pio_pcc_sop_head_parity_err_cnt(
2818 const struct cntr_entry *entry,
2819 void *context, int vl, int mode, u64 data)
2820{
2821 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822
2823 return dd->send_pio_err_status_cnt[34];
2824}
2825
2826static u64 access_pio_last_returned_cnt_parity_err_cnt(
2827 const struct cntr_entry *entry,
2828 void *context, int vl, int mode, u64 data)
2829{
2830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832 return dd->send_pio_err_status_cnt[33];
2833}
2834
2835static u64 access_pio_current_free_cnt_parity_err_cnt(
2836 const struct cntr_entry *entry,
2837 void *context, int vl, int mode, u64 data)
2838{
2839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841 return dd->send_pio_err_status_cnt[32];
2842}
2843
2844static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2845 void *context, int vl, int mode,
2846 u64 data)
2847{
2848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850 return dd->send_pio_err_status_cnt[31];
2851}
2852
2853static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2854 void *context, int vl, int mode,
2855 u64 data)
2856{
2857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859 return dd->send_pio_err_status_cnt[30];
2860}
2861
2862static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2863 void *context, int vl, int mode,
2864 u64 data)
2865{
2866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868 return dd->send_pio_err_status_cnt[29];
2869}
2870
2871static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2872 const struct cntr_entry *entry,
2873 void *context, int vl, int mode, u64 data)
2874{
2875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877 return dd->send_pio_err_status_cnt[28];
2878}
2879
2880static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2881 void *context, int vl, int mode,
2882 u64 data)
2883{
2884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886 return dd->send_pio_err_status_cnt[27];
2887}
2888
2889static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2890 void *context, int vl, int mode,
2891 u64 data)
2892{
2893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895 return dd->send_pio_err_status_cnt[26];
2896}
2897
2898static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2899 void *context, int vl,
2900 int mode, u64 data)
2901{
2902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904 return dd->send_pio_err_status_cnt[25];
2905}
2906
2907static u64 access_pio_block_qw_count_parity_err_cnt(
2908 const struct cntr_entry *entry,
2909 void *context, int vl, int mode, u64 data)
2910{
2911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913 return dd->send_pio_err_status_cnt[24];
2914}
2915
2916static u64 access_pio_write_qw_valid_parity_err_cnt(
2917 const struct cntr_entry *entry,
2918 void *context, int vl, int mode, u64 data)
2919{
2920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922 return dd->send_pio_err_status_cnt[23];
2923}
2924
2925static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2926 void *context, int vl, int mode,
2927 u64 data)
2928{
2929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931 return dd->send_pio_err_status_cnt[22];
2932}
2933
2934static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2935 void *context, int vl,
2936 int mode, u64 data)
2937{
2938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940 return dd->send_pio_err_status_cnt[21];
2941}
2942
2943static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2944 void *context, int vl,
2945 int mode, u64 data)
2946{
2947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949 return dd->send_pio_err_status_cnt[20];
2950}
2951
2952static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2953 void *context, int vl,
2954 int mode, u64 data)
2955{
2956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958 return dd->send_pio_err_status_cnt[19];
2959}
2960
2961static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2962 const struct cntr_entry *entry,
2963 void *context, int vl, int mode, u64 data)
2964{
2965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967 return dd->send_pio_err_status_cnt[18];
2968}
2969
2970static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2971 void *context, int vl, int mode,
2972 u64 data)
2973{
2974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976 return dd->send_pio_err_status_cnt[17];
2977}
2978
2979static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2980 void *context, int vl, int mode,
2981 u64 data)
2982{
2983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985 return dd->send_pio_err_status_cnt[16];
2986}
2987
2988static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2989 const struct cntr_entry *entry,
2990 void *context, int vl, int mode, u64 data)
2991{
2992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994 return dd->send_pio_err_status_cnt[15];
2995}
2996
2997static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2998 const struct cntr_entry *entry,
2999 void *context, int vl, int mode, u64 data)
3000{
3001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003 return dd->send_pio_err_status_cnt[14];
3004}
3005
3006static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3007 const struct cntr_entry *entry,
3008 void *context, int vl, int mode, u64 data)
3009{
3010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012 return dd->send_pio_err_status_cnt[13];
3013}
3014
3015static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3016 const struct cntr_entry *entry,
3017 void *context, int vl, int mode, u64 data)
3018{
3019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021 return dd->send_pio_err_status_cnt[12];
3022}
3023
3024static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3025 const struct cntr_entry *entry,
3026 void *context, int vl, int mode, u64 data)
3027{
3028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030 return dd->send_pio_err_status_cnt[11];
3031}
3032
3033static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3034 const struct cntr_entry *entry,
3035 void *context, int vl, int mode, u64 data)
3036{
3037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039 return dd->send_pio_err_status_cnt[10];
3040}
3041
3042static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3043 const struct cntr_entry *entry,
3044 void *context, int vl, int mode, u64 data)
3045{
3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048 return dd->send_pio_err_status_cnt[9];
3049}
3050
3051static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3052 const struct cntr_entry *entry,
3053 void *context, int vl, int mode, u64 data)
3054{
3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057 return dd->send_pio_err_status_cnt[8];
3058}
3059
3060static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3061 const struct cntr_entry *entry,
3062 void *context, int vl, int mode, u64 data)
3063{
3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066 return dd->send_pio_err_status_cnt[7];
3067}
3068
3069static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3070 void *context, int vl, int mode,
3071 u64 data)
3072{
3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075 return dd->send_pio_err_status_cnt[6];
3076}
3077
3078static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3079 void *context, int vl, int mode,
3080 u64 data)
3081{
3082 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083
3084 return dd->send_pio_err_status_cnt[5];
3085}
3086
3087static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3088 void *context, int vl, int mode,
3089 u64 data)
3090{
3091 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092
3093 return dd->send_pio_err_status_cnt[4];
3094}
3095
3096static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3097 void *context, int vl, int mode,
3098 u64 data)
3099{
3100 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101
3102 return dd->send_pio_err_status_cnt[3];
3103}
3104
3105static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3106 void *context, int vl, int mode,
3107 u64 data)
3108{
3109 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110
3111 return dd->send_pio_err_status_cnt[2];
3112}
3113
3114static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3115 void *context, int vl,
3116 int mode, u64 data)
3117{
3118 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120 return dd->send_pio_err_status_cnt[1];
3121}
3122
3123static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3124 void *context, int vl, int mode,
3125 u64 data)
3126{
3127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128
3129 return dd->send_pio_err_status_cnt[0];
3130}
3131
3132/*
3133 * Software counters corresponding to each of the
3134 * error status bits within SendDmaErrStatus
3135 */
3136static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3137 const struct cntr_entry *entry,
3138 void *context, int vl, int mode, u64 data)
3139{
3140 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141
3142 return dd->send_dma_err_status_cnt[3];
3143}
3144
3145static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3146 const struct cntr_entry *entry,
3147 void *context, int vl, int mode, u64 data)
3148{
3149 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150
3151 return dd->send_dma_err_status_cnt[2];
3152}
3153
3154static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3155 void *context, int vl, int mode,
3156 u64 data)
3157{
3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160 return dd->send_dma_err_status_cnt[1];
3161}
3162
3163static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3164 void *context, int vl, int mode,
3165 u64 data)
3166{
3167 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168
3169 return dd->send_dma_err_status_cnt[0];
3170}
3171
3172/*
3173 * Software counters corresponding to each of the
3174 * error status bits within SendEgressErrStatus
3175 */
3176static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3177 const struct cntr_entry *entry,
3178 void *context, int vl, int mode, u64 data)
3179{
3180 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181
3182 return dd->send_egress_err_status_cnt[63];
3183}
3184
3185static u64 access_tx_read_sdma_memory_csr_err_cnt(
3186 const struct cntr_entry *entry,
3187 void *context, int vl, int mode, u64 data)
3188{
3189 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190
3191 return dd->send_egress_err_status_cnt[62];
3192}
3193
3194static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3195 void *context, int vl, int mode,
3196 u64 data)
3197{
3198 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200 return dd->send_egress_err_status_cnt[61];
3201}
3202
3203static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3204 void *context, int vl,
3205 int mode, u64 data)
3206{
3207 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209 return dd->send_egress_err_status_cnt[60];
3210}
3211
3212static u64 access_tx_read_sdma_memory_cor_err_cnt(
3213 const struct cntr_entry *entry,
3214 void *context, int vl, int mode, u64 data)
3215{
3216 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218 return dd->send_egress_err_status_cnt[59];
3219}
3220
3221static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3222 void *context, int vl, int mode,
3223 u64 data)
3224{
3225 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227 return dd->send_egress_err_status_cnt[58];
3228}
3229
3230static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3231 void *context, int vl, int mode,
3232 u64 data)
3233{
3234 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236 return dd->send_egress_err_status_cnt[57];
3237}
3238
3239static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3240 void *context, int vl, int mode,
3241 u64 data)
3242{
3243 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245 return dd->send_egress_err_status_cnt[56];
3246}
3247
3248static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3249 void *context, int vl, int mode,
3250 u64 data)
3251{
3252 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254 return dd->send_egress_err_status_cnt[55];
3255}
3256
3257static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3258 void *context, int vl, int mode,
3259 u64 data)
3260{
3261 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263 return dd->send_egress_err_status_cnt[54];
3264}
3265
3266static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3267 void *context, int vl, int mode,
3268 u64 data)
3269{
3270 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272 return dd->send_egress_err_status_cnt[53];
3273}
3274
3275static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3276 void *context, int vl, int mode,
3277 u64 data)
3278{
3279 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281 return dd->send_egress_err_status_cnt[52];
3282}
3283
3284static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3285 void *context, int vl, int mode,
3286 u64 data)
3287{
3288 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290 return dd->send_egress_err_status_cnt[51];
3291}
3292
3293static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3294 void *context, int vl, int mode,
3295 u64 data)
3296{
3297 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299 return dd->send_egress_err_status_cnt[50];
3300}
3301
3302static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3303 void *context, int vl, int mode,
3304 u64 data)
3305{
3306 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308 return dd->send_egress_err_status_cnt[49];
3309}
3310
3311static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3312 void *context, int vl, int mode,
3313 u64 data)
3314{
3315 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317 return dd->send_egress_err_status_cnt[48];
3318}
3319
3320static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3321 void *context, int vl, int mode,
3322 u64 data)
3323{
3324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326 return dd->send_egress_err_status_cnt[47];
3327}
3328
3329static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3330 void *context, int vl, int mode,
3331 u64 data)
3332{
3333 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335 return dd->send_egress_err_status_cnt[46];
3336}
3337
3338static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3339 void *context, int vl, int mode,
3340 u64 data)
3341{
3342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344 return dd->send_egress_err_status_cnt[45];
3345}
3346
3347static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3348 void *context, int vl,
3349 int mode, u64 data)
3350{
3351 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353 return dd->send_egress_err_status_cnt[44];
3354}
3355
3356static u64 access_tx_read_sdma_memory_unc_err_cnt(
3357 const struct cntr_entry *entry,
3358 void *context, int vl, int mode, u64 data)
3359{
3360 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362 return dd->send_egress_err_status_cnt[43];
3363}
3364
3365static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3366 void *context, int vl, int mode,
3367 u64 data)
3368{
3369 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371 return dd->send_egress_err_status_cnt[42];
3372}
3373
3374static u64 access_tx_credit_return_partiy_err_cnt(
3375 const struct cntr_entry *entry,
3376 void *context, int vl, int mode, u64 data)
3377{
3378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380 return dd->send_egress_err_status_cnt[41];
3381}
3382
3383static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3384 const struct cntr_entry *entry,
3385 void *context, int vl, int mode, u64 data)
3386{
3387 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389 return dd->send_egress_err_status_cnt[40];
3390}
3391
3392static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3393 const struct cntr_entry *entry,
3394 void *context, int vl, int mode, u64 data)
3395{
3396 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398 return dd->send_egress_err_status_cnt[39];
3399}
3400
3401static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3402 const struct cntr_entry *entry,
3403 void *context, int vl, int mode, u64 data)
3404{
3405 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407 return dd->send_egress_err_status_cnt[38];
3408}
3409
3410static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3411 const struct cntr_entry *entry,
3412 void *context, int vl, int mode, u64 data)
3413{
3414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416 return dd->send_egress_err_status_cnt[37];
3417}
3418
3419static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3420 const struct cntr_entry *entry,
3421 void *context, int vl, int mode, u64 data)
3422{
3423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425 return dd->send_egress_err_status_cnt[36];
3426}
3427
3428static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3429 const struct cntr_entry *entry,
3430 void *context, int vl, int mode, u64 data)
3431{
3432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434 return dd->send_egress_err_status_cnt[35];
3435}
3436
3437static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3438 const struct cntr_entry *entry,
3439 void *context, int vl, int mode, u64 data)
3440{
3441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443 return dd->send_egress_err_status_cnt[34];
3444}
3445
3446static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3447 const struct cntr_entry *entry,
3448 void *context, int vl, int mode, u64 data)
3449{
3450 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452 return dd->send_egress_err_status_cnt[33];
3453}
3454
3455static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3456 const struct cntr_entry *entry,
3457 void *context, int vl, int mode, u64 data)
3458{
3459 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461 return dd->send_egress_err_status_cnt[32];
3462}
3463
3464static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3465 const struct cntr_entry *entry,
3466 void *context, int vl, int mode, u64 data)
3467{
3468 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470 return dd->send_egress_err_status_cnt[31];
3471}
3472
3473static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3474 const struct cntr_entry *entry,
3475 void *context, int vl, int mode, u64 data)
3476{
3477 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479 return dd->send_egress_err_status_cnt[30];
3480}
3481
3482static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3483 const struct cntr_entry *entry,
3484 void *context, int vl, int mode, u64 data)
3485{
3486 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488 return dd->send_egress_err_status_cnt[29];
3489}
3490
3491static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3492 const struct cntr_entry *entry,
3493 void *context, int vl, int mode, u64 data)
3494{
3495 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497 return dd->send_egress_err_status_cnt[28];
3498}
3499
3500static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3501 const struct cntr_entry *entry,
3502 void *context, int vl, int mode, u64 data)
3503{
3504 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506 return dd->send_egress_err_status_cnt[27];
3507}
3508
3509static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3510 const struct cntr_entry *entry,
3511 void *context, int vl, int mode, u64 data)
3512{
3513 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515 return dd->send_egress_err_status_cnt[26];
3516}
3517
3518static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3519 const struct cntr_entry *entry,
3520 void *context, int vl, int mode, u64 data)
3521{
3522 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524 return dd->send_egress_err_status_cnt[25];
3525}
3526
3527static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3528 const struct cntr_entry *entry,
3529 void *context, int vl, int mode, u64 data)
3530{
3531 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533 return dd->send_egress_err_status_cnt[24];
3534}
3535
3536static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3537 const struct cntr_entry *entry,
3538 void *context, int vl, int mode, u64 data)
3539{
3540 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542 return dd->send_egress_err_status_cnt[23];
3543}
3544
3545static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3546 const struct cntr_entry *entry,
3547 void *context, int vl, int mode, u64 data)
3548{
3549 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551 return dd->send_egress_err_status_cnt[22];
3552}
3553
3554static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3555 const struct cntr_entry *entry,
3556 void *context, int vl, int mode, u64 data)
3557{
3558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560 return dd->send_egress_err_status_cnt[21];
3561}
3562
3563static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3564 const struct cntr_entry *entry,
3565 void *context, int vl, int mode, u64 data)
3566{
3567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569 return dd->send_egress_err_status_cnt[20];
3570}
3571
3572static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3573 const struct cntr_entry *entry,
3574 void *context, int vl, int mode, u64 data)
3575{
3576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578 return dd->send_egress_err_status_cnt[19];
3579}
3580
3581static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3582 const struct cntr_entry *entry,
3583 void *context, int vl, int mode, u64 data)
3584{
3585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587 return dd->send_egress_err_status_cnt[18];
3588}
3589
3590static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3591 const struct cntr_entry *entry,
3592 void *context, int vl, int mode, u64 data)
3593{
3594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596 return dd->send_egress_err_status_cnt[17];
3597}
3598
3599static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3600 const struct cntr_entry *entry,
3601 void *context, int vl, int mode, u64 data)
3602{
3603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605 return dd->send_egress_err_status_cnt[16];
3606}
3607
3608static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3609 void *context, int vl, int mode,
3610 u64 data)
3611{
3612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614 return dd->send_egress_err_status_cnt[15];
3615}
3616
3617static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3618 void *context, int vl,
3619 int mode, u64 data)
3620{
3621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623 return dd->send_egress_err_status_cnt[14];
3624}
3625
3626static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3627 void *context, int vl, int mode,
3628 u64 data)
3629{
3630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632 return dd->send_egress_err_status_cnt[13];
3633}
3634
3635static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3636 void *context, int vl, int mode,
3637 u64 data)
3638{
3639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641 return dd->send_egress_err_status_cnt[12];
3642}
3643
3644static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3645 const struct cntr_entry *entry,
3646 void *context, int vl, int mode, u64 data)
3647{
3648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650 return dd->send_egress_err_status_cnt[11];
3651}
3652
3653static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3654 void *context, int vl, int mode,
3655 u64 data)
3656{
3657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659 return dd->send_egress_err_status_cnt[10];
3660}
3661
3662static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3663 void *context, int vl, int mode,
3664 u64 data)
3665{
3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668 return dd->send_egress_err_status_cnt[9];
3669}
3670
3671static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3672 const struct cntr_entry *entry,
3673 void *context, int vl, int mode, u64 data)
3674{
3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677 return dd->send_egress_err_status_cnt[8];
3678}
3679
3680static u64 access_tx_pio_launch_intf_parity_err_cnt(
3681 const struct cntr_entry *entry,
3682 void *context, int vl, int mode, u64 data)
3683{
3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686 return dd->send_egress_err_status_cnt[7];
3687}
3688
3689static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3690 void *context, int vl, int mode,
3691 u64 data)
3692{
3693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694
3695 return dd->send_egress_err_status_cnt[6];
3696}
3697
3698static u64 access_tx_incorrect_link_state_err_cnt(
3699 const struct cntr_entry *entry,
3700 void *context, int vl, int mode, u64 data)
3701{
3702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703
3704 return dd->send_egress_err_status_cnt[5];
3705}
3706
3707static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3708 void *context, int vl, int mode,
3709 u64 data)
3710{
3711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712
3713 return dd->send_egress_err_status_cnt[4];
3714}
3715
3716static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3717 const struct cntr_entry *entry,
3718 void *context, int vl, int mode, u64 data)
3719{
3720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721
3722 return dd->send_egress_err_status_cnt[3];
3723}
3724
3725static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3726 void *context, int vl, int mode,
3727 u64 data)
3728{
3729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730
3731 return dd->send_egress_err_status_cnt[2];
3732}
3733
3734static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3735 const struct cntr_entry *entry,
3736 void *context, int vl, int mode, u64 data)
3737{
3738 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740 return dd->send_egress_err_status_cnt[1];
3741}
3742
3743static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3744 const struct cntr_entry *entry,
3745 void *context, int vl, int mode, u64 data)
3746{
3747 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748
3749 return dd->send_egress_err_status_cnt[0];
3750}
3751
3752/*
3753 * Software counters corresponding to each of the
3754 * error status bits within SendErrStatus
3755 */
3756static u64 access_send_csr_write_bad_addr_err_cnt(
3757 const struct cntr_entry *entry,
3758 void *context, int vl, int mode, u64 data)
3759{
3760 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761
3762 return dd->send_err_status_cnt[2];
3763}
3764
3765static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3766 void *context, int vl,
3767 int mode, u64 data)
3768{
3769 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770
3771 return dd->send_err_status_cnt[1];
3772}
3773
3774static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3775 void *context, int vl, int mode,
3776 u64 data)
3777{
3778 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779
3780 return dd->send_err_status_cnt[0];
3781}
3782
3783/*
3784 * Software counters corresponding to each of the
3785 * error status bits within SendCtxtErrStatus
3786 */
3787static u64 access_pio_write_out_of_bounds_err_cnt(
3788 const struct cntr_entry *entry,
3789 void *context, int vl, int mode, u64 data)
3790{
3791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792
3793 return dd->sw_ctxt_err_status_cnt[4];
3794}
3795
3796static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3797 void *context, int vl, int mode,
3798 u64 data)
3799{
3800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801
3802 return dd->sw_ctxt_err_status_cnt[3];
3803}
3804
3805static u64 access_pio_write_crosses_boundary_err_cnt(
3806 const struct cntr_entry *entry,
3807 void *context, int vl, int mode, u64 data)
3808{
3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810
3811 return dd->sw_ctxt_err_status_cnt[2];
3812}
3813
3814static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3815 void *context, int vl,
3816 int mode, u64 data)
3817{
3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820 return dd->sw_ctxt_err_status_cnt[1];
3821}
3822
3823static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3824 void *context, int vl, int mode,
3825 u64 data)
3826{
3827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828
3829 return dd->sw_ctxt_err_status_cnt[0];
3830}
3831
3832/*
3833 * Software counters corresponding to each of the
3834 * error status bits within SendDmaEngErrStatus
3835 */
3836static u64 access_sdma_header_request_fifo_cor_err_cnt(
3837 const struct cntr_entry *entry,
3838 void *context, int vl, int mode, u64 data)
3839{
3840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841
3842 return dd->sw_send_dma_eng_err_status_cnt[23];
3843}
3844
3845static u64 access_sdma_header_storage_cor_err_cnt(
3846 const struct cntr_entry *entry,
3847 void *context, int vl, int mode, u64 data)
3848{
3849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850
3851 return dd->sw_send_dma_eng_err_status_cnt[22];
3852}
3853
3854static u64 access_sdma_packet_tracking_cor_err_cnt(
3855 const struct cntr_entry *entry,
3856 void *context, int vl, int mode, u64 data)
3857{
3858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860 return dd->sw_send_dma_eng_err_status_cnt[21];
3861}
3862
3863static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3864 void *context, int vl, int mode,
3865 u64 data)
3866{
3867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869 return dd->sw_send_dma_eng_err_status_cnt[20];
3870}
3871
3872static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3873 void *context, int vl, int mode,
3874 u64 data)
3875{
3876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878 return dd->sw_send_dma_eng_err_status_cnt[19];
3879}
3880
3881static u64 access_sdma_header_request_fifo_unc_err_cnt(
3882 const struct cntr_entry *entry,
3883 void *context, int vl, int mode, u64 data)
3884{
3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887 return dd->sw_send_dma_eng_err_status_cnt[18];
3888}
3889
3890static u64 access_sdma_header_storage_unc_err_cnt(
3891 const struct cntr_entry *entry,
3892 void *context, int vl, int mode, u64 data)
3893{
3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896 return dd->sw_send_dma_eng_err_status_cnt[17];
3897}
3898
3899static u64 access_sdma_packet_tracking_unc_err_cnt(
3900 const struct cntr_entry *entry,
3901 void *context, int vl, int mode, u64 data)
3902{
3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905 return dd->sw_send_dma_eng_err_status_cnt[16];
3906}
3907
3908static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3909 void *context, int vl, int mode,
3910 u64 data)
3911{
3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914 return dd->sw_send_dma_eng_err_status_cnt[15];
3915}
3916
3917static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3918 void *context, int vl, int mode,
3919 u64 data)
3920{
3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923 return dd->sw_send_dma_eng_err_status_cnt[14];
3924}
3925
3926static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3927 void *context, int vl, int mode,
3928 u64 data)
3929{
3930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931
3932 return dd->sw_send_dma_eng_err_status_cnt[13];
3933}
3934
3935static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3936 void *context, int vl, int mode,
3937 u64 data)
3938{
3939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940
3941 return dd->sw_send_dma_eng_err_status_cnt[12];
3942}
3943
3944static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3945 void *context, int vl, int mode,
3946 u64 data)
3947{
3948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949
3950 return dd->sw_send_dma_eng_err_status_cnt[11];
3951}
3952
3953static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3954 void *context, int vl, int mode,
3955 u64 data)
3956{
3957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958
3959 return dd->sw_send_dma_eng_err_status_cnt[10];
3960}
3961
3962static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3963 void *context, int vl, int mode,
3964 u64 data)
3965{
3966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967
3968 return dd->sw_send_dma_eng_err_status_cnt[9];
3969}
3970
3971static u64 access_sdma_packet_desc_overflow_err_cnt(
3972 const struct cntr_entry *entry,
3973 void *context, int vl, int mode, u64 data)
3974{
3975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976
3977 return dd->sw_send_dma_eng_err_status_cnt[8];
3978}
3979
3980static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3981 void *context, int vl,
3982 int mode, u64 data)
3983{
3984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985
3986 return dd->sw_send_dma_eng_err_status_cnt[7];
3987}
3988
3989static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3990 void *context, int vl, int mode, u64 data)
3991{
3992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993
3994 return dd->sw_send_dma_eng_err_status_cnt[6];
3995}
3996
3997static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3998 void *context, int vl, int mode,
3999 u64 data)
4000{
4001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4002
4003 return dd->sw_send_dma_eng_err_status_cnt[5];
4004}
4005
4006static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4007 void *context, int vl, int mode,
4008 u64 data)
4009{
4010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011
4012 return dd->sw_send_dma_eng_err_status_cnt[4];
4013}
4014
4015static u64 access_sdma_tail_out_of_bounds_err_cnt(
4016 const struct cntr_entry *entry,
4017 void *context, int vl, int mode, u64 data)
4018{
4019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020
4021 return dd->sw_send_dma_eng_err_status_cnt[3];
4022}
4023
4024static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4025 void *context, int vl, int mode,
4026 u64 data)
4027{
4028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029
4030 return dd->sw_send_dma_eng_err_status_cnt[2];
4031}
4032
4033static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4034 void *context, int vl, int mode,
4035 u64 data)
4036{
4037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038
4039 return dd->sw_send_dma_eng_err_status_cnt[1];
4040}
4041
4042static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4043 void *context, int vl, int mode,
4044 u64 data)
4045{
4046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047
4048 return dd->sw_send_dma_eng_err_status_cnt[0];
4049}
4050
4051static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4052 void *context, int vl, int mode,
4053 u64 data)
4054{
4055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4056
4057 u64 val = 0;
4058 u64 csr = entry->csr;
4059
4060 val = read_write_csr(dd, csr, mode, data);
4061 if (mode == CNTR_MODE_R) {
4062 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4063 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4064 } else if (mode == CNTR_MODE_W) {
4065 dd->sw_rcv_bypass_packet_errors = 0;
4066 } else {
4067 dd_dev_err(dd, "Invalid cntr register access mode");
4068 return 0;
4069 }
4070 return val;
4071}
4072
4073#define def_access_sw_cpu(cntr) \
4074static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
4075 void *context, int vl, int mode, u64 data) \
4076{ \
4077 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4078 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
4079 ppd->ibport_data.rvp.cntr, vl, \
4080 mode, data); \
4081}
4082
4083def_access_sw_cpu(rc_acks);
4084def_access_sw_cpu(rc_qacks);
4085def_access_sw_cpu(rc_delayed_comp);
4086
4087#define def_access_ibp_counter(cntr) \
4088static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
4089 void *context, int vl, int mode, u64 data) \
4090{ \
4091 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4092 \
4093 if (vl != CNTR_INVALID_VL) \
4094 return 0; \
4095 \
4096 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
4097 mode, data); \
4098}
4099
4100def_access_ibp_counter(loop_pkts);
4101def_access_ibp_counter(rc_resends);
4102def_access_ibp_counter(rnr_naks);
4103def_access_ibp_counter(other_naks);
4104def_access_ibp_counter(rc_timeouts);
4105def_access_ibp_counter(pkt_drops);
4106def_access_ibp_counter(dmawait);
4107def_access_ibp_counter(rc_seqnak);
4108def_access_ibp_counter(rc_dupreq);
4109def_access_ibp_counter(rdma_seq);
4110def_access_ibp_counter(unaligned);
4111def_access_ibp_counter(seq_naks);
David Brazdil0f672f62019-12-10 10:32:29 +00004112def_access_ibp_counter(rc_crwaits);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004113
4114static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4115[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
David Brazdil0f672f62019-12-10 10:32:29 +00004116[C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
Olivier Deprez0e641232021-09-23 10:07:05 +02004117[C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
David Brazdil0f672f62019-12-10 10:32:29 +00004118[C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4119[C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004120[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4121 CNTR_NORMAL),
4122[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4123 CNTR_NORMAL),
4124[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4125 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4126 CNTR_NORMAL),
4127[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4128 CNTR_NORMAL),
4129[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4130 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4131[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4132 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4133[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4134 CNTR_NORMAL),
4135[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4136 CNTR_NORMAL),
4137[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4138 CNTR_NORMAL),
4139[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4140 CNTR_NORMAL),
4141[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4142 CNTR_NORMAL),
4143[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4144 CNTR_NORMAL),
4145[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4146 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4147[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4148 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4149[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4150 CNTR_SYNTH),
4151[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4152 access_dc_rcv_err_cnt),
4153[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4154 CNTR_SYNTH),
4155[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4156 CNTR_SYNTH),
4157[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4158 CNTR_SYNTH),
4159[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4160 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4161[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4162 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4163 CNTR_SYNTH),
4164[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4165 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4166[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4167 CNTR_SYNTH),
4168[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4169 CNTR_SYNTH),
4170[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4171 CNTR_SYNTH),
4172[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4173 CNTR_SYNTH),
4174[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4175 CNTR_SYNTH),
4176[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4177 CNTR_SYNTH),
4178[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4179 CNTR_SYNTH),
4180[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4181 CNTR_SYNTH | CNTR_VL),
4182[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4183 CNTR_SYNTH | CNTR_VL),
4184[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4185[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4186 CNTR_SYNTH | CNTR_VL),
4187[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4188[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4189 CNTR_SYNTH | CNTR_VL),
4190[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4191 CNTR_SYNTH),
4192[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4193 CNTR_SYNTH | CNTR_VL),
4194[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4195 CNTR_SYNTH),
4196[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4197 CNTR_SYNTH | CNTR_VL),
4198[C_DC_TOTAL_CRC] =
4199 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4200 CNTR_SYNTH),
4201[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4202 CNTR_SYNTH),
4203[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4204 CNTR_SYNTH),
4205[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4206 CNTR_SYNTH),
4207[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4208 CNTR_SYNTH),
4209[C_DC_CRC_MULT_LN] =
4210 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4211 CNTR_SYNTH),
4212[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4213 CNTR_SYNTH),
4214[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4215 CNTR_SYNTH),
4216[C_DC_SEQ_CRC_CNT] =
4217 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4218 CNTR_SYNTH),
4219[C_DC_ESC0_ONLY_CNT] =
4220 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4221 CNTR_SYNTH),
4222[C_DC_ESC0_PLUS1_CNT] =
4223 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4224 CNTR_SYNTH),
4225[C_DC_ESC0_PLUS2_CNT] =
4226 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4227 CNTR_SYNTH),
4228[C_DC_REINIT_FROM_PEER_CNT] =
4229 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4230 CNTR_SYNTH),
4231[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4232 CNTR_SYNTH),
4233[C_DC_MISC_FLG_CNT] =
4234 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4235 CNTR_SYNTH),
4236[C_DC_PRF_GOOD_LTP_CNT] =
4237 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4238[C_DC_PRF_ACCEPTED_LTP_CNT] =
4239 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4240 CNTR_SYNTH),
4241[C_DC_PRF_RX_FLIT_CNT] =
4242 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4243[C_DC_PRF_TX_FLIT_CNT] =
4244 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4245[C_DC_PRF_CLK_CNTR] =
4246 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4247[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4248 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4249[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4250 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4251 CNTR_SYNTH),
4252[C_DC_PG_STS_TX_SBE_CNT] =
4253 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4254[C_DC_PG_STS_TX_MBE_CNT] =
4255 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4256 CNTR_SYNTH),
4257[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4258 access_sw_cpu_intr),
4259[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4260 access_sw_cpu_rcv_limit),
Olivier Deprez0e641232021-09-23 10:07:05 +02004261[C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4262 access_sw_ctx0_seq_drop),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004263[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4264 access_sw_vtx_wait),
4265[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4266 access_sw_pio_wait),
4267[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4268 access_sw_pio_drain),
4269[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4270 access_sw_kmem_wait),
David Brazdil0f672f62019-12-10 10:32:29 +00004271[C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4272 hfi1_access_sw_tid_wait),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004273[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4274 access_sw_send_schedule),
4275[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4276 SEND_DMA_DESC_FETCHED_CNT, 0,
4277 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4278 dev_access_u32_csr),
4279[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4280 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4281 access_sde_int_cnt),
4282[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4283 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4284 access_sde_err_cnt),
4285[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4286 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4287 access_sde_idle_int_cnt),
4288[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4289 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4290 access_sde_progress_int_cnt),
4291/* MISC_ERR_STATUS */
4292[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4293 CNTR_NORMAL,
4294 access_misc_pll_lock_fail_err_cnt),
4295[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4296 CNTR_NORMAL,
4297 access_misc_mbist_fail_err_cnt),
4298[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4299 CNTR_NORMAL,
4300 access_misc_invalid_eep_cmd_err_cnt),
4301[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4302 CNTR_NORMAL,
4303 access_misc_efuse_done_parity_err_cnt),
4304[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4305 CNTR_NORMAL,
4306 access_misc_efuse_write_err_cnt),
4307[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4308 0, CNTR_NORMAL,
4309 access_misc_efuse_read_bad_addr_err_cnt),
4310[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4311 CNTR_NORMAL,
4312 access_misc_efuse_csr_parity_err_cnt),
4313[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4314 CNTR_NORMAL,
4315 access_misc_fw_auth_failed_err_cnt),
4316[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4317 CNTR_NORMAL,
4318 access_misc_key_mismatch_err_cnt),
4319[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4320 CNTR_NORMAL,
4321 access_misc_sbus_write_failed_err_cnt),
4322[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4323 CNTR_NORMAL,
4324 access_misc_csr_write_bad_addr_err_cnt),
4325[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4326 CNTR_NORMAL,
4327 access_misc_csr_read_bad_addr_err_cnt),
4328[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4329 CNTR_NORMAL,
4330 access_misc_csr_parity_err_cnt),
4331/* CceErrStatus */
4332[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4333 CNTR_NORMAL,
4334 access_sw_cce_err_status_aggregated_cnt),
4335[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4336 CNTR_NORMAL,
4337 access_cce_msix_csr_parity_err_cnt),
4338[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_cce_int_map_unc_err_cnt),
4341[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_cce_int_map_cor_err_cnt),
4344[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4345 CNTR_NORMAL,
4346 access_cce_msix_table_unc_err_cnt),
4347[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4348 CNTR_NORMAL,
4349 access_cce_msix_table_cor_err_cnt),
4350[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4351 0, CNTR_NORMAL,
4352 access_cce_rxdma_conv_fifo_parity_err_cnt),
4353[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4354 0, CNTR_NORMAL,
4355 access_cce_rcpl_async_fifo_parity_err_cnt),
4356[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4357 CNTR_NORMAL,
4358 access_cce_seg_write_bad_addr_err_cnt),
4359[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4360 CNTR_NORMAL,
4361 access_cce_seg_read_bad_addr_err_cnt),
4362[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4363 CNTR_NORMAL,
4364 access_la_triggered_cnt),
4365[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4366 CNTR_NORMAL,
4367 access_cce_trgt_cpl_timeout_err_cnt),
4368[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4369 CNTR_NORMAL,
4370 access_pcic_receive_parity_err_cnt),
4371[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4372 CNTR_NORMAL,
4373 access_pcic_transmit_back_parity_err_cnt),
4374[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4375 0, CNTR_NORMAL,
4376 access_pcic_transmit_front_parity_err_cnt),
4377[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4378 CNTR_NORMAL,
4379 access_pcic_cpl_dat_q_unc_err_cnt),
4380[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4381 CNTR_NORMAL,
4382 access_pcic_cpl_hd_q_unc_err_cnt),
4383[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4384 CNTR_NORMAL,
4385 access_pcic_post_dat_q_unc_err_cnt),
4386[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4387 CNTR_NORMAL,
4388 access_pcic_post_hd_q_unc_err_cnt),
4389[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4390 CNTR_NORMAL,
4391 access_pcic_retry_sot_mem_unc_err_cnt),
4392[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4393 CNTR_NORMAL,
4394 access_pcic_retry_mem_unc_err),
4395[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4396 CNTR_NORMAL,
4397 access_pcic_n_post_dat_q_parity_err_cnt),
4398[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4399 CNTR_NORMAL,
4400 access_pcic_n_post_h_q_parity_err_cnt),
4401[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4402 CNTR_NORMAL,
4403 access_pcic_cpl_dat_q_cor_err_cnt),
4404[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4405 CNTR_NORMAL,
4406 access_pcic_cpl_hd_q_cor_err_cnt),
4407[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4408 CNTR_NORMAL,
4409 access_pcic_post_dat_q_cor_err_cnt),
4410[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4411 CNTR_NORMAL,
4412 access_pcic_post_hd_q_cor_err_cnt),
4413[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4414 CNTR_NORMAL,
4415 access_pcic_retry_sot_mem_cor_err_cnt),
4416[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4417 CNTR_NORMAL,
4418 access_pcic_retry_mem_cor_err_cnt),
4419[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4420 "CceCli1AsyncFifoDbgParityError", 0, 0,
4421 CNTR_NORMAL,
4422 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4423[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4424 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4425 CNTR_NORMAL,
4426 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4427 ),
4428[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4429 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4430 CNTR_NORMAL,
4431 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4432[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4433 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4434 CNTR_NORMAL,
4435 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4436[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4437 0, CNTR_NORMAL,
4438 access_cce_cli2_async_fifo_parity_err_cnt),
4439[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4440 CNTR_NORMAL,
4441 access_cce_csr_cfg_bus_parity_err_cnt),
4442[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4443 0, CNTR_NORMAL,
4444 access_cce_cli0_async_fifo_parity_err_cnt),
4445[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4446 CNTR_NORMAL,
4447 access_cce_rspd_data_parity_err_cnt),
4448[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4449 CNTR_NORMAL,
4450 access_cce_trgt_access_err_cnt),
4451[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4452 0, CNTR_NORMAL,
4453 access_cce_trgt_async_fifo_parity_err_cnt),
4454[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4455 CNTR_NORMAL,
4456 access_cce_csr_write_bad_addr_err_cnt),
4457[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4458 CNTR_NORMAL,
4459 access_cce_csr_read_bad_addr_err_cnt),
4460[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4461 CNTR_NORMAL,
4462 access_ccs_csr_parity_err_cnt),
4463
4464/* RcvErrStatus */
4465[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_csr_parity_err_cnt),
4468[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_csr_write_bad_addr_err_cnt),
4471[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4472 CNTR_NORMAL,
4473 access_rx_csr_read_bad_addr_err_cnt),
4474[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4475 CNTR_NORMAL,
4476 access_rx_dma_csr_unc_err_cnt),
4477[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4478 CNTR_NORMAL,
4479 access_rx_dma_dq_fsm_encoding_err_cnt),
4480[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4481 CNTR_NORMAL,
4482 access_rx_dma_eq_fsm_encoding_err_cnt),
4483[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4484 CNTR_NORMAL,
4485 access_rx_dma_csr_parity_err_cnt),
4486[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4487 CNTR_NORMAL,
4488 access_rx_rbuf_data_cor_err_cnt),
4489[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4490 CNTR_NORMAL,
4491 access_rx_rbuf_data_unc_err_cnt),
4492[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4493 CNTR_NORMAL,
4494 access_rx_dma_data_fifo_rd_cor_err_cnt),
4495[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4496 CNTR_NORMAL,
4497 access_rx_dma_data_fifo_rd_unc_err_cnt),
4498[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4499 CNTR_NORMAL,
4500 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4501[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4502 CNTR_NORMAL,
4503 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4504[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4505 CNTR_NORMAL,
4506 access_rx_rbuf_desc_part2_cor_err_cnt),
4507[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4508 CNTR_NORMAL,
4509 access_rx_rbuf_desc_part2_unc_err_cnt),
4510[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4511 CNTR_NORMAL,
4512 access_rx_rbuf_desc_part1_cor_err_cnt),
4513[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4514 CNTR_NORMAL,
4515 access_rx_rbuf_desc_part1_unc_err_cnt),
4516[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4517 CNTR_NORMAL,
4518 access_rx_hq_intr_fsm_err_cnt),
4519[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4520 CNTR_NORMAL,
4521 access_rx_hq_intr_csr_parity_err_cnt),
4522[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4523 CNTR_NORMAL,
4524 access_rx_lookup_csr_parity_err_cnt),
4525[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4526 CNTR_NORMAL,
4527 access_rx_lookup_rcv_array_cor_err_cnt),
4528[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4529 CNTR_NORMAL,
4530 access_rx_lookup_rcv_array_unc_err_cnt),
4531[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4532 0, CNTR_NORMAL,
4533 access_rx_lookup_des_part2_parity_err_cnt),
4534[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4535 0, CNTR_NORMAL,
4536 access_rx_lookup_des_part1_unc_cor_err_cnt),
4537[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4538 CNTR_NORMAL,
4539 access_rx_lookup_des_part1_unc_err_cnt),
4540[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4541 CNTR_NORMAL,
4542 access_rx_rbuf_next_free_buf_cor_err_cnt),
4543[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4544 CNTR_NORMAL,
4545 access_rx_rbuf_next_free_buf_unc_err_cnt),
4546[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4547 "RxRbufFlInitWrAddrParityErr", 0, 0,
4548 CNTR_NORMAL,
4549 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4550[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4551 0, CNTR_NORMAL,
4552 access_rx_rbuf_fl_initdone_parity_err_cnt),
4553[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4554 0, CNTR_NORMAL,
4555 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4556[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4557 CNTR_NORMAL,
4558 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4559[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4560 CNTR_NORMAL,
4561 access_rx_rbuf_empty_err_cnt),
4562[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4563 CNTR_NORMAL,
4564 access_rx_rbuf_full_err_cnt),
4565[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4566 CNTR_NORMAL,
4567 access_rbuf_bad_lookup_err_cnt),
4568[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4569 CNTR_NORMAL,
4570 access_rbuf_ctx_id_parity_err_cnt),
4571[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4572 CNTR_NORMAL,
4573 access_rbuf_csr_qeopdw_parity_err_cnt),
4574[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4575 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4576 CNTR_NORMAL,
4577 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4578[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4579 "RxRbufCsrQTlPtrParityErr", 0, 0,
4580 CNTR_NORMAL,
4581 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4582[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4583 0, CNTR_NORMAL,
4584 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4585[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4586 0, CNTR_NORMAL,
4587 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4588[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4589 0, 0, CNTR_NORMAL,
4590 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4591[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4592 0, CNTR_NORMAL,
4593 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4594[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4595 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4596 CNTR_NORMAL,
4597 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4598[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4599 0, CNTR_NORMAL,
4600 access_rx_rbuf_block_list_read_cor_err_cnt),
4601[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4602 0, CNTR_NORMAL,
4603 access_rx_rbuf_block_list_read_unc_err_cnt),
4604[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4605 CNTR_NORMAL,
4606 access_rx_rbuf_lookup_des_cor_err_cnt),
4607[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4608 CNTR_NORMAL,
4609 access_rx_rbuf_lookup_des_unc_err_cnt),
4610[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4611 "RxRbufLookupDesRegUncCorErr", 0, 0,
4612 CNTR_NORMAL,
4613 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4614[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4615 CNTR_NORMAL,
4616 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4617[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4618 CNTR_NORMAL,
4619 access_rx_rbuf_free_list_cor_err_cnt),
4620[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4621 CNTR_NORMAL,
4622 access_rx_rbuf_free_list_unc_err_cnt),
4623[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4624 CNTR_NORMAL,
4625 access_rx_rcv_fsm_encoding_err_cnt),
4626[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4627 CNTR_NORMAL,
4628 access_rx_dma_flag_cor_err_cnt),
4629[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4630 CNTR_NORMAL,
4631 access_rx_dma_flag_unc_err_cnt),
4632[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4633 CNTR_NORMAL,
4634 access_rx_dc_sop_eop_parity_err_cnt),
4635[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4636 CNTR_NORMAL,
4637 access_rx_rcv_csr_parity_err_cnt),
4638[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4639 CNTR_NORMAL,
4640 access_rx_rcv_qp_map_table_cor_err_cnt),
4641[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4642 CNTR_NORMAL,
4643 access_rx_rcv_qp_map_table_unc_err_cnt),
4644[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4645 CNTR_NORMAL,
4646 access_rx_rcv_data_cor_err_cnt),
4647[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4648 CNTR_NORMAL,
4649 access_rx_rcv_data_unc_err_cnt),
4650[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4651 CNTR_NORMAL,
4652 access_rx_rcv_hdr_cor_err_cnt),
4653[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4654 CNTR_NORMAL,
4655 access_rx_rcv_hdr_unc_err_cnt),
4656[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4657 CNTR_NORMAL,
4658 access_rx_dc_intf_parity_err_cnt),
4659[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4660 CNTR_NORMAL,
4661 access_rx_dma_csr_cor_err_cnt),
4662/* SendPioErrStatus */
4663[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4664 CNTR_NORMAL,
4665 access_pio_pec_sop_head_parity_err_cnt),
4666[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4667 CNTR_NORMAL,
4668 access_pio_pcc_sop_head_parity_err_cnt),
4669[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4670 0, 0, CNTR_NORMAL,
4671 access_pio_last_returned_cnt_parity_err_cnt),
4672[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4673 0, CNTR_NORMAL,
4674 access_pio_current_free_cnt_parity_err_cnt),
4675[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4676 CNTR_NORMAL,
4677 access_pio_reserved_31_err_cnt),
4678[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4679 CNTR_NORMAL,
4680 access_pio_reserved_30_err_cnt),
4681[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4682 CNTR_NORMAL,
4683 access_pio_ppmc_sop_len_err_cnt),
4684[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4685 CNTR_NORMAL,
4686 access_pio_ppmc_bqc_mem_parity_err_cnt),
4687[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4688 CNTR_NORMAL,
4689 access_pio_vl_fifo_parity_err_cnt),
4690[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4691 CNTR_NORMAL,
4692 access_pio_vlf_sop_parity_err_cnt),
4693[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4694 CNTR_NORMAL,
4695 access_pio_vlf_v1_len_parity_err_cnt),
4696[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4697 CNTR_NORMAL,
4698 access_pio_block_qw_count_parity_err_cnt),
4699[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4700 CNTR_NORMAL,
4701 access_pio_write_qw_valid_parity_err_cnt),
4702[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4703 CNTR_NORMAL,
4704 access_pio_state_machine_err_cnt),
4705[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4706 CNTR_NORMAL,
4707 access_pio_write_data_parity_err_cnt),
4708[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4709 CNTR_NORMAL,
4710 access_pio_host_addr_mem_cor_err_cnt),
4711[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4712 CNTR_NORMAL,
4713 access_pio_host_addr_mem_unc_err_cnt),
4714[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4715 CNTR_NORMAL,
4716 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4717[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4718 CNTR_NORMAL,
4719 access_pio_init_sm_in_err_cnt),
4720[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4721 CNTR_NORMAL,
4722 access_pio_ppmc_pbl_fifo_err_cnt),
4723[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4724 0, CNTR_NORMAL,
4725 access_pio_credit_ret_fifo_parity_err_cnt),
4726[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4727 CNTR_NORMAL,
4728 access_pio_v1_len_mem_bank1_cor_err_cnt),
4729[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4730 CNTR_NORMAL,
4731 access_pio_v1_len_mem_bank0_cor_err_cnt),
4732[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4733 CNTR_NORMAL,
4734 access_pio_v1_len_mem_bank1_unc_err_cnt),
4735[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4736 CNTR_NORMAL,
4737 access_pio_v1_len_mem_bank0_unc_err_cnt),
4738[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4739 CNTR_NORMAL,
4740 access_pio_sm_pkt_reset_parity_err_cnt),
4741[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4742 CNTR_NORMAL,
4743 access_pio_pkt_evict_fifo_parity_err_cnt),
4744[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4745 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4746 CNTR_NORMAL,
4747 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4748[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4749 CNTR_NORMAL,
4750 access_pio_sbrdctl_crrel_parity_err_cnt),
4751[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4752 CNTR_NORMAL,
4753 access_pio_pec_fifo_parity_err_cnt),
4754[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4755 CNTR_NORMAL,
4756 access_pio_pcc_fifo_parity_err_cnt),
4757[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4758 CNTR_NORMAL,
4759 access_pio_sb_mem_fifo1_err_cnt),
4760[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4761 CNTR_NORMAL,
4762 access_pio_sb_mem_fifo0_err_cnt),
4763[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4764 CNTR_NORMAL,
4765 access_pio_csr_parity_err_cnt),
4766[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4767 CNTR_NORMAL,
4768 access_pio_write_addr_parity_err_cnt),
4769[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4770 CNTR_NORMAL,
4771 access_pio_write_bad_ctxt_err_cnt),
4772/* SendDmaErrStatus */
4773[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4774 0, CNTR_NORMAL,
4775 access_sdma_pcie_req_tracking_cor_err_cnt),
4776[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4777 0, CNTR_NORMAL,
4778 access_sdma_pcie_req_tracking_unc_err_cnt),
4779[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4780 CNTR_NORMAL,
4781 access_sdma_csr_parity_err_cnt),
4782[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4783 CNTR_NORMAL,
4784 access_sdma_rpy_tag_err_cnt),
4785/* SendEgressErrStatus */
4786[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4787 CNTR_NORMAL,
4788 access_tx_read_pio_memory_csr_unc_err_cnt),
4789[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4790 0, CNTR_NORMAL,
4791 access_tx_read_sdma_memory_csr_err_cnt),
4792[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4793 CNTR_NORMAL,
4794 access_tx_egress_fifo_cor_err_cnt),
4795[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4796 CNTR_NORMAL,
4797 access_tx_read_pio_memory_cor_err_cnt),
4798[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4799 CNTR_NORMAL,
4800 access_tx_read_sdma_memory_cor_err_cnt),
4801[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4802 CNTR_NORMAL,
4803 access_tx_sb_hdr_cor_err_cnt),
4804[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4805 CNTR_NORMAL,
4806 access_tx_credit_overrun_err_cnt),
4807[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4808 CNTR_NORMAL,
4809 access_tx_launch_fifo8_cor_err_cnt),
4810[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4811 CNTR_NORMAL,
4812 access_tx_launch_fifo7_cor_err_cnt),
4813[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4814 CNTR_NORMAL,
4815 access_tx_launch_fifo6_cor_err_cnt),
4816[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4817 CNTR_NORMAL,
4818 access_tx_launch_fifo5_cor_err_cnt),
4819[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4820 CNTR_NORMAL,
4821 access_tx_launch_fifo4_cor_err_cnt),
4822[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4823 CNTR_NORMAL,
4824 access_tx_launch_fifo3_cor_err_cnt),
4825[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_tx_launch_fifo2_cor_err_cnt),
4828[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4829 CNTR_NORMAL,
4830 access_tx_launch_fifo1_cor_err_cnt),
4831[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4832 CNTR_NORMAL,
4833 access_tx_launch_fifo0_cor_err_cnt),
4834[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4835 CNTR_NORMAL,
4836 access_tx_credit_return_vl_err_cnt),
4837[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4838 CNTR_NORMAL,
4839 access_tx_hcrc_insertion_err_cnt),
4840[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4841 CNTR_NORMAL,
4842 access_tx_egress_fifo_unc_err_cnt),
4843[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4844 CNTR_NORMAL,
4845 access_tx_read_pio_memory_unc_err_cnt),
4846[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4847 CNTR_NORMAL,
4848 access_tx_read_sdma_memory_unc_err_cnt),
4849[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4850 CNTR_NORMAL,
4851 access_tx_sb_hdr_unc_err_cnt),
4852[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4853 CNTR_NORMAL,
4854 access_tx_credit_return_partiy_err_cnt),
4855[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4856 0, 0, CNTR_NORMAL,
4857 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4858[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4859 0, 0, CNTR_NORMAL,
4860 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4861[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4862 0, 0, CNTR_NORMAL,
4863 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4864[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4865 0, 0, CNTR_NORMAL,
4866 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4867[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4868 0, 0, CNTR_NORMAL,
4869 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4870[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4871 0, 0, CNTR_NORMAL,
4872 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4873[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4874 0, 0, CNTR_NORMAL,
4875 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4876[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4877 0, 0, CNTR_NORMAL,
4878 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4879[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4880 0, 0, CNTR_NORMAL,
4881 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4882[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4883 0, 0, CNTR_NORMAL,
4884 access_tx_sdma15_disallowed_packet_err_cnt),
4885[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4886 0, 0, CNTR_NORMAL,
4887 access_tx_sdma14_disallowed_packet_err_cnt),
4888[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4889 0, 0, CNTR_NORMAL,
4890 access_tx_sdma13_disallowed_packet_err_cnt),
4891[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4892 0, 0, CNTR_NORMAL,
4893 access_tx_sdma12_disallowed_packet_err_cnt),
4894[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4895 0, 0, CNTR_NORMAL,
4896 access_tx_sdma11_disallowed_packet_err_cnt),
4897[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4898 0, 0, CNTR_NORMAL,
4899 access_tx_sdma10_disallowed_packet_err_cnt),
4900[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4901 0, 0, CNTR_NORMAL,
4902 access_tx_sdma9_disallowed_packet_err_cnt),
4903[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4904 0, 0, CNTR_NORMAL,
4905 access_tx_sdma8_disallowed_packet_err_cnt),
4906[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4907 0, 0, CNTR_NORMAL,
4908 access_tx_sdma7_disallowed_packet_err_cnt),
4909[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4910 0, 0, CNTR_NORMAL,
4911 access_tx_sdma6_disallowed_packet_err_cnt),
4912[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4913 0, 0, CNTR_NORMAL,
4914 access_tx_sdma5_disallowed_packet_err_cnt),
4915[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4916 0, 0, CNTR_NORMAL,
4917 access_tx_sdma4_disallowed_packet_err_cnt),
4918[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4919 0, 0, CNTR_NORMAL,
4920 access_tx_sdma3_disallowed_packet_err_cnt),
4921[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4922 0, 0, CNTR_NORMAL,
4923 access_tx_sdma2_disallowed_packet_err_cnt),
4924[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4925 0, 0, CNTR_NORMAL,
4926 access_tx_sdma1_disallowed_packet_err_cnt),
4927[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4928 0, 0, CNTR_NORMAL,
4929 access_tx_sdma0_disallowed_packet_err_cnt),
4930[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4931 CNTR_NORMAL,
4932 access_tx_config_parity_err_cnt),
4933[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4934 CNTR_NORMAL,
4935 access_tx_sbrd_ctl_csr_parity_err_cnt),
4936[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4937 CNTR_NORMAL,
4938 access_tx_launch_csr_parity_err_cnt),
4939[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4940 CNTR_NORMAL,
4941 access_tx_illegal_vl_err_cnt),
4942[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4943 "TxSbrdCtlStateMachineParityErr", 0, 0,
4944 CNTR_NORMAL,
4945 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4946[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4947 CNTR_NORMAL,
4948 access_egress_reserved_10_err_cnt),
4949[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4950 CNTR_NORMAL,
4951 access_egress_reserved_9_err_cnt),
4952[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4953 0, 0, CNTR_NORMAL,
4954 access_tx_sdma_launch_intf_parity_err_cnt),
4955[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4956 CNTR_NORMAL,
4957 access_tx_pio_launch_intf_parity_err_cnt),
4958[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4959 CNTR_NORMAL,
4960 access_egress_reserved_6_err_cnt),
4961[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4962 CNTR_NORMAL,
4963 access_tx_incorrect_link_state_err_cnt),
4964[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4965 CNTR_NORMAL,
4966 access_tx_linkdown_err_cnt),
4967[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4968 "EgressFifoUnderrunOrParityErr", 0, 0,
4969 CNTR_NORMAL,
4970 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4971[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4972 CNTR_NORMAL,
4973 access_egress_reserved_2_err_cnt),
4974[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4975 CNTR_NORMAL,
4976 access_tx_pkt_integrity_mem_unc_err_cnt),
4977[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4978 CNTR_NORMAL,
4979 access_tx_pkt_integrity_mem_cor_err_cnt),
4980/* SendErrStatus */
4981[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4982 CNTR_NORMAL,
4983 access_send_csr_write_bad_addr_err_cnt),
4984[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4985 CNTR_NORMAL,
4986 access_send_csr_read_bad_addr_err_cnt),
4987[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4988 CNTR_NORMAL,
4989 access_send_csr_parity_cnt),
4990/* SendCtxtErrStatus */
4991[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4992 CNTR_NORMAL,
4993 access_pio_write_out_of_bounds_err_cnt),
4994[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4995 CNTR_NORMAL,
4996 access_pio_write_overflow_err_cnt),
4997[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4998 0, 0, CNTR_NORMAL,
4999 access_pio_write_crosses_boundary_err_cnt),
5000[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
5001 CNTR_NORMAL,
5002 access_pio_disallowed_packet_err_cnt),
5003[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
5004 CNTR_NORMAL,
5005 access_pio_inconsistent_sop_err_cnt),
5006/* SendDmaEngErrStatus */
5007[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5008 0, 0, CNTR_NORMAL,
5009 access_sdma_header_request_fifo_cor_err_cnt),
5010[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5011 CNTR_NORMAL,
5012 access_sdma_header_storage_cor_err_cnt),
5013[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5014 CNTR_NORMAL,
5015 access_sdma_packet_tracking_cor_err_cnt),
5016[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5017 CNTR_NORMAL,
5018 access_sdma_assembly_cor_err_cnt),
5019[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5020 CNTR_NORMAL,
5021 access_sdma_desc_table_cor_err_cnt),
5022[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5023 0, 0, CNTR_NORMAL,
5024 access_sdma_header_request_fifo_unc_err_cnt),
5025[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5026 CNTR_NORMAL,
5027 access_sdma_header_storage_unc_err_cnt),
5028[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5029 CNTR_NORMAL,
5030 access_sdma_packet_tracking_unc_err_cnt),
5031[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5032 CNTR_NORMAL,
5033 access_sdma_assembly_unc_err_cnt),
5034[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5035 CNTR_NORMAL,
5036 access_sdma_desc_table_unc_err_cnt),
5037[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5038 CNTR_NORMAL,
5039 access_sdma_timeout_err_cnt),
5040[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5041 CNTR_NORMAL,
5042 access_sdma_header_length_err_cnt),
5043[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5044 CNTR_NORMAL,
5045 access_sdma_header_address_err_cnt),
5046[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5047 CNTR_NORMAL,
5048 access_sdma_header_select_err_cnt),
5049[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5050 CNTR_NORMAL,
5051 access_sdma_reserved_9_err_cnt),
5052[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5053 CNTR_NORMAL,
5054 access_sdma_packet_desc_overflow_err_cnt),
5055[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5056 CNTR_NORMAL,
5057 access_sdma_length_mismatch_err_cnt),
5058[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5059 CNTR_NORMAL,
5060 access_sdma_halt_err_cnt),
5061[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5062 CNTR_NORMAL,
5063 access_sdma_mem_read_err_cnt),
5064[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5065 CNTR_NORMAL,
5066 access_sdma_first_desc_err_cnt),
5067[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5068 CNTR_NORMAL,
5069 access_sdma_tail_out_of_bounds_err_cnt),
5070[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5071 CNTR_NORMAL,
5072 access_sdma_too_long_err_cnt),
5073[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5074 CNTR_NORMAL,
5075 access_sdma_gen_mismatch_err_cnt),
5076[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5077 CNTR_NORMAL,
5078 access_sdma_wrong_dw_err_cnt),
5079};
5080
5081static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5082[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5083 CNTR_NORMAL),
5084[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5085 CNTR_NORMAL),
5086[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5087 CNTR_NORMAL),
5088[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5089 CNTR_NORMAL),
5090[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5091 CNTR_NORMAL),
5092[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5093 CNTR_NORMAL),
5094[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5095 CNTR_NORMAL),
5096[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5097[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5098[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5099[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5100 CNTR_SYNTH | CNTR_VL),
5101[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5102 CNTR_SYNTH | CNTR_VL),
5103[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5104 CNTR_SYNTH | CNTR_VL),
5105[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5106[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5107[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5108 access_sw_link_dn_cnt),
5109[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5110 access_sw_link_up_cnt),
5111[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5112 access_sw_unknown_frame_cnt),
5113[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5114 access_sw_xmit_discards),
5115[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5116 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5117 access_sw_xmit_discards),
5118[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5119 access_xmit_constraint_errs),
5120[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5121 access_rcv_constraint_errs),
5122[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5123[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5124[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5125[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5126[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5127[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5128[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5129[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5130[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5131[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5132[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5133[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
David Brazdil0f672f62019-12-10 10:32:29 +00005134[C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005135[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5136 access_sw_cpu_rc_acks),
5137[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5138 access_sw_cpu_rc_qacks),
5139[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5140 access_sw_cpu_rc_delayed_comp),
5141[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5142[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5143[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5144[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5145[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5146[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5147[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5148[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5149[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5150[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5151[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5152[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5153[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5154[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5155[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5156[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5157[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5158[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5159[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5160[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5161[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5162[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5163[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5164[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5165[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5166[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5167[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5168[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5169[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5170[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5171[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5172[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5173[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5174[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5175[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5176[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5177[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5178[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5179[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5180[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5181[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5182[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5183[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5184[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5185[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5186[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5187[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5188[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5189[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5190[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5191[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5192[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5193[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5194[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5195[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5196[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5197[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5198[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5199[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5200[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5201[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5202[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5203[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5204[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5205[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5206[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5207[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5208[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5209[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5210[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5211[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5212[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5213[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5214[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5215[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5216[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5217[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5218[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5219[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5220[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5221};
5222
5223/* ======================================================================== */
5224
5225/* return true if this is chip revision revision a */
5226int is_ax(struct hfi1_devdata *dd)
5227{
5228 u8 chip_rev_minor =
5229 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5230 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5231 return (chip_rev_minor & 0xf0) == 0;
5232}
5233
5234/* return true if this is chip revision revision b */
5235int is_bx(struct hfi1_devdata *dd)
5236{
5237 u8 chip_rev_minor =
5238 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5239 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5240 return (chip_rev_minor & 0xF0) == 0x10;
5241}
5242
David Brazdil0f672f62019-12-10 10:32:29 +00005243/* return true is kernel urg disabled for rcd */
5244bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5245{
5246 u64 mask;
5247 u32 is = IS_RCVURGENT_START + rcd->ctxt;
5248 u8 bit = is % 64;
5249
5250 mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5251 return !(mask & BIT_ULL(bit));
5252}
5253
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005254/*
5255 * Append string s to buffer buf. Arguments curp and len are the current
5256 * position and remaining length, respectively.
5257 *
5258 * return 0 on success, 1 on out of room
5259 */
5260static int append_str(char *buf, char **curp, int *lenp, const char *s)
5261{
5262 char *p = *curp;
5263 int len = *lenp;
5264 int result = 0; /* success */
5265 char c;
5266
5267 /* add a comma, if first in the buffer */
5268 if (p != buf) {
5269 if (len == 0) {
5270 result = 1; /* out of room */
5271 goto done;
5272 }
5273 *p++ = ',';
5274 len--;
5275 }
5276
5277 /* copy the string */
5278 while ((c = *s++) != 0) {
5279 if (len == 0) {
5280 result = 1; /* out of room */
5281 goto done;
5282 }
5283 *p++ = c;
5284 len--;
5285 }
5286
5287done:
5288 /* write return values */
5289 *curp = p;
5290 *lenp = len;
5291
5292 return result;
5293}
5294
5295/*
5296 * Using the given flag table, print a comma separated string into
5297 * the buffer. End in '*' if the buffer is too short.
5298 */
5299static char *flag_string(char *buf, int buf_len, u64 flags,
5300 struct flag_table *table, int table_size)
5301{
5302 char extra[32];
5303 char *p = buf;
5304 int len = buf_len;
5305 int no_room = 0;
5306 int i;
5307
5308 /* make sure there is at least 2 so we can form "*" */
5309 if (len < 2)
5310 return "";
5311
5312 len--; /* leave room for a nul */
5313 for (i = 0; i < table_size; i++) {
5314 if (flags & table[i].flag) {
5315 no_room = append_str(buf, &p, &len, table[i].str);
5316 if (no_room)
5317 break;
5318 flags &= ~table[i].flag;
5319 }
5320 }
5321
5322 /* any undocumented bits left? */
5323 if (!no_room && flags) {
5324 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5325 no_room = append_str(buf, &p, &len, extra);
5326 }
5327
5328 /* add * if ran out of room */
5329 if (no_room) {
5330 /* may need to back up to add space for a '*' */
5331 if (len == 0)
5332 --p;
5333 *p++ = '*';
5334 }
5335
5336 /* add final nul - space already allocated above */
5337 *p = 0;
5338 return buf;
5339}
5340
5341/* first 8 CCE error interrupt source names */
5342static const char * const cce_misc_names[] = {
5343 "CceErrInt", /* 0 */
5344 "RxeErrInt", /* 1 */
5345 "MiscErrInt", /* 2 */
5346 "Reserved3", /* 3 */
5347 "PioErrInt", /* 4 */
5348 "SDmaErrInt", /* 5 */
5349 "EgressErrInt", /* 6 */
5350 "TxeErrInt" /* 7 */
5351};
5352
5353/*
5354 * Return the miscellaneous error interrupt name.
5355 */
5356static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5357{
5358 if (source < ARRAY_SIZE(cce_misc_names))
5359 strncpy(buf, cce_misc_names[source], bsize);
5360 else
5361 snprintf(buf, bsize, "Reserved%u",
5362 source + IS_GENERAL_ERR_START);
5363
5364 return buf;
5365}
5366
5367/*
5368 * Return the SDMA engine error interrupt name.
5369 */
5370static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5371{
5372 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5373 return buf;
5374}
5375
5376/*
5377 * Return the send context error interrupt name.
5378 */
5379static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5380{
5381 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5382 return buf;
5383}
5384
5385static const char * const various_names[] = {
5386 "PbcInt",
5387 "GpioAssertInt",
5388 "Qsfp1Int",
5389 "Qsfp2Int",
5390 "TCritInt"
5391};
5392
5393/*
5394 * Return the various interrupt name.
5395 */
5396static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5397{
5398 if (source < ARRAY_SIZE(various_names))
5399 strncpy(buf, various_names[source], bsize);
5400 else
5401 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5402 return buf;
5403}
5404
5405/*
5406 * Return the DC interrupt name.
5407 */
5408static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5409{
5410 static const char * const dc_int_names[] = {
5411 "common",
5412 "lcb",
5413 "8051",
5414 "lbm" /* local block merge */
5415 };
5416
5417 if (source < ARRAY_SIZE(dc_int_names))
5418 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5419 else
5420 snprintf(buf, bsize, "DCInt%u", source);
5421 return buf;
5422}
5423
5424static const char * const sdma_int_names[] = {
5425 "SDmaInt",
5426 "SdmaIdleInt",
5427 "SdmaProgressInt",
5428};
5429
5430/*
5431 * Return the SDMA engine interrupt name.
5432 */
5433static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5434{
5435 /* what interrupt */
5436 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5437 /* which engine */
5438 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5439
5440 if (likely(what < 3))
5441 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5442 else
5443 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5444 return buf;
5445}
5446
5447/*
5448 * Return the receive available interrupt name.
5449 */
5450static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5451{
5452 snprintf(buf, bsize, "RcvAvailInt%u", source);
5453 return buf;
5454}
5455
5456/*
5457 * Return the receive urgent interrupt name.
5458 */
5459static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5460{
5461 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5462 return buf;
5463}
5464
5465/*
5466 * Return the send credit interrupt name.
5467 */
5468static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5469{
5470 snprintf(buf, bsize, "SendCreditInt%u", source);
5471 return buf;
5472}
5473
5474/*
5475 * Return the reserved interrupt name.
5476 */
5477static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5478{
5479 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5480 return buf;
5481}
5482
5483static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5484{
5485 return flag_string(buf, buf_len, flags,
5486 cce_err_status_flags,
5487 ARRAY_SIZE(cce_err_status_flags));
5488}
5489
5490static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5491{
5492 return flag_string(buf, buf_len, flags,
5493 rxe_err_status_flags,
5494 ARRAY_SIZE(rxe_err_status_flags));
5495}
5496
5497static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5498{
5499 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5500 ARRAY_SIZE(misc_err_status_flags));
5501}
5502
5503static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5504{
5505 return flag_string(buf, buf_len, flags,
5506 pio_err_status_flags,
5507 ARRAY_SIZE(pio_err_status_flags));
5508}
5509
5510static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5511{
5512 return flag_string(buf, buf_len, flags,
5513 sdma_err_status_flags,
5514 ARRAY_SIZE(sdma_err_status_flags));
5515}
5516
5517static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5518{
5519 return flag_string(buf, buf_len, flags,
5520 egress_err_status_flags,
5521 ARRAY_SIZE(egress_err_status_flags));
5522}
5523
5524static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5525{
5526 return flag_string(buf, buf_len, flags,
5527 egress_err_info_flags,
5528 ARRAY_SIZE(egress_err_info_flags));
5529}
5530
5531static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5532{
5533 return flag_string(buf, buf_len, flags,
5534 send_err_status_flags,
5535 ARRAY_SIZE(send_err_status_flags));
5536}
5537
5538static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5539{
5540 char buf[96];
5541 int i = 0;
5542
5543 /*
5544 * For most these errors, there is nothing that can be done except
5545 * report or record it.
5546 */
5547 dd_dev_info(dd, "CCE Error: %s\n",
5548 cce_err_status_string(buf, sizeof(buf), reg));
5549
5550 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5551 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5552 /* this error requires a manual drop into SPC freeze mode */
5553 /* then a fix up */
5554 start_freeze_handling(dd->pport, FREEZE_SELF);
5555 }
5556
5557 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5558 if (reg & (1ull << i)) {
5559 incr_cntr64(&dd->cce_err_status_cnt[i]);
5560 /* maintain a counter over all cce_err_status errors */
5561 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5562 }
5563 }
5564}
5565
5566/*
5567 * Check counters for receive errors that do not have an interrupt
5568 * associated with them.
5569 */
5570#define RCVERR_CHECK_TIME 10
5571static void update_rcverr_timer(struct timer_list *t)
5572{
5573 struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5574 struct hfi1_pportdata *ppd = dd->pport;
5575 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5576
5577 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5578 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5579 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5580 set_link_down_reason(
5581 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5582 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5583 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5584 }
5585 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5586
5587 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5588}
5589
5590static int init_rcverr(struct hfi1_devdata *dd)
5591{
5592 timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5593 /* Assume the hardware counter has been reset */
5594 dd->rcv_ovfl_cnt = 0;
5595 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5596}
5597
5598static void free_rcverr(struct hfi1_devdata *dd)
5599{
5600 if (dd->rcverr_timer.function)
5601 del_timer_sync(&dd->rcverr_timer);
5602}
5603
5604static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5605{
5606 char buf[96];
5607 int i = 0;
5608
5609 dd_dev_info(dd, "Receive Error: %s\n",
5610 rxe_err_status_string(buf, sizeof(buf), reg));
5611
5612 if (reg & ALL_RXE_FREEZE_ERR) {
5613 int flags = 0;
5614
5615 /*
5616 * Freeze mode recovery is disabled for the errors
5617 * in RXE_FREEZE_ABORT_MASK
5618 */
5619 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5620 flags = FREEZE_ABORT;
5621
5622 start_freeze_handling(dd->pport, flags);
5623 }
5624
5625 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5626 if (reg & (1ull << i))
5627 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5628 }
5629}
5630
5631static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5632{
5633 char buf[96];
5634 int i = 0;
5635
5636 dd_dev_info(dd, "Misc Error: %s",
5637 misc_err_status_string(buf, sizeof(buf), reg));
5638 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5639 if (reg & (1ull << i))
5640 incr_cntr64(&dd->misc_err_status_cnt[i]);
5641 }
5642}
5643
5644static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5645{
5646 char buf[96];
5647 int i = 0;
5648
5649 dd_dev_info(dd, "PIO Error: %s\n",
5650 pio_err_status_string(buf, sizeof(buf), reg));
5651
5652 if (reg & ALL_PIO_FREEZE_ERR)
5653 start_freeze_handling(dd->pport, 0);
5654
5655 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5656 if (reg & (1ull << i))
5657 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5658 }
5659}
5660
5661static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5662{
5663 char buf[96];
5664 int i = 0;
5665
5666 dd_dev_info(dd, "SDMA Error: %s\n",
5667 sdma_err_status_string(buf, sizeof(buf), reg));
5668
5669 if (reg & ALL_SDMA_FREEZE_ERR)
5670 start_freeze_handling(dd->pport, 0);
5671
5672 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5673 if (reg & (1ull << i))
5674 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5675 }
5676}
5677
5678static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5679{
5680 incr_cntr64(&ppd->port_xmit_discards);
5681}
5682
5683static void count_port_inactive(struct hfi1_devdata *dd)
5684{
5685 __count_port_discards(dd->pport);
5686}
5687
5688/*
5689 * We have had a "disallowed packet" error during egress. Determine the
5690 * integrity check which failed, and update relevant error counter, etc.
5691 *
5692 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5693 * bit of state per integrity check, and so we can miss the reason for an
5694 * egress error if more than one packet fails the same integrity check
5695 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5696 */
5697static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5698 int vl)
5699{
5700 struct hfi1_pportdata *ppd = dd->pport;
5701 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5702 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5703 char buf[96];
5704
5705 /* clear down all observed info as quickly as possible after read */
5706 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5707
5708 dd_dev_info(dd,
5709 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5710 info, egress_err_info_string(buf, sizeof(buf), info), src);
5711
5712 /* Eventually add other counters for each bit */
5713 if (info & PORT_DISCARD_EGRESS_ERRS) {
5714 int weight, i;
5715
5716 /*
5717 * Count all applicable bits as individual errors and
5718 * attribute them to the packet that triggered this handler.
5719 * This may not be completely accurate due to limitations
5720 * on the available hardware error information. There is
5721 * a single information register and any number of error
5722 * packets may have occurred and contributed to it before
5723 * this routine is called. This means that:
5724 * a) If multiple packets with the same error occur before
5725 * this routine is called, earlier packets are missed.
5726 * There is only a single bit for each error type.
5727 * b) Errors may not be attributed to the correct VL.
5728 * The driver is attributing all bits in the info register
5729 * to the packet that triggered this call, but bits
5730 * could be an accumulation of different packets with
5731 * different VLs.
5732 * c) A single error packet may have multiple counts attached
5733 * to it. There is no way for the driver to know if
5734 * multiple bits set in the info register are due to a
5735 * single packet or multiple packets. The driver assumes
5736 * multiple packets.
5737 */
5738 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5739 for (i = 0; i < weight; i++) {
5740 __count_port_discards(ppd);
5741 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5742 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5743 else if (vl == 15)
5744 incr_cntr64(&ppd->port_xmit_discards_vl
5745 [C_VL_15]);
5746 }
5747 }
5748}
5749
5750/*
5751 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5752 * register. Does it represent a 'port inactive' error?
5753 */
5754static inline int port_inactive_err(u64 posn)
5755{
5756 return (posn >= SEES(TX_LINKDOWN) &&
5757 posn <= SEES(TX_INCORRECT_LINK_STATE));
5758}
5759
5760/*
5761 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5762 * register. Does it represent a 'disallowed packet' error?
5763 */
5764static inline int disallowed_pkt_err(int posn)
5765{
5766 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5767 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5768}
5769
5770/*
5771 * Input value is a bit position of one of the SDMA engine disallowed
5772 * packet errors. Return which engine. Use of this must be guarded by
5773 * disallowed_pkt_err().
5774 */
5775static inline int disallowed_pkt_engine(int posn)
5776{
5777 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5778}
5779
5780/*
5781 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5782 * be done.
5783 */
5784static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5785{
5786 struct sdma_vl_map *m;
5787 int vl;
5788
5789 /* range check */
5790 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5791 return -1;
5792
5793 rcu_read_lock();
5794 m = rcu_dereference(dd->sdma_map);
5795 vl = m->engine_to_vl[engine];
5796 rcu_read_unlock();
5797
5798 return vl;
5799}
5800
5801/*
5802 * Translate the send context (sofware index) into a VL. Return -1 if the
5803 * translation cannot be done.
5804 */
5805static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5806{
5807 struct send_context_info *sci;
5808 struct send_context *sc;
5809 int i;
5810
5811 sci = &dd->send_contexts[sw_index];
5812
5813 /* there is no information for user (PSM) and ack contexts */
5814 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5815 return -1;
5816
5817 sc = sci->sc;
5818 if (!sc)
5819 return -1;
5820 if (dd->vld[15].sc == sc)
5821 return 15;
5822 for (i = 0; i < num_vls; i++)
5823 if (dd->vld[i].sc == sc)
5824 return i;
5825
5826 return -1;
5827}
5828
5829static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5830{
5831 u64 reg_copy = reg, handled = 0;
5832 char buf[96];
5833 int i = 0;
5834
5835 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5836 start_freeze_handling(dd->pport, 0);
5837 else if (is_ax(dd) &&
5838 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5839 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5840 start_freeze_handling(dd->pport, 0);
5841
5842 while (reg_copy) {
5843 int posn = fls64(reg_copy);
5844 /* fls64() returns a 1-based offset, we want it zero based */
5845 int shift = posn - 1;
5846 u64 mask = 1ULL << shift;
5847
5848 if (port_inactive_err(shift)) {
5849 count_port_inactive(dd);
5850 handled |= mask;
5851 } else if (disallowed_pkt_err(shift)) {
5852 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5853
5854 handle_send_egress_err_info(dd, vl);
5855 handled |= mask;
5856 }
5857 reg_copy &= ~mask;
5858 }
5859
5860 reg &= ~handled;
5861
5862 if (reg)
5863 dd_dev_info(dd, "Egress Error: %s\n",
5864 egress_err_status_string(buf, sizeof(buf), reg));
5865
5866 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5867 if (reg & (1ull << i))
5868 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5869 }
5870}
5871
5872static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5873{
5874 char buf[96];
5875 int i = 0;
5876
5877 dd_dev_info(dd, "Send Error: %s\n",
5878 send_err_status_string(buf, sizeof(buf), reg));
5879
5880 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5881 if (reg & (1ull << i))
5882 incr_cntr64(&dd->send_err_status_cnt[i]);
5883 }
5884}
5885
5886/*
5887 * The maximum number of times the error clear down will loop before
5888 * blocking a repeating error. This value is arbitrary.
5889 */
5890#define MAX_CLEAR_COUNT 20
5891
5892/*
5893 * Clear and handle an error register. All error interrupts are funneled
5894 * through here to have a central location to correctly handle single-
5895 * or multi-shot errors.
5896 *
5897 * For non per-context registers, call this routine with a context value
5898 * of 0 so the per-context offset is zero.
5899 *
5900 * If the handler loops too many times, assume that something is wrong
5901 * and can't be fixed, so mask the error bits.
5902 */
5903static void interrupt_clear_down(struct hfi1_devdata *dd,
5904 u32 context,
5905 const struct err_reg_info *eri)
5906{
5907 u64 reg;
5908 u32 count;
5909
5910 /* read in a loop until no more errors are seen */
5911 count = 0;
5912 while (1) {
5913 reg = read_kctxt_csr(dd, context, eri->status);
5914 if (reg == 0)
5915 break;
5916 write_kctxt_csr(dd, context, eri->clear, reg);
5917 if (likely(eri->handler))
5918 eri->handler(dd, context, reg);
5919 count++;
5920 if (count > MAX_CLEAR_COUNT) {
5921 u64 mask;
5922
5923 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5924 eri->desc, reg);
5925 /*
5926 * Read-modify-write so any other masked bits
5927 * remain masked.
5928 */
5929 mask = read_kctxt_csr(dd, context, eri->mask);
5930 mask &= ~reg;
5931 write_kctxt_csr(dd, context, eri->mask, mask);
5932 break;
5933 }
5934 }
5935}
5936
5937/*
5938 * CCE block "misc" interrupt. Source is < 16.
5939 */
5940static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5941{
5942 const struct err_reg_info *eri = &misc_errs[source];
5943
5944 if (eri->handler) {
5945 interrupt_clear_down(dd, 0, eri);
5946 } else {
5947 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5948 source);
5949 }
5950}
5951
5952static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5953{
5954 return flag_string(buf, buf_len, flags,
5955 sc_err_status_flags,
5956 ARRAY_SIZE(sc_err_status_flags));
5957}
5958
5959/*
5960 * Send context error interrupt. Source (hw_context) is < 160.
5961 *
5962 * All send context errors cause the send context to halt. The normal
5963 * clear-down mechanism cannot be used because we cannot clear the
5964 * error bits until several other long-running items are done first.
5965 * This is OK because with the context halted, nothing else is going
5966 * to happen on it anyway.
5967 */
5968static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5969 unsigned int hw_context)
5970{
5971 struct send_context_info *sci;
5972 struct send_context *sc;
5973 char flags[96];
5974 u64 status;
5975 u32 sw_index;
5976 int i = 0;
5977 unsigned long irq_flags;
5978
5979 sw_index = dd->hw_to_sw[hw_context];
5980 if (sw_index >= dd->num_send_contexts) {
5981 dd_dev_err(dd,
5982 "out of range sw index %u for send context %u\n",
5983 sw_index, hw_context);
5984 return;
5985 }
5986 sci = &dd->send_contexts[sw_index];
5987 spin_lock_irqsave(&dd->sc_lock, irq_flags);
5988 sc = sci->sc;
5989 if (!sc) {
5990 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5991 sw_index, hw_context);
5992 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5993 return;
5994 }
5995
5996 /* tell the software that a halt has begun */
5997 sc_stop(sc, SCF_HALTED);
5998
5999 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
6000
6001 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
6002 send_context_err_status_string(flags, sizeof(flags),
6003 status));
6004
6005 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
6006 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
6007
6008 /*
6009 * Automatically restart halted kernel contexts out of interrupt
6010 * context. User contexts must ask the driver to restart the context.
6011 */
6012 if (sc->type != SC_USER)
6013 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6014 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6015
6016 /*
6017 * Update the counters for the corresponding status bits.
6018 * Note that these particular counters are aggregated over all
6019 * 160 contexts.
6020 */
6021 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6022 if (status & (1ull << i))
6023 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6024 }
6025}
6026
6027static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6028 unsigned int source, u64 status)
6029{
6030 struct sdma_engine *sde;
6031 int i = 0;
6032
6033 sde = &dd->per_sdma[source];
6034#ifdef CONFIG_SDMA_VERBOSITY
6035 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6036 slashstrip(__FILE__), __LINE__, __func__);
6037 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6038 sde->this_idx, source, (unsigned long long)status);
6039#endif
6040 sde->err_cnt++;
6041 sdma_engine_error(sde, status);
6042
6043 /*
6044 * Update the counters for the corresponding status bits.
6045 * Note that these particular counters are aggregated over
6046 * all 16 DMA engines.
6047 */
6048 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6049 if (status & (1ull << i))
6050 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6051 }
6052}
6053
6054/*
6055 * CCE block SDMA error interrupt. Source is < 16.
6056 */
6057static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6058{
6059#ifdef CONFIG_SDMA_VERBOSITY
6060 struct sdma_engine *sde = &dd->per_sdma[source];
6061
6062 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6063 slashstrip(__FILE__), __LINE__, __func__);
6064 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6065 source);
6066 sdma_dumpstate(sde);
6067#endif
6068 interrupt_clear_down(dd, source, &sdma_eng_err);
6069}
6070
6071/*
6072 * CCE block "various" interrupt. Source is < 8.
6073 */
6074static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6075{
6076 const struct err_reg_info *eri = &various_err[source];
6077
6078 /*
6079 * TCritInt cannot go through interrupt_clear_down()
6080 * because it is not a second tier interrupt. The handler
6081 * should be called directly.
6082 */
6083 if (source == TCRIT_INT_SOURCE)
6084 handle_temp_err(dd);
6085 else if (eri->handler)
6086 interrupt_clear_down(dd, 0, eri);
6087 else
6088 dd_dev_info(dd,
6089 "%s: Unimplemented/reserved interrupt %d\n",
6090 __func__, source);
6091}
6092
6093static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6094{
6095 /* src_ctx is always zero */
6096 struct hfi1_pportdata *ppd = dd->pport;
6097 unsigned long flags;
6098 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6099
6100 if (reg & QSFP_HFI0_MODPRST_N) {
6101 if (!qsfp_mod_present(ppd)) {
6102 dd_dev_info(dd, "%s: QSFP module removed\n",
6103 __func__);
6104
6105 ppd->driver_link_ready = 0;
6106 /*
6107 * Cable removed, reset all our information about the
6108 * cache and cable capabilities
6109 */
6110
6111 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6112 /*
6113 * We don't set cache_refresh_required here as we expect
6114 * an interrupt when a cable is inserted
6115 */
6116 ppd->qsfp_info.cache_valid = 0;
6117 ppd->qsfp_info.reset_needed = 0;
6118 ppd->qsfp_info.limiting_active = 0;
6119 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6120 flags);
6121 /* Invert the ModPresent pin now to detect plug-in */
6122 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6123 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6124
6125 if ((ppd->offline_disabled_reason >
6126 HFI1_ODR_MASK(
6127 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6128 (ppd->offline_disabled_reason ==
6129 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6130 ppd->offline_disabled_reason =
6131 HFI1_ODR_MASK(
6132 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6133
6134 if (ppd->host_link_state == HLS_DN_POLL) {
6135 /*
6136 * The link is still in POLL. This means
6137 * that the normal link down processing
6138 * will not happen. We have to do it here
6139 * before turning the DC off.
6140 */
6141 queue_work(ppd->link_wq, &ppd->link_down_work);
6142 }
6143 } else {
6144 dd_dev_info(dd, "%s: QSFP module inserted\n",
6145 __func__);
6146
6147 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6148 ppd->qsfp_info.cache_valid = 0;
6149 ppd->qsfp_info.cache_refresh_required = 1;
6150 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6151 flags);
6152
6153 /*
6154 * Stop inversion of ModPresent pin to detect
6155 * removal of the cable
6156 */
6157 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6158 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6159 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6160
6161 ppd->offline_disabled_reason =
6162 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6163 }
6164 }
6165
6166 if (reg & QSFP_HFI0_INT_N) {
6167 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6168 __func__);
6169 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6170 ppd->qsfp_info.check_interrupt_flags = 1;
6171 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6172 }
6173
6174 /* Schedule the QSFP work only if there is a cable attached. */
6175 if (qsfp_mod_present(ppd))
6176 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6177}
6178
6179static int request_host_lcb_access(struct hfi1_devdata *dd)
6180{
6181 int ret;
6182
6183 ret = do_8051_command(dd, HCMD_MISC,
6184 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6185 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6186 if (ret != HCMD_SUCCESS) {
6187 dd_dev_err(dd, "%s: command failed with error %d\n",
6188 __func__, ret);
6189 }
6190 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6191}
6192
6193static int request_8051_lcb_access(struct hfi1_devdata *dd)
6194{
6195 int ret;
6196
6197 ret = do_8051_command(dd, HCMD_MISC,
6198 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6199 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6200 if (ret != HCMD_SUCCESS) {
6201 dd_dev_err(dd, "%s: command failed with error %d\n",
6202 __func__, ret);
6203 }
6204 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6205}
6206
6207/*
6208 * Set the LCB selector - allow host access. The DCC selector always
6209 * points to the host.
6210 */
6211static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6212{
6213 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6214 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6215 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6216}
6217
6218/*
6219 * Clear the LCB selector - allow 8051 access. The DCC selector always
6220 * points to the host.
6221 */
6222static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6223{
6224 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6225 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6226}
6227
6228/*
6229 * Acquire LCB access from the 8051. If the host already has access,
6230 * just increment a counter. Otherwise, inform the 8051 that the
6231 * host is taking access.
6232 *
6233 * Returns:
6234 * 0 on success
6235 * -EBUSY if the 8051 has control and cannot be disturbed
6236 * -errno if unable to acquire access from the 8051
6237 */
6238int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6239{
6240 struct hfi1_pportdata *ppd = dd->pport;
6241 int ret = 0;
6242
6243 /*
6244 * Use the host link state lock so the operation of this routine
6245 * { link state check, selector change, count increment } can occur
6246 * as a unit against a link state change. Otherwise there is a
6247 * race between the state change and the count increment.
6248 */
6249 if (sleep_ok) {
6250 mutex_lock(&ppd->hls_lock);
6251 } else {
6252 while (!mutex_trylock(&ppd->hls_lock))
6253 udelay(1);
6254 }
6255
6256 /* this access is valid only when the link is up */
6257 if (ppd->host_link_state & HLS_DOWN) {
6258 dd_dev_info(dd, "%s: link state %s not up\n",
6259 __func__, link_state_name(ppd->host_link_state));
6260 ret = -EBUSY;
6261 goto done;
6262 }
6263
6264 if (dd->lcb_access_count == 0) {
6265 ret = request_host_lcb_access(dd);
6266 if (ret) {
6267 dd_dev_err(dd,
6268 "%s: unable to acquire LCB access, err %d\n",
6269 __func__, ret);
6270 goto done;
6271 }
6272 set_host_lcb_access(dd);
6273 }
6274 dd->lcb_access_count++;
6275done:
6276 mutex_unlock(&ppd->hls_lock);
6277 return ret;
6278}
6279
6280/*
6281 * Release LCB access by decrementing the use count. If the count is moving
6282 * from 1 to 0, inform 8051 that it has control back.
6283 *
6284 * Returns:
6285 * 0 on success
6286 * -errno if unable to release access to the 8051
6287 */
6288int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6289{
6290 int ret = 0;
6291
6292 /*
6293 * Use the host link state lock because the acquire needed it.
6294 * Here, we only need to keep { selector change, count decrement }
6295 * as a unit.
6296 */
6297 if (sleep_ok) {
6298 mutex_lock(&dd->pport->hls_lock);
6299 } else {
6300 while (!mutex_trylock(&dd->pport->hls_lock))
6301 udelay(1);
6302 }
6303
6304 if (dd->lcb_access_count == 0) {
6305 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6306 __func__);
6307 goto done;
6308 }
6309
6310 if (dd->lcb_access_count == 1) {
6311 set_8051_lcb_access(dd);
6312 ret = request_8051_lcb_access(dd);
6313 if (ret) {
6314 dd_dev_err(dd,
6315 "%s: unable to release LCB access, err %d\n",
6316 __func__, ret);
6317 /* restore host access if the grant didn't work */
6318 set_host_lcb_access(dd);
6319 goto done;
6320 }
6321 }
6322 dd->lcb_access_count--;
6323done:
6324 mutex_unlock(&dd->pport->hls_lock);
6325 return ret;
6326}
6327
6328/*
6329 * Initialize LCB access variables and state. Called during driver load,
6330 * after most of the initialization is finished.
6331 *
6332 * The DC default is LCB access on for the host. The driver defaults to
6333 * leaving access to the 8051. Assign access now - this constrains the call
6334 * to this routine to be after all LCB set-up is done. In particular, after
6335 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6336 */
6337static void init_lcb_access(struct hfi1_devdata *dd)
6338{
6339 dd->lcb_access_count = 0;
6340}
6341
6342/*
6343 * Write a response back to a 8051 request.
6344 */
6345static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6346{
6347 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6348 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6349 (u64)return_code <<
6350 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6351 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6352}
6353
6354/*
6355 * Handle host requests from the 8051.
6356 */
6357static void handle_8051_request(struct hfi1_pportdata *ppd)
6358{
6359 struct hfi1_devdata *dd = ppd->dd;
6360 u64 reg;
6361 u16 data = 0;
6362 u8 type;
6363
6364 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6365 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6366 return; /* no request */
6367
6368 /* zero out COMPLETED so the response is seen */
6369 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6370
6371 /* extract request details */
6372 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6373 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6374 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6375 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6376
6377 switch (type) {
6378 case HREQ_LOAD_CONFIG:
6379 case HREQ_SAVE_CONFIG:
6380 case HREQ_READ_CONFIG:
6381 case HREQ_SET_TX_EQ_ABS:
6382 case HREQ_SET_TX_EQ_REL:
6383 case HREQ_ENABLE:
6384 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6385 type);
6386 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6387 break;
6388 case HREQ_LCB_RESET:
6389 /* Put the LCB, RX FPE and TX FPE into reset */
6390 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6391 /* Make sure the write completed */
6392 (void)read_csr(dd, DCC_CFG_RESET);
6393 /* Hold the reset long enough to take effect */
6394 udelay(1);
6395 /* Take the LCB, RX FPE and TX FPE out of reset */
6396 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6397 hreq_response(dd, HREQ_SUCCESS, 0);
6398
6399 break;
6400 case HREQ_CONFIG_DONE:
6401 hreq_response(dd, HREQ_SUCCESS, 0);
6402 break;
6403
6404 case HREQ_INTERFACE_TEST:
6405 hreq_response(dd, HREQ_SUCCESS, data);
6406 break;
6407 default:
6408 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6409 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6410 break;
6411 }
6412}
6413
6414/*
6415 * Set up allocation unit vaulue.
6416 */
6417void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6418{
6419 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6420
6421 /* do not modify other values in the register */
6422 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6423 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6424 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6425}
6426
6427/*
6428 * Set up initial VL15 credits of the remote. Assumes the rest of
6429 * the CM credit registers are zero from a previous global or credit reset.
6430 * Shared limit for VL15 will always be 0.
6431 */
6432void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6433{
6434 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6435
6436 /* set initial values for total and shared credit limit */
6437 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6438 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6439
6440 /*
6441 * Set total limit to be equal to VL15 credits.
6442 * Leave shared limit at 0.
6443 */
6444 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6445 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6446
6447 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6448 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6449}
6450
6451/*
6452 * Zero all credit details from the previous connection and
6453 * reset the CM manager's internal counters.
6454 */
6455void reset_link_credits(struct hfi1_devdata *dd)
6456{
6457 int i;
6458
6459 /* remove all previous VL credit limits */
6460 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6461 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6462 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6463 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6464 /* reset the CM block */
6465 pio_send_control(dd, PSC_CM_RESET);
6466 /* reset cached value */
6467 dd->vl15buf_cached = 0;
6468}
6469
6470/* convert a vCU to a CU */
6471static u32 vcu_to_cu(u8 vcu)
6472{
6473 return 1 << vcu;
6474}
6475
6476/* convert a CU to a vCU */
6477static u8 cu_to_vcu(u32 cu)
6478{
6479 return ilog2(cu);
6480}
6481
6482/* convert a vAU to an AU */
6483static u32 vau_to_au(u8 vau)
6484{
6485 return 8 * (1 << vau);
6486}
6487
6488static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6489{
6490 ppd->sm_trap_qp = 0x0;
6491 ppd->sa_qp = 0x1;
6492}
6493
6494/*
6495 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6496 */
6497static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6498{
6499 u64 reg;
6500
6501 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6502 write_csr(dd, DC_LCB_CFG_RUN, 0);
6503 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6504 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6505 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6506 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6507 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6508 reg = read_csr(dd, DCC_CFG_RESET);
6509 write_csr(dd, DCC_CFG_RESET, reg |
6510 DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6511 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6512 if (!abort) {
6513 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6514 write_csr(dd, DCC_CFG_RESET, reg);
6515 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6516 }
6517}
6518
6519/*
6520 * This routine should be called after the link has been transitioned to
6521 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6522 * reset).
6523 *
6524 * The expectation is that the caller of this routine would have taken
6525 * care of properly transitioning the link into the correct state.
6526 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6527 * before calling this function.
6528 */
6529static void _dc_shutdown(struct hfi1_devdata *dd)
6530{
6531 lockdep_assert_held(&dd->dc8051_lock);
6532
6533 if (dd->dc_shutdown)
6534 return;
6535
6536 dd->dc_shutdown = 1;
6537 /* Shutdown the LCB */
6538 lcb_shutdown(dd, 1);
6539 /*
6540 * Going to OFFLINE would have causes the 8051 to put the
6541 * SerDes into reset already. Just need to shut down the 8051,
6542 * itself.
6543 */
6544 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6545}
6546
6547static void dc_shutdown(struct hfi1_devdata *dd)
6548{
6549 mutex_lock(&dd->dc8051_lock);
6550 _dc_shutdown(dd);
6551 mutex_unlock(&dd->dc8051_lock);
6552}
6553
6554/*
6555 * Calling this after the DC has been brought out of reset should not
6556 * do any damage.
6557 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6558 * before calling this function.
6559 */
6560static void _dc_start(struct hfi1_devdata *dd)
6561{
6562 lockdep_assert_held(&dd->dc8051_lock);
6563
6564 if (!dd->dc_shutdown)
6565 return;
6566
6567 /* Take the 8051 out of reset */
6568 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6569 /* Wait until 8051 is ready */
6570 if (wait_fm_ready(dd, TIMEOUT_8051_START))
6571 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6572 __func__);
6573
6574 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6575 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6576 /* lcb_shutdown() with abort=1 does not restore these */
6577 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6578 dd->dc_shutdown = 0;
6579}
6580
6581static void dc_start(struct hfi1_devdata *dd)
6582{
6583 mutex_lock(&dd->dc8051_lock);
6584 _dc_start(dd);
6585 mutex_unlock(&dd->dc8051_lock);
6586}
6587
6588/*
6589 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6590 */
6591static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6592{
6593 u64 rx_radr, tx_radr;
6594 u32 version;
6595
6596 if (dd->icode != ICODE_FPGA_EMULATION)
6597 return;
6598
6599 /*
6600 * These LCB defaults on emulator _s are good, nothing to do here:
6601 * LCB_CFG_TX_FIFOS_RADR
6602 * LCB_CFG_RX_FIFOS_RADR
6603 * LCB_CFG_LN_DCLK
6604 * LCB_CFG_IGNORE_LOST_RCLK
6605 */
6606 if (is_emulator_s(dd))
6607 return;
6608 /* else this is _p */
6609
6610 version = emulator_rev(dd);
6611 if (!is_ax(dd))
6612 version = 0x2d; /* all B0 use 0x2d or higher settings */
6613
6614 if (version <= 0x12) {
6615 /* release 0x12 and below */
6616
6617 /*
6618 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6619 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6620 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6621 */
6622 rx_radr =
6623 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6624 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6625 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6626 /*
6627 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6628 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6629 */
6630 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6631 } else if (version <= 0x18) {
6632 /* release 0x13 up to 0x18 */
6633 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6634 rx_radr =
6635 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6636 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6637 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6638 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6639 } else if (version == 0x19) {
6640 /* release 0x19 */
6641 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6642 rx_radr =
6643 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6644 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6645 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6646 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6647 } else if (version == 0x1a) {
6648 /* release 0x1a */
6649 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6650 rx_radr =
6651 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6652 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6653 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6654 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6655 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6656 } else {
6657 /* release 0x1b and higher */
6658 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6659 rx_radr =
6660 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6661 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6662 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6663 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6664 }
6665
6666 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6667 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6668 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6669 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6670 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6671}
6672
6673/*
6674 * Handle a SMA idle message
6675 *
6676 * This is a work-queue function outside of the interrupt.
6677 */
6678void handle_sma_message(struct work_struct *work)
6679{
6680 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6681 sma_message_work);
6682 struct hfi1_devdata *dd = ppd->dd;
6683 u64 msg;
6684 int ret;
6685
6686 /*
6687 * msg is bytes 1-4 of the 40-bit idle message - the command code
6688 * is stripped off
6689 */
6690 ret = read_idle_sma(dd, &msg);
6691 if (ret)
6692 return;
6693 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6694 /*
6695 * React to the SMA message. Byte[1] (0 for us) is the command.
6696 */
6697 switch (msg & 0xff) {
6698 case SMA_IDLE_ARM:
6699 /*
6700 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6701 * State Transitions
6702 *
6703 * Only expected in INIT or ARMED, discard otherwise.
6704 */
6705 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6706 ppd->neighbor_normal = 1;
6707 break;
6708 case SMA_IDLE_ACTIVE:
6709 /*
6710 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6711 * State Transitions
6712 *
6713 * Can activate the node. Discard otherwise.
6714 */
6715 if (ppd->host_link_state == HLS_UP_ARMED &&
6716 ppd->is_active_optimize_enabled) {
6717 ppd->neighbor_normal = 1;
6718 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6719 if (ret)
6720 dd_dev_err(
6721 dd,
6722 "%s: received Active SMA idle message, couldn't set link to Active\n",
6723 __func__);
6724 }
6725 break;
6726 default:
6727 dd_dev_err(dd,
6728 "%s: received unexpected SMA idle message 0x%llx\n",
6729 __func__, msg);
6730 break;
6731 }
6732}
6733
6734static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6735{
6736 u64 rcvctrl;
6737 unsigned long flags;
6738
6739 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6740 rcvctrl = read_csr(dd, RCV_CTRL);
6741 rcvctrl |= add;
6742 rcvctrl &= ~clear;
6743 write_csr(dd, RCV_CTRL, rcvctrl);
6744 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6745}
6746
6747static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6748{
6749 adjust_rcvctrl(dd, add, 0);
6750}
6751
6752static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6753{
6754 adjust_rcvctrl(dd, 0, clear);
6755}
6756
6757/*
6758 * Called from all interrupt handlers to start handling an SPC freeze.
6759 */
6760void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6761{
6762 struct hfi1_devdata *dd = ppd->dd;
6763 struct send_context *sc;
6764 int i;
6765 int sc_flags;
6766
6767 if (flags & FREEZE_SELF)
6768 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6769
6770 /* enter frozen mode */
6771 dd->flags |= HFI1_FROZEN;
6772
6773 /* notify all SDMA engines that they are going into a freeze */
6774 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6775
6776 sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6777 SCF_LINK_DOWN : 0);
6778 /* do halt pre-handling on all enabled send contexts */
6779 for (i = 0; i < dd->num_send_contexts; i++) {
6780 sc = dd->send_contexts[i].sc;
6781 if (sc && (sc->flags & SCF_ENABLED))
6782 sc_stop(sc, sc_flags);
6783 }
6784
6785 /* Send context are frozen. Notify user space */
6786 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6787
6788 if (flags & FREEZE_ABORT) {
6789 dd_dev_err(dd,
6790 "Aborted freeze recovery. Please REBOOT system\n");
6791 return;
6792 }
6793 /* queue non-interrupt handler */
6794 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6795}
6796
6797/*
6798 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6799 * depending on the "freeze" parameter.
6800 *
6801 * No need to return an error if it times out, our only option
6802 * is to proceed anyway.
6803 */
6804static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6805{
6806 unsigned long timeout;
6807 u64 reg;
6808
6809 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6810 while (1) {
6811 reg = read_csr(dd, CCE_STATUS);
6812 if (freeze) {
6813 /* waiting until all indicators are set */
6814 if ((reg & ALL_FROZE) == ALL_FROZE)
6815 return; /* all done */
6816 } else {
6817 /* waiting until all indicators are clear */
6818 if ((reg & ALL_FROZE) == 0)
6819 return; /* all done */
6820 }
6821
6822 if (time_after(jiffies, timeout)) {
6823 dd_dev_err(dd,
6824 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6825 freeze ? "" : "un", reg & ALL_FROZE,
6826 freeze ? ALL_FROZE : 0ull);
6827 return;
6828 }
6829 usleep_range(80, 120);
6830 }
6831}
6832
6833/*
6834 * Do all freeze handling for the RXE block.
6835 */
6836static void rxe_freeze(struct hfi1_devdata *dd)
6837{
6838 int i;
6839 struct hfi1_ctxtdata *rcd;
6840
6841 /* disable port */
6842 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6843
6844 /* disable all receive contexts */
6845 for (i = 0; i < dd->num_rcv_contexts; i++) {
6846 rcd = hfi1_rcd_get_by_index(dd, i);
6847 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6848 hfi1_rcd_put(rcd);
6849 }
6850}
6851
6852/*
6853 * Unfreeze handling for the RXE block - kernel contexts only.
6854 * This will also enable the port. User contexts will do unfreeze
6855 * handling on a per-context basis as they call into the driver.
6856 *
6857 */
6858static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6859{
6860 u32 rcvmask;
6861 u16 i;
6862 struct hfi1_ctxtdata *rcd;
6863
6864 /* enable all kernel contexts */
6865 for (i = 0; i < dd->num_rcv_contexts; i++) {
6866 rcd = hfi1_rcd_get_by_index(dd, i);
6867
6868 /* Ensure all non-user contexts(including vnic) are enabled */
6869 if (!rcd ||
6870 (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6871 hfi1_rcd_put(rcd);
6872 continue;
6873 }
6874 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6875 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6876 rcvmask |= rcd->rcvhdrtail_kvaddr ?
6877 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6878 hfi1_rcvctrl(dd, rcvmask, rcd);
6879 hfi1_rcd_put(rcd);
6880 }
6881
6882 /* enable port */
6883 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6884}
6885
6886/*
6887 * Non-interrupt SPC freeze handling.
6888 *
6889 * This is a work-queue function outside of the triggering interrupt.
6890 */
6891void handle_freeze(struct work_struct *work)
6892{
6893 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6894 freeze_work);
6895 struct hfi1_devdata *dd = ppd->dd;
6896
6897 /* wait for freeze indicators on all affected blocks */
6898 wait_for_freeze_status(dd, 1);
6899
6900 /* SPC is now frozen */
6901
6902 /* do send PIO freeze steps */
6903 pio_freeze(dd);
6904
6905 /* do send DMA freeze steps */
6906 sdma_freeze(dd);
6907
6908 /* do send egress freeze steps - nothing to do */
6909
6910 /* do receive freeze steps */
6911 rxe_freeze(dd);
6912
6913 /*
6914 * Unfreeze the hardware - clear the freeze, wait for each
6915 * block's frozen bit to clear, then clear the frozen flag.
6916 */
6917 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6918 wait_for_freeze_status(dd, 0);
6919
6920 if (is_ax(dd)) {
6921 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6922 wait_for_freeze_status(dd, 1);
6923 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6924 wait_for_freeze_status(dd, 0);
6925 }
6926
6927 /* do send PIO unfreeze steps for kernel contexts */
6928 pio_kernel_unfreeze(dd);
6929
6930 /* do send DMA unfreeze steps */
6931 sdma_unfreeze(dd);
6932
6933 /* do send egress unfreeze steps - nothing to do */
6934
6935 /* do receive unfreeze steps for kernel contexts */
6936 rxe_kernel_unfreeze(dd);
6937
6938 /*
6939 * The unfreeze procedure touches global device registers when
6940 * it disables and re-enables RXE. Mark the device unfrozen
6941 * after all that is done so other parts of the driver waiting
6942 * for the device to unfreeze don't do things out of order.
6943 *
6944 * The above implies that the meaning of HFI1_FROZEN flag is
6945 * "Device has gone into freeze mode and freeze mode handling
6946 * is still in progress."
6947 *
6948 * The flag will be removed when freeze mode processing has
6949 * completed.
6950 */
6951 dd->flags &= ~HFI1_FROZEN;
6952 wake_up(&dd->event_queue);
6953
6954 /* no longer frozen */
6955}
6956
6957/**
6958 * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6959 * counters.
6960 * @ppd: info of physical Hfi port
6961 * @link_width: new link width after link up or downgrade
6962 *
6963 * Update the PortXmitWait and PortVlXmitWait counters after
6964 * a link up or downgrade event to reflect a link width change.
6965 */
6966static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6967{
6968 int i;
6969 u16 tx_width;
6970 u16 link_speed;
6971
6972 tx_width = tx_link_width(link_width);
6973 link_speed = get_link_speed(ppd->link_speed_active);
6974
6975 /*
6976 * There are C_VL_COUNT number of PortVLXmitWait counters.
6977 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6978 */
6979 for (i = 0; i < C_VL_COUNT + 1; i++)
6980 get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6981}
6982
6983/*
6984 * Handle a link up interrupt from the 8051.
6985 *
6986 * This is a work-queue function outside of the interrupt.
6987 */
6988void handle_link_up(struct work_struct *work)
6989{
6990 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6991 link_up_work);
6992 struct hfi1_devdata *dd = ppd->dd;
6993
6994 set_link_state(ppd, HLS_UP_INIT);
6995
6996 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6997 read_ltp_rtt(dd);
6998 /*
6999 * OPA specifies that certain counters are cleared on a transition
7000 * to link up, so do that.
7001 */
7002 clear_linkup_counters(dd);
7003 /*
7004 * And (re)set link up default values.
7005 */
7006 set_linkup_defaults(ppd);
7007
7008 /*
7009 * Set VL15 credits. Use cached value from verify cap interrupt.
7010 * In case of quick linkup or simulator, vl15 value will be set by
7011 * handle_linkup_change. VerifyCap interrupt handler will not be
7012 * called in those scenarios.
7013 */
7014 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7015 set_up_vl15(dd, dd->vl15buf_cached);
7016
7017 /* enforce link speed enabled */
7018 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7019 /* oops - current speed is not enabled, bounce */
7020 dd_dev_err(dd,
7021 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7022 ppd->link_speed_active, ppd->link_speed_enabled);
7023 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7024 OPA_LINKDOWN_REASON_SPEED_POLICY);
7025 set_link_state(ppd, HLS_DN_OFFLINE);
7026 start_link(ppd);
7027 }
7028}
7029
7030/*
7031 * Several pieces of LNI information were cached for SMA in ppd.
7032 * Reset these on link down
7033 */
7034static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7035{
7036 ppd->neighbor_guid = 0;
7037 ppd->neighbor_port_number = 0;
7038 ppd->neighbor_type = 0;
7039 ppd->neighbor_fm_security = 0;
7040}
7041
7042static const char * const link_down_reason_strs[] = {
7043 [OPA_LINKDOWN_REASON_NONE] = "None",
7044 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7045 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7046 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7047 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7048 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7049 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7050 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7051 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7052 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7053 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7054 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7055 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7056 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7057 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7058 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7059 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7060 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7061 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7062 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7063 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7064 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7065 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7066 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7067 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7068 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7069 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7070 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7071 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7072 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7073 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7074 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7075 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7076 "Excessive buffer overrun",
7077 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7078 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7079 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7080 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7081 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7082 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7083 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7084 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7085 "Local media not installed",
7086 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7087 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7088 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7089 "End to end not installed",
7090 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7091 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7092 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7093 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7094 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7095 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7096};
7097
7098/* return the neighbor link down reason string */
7099static const char *link_down_reason_str(u8 reason)
7100{
7101 const char *str = NULL;
7102
7103 if (reason < ARRAY_SIZE(link_down_reason_strs))
7104 str = link_down_reason_strs[reason];
7105 if (!str)
7106 str = "(invalid)";
7107
7108 return str;
7109}
7110
7111/*
7112 * Handle a link down interrupt from the 8051.
7113 *
7114 * This is a work-queue function outside of the interrupt.
7115 */
7116void handle_link_down(struct work_struct *work)
7117{
7118 u8 lcl_reason, neigh_reason = 0;
7119 u8 link_down_reason;
7120 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7121 link_down_work);
7122 int was_up;
7123 static const char ldr_str[] = "Link down reason: ";
7124
7125 if ((ppd->host_link_state &
7126 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7127 ppd->port_type == PORT_TYPE_FIXED)
7128 ppd->offline_disabled_reason =
7129 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7130
7131 /* Go offline first, then deal with reading/writing through 8051 */
7132 was_up = !!(ppd->host_link_state & HLS_UP);
7133 set_link_state(ppd, HLS_DN_OFFLINE);
7134 xchg(&ppd->is_link_down_queued, 0);
7135
7136 if (was_up) {
7137 lcl_reason = 0;
7138 /* link down reason is only valid if the link was up */
7139 read_link_down_reason(ppd->dd, &link_down_reason);
7140 switch (link_down_reason) {
7141 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7142 /* the link went down, no idle message reason */
7143 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7144 ldr_str);
7145 break;
7146 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7147 /*
7148 * The neighbor reason is only valid if an idle message
7149 * was received for it.
7150 */
7151 read_planned_down_reason_code(ppd->dd, &neigh_reason);
7152 dd_dev_info(ppd->dd,
7153 "%sNeighbor link down message %d, %s\n",
7154 ldr_str, neigh_reason,
7155 link_down_reason_str(neigh_reason));
7156 break;
7157 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7158 dd_dev_info(ppd->dd,
7159 "%sHost requested link to go offline\n",
7160 ldr_str);
7161 break;
7162 default:
7163 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7164 ldr_str, link_down_reason);
7165 break;
7166 }
7167
7168 /*
7169 * If no reason, assume peer-initiated but missed
7170 * LinkGoingDown idle flits.
7171 */
7172 if (neigh_reason == 0)
7173 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7174 } else {
7175 /* went down while polling or going up */
7176 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7177 }
7178
7179 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7180
7181 /* inform the SMA when the link transitions from up to down */
7182 if (was_up && ppd->local_link_down_reason.sma == 0 &&
7183 ppd->neigh_link_down_reason.sma == 0) {
7184 ppd->local_link_down_reason.sma =
7185 ppd->local_link_down_reason.latest;
7186 ppd->neigh_link_down_reason.sma =
7187 ppd->neigh_link_down_reason.latest;
7188 }
7189
7190 reset_neighbor_info(ppd);
7191
7192 /* disable the port */
7193 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7194
7195 /*
7196 * If there is no cable attached, turn the DC off. Otherwise,
7197 * start the link bring up.
7198 */
7199 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7200 dc_shutdown(ppd->dd);
7201 else
7202 start_link(ppd);
7203}
7204
7205void handle_link_bounce(struct work_struct *work)
7206{
7207 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7208 link_bounce_work);
7209
7210 /*
7211 * Only do something if the link is currently up.
7212 */
7213 if (ppd->host_link_state & HLS_UP) {
7214 set_link_state(ppd, HLS_DN_OFFLINE);
7215 start_link(ppd);
7216 } else {
7217 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7218 __func__, link_state_name(ppd->host_link_state));
7219 }
7220}
7221
7222/*
7223 * Mask conversion: Capability exchange to Port LTP. The capability
7224 * exchange has an implicit 16b CRC that is mandatory.
7225 */
7226static int cap_to_port_ltp(int cap)
7227{
7228 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7229
7230 if (cap & CAP_CRC_14B)
7231 port_ltp |= PORT_LTP_CRC_MODE_14;
7232 if (cap & CAP_CRC_48B)
7233 port_ltp |= PORT_LTP_CRC_MODE_48;
7234 if (cap & CAP_CRC_12B_16B_PER_LANE)
7235 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7236
7237 return port_ltp;
7238}
7239
7240/*
7241 * Convert an OPA Port LTP mask to capability mask
7242 */
7243int port_ltp_to_cap(int port_ltp)
7244{
7245 int cap_mask = 0;
7246
7247 if (port_ltp & PORT_LTP_CRC_MODE_14)
7248 cap_mask |= CAP_CRC_14B;
7249 if (port_ltp & PORT_LTP_CRC_MODE_48)
7250 cap_mask |= CAP_CRC_48B;
7251 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7252 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7253
7254 return cap_mask;
7255}
7256
7257/*
7258 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7259 */
7260static int lcb_to_port_ltp(int lcb_crc)
7261{
7262 int port_ltp = 0;
7263
7264 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7265 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7266 else if (lcb_crc == LCB_CRC_48B)
7267 port_ltp = PORT_LTP_CRC_MODE_48;
7268 else if (lcb_crc == LCB_CRC_14B)
7269 port_ltp = PORT_LTP_CRC_MODE_14;
7270 else
7271 port_ltp = PORT_LTP_CRC_MODE_16;
7272
7273 return port_ltp;
7274}
7275
7276static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7277{
7278 if (ppd->pkeys[2] != 0) {
7279 ppd->pkeys[2] = 0;
7280 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7281 hfi1_event_pkey_change(ppd->dd, ppd->port);
7282 }
7283}
7284
7285/*
7286 * Convert the given link width to the OPA link width bitmask.
7287 */
7288static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7289{
7290 switch (width) {
7291 case 0:
7292 /*
7293 * Simulator and quick linkup do not set the width.
7294 * Just set it to 4x without complaint.
7295 */
7296 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7297 return OPA_LINK_WIDTH_4X;
7298 return 0; /* no lanes up */
7299 case 1: return OPA_LINK_WIDTH_1X;
7300 case 2: return OPA_LINK_WIDTH_2X;
7301 case 3: return OPA_LINK_WIDTH_3X;
7302 default:
7303 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7304 __func__, width);
7305 /* fall through */
7306 case 4: return OPA_LINK_WIDTH_4X;
7307 }
7308}
7309
7310/*
7311 * Do a population count on the bottom nibble.
7312 */
7313static const u8 bit_counts[16] = {
7314 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7315};
7316
7317static inline u8 nibble_to_count(u8 nibble)
7318{
7319 return bit_counts[nibble & 0xf];
7320}
7321
7322/*
7323 * Read the active lane information from the 8051 registers and return
7324 * their widths.
7325 *
7326 * Active lane information is found in these 8051 registers:
7327 * enable_lane_tx
7328 * enable_lane_rx
7329 */
7330static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7331 u16 *rx_width)
7332{
7333 u16 tx, rx;
7334 u8 enable_lane_rx;
7335 u8 enable_lane_tx;
7336 u8 tx_polarity_inversion;
7337 u8 rx_polarity_inversion;
7338 u8 max_rate;
7339
7340 /* read the active lanes */
7341 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7342 &rx_polarity_inversion, &max_rate);
7343 read_local_lni(dd, &enable_lane_rx);
7344
7345 /* convert to counts */
7346 tx = nibble_to_count(enable_lane_tx);
7347 rx = nibble_to_count(enable_lane_rx);
7348
7349 /*
7350 * Set link_speed_active here, overriding what was set in
7351 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7352 * set the max_rate field in handle_verify_cap until v0.19.
7353 */
7354 if ((dd->icode == ICODE_RTL_SILICON) &&
7355 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7356 /* max_rate: 0 = 12.5G, 1 = 25G */
7357 switch (max_rate) {
7358 case 0:
7359 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7360 break;
7361 default:
7362 dd_dev_err(dd,
7363 "%s: unexpected max rate %d, using 25Gb\n",
7364 __func__, (int)max_rate);
7365 /* fall through */
7366 case 1:
7367 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7368 break;
7369 }
7370 }
7371
7372 dd_dev_info(dd,
7373 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7374 enable_lane_tx, tx, enable_lane_rx, rx);
7375 *tx_width = link_width_to_bits(dd, tx);
7376 *rx_width = link_width_to_bits(dd, rx);
7377}
7378
7379/*
7380 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7381 * Valid after the end of VerifyCap and during LinkUp. Does not change
7382 * after link up. I.e. look elsewhere for downgrade information.
7383 *
7384 * Bits are:
7385 * + bits [7:4] contain the number of active transmitters
7386 * + bits [3:0] contain the number of active receivers
7387 * These are numbers 1 through 4 and can be different values if the
7388 * link is asymmetric.
7389 *
7390 * verify_cap_local_fm_link_width[0] retains its original value.
7391 */
7392static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7393 u16 *rx_width)
7394{
7395 u16 widths, tx, rx;
7396 u8 misc_bits, local_flags;
7397 u16 active_tx, active_rx;
7398
7399 read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7400 tx = widths >> 12;
7401 rx = (widths >> 8) & 0xf;
7402
7403 *tx_width = link_width_to_bits(dd, tx);
7404 *rx_width = link_width_to_bits(dd, rx);
7405
7406 /* print the active widths */
7407 get_link_widths(dd, &active_tx, &active_rx);
7408}
7409
7410/*
7411 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7412 * hardware information when the link first comes up.
7413 *
7414 * The link width is not available until after VerifyCap.AllFramesReceived
7415 * (the trigger for handle_verify_cap), so this is outside that routine
7416 * and should be called when the 8051 signals linkup.
7417 */
7418void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7419{
7420 u16 tx_width, rx_width;
7421
7422 /* get end-of-LNI link widths */
7423 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7424
7425 /* use tx_width as the link is supposed to be symmetric on link up */
7426 ppd->link_width_active = tx_width;
7427 /* link width downgrade active (LWD.A) starts out matching LW.A */
7428 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7429 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7430 /* per OPA spec, on link up LWD.E resets to LWD.S */
7431 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7432 /* cache the active egress rate (units {10^6 bits/sec]) */
7433 ppd->current_egress_rate = active_egress_rate(ppd);
7434}
7435
7436/*
7437 * Handle a verify capabilities interrupt from the 8051.
7438 *
7439 * This is a work-queue function outside of the interrupt.
7440 */
7441void handle_verify_cap(struct work_struct *work)
7442{
7443 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7444 link_vc_work);
7445 struct hfi1_devdata *dd = ppd->dd;
7446 u64 reg;
7447 u8 power_management;
7448 u8 continuous;
7449 u8 vcu;
7450 u8 vau;
7451 u8 z;
7452 u16 vl15buf;
7453 u16 link_widths;
7454 u16 crc_mask;
7455 u16 crc_val;
7456 u16 device_id;
7457 u16 active_tx, active_rx;
7458 u8 partner_supported_crc;
7459 u8 remote_tx_rate;
7460 u8 device_rev;
7461
7462 set_link_state(ppd, HLS_VERIFY_CAP);
7463
7464 lcb_shutdown(dd, 0);
7465 adjust_lcb_for_fpga_serdes(dd);
7466
7467 read_vc_remote_phy(dd, &power_management, &continuous);
7468 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7469 &partner_supported_crc);
7470 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7471 read_remote_device_id(dd, &device_id, &device_rev);
7472
7473 /* print the active widths */
7474 get_link_widths(dd, &active_tx, &active_rx);
7475 dd_dev_info(dd,
7476 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7477 (int)power_management, (int)continuous);
7478 dd_dev_info(dd,
7479 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7480 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7481 (int)partner_supported_crc);
7482 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7483 (u32)remote_tx_rate, (u32)link_widths);
7484 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7485 (u32)device_id, (u32)device_rev);
7486 /*
7487 * The peer vAU value just read is the peer receiver value. HFI does
7488 * not support a transmit vAU of 0 (AU == 8). We advertised that
7489 * with Z=1 in the fabric capabilities sent to the peer. The peer
7490 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7491 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7492 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7493 * subject to the Z value exception.
7494 */
7495 if (vau == 0)
7496 vau = 1;
7497 set_up_vau(dd, vau);
7498
7499 /*
7500 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7501 * credits value and wait for link-up interrupt ot set it.
7502 */
7503 set_up_vl15(dd, 0);
7504 dd->vl15buf_cached = vl15buf;
7505
7506 /* set up the LCB CRC mode */
7507 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7508
7509 /* order is important: use the lowest bit in common */
7510 if (crc_mask & CAP_CRC_14B)
7511 crc_val = LCB_CRC_14B;
7512 else if (crc_mask & CAP_CRC_48B)
7513 crc_val = LCB_CRC_48B;
7514 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7515 crc_val = LCB_CRC_12B_16B_PER_LANE;
7516 else
7517 crc_val = LCB_CRC_16B;
7518
7519 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7520 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7521 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7522
7523 /* set (14b only) or clear sideband credit */
7524 reg = read_csr(dd, SEND_CM_CTRL);
7525 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7526 write_csr(dd, SEND_CM_CTRL,
7527 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7528 } else {
7529 write_csr(dd, SEND_CM_CTRL,
7530 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7531 }
7532
7533 ppd->link_speed_active = 0; /* invalid value */
7534 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7535 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7536 switch (remote_tx_rate) {
7537 case 0:
7538 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7539 break;
7540 case 1:
7541 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7542 break;
7543 }
7544 } else {
7545 /* actual rate is highest bit of the ANDed rates */
7546 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7547
7548 if (rate & 2)
7549 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7550 else if (rate & 1)
7551 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7552 }
7553 if (ppd->link_speed_active == 0) {
7554 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7555 __func__, (int)remote_tx_rate);
7556 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7557 }
7558
7559 /*
7560 * Cache the values of the supported, enabled, and active
7561 * LTP CRC modes to return in 'portinfo' queries. But the bit
7562 * flags that are returned in the portinfo query differ from
7563 * what's in the link_crc_mask, crc_sizes, and crc_val
7564 * variables. Convert these here.
7565 */
7566 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7567 /* supported crc modes */
7568 ppd->port_ltp_crc_mode |=
7569 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7570 /* enabled crc modes */
7571 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7572 /* active crc mode */
7573
7574 /* set up the remote credit return table */
7575 assign_remote_cm_au_table(dd, vcu);
7576
7577 /*
7578 * The LCB is reset on entry to handle_verify_cap(), so this must
7579 * be applied on every link up.
7580 *
7581 * Adjust LCB error kill enable to kill the link if
7582 * these RBUF errors are seen:
7583 * REPLAY_BUF_MBE_SMASK
7584 * FLIT_INPUT_BUF_MBE_SMASK
7585 */
7586 if (is_ax(dd)) { /* fixed in B0 */
7587 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7588 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7589 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7590 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7591 }
7592
7593 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7594 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7595
7596 /* give 8051 access to the LCB CSRs */
7597 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7598 set_8051_lcb_access(dd);
7599
7600 /* tell the 8051 to go to LinkUp */
7601 set_link_state(ppd, HLS_GOING_UP);
7602}
7603
7604/**
7605 * apply_link_downgrade_policy - Apply the link width downgrade enabled
7606 * policy against the current active link widths.
7607 * @ppd: info of physical Hfi port
7608 * @refresh_widths: True indicates link downgrade event
7609 * @return: True indicates a successful link downgrade. False indicates
7610 * link downgrade event failed and the link will bounce back to
7611 * default link width.
7612 *
7613 * Called when the enabled policy changes or the active link widths
7614 * change.
7615 * Refresh_widths indicates that a link downgrade occurred. The
7616 * link_downgraded variable is set by refresh_widths and
7617 * determines the success/failure of the policy application.
7618 */
7619bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7620 bool refresh_widths)
7621{
7622 int do_bounce = 0;
7623 int tries;
7624 u16 lwde;
7625 u16 tx, rx;
7626 bool link_downgraded = refresh_widths;
7627
7628 /* use the hls lock to avoid a race with actual link up */
7629 tries = 0;
7630retry:
7631 mutex_lock(&ppd->hls_lock);
7632 /* only apply if the link is up */
7633 if (ppd->host_link_state & HLS_DOWN) {
7634 /* still going up..wait and retry */
7635 if (ppd->host_link_state & HLS_GOING_UP) {
7636 if (++tries < 1000) {
7637 mutex_unlock(&ppd->hls_lock);
7638 usleep_range(100, 120); /* arbitrary */
7639 goto retry;
7640 }
7641 dd_dev_err(ppd->dd,
7642 "%s: giving up waiting for link state change\n",
7643 __func__);
7644 }
7645 goto done;
7646 }
7647
7648 lwde = ppd->link_width_downgrade_enabled;
7649
7650 if (refresh_widths) {
7651 get_link_widths(ppd->dd, &tx, &rx);
7652 ppd->link_width_downgrade_tx_active = tx;
7653 ppd->link_width_downgrade_rx_active = rx;
7654 }
7655
7656 if (ppd->link_width_downgrade_tx_active == 0 ||
7657 ppd->link_width_downgrade_rx_active == 0) {
7658 /* the 8051 reported a dead link as a downgrade */
7659 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7660 link_downgraded = false;
7661 } else if (lwde == 0) {
7662 /* downgrade is disabled */
7663
7664 /* bounce if not at starting active width */
7665 if ((ppd->link_width_active !=
7666 ppd->link_width_downgrade_tx_active) ||
7667 (ppd->link_width_active !=
7668 ppd->link_width_downgrade_rx_active)) {
7669 dd_dev_err(ppd->dd,
7670 "Link downgrade is disabled and link has downgraded, downing link\n");
7671 dd_dev_err(ppd->dd,
7672 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7673 ppd->link_width_active,
7674 ppd->link_width_downgrade_tx_active,
7675 ppd->link_width_downgrade_rx_active);
7676 do_bounce = 1;
7677 link_downgraded = false;
7678 }
7679 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7680 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7681 /* Tx or Rx is outside the enabled policy */
7682 dd_dev_err(ppd->dd,
7683 "Link is outside of downgrade allowed, downing link\n");
7684 dd_dev_err(ppd->dd,
7685 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7686 lwde, ppd->link_width_downgrade_tx_active,
7687 ppd->link_width_downgrade_rx_active);
7688 do_bounce = 1;
7689 link_downgraded = false;
7690 }
7691
7692done:
7693 mutex_unlock(&ppd->hls_lock);
7694
7695 if (do_bounce) {
7696 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7697 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7698 set_link_state(ppd, HLS_DN_OFFLINE);
7699 start_link(ppd);
7700 }
7701
7702 return link_downgraded;
7703}
7704
7705/*
7706 * Handle a link downgrade interrupt from the 8051.
7707 *
7708 * This is a work-queue function outside of the interrupt.
7709 */
7710void handle_link_downgrade(struct work_struct *work)
7711{
7712 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7713 link_downgrade_work);
7714
7715 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7716 if (apply_link_downgrade_policy(ppd, true))
7717 update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7718}
7719
7720static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7721{
7722 return flag_string(buf, buf_len, flags, dcc_err_flags,
7723 ARRAY_SIZE(dcc_err_flags));
7724}
7725
7726static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7727{
7728 return flag_string(buf, buf_len, flags, lcb_err_flags,
7729 ARRAY_SIZE(lcb_err_flags));
7730}
7731
7732static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7733{
7734 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7735 ARRAY_SIZE(dc8051_err_flags));
7736}
7737
7738static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7739{
7740 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7741 ARRAY_SIZE(dc8051_info_err_flags));
7742}
7743
7744static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7745{
7746 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7747 ARRAY_SIZE(dc8051_info_host_msg_flags));
7748}
7749
7750static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7751{
7752 struct hfi1_pportdata *ppd = dd->pport;
7753 u64 info, err, host_msg;
7754 int queue_link_down = 0;
7755 char buf[96];
7756
7757 /* look at the flags */
7758 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7759 /* 8051 information set by firmware */
7760 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7761 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7762 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7763 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7764 host_msg = (info >>
7765 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7766 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7767
7768 /*
7769 * Handle error flags.
7770 */
7771 if (err & FAILED_LNI) {
7772 /*
7773 * LNI error indications are cleared by the 8051
7774 * only when starting polling. Only pay attention
7775 * to them when in the states that occur during
7776 * LNI.
7777 */
7778 if (ppd->host_link_state
7779 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7780 queue_link_down = 1;
7781 dd_dev_info(dd, "Link error: %s\n",
7782 dc8051_info_err_string(buf,
7783 sizeof(buf),
7784 err &
7785 FAILED_LNI));
7786 }
7787 err &= ~(u64)FAILED_LNI;
7788 }
7789 /* unknown frames can happen durning LNI, just count */
7790 if (err & UNKNOWN_FRAME) {
7791 ppd->unknown_frame_count++;
7792 err &= ~(u64)UNKNOWN_FRAME;
7793 }
7794 if (err) {
7795 /* report remaining errors, but do not do anything */
7796 dd_dev_err(dd, "8051 info error: %s\n",
7797 dc8051_info_err_string(buf, sizeof(buf),
7798 err));
7799 }
7800
7801 /*
7802 * Handle host message flags.
7803 */
7804 if (host_msg & HOST_REQ_DONE) {
7805 /*
7806 * Presently, the driver does a busy wait for
7807 * host requests to complete. This is only an
7808 * informational message.
7809 * NOTE: The 8051 clears the host message
7810 * information *on the next 8051 command*.
7811 * Therefore, when linkup is achieved,
7812 * this flag will still be set.
7813 */
7814 host_msg &= ~(u64)HOST_REQ_DONE;
7815 }
7816 if (host_msg & BC_SMA_MSG) {
7817 queue_work(ppd->link_wq, &ppd->sma_message_work);
7818 host_msg &= ~(u64)BC_SMA_MSG;
7819 }
7820 if (host_msg & LINKUP_ACHIEVED) {
7821 dd_dev_info(dd, "8051: Link up\n");
7822 queue_work(ppd->link_wq, &ppd->link_up_work);
7823 host_msg &= ~(u64)LINKUP_ACHIEVED;
7824 }
7825 if (host_msg & EXT_DEVICE_CFG_REQ) {
7826 handle_8051_request(ppd);
7827 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7828 }
7829 if (host_msg & VERIFY_CAP_FRAME) {
7830 queue_work(ppd->link_wq, &ppd->link_vc_work);
7831 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7832 }
7833 if (host_msg & LINK_GOING_DOWN) {
7834 const char *extra = "";
7835 /* no downgrade action needed if going down */
7836 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7837 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7838 extra = " (ignoring downgrade)";
7839 }
7840 dd_dev_info(dd, "8051: Link down%s\n", extra);
7841 queue_link_down = 1;
7842 host_msg &= ~(u64)LINK_GOING_DOWN;
7843 }
7844 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7845 queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7846 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7847 }
7848 if (host_msg) {
7849 /* report remaining messages, but do not do anything */
7850 dd_dev_info(dd, "8051 info host message: %s\n",
7851 dc8051_info_host_msg_string(buf,
7852 sizeof(buf),
7853 host_msg));
7854 }
7855
7856 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7857 }
7858 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7859 /*
7860 * Lost the 8051 heartbeat. If this happens, we
7861 * receive constant interrupts about it. Disable
7862 * the interrupt after the first.
7863 */
7864 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7865 write_csr(dd, DC_DC8051_ERR_EN,
7866 read_csr(dd, DC_DC8051_ERR_EN) &
7867 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7868
7869 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7870 }
7871 if (reg) {
7872 /* report the error, but do not do anything */
7873 dd_dev_err(dd, "8051 error: %s\n",
7874 dc8051_err_string(buf, sizeof(buf), reg));
7875 }
7876
7877 if (queue_link_down) {
7878 /*
7879 * if the link is already going down or disabled, do not
7880 * queue another. If there's a link down entry already
7881 * queued, don't queue another one.
7882 */
7883 if ((ppd->host_link_state &
7884 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7885 ppd->link_enabled == 0) {
7886 dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7887 __func__, ppd->host_link_state,
7888 ppd->link_enabled);
7889 } else {
7890 if (xchg(&ppd->is_link_down_queued, 1) == 1)
7891 dd_dev_info(dd,
7892 "%s: link down request already queued\n",
7893 __func__);
7894 else
7895 queue_work(ppd->link_wq, &ppd->link_down_work);
7896 }
7897 }
7898}
7899
7900static const char * const fm_config_txt[] = {
7901[0] =
7902 "BadHeadDist: Distance violation between two head flits",
7903[1] =
7904 "BadTailDist: Distance violation between two tail flits",
7905[2] =
7906 "BadCtrlDist: Distance violation between two credit control flits",
7907[3] =
7908 "BadCrdAck: Credits return for unsupported VL",
7909[4] =
7910 "UnsupportedVLMarker: Received VL Marker",
7911[5] =
7912 "BadPreempt: Exceeded the preemption nesting level",
7913[6] =
7914 "BadControlFlit: Received unsupported control flit",
7915/* no 7 */
7916[8] =
7917 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7918};
7919
7920static const char * const port_rcv_txt[] = {
7921[1] =
7922 "BadPktLen: Illegal PktLen",
7923[2] =
7924 "PktLenTooLong: Packet longer than PktLen",
7925[3] =
7926 "PktLenTooShort: Packet shorter than PktLen",
7927[4] =
7928 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7929[5] =
7930 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7931[6] =
7932 "BadL2: Illegal L2 opcode",
7933[7] =
7934 "BadSC: Unsupported SC",
7935[9] =
7936 "BadRC: Illegal RC",
7937[11] =
7938 "PreemptError: Preempting with same VL",
7939[12] =
7940 "PreemptVL15: Preempting a VL15 packet",
7941};
7942
7943#define OPA_LDR_FMCONFIG_OFFSET 16
7944#define OPA_LDR_PORTRCV_OFFSET 0
7945static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7946{
7947 u64 info, hdr0, hdr1;
7948 const char *extra;
7949 char buf[96];
7950 struct hfi1_pportdata *ppd = dd->pport;
7951 u8 lcl_reason = 0;
7952 int do_bounce = 0;
7953
7954 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7955 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7956 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7957 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7958 /* set status bit */
7959 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7960 }
7961 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7962 }
7963
7964 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7965 struct hfi1_pportdata *ppd = dd->pport;
7966 /* this counter saturates at (2^32) - 1 */
7967 if (ppd->link_downed < (u32)UINT_MAX)
7968 ppd->link_downed++;
7969 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7970 }
7971
7972 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7973 u8 reason_valid = 1;
7974
7975 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7976 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7977 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7978 /* set status bit */
7979 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7980 }
7981 switch (info) {
7982 case 0:
7983 case 1:
7984 case 2:
7985 case 3:
7986 case 4:
7987 case 5:
7988 case 6:
7989 extra = fm_config_txt[info];
7990 break;
7991 case 8:
7992 extra = fm_config_txt[info];
7993 if (ppd->port_error_action &
7994 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7995 do_bounce = 1;
7996 /*
7997 * lcl_reason cannot be derived from info
7998 * for this error
7999 */
8000 lcl_reason =
8001 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
8002 }
8003 break;
8004 default:
8005 reason_valid = 0;
8006 snprintf(buf, sizeof(buf), "reserved%lld", info);
8007 extra = buf;
8008 break;
8009 }
8010
8011 if (reason_valid && !do_bounce) {
8012 do_bounce = ppd->port_error_action &
8013 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8014 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8015 }
8016
8017 /* just report this */
8018 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8019 extra);
8020 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8021 }
8022
8023 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8024 u8 reason_valid = 1;
8025
8026 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8027 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8028 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8029 if (!(dd->err_info_rcvport.status_and_code &
8030 OPA_EI_STATUS_SMASK)) {
8031 dd->err_info_rcvport.status_and_code =
8032 info & OPA_EI_CODE_SMASK;
8033 /* set status bit */
8034 dd->err_info_rcvport.status_and_code |=
8035 OPA_EI_STATUS_SMASK;
8036 /*
8037 * save first 2 flits in the packet that caused
8038 * the error
8039 */
8040 dd->err_info_rcvport.packet_flit1 = hdr0;
8041 dd->err_info_rcvport.packet_flit2 = hdr1;
8042 }
8043 switch (info) {
8044 case 1:
8045 case 2:
8046 case 3:
8047 case 4:
8048 case 5:
8049 case 6:
8050 case 7:
8051 case 9:
8052 case 11:
8053 case 12:
8054 extra = port_rcv_txt[info];
8055 break;
8056 default:
8057 reason_valid = 0;
8058 snprintf(buf, sizeof(buf), "reserved%lld", info);
8059 extra = buf;
8060 break;
8061 }
8062
8063 if (reason_valid && !do_bounce) {
8064 do_bounce = ppd->port_error_action &
8065 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8066 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8067 }
8068
8069 /* just report this */
8070 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8071 " hdr0 0x%llx, hdr1 0x%llx\n",
8072 extra, hdr0, hdr1);
8073
8074 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8075 }
8076
8077 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8078 /* informative only */
8079 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8080 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8081 }
8082 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8083 /* informative only */
8084 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8085 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8086 }
8087
8088 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8089 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8090
8091 /* report any remaining errors */
8092 if (reg)
8093 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8094 dcc_err_string(buf, sizeof(buf), reg));
8095
8096 if (lcl_reason == 0)
8097 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8098
8099 if (do_bounce) {
8100 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8101 __func__);
8102 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8103 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8104 }
8105}
8106
8107static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8108{
8109 char buf[96];
8110
8111 dd_dev_info(dd, "LCB Error: %s\n",
8112 lcb_err_string(buf, sizeof(buf), reg));
8113}
8114
8115/*
8116 * CCE block DC interrupt. Source is < 8.
8117 */
8118static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8119{
8120 const struct err_reg_info *eri = &dc_errs[source];
8121
8122 if (eri->handler) {
8123 interrupt_clear_down(dd, 0, eri);
8124 } else if (source == 3 /* dc_lbm_int */) {
8125 /*
8126 * This indicates that a parity error has occurred on the
8127 * address/control lines presented to the LBM. The error
8128 * is a single pulse, there is no associated error flag,
8129 * and it is non-maskable. This is because if a parity
8130 * error occurs on the request the request is dropped.
8131 * This should never occur, but it is nice to know if it
8132 * ever does.
8133 */
8134 dd_dev_err(dd, "Parity error in DC LBM block\n");
8135 } else {
8136 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8137 }
8138}
8139
8140/*
8141 * TX block send credit interrupt. Source is < 160.
8142 */
8143static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8144{
8145 sc_group_release_update(dd, source);
8146}
8147
8148/*
8149 * TX block SDMA interrupt. Source is < 48.
8150 *
8151 * SDMA interrupts are grouped by type:
8152 *
8153 * 0 - N-1 = SDma
8154 * N - 2N-1 = SDmaProgress
8155 * 2N - 3N-1 = SDmaIdle
8156 */
8157static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8158{
8159 /* what interrupt */
8160 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
8161 /* which engine */
8162 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8163
8164#ifdef CONFIG_SDMA_VERBOSITY
8165 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8166 slashstrip(__FILE__), __LINE__, __func__);
8167 sdma_dumpstate(&dd->per_sdma[which]);
8168#endif
8169
8170 if (likely(what < 3 && which < dd->num_sdma)) {
8171 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8172 } else {
8173 /* should not happen */
8174 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8175 }
8176}
8177
8178/**
8179 * is_rcv_avail_int() - User receive context available IRQ handler
8180 * @dd: valid dd
8181 * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8182 *
8183 * RX block receive available interrupt. Source is < 160.
8184 *
8185 * This is the general interrupt handler for user (PSM) receive contexts,
8186 * and can only be used for non-threaded IRQs.
8187 */
8188static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8189{
8190 struct hfi1_ctxtdata *rcd;
8191 char *err_detail;
8192
8193 if (likely(source < dd->num_rcv_contexts)) {
8194 rcd = hfi1_rcd_get_by_index(dd, source);
8195 if (rcd) {
8196 handle_user_interrupt(rcd);
8197 hfi1_rcd_put(rcd);
8198 return; /* OK */
8199 }
8200 /* received an interrupt, but no rcd */
8201 err_detail = "dataless";
8202 } else {
8203 /* received an interrupt, but are not using that context */
8204 err_detail = "out of range";
8205 }
8206 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8207 err_detail, source);
8208}
8209
8210/**
8211 * is_rcv_urgent_int() - User receive context urgent IRQ handler
8212 * @dd: valid dd
David Brazdil0f672f62019-12-10 10:32:29 +00008213 * @source: logical IRQ source (offset from IS_RCVURGENT_START)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008214 *
8215 * RX block receive urgent interrupt. Source is < 160.
8216 *
8217 * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8218 */
8219static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8220{
8221 struct hfi1_ctxtdata *rcd;
8222 char *err_detail;
8223
8224 if (likely(source < dd->num_rcv_contexts)) {
8225 rcd = hfi1_rcd_get_by_index(dd, source);
8226 if (rcd) {
8227 handle_user_interrupt(rcd);
8228 hfi1_rcd_put(rcd);
8229 return; /* OK */
8230 }
8231 /* received an interrupt, but no rcd */
8232 err_detail = "dataless";
8233 } else {
8234 /* received an interrupt, but are not using that context */
8235 err_detail = "out of range";
8236 }
8237 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8238 err_detail, source);
8239}
8240
8241/*
8242 * Reserved range interrupt. Should not be called in normal operation.
8243 */
8244static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8245{
8246 char name[64];
8247
8248 dd_dev_err(dd, "unexpected %s interrupt\n",
8249 is_reserved_name(name, sizeof(name), source));
8250}
8251
8252static const struct is_table is_table[] = {
8253/*
8254 * start end
8255 * name func interrupt func
8256 */
8257{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8258 is_misc_err_name, is_misc_err_int },
8259{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8260 is_sdma_eng_err_name, is_sdma_eng_err_int },
8261{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8262 is_sendctxt_err_name, is_sendctxt_err_int },
David Brazdil0f672f62019-12-10 10:32:29 +00008263{ IS_SDMA_START, IS_SDMA_IDLE_END,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008264 is_sdma_eng_name, is_sdma_eng_int },
8265{ IS_VARIOUS_START, IS_VARIOUS_END,
8266 is_various_name, is_various_int },
8267{ IS_DC_START, IS_DC_END,
8268 is_dc_name, is_dc_int },
8269{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8270 is_rcv_avail_name, is_rcv_avail_int },
8271{ IS_RCVURGENT_START, IS_RCVURGENT_END,
8272 is_rcv_urgent_name, is_rcv_urgent_int },
8273{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8274 is_send_credit_name, is_send_credit_int},
8275{ IS_RESERVED_START, IS_RESERVED_END,
8276 is_reserved_name, is_reserved_int},
8277};
8278
8279/*
8280 * Interrupt source interrupt - called when the given source has an interrupt.
8281 * Source is a bit index into an array of 64-bit integers.
8282 */
8283static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8284{
8285 const struct is_table *entry;
8286
8287 /* avoids a double compare by walking the table in-order */
8288 for (entry = &is_table[0]; entry->is_name; entry++) {
David Brazdil0f672f62019-12-10 10:32:29 +00008289 if (source <= entry->end) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008290 trace_hfi1_interrupt(dd, entry, source);
8291 entry->is_int(dd, source - entry->start);
8292 return;
8293 }
8294 }
8295 /* fell off the end */
8296 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8297}
8298
8299/**
8300 * gerneral_interrupt() - General interrupt handler
8301 * @irq: MSIx IRQ vector
8302 * @data: hfi1 devdata
8303 *
8304 * This is able to correctly handle all non-threaded interrupts. Receive
8305 * context DATA IRQs are threaded and are not supported by this handler.
8306 *
8307 */
David Brazdil0f672f62019-12-10 10:32:29 +00008308irqreturn_t general_interrupt(int irq, void *data)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008309{
8310 struct hfi1_devdata *dd = data;
8311 u64 regs[CCE_NUM_INT_CSRS];
8312 u32 bit;
8313 int i;
8314 irqreturn_t handled = IRQ_NONE;
8315
8316 this_cpu_inc(*dd->int_counter);
8317
8318 /* phase 1: scan and clear all handled interrupts */
8319 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8320 if (dd->gi_mask[i] == 0) {
8321 regs[i] = 0; /* used later */
8322 continue;
8323 }
8324 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8325 dd->gi_mask[i];
8326 /* only clear if anything is set */
8327 if (regs[i])
8328 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8329 }
8330
8331 /* phase 2: call the appropriate handler */
8332 for_each_set_bit(bit, (unsigned long *)&regs[0],
8333 CCE_NUM_INT_CSRS * 64) {
8334 is_interrupt(dd, bit);
8335 handled = IRQ_HANDLED;
8336 }
8337
8338 return handled;
8339}
8340
David Brazdil0f672f62019-12-10 10:32:29 +00008341irqreturn_t sdma_interrupt(int irq, void *data)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008342{
8343 struct sdma_engine *sde = data;
8344 struct hfi1_devdata *dd = sde->dd;
8345 u64 status;
8346
8347#ifdef CONFIG_SDMA_VERBOSITY
8348 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8349 slashstrip(__FILE__), __LINE__, __func__);
8350 sdma_dumpstate(sde);
8351#endif
8352
8353 this_cpu_inc(*dd->int_counter);
8354
8355 /* This read_csr is really bad in the hot path */
8356 status = read_csr(dd,
8357 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8358 & sde->imask;
8359 if (likely(status)) {
8360 /* clear the interrupt(s) */
8361 write_csr(dd,
8362 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8363 status);
8364
8365 /* handle the interrupt(s) */
8366 sdma_engine_interrupt(sde, status);
8367 } else {
8368 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8369 sde->this_idx);
8370 }
8371 return IRQ_HANDLED;
8372}
8373
8374/*
8375 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8376 * to insure that the write completed. This does NOT guarantee that
8377 * queued DMA writes to memory from the chip are pushed.
8378 */
8379static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8380{
8381 struct hfi1_devdata *dd = rcd->dd;
8382 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8383
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008384 write_csr(dd, addr, rcd->imask);
8385 /* force the above write on the chip and get a value back */
8386 (void)read_csr(dd, addr);
8387}
8388
8389/* force the receive interrupt */
8390void force_recv_intr(struct hfi1_ctxtdata *rcd)
8391{
8392 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8393}
8394
8395/*
8396 * Return non-zero if a packet is present.
8397 *
8398 * This routine is called when rechecking for packets after the RcvAvail
8399 * interrupt has been cleared down. First, do a quick check of memory for
8400 * a packet present. If not found, use an expensive CSR read of the context
8401 * tail to determine the actual tail. The CSR read is necessary because there
8402 * is no method to push pending DMAs to memory other than an interrupt and we
8403 * are trying to determine if we need to force an interrupt.
8404 */
8405static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8406{
8407 u32 tail;
8408 int present;
8409
8410 if (!rcd->rcvhdrtail_kvaddr)
8411 present = (rcd->seq_cnt ==
8412 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8413 else /* is RDMA rtail */
8414 present = (rcd->head != get_rcvhdrtail(rcd));
8415
8416 if (present)
8417 return 1;
8418
8419 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8420 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8421 return rcd->head != tail;
8422}
8423
8424/*
8425 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8426 * This routine will try to handle packets immediately (latency), but if
8427 * it finds too many, it will invoke the thread handler (bandwitdh). The
8428 * chip receive interrupt is *not* cleared down until this or the thread (if
8429 * invoked) is finished. The intent is to avoid extra interrupts while we
8430 * are processing packets anyway.
8431 */
David Brazdil0f672f62019-12-10 10:32:29 +00008432irqreturn_t receive_context_interrupt(int irq, void *data)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008433{
8434 struct hfi1_ctxtdata *rcd = data;
8435 struct hfi1_devdata *dd = rcd->dd;
8436 int disposition;
8437 int present;
8438
8439 trace_hfi1_receive_interrupt(dd, rcd);
8440 this_cpu_inc(*dd->int_counter);
8441 aspm_ctx_disable(rcd);
8442
8443 /* receive interrupt remains blocked while processing packets */
8444 disposition = rcd->do_interrupt(rcd, 0);
8445
8446 /*
8447 * Too many packets were seen while processing packets in this
8448 * IRQ handler. Invoke the handler thread. The receive interrupt
8449 * remains blocked.
8450 */
8451 if (disposition == RCV_PKT_LIMIT)
8452 return IRQ_WAKE_THREAD;
8453
8454 /*
8455 * The packet processor detected no more packets. Clear the receive
8456 * interrupt and recheck for a packet packet that may have arrived
8457 * after the previous check and interrupt clear. If a packet arrived,
8458 * force another interrupt.
8459 */
8460 clear_recv_intr(rcd);
8461 present = check_packet_present(rcd);
8462 if (present)
8463 force_recv_intr(rcd);
8464
8465 return IRQ_HANDLED;
8466}
8467
8468/*
8469 * Receive packet thread handler. This expects to be invoked with the
8470 * receive interrupt still blocked.
8471 */
David Brazdil0f672f62019-12-10 10:32:29 +00008472irqreturn_t receive_context_thread(int irq, void *data)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008473{
8474 struct hfi1_ctxtdata *rcd = data;
8475 int present;
8476
8477 /* receive interrupt is still blocked from the IRQ handler */
8478 (void)rcd->do_interrupt(rcd, 1);
8479
8480 /*
8481 * The packet processor will only return if it detected no more
8482 * packets. Hold IRQs here so we can safely clear the interrupt and
8483 * recheck for a packet that may have arrived after the previous
8484 * check and the interrupt clear. If a packet arrived, force another
8485 * interrupt.
8486 */
8487 local_irq_disable();
8488 clear_recv_intr(rcd);
8489 present = check_packet_present(rcd);
8490 if (present)
8491 force_recv_intr(rcd);
8492 local_irq_enable();
8493
8494 return IRQ_HANDLED;
8495}
8496
8497/* ========================================================================= */
8498
8499u32 read_physical_state(struct hfi1_devdata *dd)
8500{
8501 u64 reg;
8502
8503 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8504 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8505 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8506}
8507
8508u32 read_logical_state(struct hfi1_devdata *dd)
8509{
8510 u64 reg;
8511
8512 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8513 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8514 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8515}
8516
8517static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8518{
8519 u64 reg;
8520
8521 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8522 /* clear current state, set new state */
8523 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8524 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8525 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8526}
8527
8528/*
8529 * Use the 8051 to read a LCB CSR.
8530 */
8531static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8532{
8533 u32 regno;
8534 int ret;
8535
8536 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8537 if (acquire_lcb_access(dd, 0) == 0) {
8538 *data = read_csr(dd, addr);
8539 release_lcb_access(dd, 0);
8540 return 0;
8541 }
8542 return -EBUSY;
8543 }
8544
8545 /* register is an index of LCB registers: (offset - base) / 8 */
8546 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8547 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8548 if (ret != HCMD_SUCCESS)
8549 return -EBUSY;
8550 return 0;
8551}
8552
8553/*
8554 * Provide a cache for some of the LCB registers in case the LCB is
8555 * unavailable.
8556 * (The LCB is unavailable in certain link states, for example.)
8557 */
8558struct lcb_datum {
8559 u32 off;
8560 u64 val;
8561};
8562
8563static struct lcb_datum lcb_cache[] = {
8564 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8565 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8566 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8567};
8568
8569static void update_lcb_cache(struct hfi1_devdata *dd)
8570{
8571 int i;
8572 int ret;
8573 u64 val;
8574
8575 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8576 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8577
8578 /* Update if we get good data */
8579 if (likely(ret != -EBUSY))
8580 lcb_cache[i].val = val;
8581 }
8582}
8583
8584static int read_lcb_cache(u32 off, u64 *val)
8585{
8586 int i;
8587
8588 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8589 if (lcb_cache[i].off == off) {
8590 *val = lcb_cache[i].val;
8591 return 0;
8592 }
8593 }
8594
8595 pr_warn("%s bad offset 0x%x\n", __func__, off);
8596 return -1;
8597}
8598
8599/*
8600 * Read an LCB CSR. Access may not be in host control, so check.
8601 * Return 0 on success, -EBUSY on failure.
8602 */
8603int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8604{
8605 struct hfi1_pportdata *ppd = dd->pport;
8606
8607 /* if up, go through the 8051 for the value */
8608 if (ppd->host_link_state & HLS_UP)
8609 return read_lcb_via_8051(dd, addr, data);
8610 /* if going up or down, check the cache, otherwise, no access */
8611 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8612 if (read_lcb_cache(addr, data))
8613 return -EBUSY;
8614 return 0;
8615 }
8616
8617 /* otherwise, host has access */
8618 *data = read_csr(dd, addr);
8619 return 0;
8620}
8621
8622/*
8623 * Use the 8051 to write a LCB CSR.
8624 */
8625static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8626{
8627 u32 regno;
8628 int ret;
8629
8630 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8631 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8632 if (acquire_lcb_access(dd, 0) == 0) {
8633 write_csr(dd, addr, data);
8634 release_lcb_access(dd, 0);
8635 return 0;
8636 }
8637 return -EBUSY;
8638 }
8639
8640 /* register is an index of LCB registers: (offset - base) / 8 */
8641 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8642 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8643 if (ret != HCMD_SUCCESS)
8644 return -EBUSY;
8645 return 0;
8646}
8647
8648/*
8649 * Write an LCB CSR. Access may not be in host control, so check.
8650 * Return 0 on success, -EBUSY on failure.
8651 */
8652int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8653{
8654 struct hfi1_pportdata *ppd = dd->pport;
8655
8656 /* if up, go through the 8051 for the value */
8657 if (ppd->host_link_state & HLS_UP)
8658 return write_lcb_via_8051(dd, addr, data);
8659 /* if going up or down, no access */
8660 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8661 return -EBUSY;
8662 /* otherwise, host has access */
8663 write_csr(dd, addr, data);
8664 return 0;
8665}
8666
8667/*
8668 * Returns:
8669 * < 0 = Linux error, not able to get access
8670 * > 0 = 8051 command RETURN_CODE
8671 */
8672static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8673 u64 *out_data)
8674{
8675 u64 reg, completed;
8676 int return_code;
8677 unsigned long timeout;
8678
8679 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8680
8681 mutex_lock(&dd->dc8051_lock);
8682
8683 /* We can't send any commands to the 8051 if it's in reset */
8684 if (dd->dc_shutdown) {
8685 return_code = -ENODEV;
8686 goto fail;
8687 }
8688
8689 /*
8690 * If an 8051 host command timed out previously, then the 8051 is
8691 * stuck.
8692 *
8693 * On first timeout, attempt to reset and restart the entire DC
8694 * block (including 8051). (Is this too big of a hammer?)
8695 *
8696 * If the 8051 times out a second time, the reset did not bring it
8697 * back to healthy life. In that case, fail any subsequent commands.
8698 */
8699 if (dd->dc8051_timed_out) {
8700 if (dd->dc8051_timed_out > 1) {
8701 dd_dev_err(dd,
8702 "Previous 8051 host command timed out, skipping command %u\n",
8703 type);
8704 return_code = -ENXIO;
8705 goto fail;
8706 }
8707 _dc_shutdown(dd);
8708 _dc_start(dd);
8709 }
8710
8711 /*
8712 * If there is no timeout, then the 8051 command interface is
8713 * waiting for a command.
8714 */
8715
8716 /*
8717 * When writing a LCB CSR, out_data contains the full value to
8718 * to be written, while in_data contains the relative LCB
8719 * address in 7:0. Do the work here, rather than the caller,
8720 * of distrubting the write data to where it needs to go:
8721 *
8722 * Write data
8723 * 39:00 -> in_data[47:8]
8724 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8725 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8726 */
8727 if (type == HCMD_WRITE_LCB_CSR) {
8728 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8729 /* must preserve COMPLETED - it is tied to hardware */
8730 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8731 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8732 reg |= ((((*out_data) >> 40) & 0xff) <<
8733 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8734 | ((((*out_data) >> 48) & 0xffff) <<
8735 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8736 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8737 }
8738
8739 /*
8740 * Do two writes: the first to stabilize the type and req_data, the
8741 * second to activate.
8742 */
8743 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8744 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8745 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8746 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8747 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8748 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8749 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8750
8751 /* wait for completion, alternate: interrupt */
8752 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8753 while (1) {
8754 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8755 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8756 if (completed)
8757 break;
8758 if (time_after(jiffies, timeout)) {
8759 dd->dc8051_timed_out++;
8760 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8761 if (out_data)
8762 *out_data = 0;
8763 return_code = -ETIMEDOUT;
8764 goto fail;
8765 }
8766 udelay(2);
8767 }
8768
8769 if (out_data) {
8770 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8771 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8772 if (type == HCMD_READ_LCB_CSR) {
8773 /* top 16 bits are in a different register */
8774 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8775 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8776 << (48
8777 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8778 }
8779 }
8780 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8781 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8782 dd->dc8051_timed_out = 0;
8783 /*
8784 * Clear command for next user.
8785 */
8786 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8787
8788fail:
8789 mutex_unlock(&dd->dc8051_lock);
8790 return return_code;
8791}
8792
8793static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8794{
8795 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8796}
8797
8798int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8799 u8 lane_id, u32 config_data)
8800{
8801 u64 data;
8802 int ret;
8803
8804 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8805 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8806 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8807 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8808 if (ret != HCMD_SUCCESS) {
8809 dd_dev_err(dd,
8810 "load 8051 config: field id %d, lane %d, err %d\n",
8811 (int)field_id, (int)lane_id, ret);
8812 }
8813 return ret;
8814}
8815
8816/*
8817 * Read the 8051 firmware "registers". Use the RAM directly. Always
8818 * set the result, even on error.
8819 * Return 0 on success, -errno on failure
8820 */
8821int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8822 u32 *result)
8823{
8824 u64 big_data;
8825 u32 addr;
8826 int ret;
8827
8828 /* address start depends on the lane_id */
8829 if (lane_id < 4)
8830 addr = (4 * NUM_GENERAL_FIELDS)
8831 + (lane_id * 4 * NUM_LANE_FIELDS);
8832 else
8833 addr = 0;
8834 addr += field_id * 4;
8835
8836 /* read is in 8-byte chunks, hardware will truncate the address down */
8837 ret = read_8051_data(dd, addr, 8, &big_data);
8838
8839 if (ret == 0) {
8840 /* extract the 4 bytes we want */
8841 if (addr & 0x4)
8842 *result = (u32)(big_data >> 32);
8843 else
8844 *result = (u32)big_data;
8845 } else {
8846 *result = 0;
8847 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8848 __func__, lane_id, field_id);
8849 }
8850
8851 return ret;
8852}
8853
8854static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8855 u8 continuous)
8856{
8857 u32 frame;
8858
8859 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8860 | power_management << POWER_MANAGEMENT_SHIFT;
8861 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8862 GENERAL_CONFIG, frame);
8863}
8864
8865static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8866 u16 vl15buf, u8 crc_sizes)
8867{
8868 u32 frame;
8869
8870 frame = (u32)vau << VAU_SHIFT
8871 | (u32)z << Z_SHIFT
8872 | (u32)vcu << VCU_SHIFT
8873 | (u32)vl15buf << VL15BUF_SHIFT
8874 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8875 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8876 GENERAL_CONFIG, frame);
8877}
8878
8879static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8880 u8 *flag_bits, u16 *link_widths)
8881{
8882 u32 frame;
8883
8884 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8885 &frame);
8886 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8887 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8888 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8889}
8890
8891static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8892 u8 misc_bits,
8893 u8 flag_bits,
8894 u16 link_widths)
8895{
8896 u32 frame;
8897
8898 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8899 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8900 | (u32)link_widths << LINK_WIDTH_SHIFT;
8901 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8902 frame);
8903}
8904
8905static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8906 u8 device_rev)
8907{
8908 u32 frame;
8909
8910 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8911 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8912 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8913}
8914
8915static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8916 u8 *device_rev)
8917{
8918 u32 frame;
8919
8920 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8921 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8922 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8923 & REMOTE_DEVICE_REV_MASK;
8924}
8925
8926int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8927{
8928 u32 frame;
8929 u32 mask;
8930
8931 mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8932 read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8933 /* Clear, then set field */
8934 frame &= ~mask;
8935 frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8936 return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8937 frame);
8938}
8939
8940void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8941 u8 *ver_patch)
8942{
8943 u32 frame;
8944
8945 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8946 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8947 STS_FM_VERSION_MAJOR_MASK;
8948 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8949 STS_FM_VERSION_MINOR_MASK;
8950
8951 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8952 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8953 STS_FM_VERSION_PATCH_MASK;
8954}
8955
8956static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8957 u8 *continuous)
8958{
8959 u32 frame;
8960
8961 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8962 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8963 & POWER_MANAGEMENT_MASK;
8964 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8965 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8966}
8967
8968static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8969 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8970{
8971 u32 frame;
8972
8973 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8974 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8975 *z = (frame >> Z_SHIFT) & Z_MASK;
8976 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8977 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8978 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8979}
8980
8981static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8982 u8 *remote_tx_rate,
8983 u16 *link_widths)
8984{
8985 u32 frame;
8986
8987 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8988 &frame);
8989 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8990 & REMOTE_TX_RATE_MASK;
8991 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8992}
8993
8994static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8995{
8996 u32 frame;
8997
8998 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8999 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9000}
9001
9002static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9003{
9004 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9005}
9006
9007static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9008{
9009 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9010}
9011
9012void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9013{
9014 u32 frame;
9015 int ret;
9016
9017 *link_quality = 0;
9018 if (dd->pport->host_link_state & HLS_UP) {
9019 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9020 &frame);
9021 if (ret == 0)
9022 *link_quality = (frame >> LINK_QUALITY_SHIFT)
9023 & LINK_QUALITY_MASK;
9024 }
9025}
9026
9027static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9028{
9029 u32 frame;
9030
9031 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9032 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9033}
9034
9035static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9036{
9037 u32 frame;
9038
9039 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9040 *ldr = (frame & 0xff);
9041}
9042
9043static int read_tx_settings(struct hfi1_devdata *dd,
9044 u8 *enable_lane_tx,
9045 u8 *tx_polarity_inversion,
9046 u8 *rx_polarity_inversion,
9047 u8 *max_rate)
9048{
9049 u32 frame;
9050 int ret;
9051
9052 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9053 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9054 & ENABLE_LANE_TX_MASK;
9055 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9056 & TX_POLARITY_INVERSION_MASK;
9057 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9058 & RX_POLARITY_INVERSION_MASK;
9059 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9060 return ret;
9061}
9062
9063static int write_tx_settings(struct hfi1_devdata *dd,
9064 u8 enable_lane_tx,
9065 u8 tx_polarity_inversion,
9066 u8 rx_polarity_inversion,
9067 u8 max_rate)
9068{
9069 u32 frame;
9070
9071 /* no need to mask, all variable sizes match field widths */
9072 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9073 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9074 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9075 | max_rate << MAX_RATE_SHIFT;
9076 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9077}
9078
9079/*
9080 * Read an idle LCB message.
9081 *
9082 * Returns 0 on success, -EINVAL on error
9083 */
9084static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9085{
9086 int ret;
9087
9088 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9089 if (ret != HCMD_SUCCESS) {
9090 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9091 (u32)type, ret);
9092 return -EINVAL;
9093 }
9094 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9095 /* return only the payload as we already know the type */
9096 *data_out >>= IDLE_PAYLOAD_SHIFT;
9097 return 0;
9098}
9099
9100/*
9101 * Read an idle SMA message. To be done in response to a notification from
9102 * the 8051.
9103 *
9104 * Returns 0 on success, -EINVAL on error
9105 */
9106static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9107{
9108 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9109 data);
9110}
9111
9112/*
9113 * Send an idle LCB message.
9114 *
9115 * Returns 0 on success, -EINVAL on error
9116 */
9117static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9118{
9119 int ret;
9120
9121 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9122 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9123 if (ret != HCMD_SUCCESS) {
9124 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9125 data, ret);
9126 return -EINVAL;
9127 }
9128 return 0;
9129}
9130
9131/*
9132 * Send an idle SMA message.
9133 *
9134 * Returns 0 on success, -EINVAL on error
9135 */
9136int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9137{
9138 u64 data;
9139
9140 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9141 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9142 return send_idle_message(dd, data);
9143}
9144
9145/*
9146 * Initialize the LCB then do a quick link up. This may or may not be
9147 * in loopback.
9148 *
9149 * return 0 on success, -errno on error
9150 */
9151static int do_quick_linkup(struct hfi1_devdata *dd)
9152{
9153 int ret;
9154
9155 lcb_shutdown(dd, 0);
9156
9157 if (loopback) {
9158 /* LCB_CFG_LOOPBACK.VAL = 2 */
9159 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9160 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9161 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9162 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9163 }
9164
9165 /* start the LCBs */
9166 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9167 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9168
9169 /* simulator only loopback steps */
9170 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9171 /* LCB_CFG_RUN.EN = 1 */
9172 write_csr(dd, DC_LCB_CFG_RUN,
9173 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9174
9175 ret = wait_link_transfer_active(dd, 10);
9176 if (ret)
9177 return ret;
9178
9179 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9180 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9181 }
9182
9183 if (!loopback) {
9184 /*
9185 * When doing quick linkup and not in loopback, both
9186 * sides must be done with LCB set-up before either
9187 * starts the quick linkup. Put a delay here so that
9188 * both sides can be started and have a chance to be
9189 * done with LCB set up before resuming.
9190 */
9191 dd_dev_err(dd,
9192 "Pausing for peer to be finished with LCB set up\n");
9193 msleep(5000);
9194 dd_dev_err(dd, "Continuing with quick linkup\n");
9195 }
9196
9197 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9198 set_8051_lcb_access(dd);
9199
9200 /*
9201 * State "quick" LinkUp request sets the physical link state to
9202 * LinkUp without a verify capability sequence.
9203 * This state is in simulator v37 and later.
9204 */
9205 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9206 if (ret != HCMD_SUCCESS) {
9207 dd_dev_err(dd,
9208 "%s: set physical link state to quick LinkUp failed with return %d\n",
9209 __func__, ret);
9210
9211 set_host_lcb_access(dd);
9212 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9213
9214 if (ret >= 0)
9215 ret = -EINVAL;
9216 return ret;
9217 }
9218
9219 return 0; /* success */
9220}
9221
9222/*
9223 * Do all special steps to set up loopback.
9224 */
9225static int init_loopback(struct hfi1_devdata *dd)
9226{
9227 dd_dev_info(dd, "Entering loopback mode\n");
9228
9229 /* all loopbacks should disable self GUID check */
9230 write_csr(dd, DC_DC8051_CFG_MODE,
9231 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9232
9233 /*
9234 * The simulator has only one loopback option - LCB. Switch
9235 * to that option, which includes quick link up.
9236 *
9237 * Accept all valid loopback values.
9238 */
9239 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9240 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9241 loopback == LOOPBACK_CABLE)) {
9242 loopback = LOOPBACK_LCB;
9243 quick_linkup = 1;
9244 return 0;
9245 }
9246
9247 /*
9248 * SerDes loopback init sequence is handled in set_local_link_attributes
9249 */
9250 if (loopback == LOOPBACK_SERDES)
9251 return 0;
9252
9253 /* LCB loopback - handled at poll time */
9254 if (loopback == LOOPBACK_LCB) {
9255 quick_linkup = 1; /* LCB is always quick linkup */
9256
9257 /* not supported in emulation due to emulation RTL changes */
9258 if (dd->icode == ICODE_FPGA_EMULATION) {
9259 dd_dev_err(dd,
9260 "LCB loopback not supported in emulation\n");
9261 return -EINVAL;
9262 }
9263 return 0;
9264 }
9265
9266 /* external cable loopback requires no extra steps */
9267 if (loopback == LOOPBACK_CABLE)
9268 return 0;
9269
9270 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9271 return -EINVAL;
9272}
9273
9274/*
9275 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9276 * used in the Verify Capability link width attribute.
9277 */
9278static u16 opa_to_vc_link_widths(u16 opa_widths)
9279{
9280 int i;
9281 u16 result = 0;
9282
9283 static const struct link_bits {
9284 u16 from;
9285 u16 to;
9286 } opa_link_xlate[] = {
9287 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9288 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9289 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9290 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
9291 };
9292
9293 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9294 if (opa_widths & opa_link_xlate[i].from)
9295 result |= opa_link_xlate[i].to;
9296 }
9297 return result;
9298}
9299
9300/*
9301 * Set link attributes before moving to polling.
9302 */
9303static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9304{
9305 struct hfi1_devdata *dd = ppd->dd;
9306 u8 enable_lane_tx;
9307 u8 tx_polarity_inversion;
9308 u8 rx_polarity_inversion;
9309 int ret;
9310 u32 misc_bits = 0;
9311 /* reset our fabric serdes to clear any lingering problems */
9312 fabric_serdes_reset(dd);
9313
9314 /* set the local tx rate - need to read-modify-write */
9315 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9316 &rx_polarity_inversion, &ppd->local_tx_rate);
9317 if (ret)
9318 goto set_local_link_attributes_fail;
9319
9320 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9321 /* set the tx rate to the fastest enabled */
9322 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9323 ppd->local_tx_rate = 1;
9324 else
9325 ppd->local_tx_rate = 0;
9326 } else {
9327 /* set the tx rate to all enabled */
9328 ppd->local_tx_rate = 0;
9329 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9330 ppd->local_tx_rate |= 2;
9331 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9332 ppd->local_tx_rate |= 1;
9333 }
9334
9335 enable_lane_tx = 0xF; /* enable all four lanes */
9336 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9337 rx_polarity_inversion, ppd->local_tx_rate);
9338 if (ret != HCMD_SUCCESS)
9339 goto set_local_link_attributes_fail;
9340
9341 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9342 if (ret != HCMD_SUCCESS) {
9343 dd_dev_err(dd,
9344 "Failed to set host interface version, return 0x%x\n",
9345 ret);
9346 goto set_local_link_attributes_fail;
9347 }
9348
9349 /*
9350 * DC supports continuous updates.
9351 */
9352 ret = write_vc_local_phy(dd,
9353 0 /* no power management */,
9354 1 /* continuous updates */);
9355 if (ret != HCMD_SUCCESS)
9356 goto set_local_link_attributes_fail;
9357
9358 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9359 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9360 ppd->port_crc_mode_enabled);
9361 if (ret != HCMD_SUCCESS)
9362 goto set_local_link_attributes_fail;
9363
9364 /*
9365 * SerDes loopback init sequence requires
9366 * setting bit 0 of MISC_CONFIG_BITS
9367 */
9368 if (loopback == LOOPBACK_SERDES)
9369 misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9370
9371 /*
9372 * An external device configuration request is used to reset the LCB
9373 * to retry to obtain operational lanes when the first attempt is
9374 * unsuccesful.
9375 */
9376 if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9377 misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9378
9379 ret = write_vc_local_link_mode(dd, misc_bits, 0,
9380 opa_to_vc_link_widths(
9381 ppd->link_width_enabled));
9382 if (ret != HCMD_SUCCESS)
9383 goto set_local_link_attributes_fail;
9384
9385 /* let peer know who we are */
9386 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9387 if (ret == HCMD_SUCCESS)
9388 return 0;
9389
9390set_local_link_attributes_fail:
9391 dd_dev_err(dd,
9392 "Failed to set local link attributes, return 0x%x\n",
9393 ret);
9394 return ret;
9395}
9396
9397/*
9398 * Call this to start the link.
9399 * Do not do anything if the link is disabled.
9400 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9401 */
9402int start_link(struct hfi1_pportdata *ppd)
9403{
9404 /*
9405 * Tune the SerDes to a ballpark setting for optimal signal and bit
9406 * error rate. Needs to be done before starting the link.
9407 */
9408 tune_serdes(ppd);
9409
9410 if (!ppd->driver_link_ready) {
9411 dd_dev_info(ppd->dd,
9412 "%s: stopping link start because driver is not ready\n",
9413 __func__);
9414 return 0;
9415 }
9416
9417 /*
9418 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9419 * pkey table can be configured properly if the HFI unit is connected
9420 * to switch port with MgmtAllowed=NO
9421 */
9422 clear_full_mgmt_pkey(ppd);
9423
9424 return set_link_state(ppd, HLS_DN_POLL);
9425}
9426
9427static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9428{
9429 struct hfi1_devdata *dd = ppd->dd;
9430 u64 mask;
9431 unsigned long timeout;
9432
9433 /*
9434 * Some QSFP cables have a quirk that asserts the IntN line as a side
9435 * effect of power up on plug-in. We ignore this false positive
9436 * interrupt until the module has finished powering up by waiting for
9437 * a minimum timeout of the module inrush initialization time of
9438 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9439 * module have stabilized.
9440 */
9441 msleep(500);
9442
9443 /*
9444 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9445 */
9446 timeout = jiffies + msecs_to_jiffies(2000);
9447 while (1) {
9448 mask = read_csr(dd, dd->hfi1_id ?
9449 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9450 if (!(mask & QSFP_HFI0_INT_N))
9451 break;
9452 if (time_after(jiffies, timeout)) {
9453 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9454 __func__);
9455 break;
9456 }
9457 udelay(2);
9458 }
9459}
9460
9461static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9462{
9463 struct hfi1_devdata *dd = ppd->dd;
9464 u64 mask;
9465
9466 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9467 if (enable) {
9468 /*
9469 * Clear the status register to avoid an immediate interrupt
9470 * when we re-enable the IntN pin
9471 */
9472 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9473 QSFP_HFI0_INT_N);
9474 mask |= (u64)QSFP_HFI0_INT_N;
9475 } else {
9476 mask &= ~(u64)QSFP_HFI0_INT_N;
9477 }
9478 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9479}
9480
9481int reset_qsfp(struct hfi1_pportdata *ppd)
9482{
9483 struct hfi1_devdata *dd = ppd->dd;
9484 u64 mask, qsfp_mask;
9485
9486 /* Disable INT_N from triggering QSFP interrupts */
9487 set_qsfp_int_n(ppd, 0);
9488
9489 /* Reset the QSFP */
9490 mask = (u64)QSFP_HFI0_RESET_N;
9491
9492 qsfp_mask = read_csr(dd,
9493 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9494 qsfp_mask &= ~mask;
9495 write_csr(dd,
9496 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9497
9498 udelay(10);
9499
9500 qsfp_mask |= mask;
9501 write_csr(dd,
9502 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9503
9504 wait_for_qsfp_init(ppd);
9505
9506 /*
9507 * Allow INT_N to trigger the QSFP interrupt to watch
9508 * for alarms and warnings
9509 */
9510 set_qsfp_int_n(ppd, 1);
9511
9512 /*
9513 * After the reset, AOC transmitters are enabled by default. They need
9514 * to be turned off to complete the QSFP setup before they can be
9515 * enabled again.
9516 */
9517 return set_qsfp_tx(ppd, 0);
9518}
9519
9520static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9521 u8 *qsfp_interrupt_status)
9522{
9523 struct hfi1_devdata *dd = ppd->dd;
9524
9525 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9526 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9527 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9528 __func__);
9529
9530 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9531 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9532 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9533 __func__);
9534
9535 /*
9536 * The remaining alarms/warnings don't matter if the link is down.
9537 */
9538 if (ppd->host_link_state & HLS_DOWN)
9539 return 0;
9540
9541 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9542 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9543 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9544 __func__);
9545
9546 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9547 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9548 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9549 __func__);
9550
9551 /* Byte 2 is vendor specific */
9552
9553 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9554 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9555 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9556 __func__);
9557
9558 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9559 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9560 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9561 __func__);
9562
9563 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9564 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9565 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9566 __func__);
9567
9568 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9569 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9570 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9571 __func__);
9572
9573 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9574 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9575 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9576 __func__);
9577
9578 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9579 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9580 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9581 __func__);
9582
9583 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9584 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9585 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9586 __func__);
9587
9588 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9589 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9590 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9591 __func__);
9592
9593 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9594 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9595 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9596 __func__);
9597
9598 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9599 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9600 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9601 __func__);
9602
9603 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9604 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9605 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9606 __func__);
9607
9608 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9609 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9610 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9611 __func__);
9612
9613 /* Bytes 9-10 and 11-12 are reserved */
9614 /* Bytes 13-15 are vendor specific */
9615
9616 return 0;
9617}
9618
9619/* This routine will only be scheduled if the QSFP module present is asserted */
9620void qsfp_event(struct work_struct *work)
9621{
9622 struct qsfp_data *qd;
9623 struct hfi1_pportdata *ppd;
9624 struct hfi1_devdata *dd;
9625
9626 qd = container_of(work, struct qsfp_data, qsfp_work);
9627 ppd = qd->ppd;
9628 dd = ppd->dd;
9629
9630 /* Sanity check */
9631 if (!qsfp_mod_present(ppd))
9632 return;
9633
9634 if (ppd->host_link_state == HLS_DN_DISABLE) {
9635 dd_dev_info(ppd->dd,
9636 "%s: stopping link start because link is disabled\n",
9637 __func__);
9638 return;
9639 }
9640
9641 /*
9642 * Turn DC back on after cable has been re-inserted. Up until
9643 * now, the DC has been in reset to save power.
9644 */
9645 dc_start(dd);
9646
9647 if (qd->cache_refresh_required) {
9648 set_qsfp_int_n(ppd, 0);
9649
9650 wait_for_qsfp_init(ppd);
9651
9652 /*
9653 * Allow INT_N to trigger the QSFP interrupt to watch
9654 * for alarms and warnings
9655 */
9656 set_qsfp_int_n(ppd, 1);
9657
9658 start_link(ppd);
9659 }
9660
9661 if (qd->check_interrupt_flags) {
9662 u8 qsfp_interrupt_status[16] = {0,};
9663
9664 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9665 &qsfp_interrupt_status[0], 16) != 16) {
9666 dd_dev_info(dd,
9667 "%s: Failed to read status of QSFP module\n",
9668 __func__);
9669 } else {
9670 unsigned long flags;
9671
9672 handle_qsfp_error_conditions(
9673 ppd, qsfp_interrupt_status);
9674 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9675 ppd->qsfp_info.check_interrupt_flags = 0;
9676 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9677 flags);
9678 }
9679 }
9680}
9681
David Brazdil0f672f62019-12-10 10:32:29 +00009682void init_qsfp_int(struct hfi1_devdata *dd)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009683{
9684 struct hfi1_pportdata *ppd = dd->pport;
David Brazdil0f672f62019-12-10 10:32:29 +00009685 u64 qsfp_mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009686
9687 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9688 /* Clear current status to avoid spurious interrupts */
9689 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9690 qsfp_mask);
9691 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9692 qsfp_mask);
9693
9694 set_qsfp_int_n(ppd, 0);
9695
9696 /* Handle active low nature of INT_N and MODPRST_N pins */
9697 if (qsfp_mod_present(ppd))
9698 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9699 write_csr(dd,
9700 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9701 qsfp_mask);
David Brazdil0f672f62019-12-10 10:32:29 +00009702
9703 /* Enable the appropriate QSFP IRQ source */
9704 if (!dd->hfi1_id)
9705 set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9706 else
9707 set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009708}
9709
9710/*
9711 * Do a one-time initialize of the LCB block.
9712 */
9713static void init_lcb(struct hfi1_devdata *dd)
9714{
9715 /* simulator does not correctly handle LCB cclk loopback, skip */
9716 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9717 return;
9718
9719 /* the DC has been reset earlier in the driver load */
9720
9721 /* set LCB for cclk loopback on the port */
9722 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9723 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9724 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9725 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9726 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9727 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9728 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9729}
9730
9731/*
9732 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9733 * on error.
9734 */
9735static int test_qsfp_read(struct hfi1_pportdata *ppd)
9736{
9737 int ret;
9738 u8 status;
9739
9740 /*
9741 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9742 * not present
9743 */
9744 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9745 return 0;
9746
9747 /* read byte 2, the status byte */
9748 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9749 if (ret < 0)
9750 return ret;
9751 if (ret != 1)
9752 return -EIO;
9753
9754 return 0; /* success */
9755}
9756
9757/*
9758 * Values for QSFP retry.
9759 *
9760 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9761 * arrived at from experience on a large cluster.
9762 */
9763#define MAX_QSFP_RETRIES 20
9764#define QSFP_RETRY_WAIT 500 /* msec */
9765
9766/*
9767 * Try a QSFP read. If it fails, schedule a retry for later.
9768 * Called on first link activation after driver load.
9769 */
9770static void try_start_link(struct hfi1_pportdata *ppd)
9771{
9772 if (test_qsfp_read(ppd)) {
9773 /* read failed */
9774 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9775 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9776 return;
9777 }
9778 dd_dev_info(ppd->dd,
9779 "QSFP not responding, waiting and retrying %d\n",
9780 (int)ppd->qsfp_retry_count);
9781 ppd->qsfp_retry_count++;
9782 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9783 msecs_to_jiffies(QSFP_RETRY_WAIT));
9784 return;
9785 }
9786 ppd->qsfp_retry_count = 0;
9787
9788 start_link(ppd);
9789}
9790
9791/*
9792 * Workqueue function to start the link after a delay.
9793 */
9794void handle_start_link(struct work_struct *work)
9795{
9796 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9797 start_link_work.work);
9798 try_start_link(ppd);
9799}
9800
9801int bringup_serdes(struct hfi1_pportdata *ppd)
9802{
9803 struct hfi1_devdata *dd = ppd->dd;
9804 u64 guid;
9805 int ret;
9806
9807 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9808 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9809
9810 guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9811 if (!guid) {
9812 if (dd->base_guid)
9813 guid = dd->base_guid + ppd->port - 1;
9814 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9815 }
9816
9817 /* Set linkinit_reason on power up per OPA spec */
9818 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9819
9820 /* one-time init of the LCB */
9821 init_lcb(dd);
9822
9823 if (loopback) {
9824 ret = init_loopback(dd);
9825 if (ret < 0)
9826 return ret;
9827 }
9828
9829 get_port_type(ppd);
9830 if (ppd->port_type == PORT_TYPE_QSFP) {
9831 set_qsfp_int_n(ppd, 0);
9832 wait_for_qsfp_init(ppd);
9833 set_qsfp_int_n(ppd, 1);
9834 }
9835
9836 try_start_link(ppd);
9837 return 0;
9838}
9839
9840void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9841{
9842 struct hfi1_devdata *dd = ppd->dd;
9843
9844 /*
9845 * Shut down the link and keep it down. First turn off that the
9846 * driver wants to allow the link to be up (driver_link_ready).
9847 * Then make sure the link is not automatically restarted
9848 * (link_enabled). Cancel any pending restart. And finally
9849 * go offline.
9850 */
9851 ppd->driver_link_ready = 0;
9852 ppd->link_enabled = 0;
9853
9854 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9855 flush_delayed_work(&ppd->start_link_work);
9856 cancel_delayed_work_sync(&ppd->start_link_work);
9857
9858 ppd->offline_disabled_reason =
9859 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9860 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9861 OPA_LINKDOWN_REASON_REBOOT);
9862 set_link_state(ppd, HLS_DN_OFFLINE);
9863
9864 /* disable the port */
9865 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
David Brazdil0f672f62019-12-10 10:32:29 +00009866 cancel_work_sync(&ppd->freeze_work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009867}
9868
9869static inline int init_cpu_counters(struct hfi1_devdata *dd)
9870{
9871 struct hfi1_pportdata *ppd;
9872 int i;
9873
9874 ppd = (struct hfi1_pportdata *)(dd + 1);
9875 for (i = 0; i < dd->num_pports; i++, ppd++) {
9876 ppd->ibport_data.rvp.rc_acks = NULL;
9877 ppd->ibport_data.rvp.rc_qacks = NULL;
9878 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9879 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9880 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9881 if (!ppd->ibport_data.rvp.rc_acks ||
9882 !ppd->ibport_data.rvp.rc_delayed_comp ||
9883 !ppd->ibport_data.rvp.rc_qacks)
9884 return -ENOMEM;
9885 }
9886
9887 return 0;
9888}
9889
9890/*
9891 * index is the index into the receive array
9892 */
9893void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9894 u32 type, unsigned long pa, u16 order)
9895{
9896 u64 reg;
9897
9898 if (!(dd->flags & HFI1_PRESENT))
9899 goto done;
9900
9901 if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9902 pa = 0;
9903 order = 0;
9904 } else if (type > PT_INVALID) {
9905 dd_dev_err(dd,
9906 "unexpected receive array type %u for index %u, not handled\n",
9907 type, index);
9908 goto done;
9909 }
9910 trace_hfi1_put_tid(dd, index, type, pa, order);
9911
9912#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9913 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9914 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9915 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9916 << RCV_ARRAY_RT_ADDR_SHIFT;
9917 trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9918 writeq(reg, dd->rcvarray_wc + (index * 8));
9919
9920 if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9921 /*
9922 * Eager entries are written and flushed
9923 *
9924 * Expected entries are flushed every 4 writes
9925 */
9926 flush_wc();
9927done:
9928 return;
9929}
9930
9931void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9932{
9933 struct hfi1_devdata *dd = rcd->dd;
9934 u32 i;
9935
9936 /* this could be optimized */
9937 for (i = rcd->eager_base; i < rcd->eager_base +
9938 rcd->egrbufs.alloced; i++)
9939 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9940
9941 for (i = rcd->expected_base;
9942 i < rcd->expected_base + rcd->expected_count; i++)
9943 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9944}
9945
9946static const char * const ib_cfg_name_strings[] = {
9947 "HFI1_IB_CFG_LIDLMC",
9948 "HFI1_IB_CFG_LWID_DG_ENB",
9949 "HFI1_IB_CFG_LWID_ENB",
9950 "HFI1_IB_CFG_LWID",
9951 "HFI1_IB_CFG_SPD_ENB",
9952 "HFI1_IB_CFG_SPD",
9953 "HFI1_IB_CFG_RXPOL_ENB",
9954 "HFI1_IB_CFG_LREV_ENB",
9955 "HFI1_IB_CFG_LINKLATENCY",
9956 "HFI1_IB_CFG_HRTBT",
9957 "HFI1_IB_CFG_OP_VLS",
9958 "HFI1_IB_CFG_VL_HIGH_CAP",
9959 "HFI1_IB_CFG_VL_LOW_CAP",
9960 "HFI1_IB_CFG_OVERRUN_THRESH",
9961 "HFI1_IB_CFG_PHYERR_THRESH",
9962 "HFI1_IB_CFG_LINKDEFAULT",
9963 "HFI1_IB_CFG_PKEYS",
9964 "HFI1_IB_CFG_MTU",
9965 "HFI1_IB_CFG_LSTATE",
9966 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9967 "HFI1_IB_CFG_PMA_TICKS",
9968 "HFI1_IB_CFG_PORT"
9969};
9970
9971static const char *ib_cfg_name(int which)
9972{
9973 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9974 return "invalid";
9975 return ib_cfg_name_strings[which];
9976}
9977
9978int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9979{
9980 struct hfi1_devdata *dd = ppd->dd;
9981 int val = 0;
9982
9983 switch (which) {
9984 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9985 val = ppd->link_width_enabled;
9986 break;
9987 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9988 val = ppd->link_width_active;
9989 break;
9990 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9991 val = ppd->link_speed_enabled;
9992 break;
9993 case HFI1_IB_CFG_SPD: /* current Link speed */
9994 val = ppd->link_speed_active;
9995 break;
9996
9997 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9998 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9999 case HFI1_IB_CFG_LINKLATENCY:
10000 goto unimplemented;
10001
10002 case HFI1_IB_CFG_OP_VLS:
10003 val = ppd->actual_vls_operational;
10004 break;
10005 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10006 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10007 break;
10008 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10009 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10010 break;
10011 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10012 val = ppd->overrun_threshold;
10013 break;
10014 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10015 val = ppd->phy_error_threshold;
10016 break;
10017 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10018 val = HLS_DEFAULT;
10019 break;
10020
10021 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10022 case HFI1_IB_CFG_PMA_TICKS:
10023 default:
10024unimplemented:
10025 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10026 dd_dev_info(
10027 dd,
10028 "%s: which %s: not implemented\n",
10029 __func__,
10030 ib_cfg_name(which));
10031 break;
10032 }
10033
10034 return val;
10035}
10036
10037/*
10038 * The largest MAD packet size.
10039 */
10040#define MAX_MAD_PACKET 2048
10041
10042/*
10043 * Return the maximum header bytes that can go on the _wire_
10044 * for this device. This count includes the ICRC which is
10045 * not part of the packet held in memory but it is appended
10046 * by the HW.
10047 * This is dependent on the device's receive header entry size.
10048 * HFI allows this to be set per-receive context, but the
10049 * driver presently enforces a global value.
10050 */
10051u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10052{
10053 /*
10054 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10055 * the Receive Header Entry Size minus the PBC (or RHF) size
10056 * plus one DW for the ICRC appended by HW.
10057 *
10058 * dd->rcd[0].rcvhdrqentsize is in DW.
10059 * We use rcd[0] as all context will have the same value. Also,
10060 * the first kernel context would have been allocated by now so
10061 * we are guaranteed a valid value.
10062 */
10063 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10064}
10065
10066/*
10067 * Set Send Length
10068 * @ppd - per port data
10069 *
10070 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
10071 * registers compare against LRH.PktLen, so use the max bytes included
10072 * in the LRH.
10073 *
10074 * This routine changes all VL values except VL15, which it maintains at
10075 * the same value.
10076 */
10077static void set_send_length(struct hfi1_pportdata *ppd)
10078{
10079 struct hfi1_devdata *dd = ppd->dd;
10080 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10081 u32 maxvlmtu = dd->vld[15].mtu;
10082 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10083 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10084 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10085 int i, j;
10086 u32 thres;
10087
10088 for (i = 0; i < ppd->vls_supported; i++) {
10089 if (dd->vld[i].mtu > maxvlmtu)
10090 maxvlmtu = dd->vld[i].mtu;
10091 if (i <= 3)
10092 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10093 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10094 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10095 else
10096 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10097 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10098 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10099 }
10100 write_csr(dd, SEND_LEN_CHECK0, len1);
10101 write_csr(dd, SEND_LEN_CHECK1, len2);
10102 /* adjust kernel credit return thresholds based on new MTUs */
10103 /* all kernel receive contexts have the same hdrqentsize */
10104 for (i = 0; i < ppd->vls_supported; i++) {
10105 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10106 sc_mtu_to_threshold(dd->vld[i].sc,
10107 dd->vld[i].mtu,
10108 dd->rcd[0]->rcvhdrqentsize));
10109 for (j = 0; j < INIT_SC_PER_VL; j++)
10110 sc_set_cr_threshold(
10111 pio_select_send_context_vl(dd, j, i),
10112 thres);
10113 }
10114 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10115 sc_mtu_to_threshold(dd->vld[15].sc,
10116 dd->vld[15].mtu,
10117 dd->rcd[0]->rcvhdrqentsize));
10118 sc_set_cr_threshold(dd->vld[15].sc, thres);
10119
10120 /* Adjust maximum MTU for the port in DC */
10121 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10122 (ilog2(maxvlmtu >> 8) + 1);
10123 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10124 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10125 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10126 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10127 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10128}
10129
10130static void set_lidlmc(struct hfi1_pportdata *ppd)
10131{
10132 int i;
10133 u64 sreg = 0;
10134 struct hfi1_devdata *dd = ppd->dd;
10135 u32 mask = ~((1U << ppd->lmc) - 1);
10136 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10137 u32 lid;
10138
10139 /*
10140 * Program 0 in CSR if port lid is extended. This prevents
10141 * 9B packets being sent out for large lids.
10142 */
10143 lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10144 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10145 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10146 c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10147 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10148 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10149 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10150 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10151
10152 /*
10153 * Iterate over all the send contexts and set their SLID check
10154 */
10155 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10156 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10157 (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10158 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10159
10160 for (i = 0; i < chip_send_contexts(dd); i++) {
10161 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10162 i, (u32)sreg);
10163 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10164 }
10165
10166 /* Now we have to do the same thing for the sdma engines */
10167 sdma_update_lmc(dd, mask, lid);
10168}
10169
10170static const char *state_completed_string(u32 completed)
10171{
10172 static const char * const state_completed[] = {
10173 "EstablishComm",
10174 "OptimizeEQ",
10175 "VerifyCap"
10176 };
10177
10178 if (completed < ARRAY_SIZE(state_completed))
10179 return state_completed[completed];
10180
10181 return "unknown";
10182}
10183
10184static const char all_lanes_dead_timeout_expired[] =
10185 "All lanes were inactive – was the interconnect media removed?";
10186static const char tx_out_of_policy[] =
10187 "Passing lanes on local port do not meet the local link width policy";
10188static const char no_state_complete[] =
10189 "State timeout occurred before link partner completed the state";
10190static const char * const state_complete_reasons[] = {
10191 [0x00] = "Reason unknown",
10192 [0x01] = "Link was halted by driver, refer to LinkDownReason",
10193 [0x02] = "Link partner reported failure",
10194 [0x10] = "Unable to achieve frame sync on any lane",
10195 [0x11] =
10196 "Unable to find a common bit rate with the link partner",
10197 [0x12] =
10198 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10199 [0x13] =
10200 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10201 [0x14] = no_state_complete,
10202 [0x15] =
10203 "State timeout occurred before link partner identified equalization presets",
10204 [0x16] =
10205 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10206 [0x17] = tx_out_of_policy,
10207 [0x20] = all_lanes_dead_timeout_expired,
10208 [0x21] =
10209 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10210 [0x22] = no_state_complete,
10211 [0x23] =
10212 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10213 [0x24] = tx_out_of_policy,
10214 [0x30] = all_lanes_dead_timeout_expired,
10215 [0x31] =
10216 "State timeout occurred waiting for host to process received frames",
10217 [0x32] = no_state_complete,
10218 [0x33] =
10219 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10220 [0x34] = tx_out_of_policy,
10221 [0x35] = "Negotiated link width is mutually exclusive",
10222 [0x36] =
10223 "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10224 [0x37] = "Unable to resolve secure data exchange",
10225};
10226
10227static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10228 u32 code)
10229{
10230 const char *str = NULL;
10231
10232 if (code < ARRAY_SIZE(state_complete_reasons))
10233 str = state_complete_reasons[code];
10234
10235 if (str)
10236 return str;
10237 return "Reserved";
10238}
10239
10240/* describe the given last state complete frame */
10241static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10242 const char *prefix)
10243{
10244 struct hfi1_devdata *dd = ppd->dd;
10245 u32 success;
10246 u32 state;
10247 u32 reason;
10248 u32 lanes;
10249
10250 /*
10251 * Decode frame:
10252 * [ 0: 0] - success
10253 * [ 3: 1] - state
10254 * [ 7: 4] - next state timeout
10255 * [15: 8] - reason code
10256 * [31:16] - lanes
10257 */
10258 success = frame & 0x1;
10259 state = (frame >> 1) & 0x7;
10260 reason = (frame >> 8) & 0xff;
10261 lanes = (frame >> 16) & 0xffff;
10262
10263 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10264 prefix, frame);
10265 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10266 state_completed_string(state), state);
10267 dd_dev_err(dd, " state successfully completed: %s\n",
10268 success ? "yes" : "no");
10269 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10270 reason, state_complete_reason_code_string(ppd, reason));
10271 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10272}
10273
10274/*
10275 * Read the last state complete frames and explain them. This routine
10276 * expects to be called if the link went down during link negotiation
10277 * and initialization (LNI). That is, anywhere between polling and link up.
10278 */
10279static void check_lni_states(struct hfi1_pportdata *ppd)
10280{
10281 u32 last_local_state;
10282 u32 last_remote_state;
10283
10284 read_last_local_state(ppd->dd, &last_local_state);
10285 read_last_remote_state(ppd->dd, &last_remote_state);
10286
10287 /*
10288 * Don't report anything if there is nothing to report. A value of
10289 * 0 means the link was taken down while polling and there was no
10290 * training in-process.
10291 */
10292 if (last_local_state == 0 && last_remote_state == 0)
10293 return;
10294
10295 decode_state_complete(ppd, last_local_state, "transmitted");
10296 decode_state_complete(ppd, last_remote_state, "received");
10297}
10298
10299/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10300static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10301{
10302 u64 reg;
10303 unsigned long timeout;
10304
10305 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10306 timeout = jiffies + msecs_to_jiffies(wait_ms);
10307 while (1) {
10308 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10309 if (reg)
10310 break;
10311 if (time_after(jiffies, timeout)) {
10312 dd_dev_err(dd,
10313 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10314 return -ETIMEDOUT;
10315 }
10316 udelay(2);
10317 }
10318 return 0;
10319}
10320
10321/* called when the logical link state is not down as it should be */
10322static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10323{
10324 struct hfi1_devdata *dd = ppd->dd;
10325
10326 /*
10327 * Bring link up in LCB loopback
10328 */
10329 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10330 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10331 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10332
10333 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10334 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10335 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10336 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10337
10338 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10339 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10340 udelay(3);
10341 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10342 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10343
10344 wait_link_transfer_active(dd, 100);
10345
10346 /*
10347 * Bring the link down again.
10348 */
10349 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10350 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10351 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10352
10353 dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10354}
10355
10356/*
10357 * Helper for set_link_state(). Do not call except from that routine.
10358 * Expects ppd->hls_mutex to be held.
10359 *
10360 * @rem_reason value to be sent to the neighbor
10361 *
10362 * LinkDownReasons only set if transition succeeds.
10363 */
10364static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10365{
10366 struct hfi1_devdata *dd = ppd->dd;
10367 u32 previous_state;
10368 int offline_state_ret;
10369 int ret;
10370
10371 update_lcb_cache(dd);
10372
10373 previous_state = ppd->host_link_state;
10374 ppd->host_link_state = HLS_GOING_OFFLINE;
10375
10376 /* start offline transition */
10377 ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10378
10379 if (ret != HCMD_SUCCESS) {
10380 dd_dev_err(dd,
10381 "Failed to transition to Offline link state, return %d\n",
10382 ret);
10383 return -EINVAL;
10384 }
10385 if (ppd->offline_disabled_reason ==
10386 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10387 ppd->offline_disabled_reason =
10388 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10389
10390 offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10391 if (offline_state_ret < 0)
10392 return offline_state_ret;
10393
10394 /* Disabling AOC transmitters */
10395 if (ppd->port_type == PORT_TYPE_QSFP &&
10396 ppd->qsfp_info.limiting_active &&
10397 qsfp_mod_present(ppd)) {
10398 int ret;
10399
10400 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10401 if (ret == 0) {
10402 set_qsfp_tx(ppd, 0);
10403 release_chip_resource(dd, qsfp_resource(dd));
10404 } else {
10405 /* not fatal, but should warn */
10406 dd_dev_err(dd,
10407 "Unable to acquire lock to turn off QSFP TX\n");
10408 }
10409 }
10410
10411 /*
10412 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10413 * can take a while for the link to go down.
10414 */
10415 if (offline_state_ret != PLS_OFFLINE_QUIET) {
10416 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10417 if (ret < 0)
10418 return ret;
10419 }
10420
10421 /*
10422 * Now in charge of LCB - must be after the physical state is
10423 * offline.quiet and before host_link_state is changed.
10424 */
10425 set_host_lcb_access(dd);
10426 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10427
10428 /* make sure the logical state is also down */
10429 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10430 if (ret)
10431 force_logical_link_state_down(ppd);
10432
10433 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10434 update_statusp(ppd, IB_PORT_DOWN);
10435
10436 /*
10437 * The LNI has a mandatory wait time after the physical state
10438 * moves to Offline.Quiet. The wait time may be different
10439 * depending on how the link went down. The 8051 firmware
10440 * will observe the needed wait time and only move to ready
10441 * when that is completed. The largest of the quiet timeouts
10442 * is 6s, so wait that long and then at least 0.5s more for
10443 * other transitions, and another 0.5s for a buffer.
10444 */
10445 ret = wait_fm_ready(dd, 7000);
10446 if (ret) {
10447 dd_dev_err(dd,
10448 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10449 /* state is really offline, so make it so */
10450 ppd->host_link_state = HLS_DN_OFFLINE;
10451 return ret;
10452 }
10453
10454 /*
10455 * The state is now offline and the 8051 is ready to accept host
10456 * requests.
10457 * - change our state
10458 * - notify others if we were previously in a linkup state
10459 */
10460 ppd->host_link_state = HLS_DN_OFFLINE;
10461 if (previous_state & HLS_UP) {
10462 /* went down while link was up */
10463 handle_linkup_change(dd, 0);
10464 } else if (previous_state
10465 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10466 /* went down while attempting link up */
10467 check_lni_states(ppd);
10468
10469 /* The QSFP doesn't need to be reset on LNI failure */
10470 ppd->qsfp_info.reset_needed = 0;
10471 }
10472
10473 /* the active link width (downgrade) is 0 on link down */
10474 ppd->link_width_active = 0;
10475 ppd->link_width_downgrade_tx_active = 0;
10476 ppd->link_width_downgrade_rx_active = 0;
10477 ppd->current_egress_rate = 0;
10478 return 0;
10479}
10480
10481/* return the link state name */
10482static const char *link_state_name(u32 state)
10483{
10484 const char *name;
10485 int n = ilog2(state);
10486 static const char * const names[] = {
10487 [__HLS_UP_INIT_BP] = "INIT",
10488 [__HLS_UP_ARMED_BP] = "ARMED",
10489 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10490 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10491 [__HLS_DN_POLL_BP] = "POLL",
10492 [__HLS_DN_DISABLE_BP] = "DISABLE",
10493 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10494 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10495 [__HLS_GOING_UP_BP] = "GOING_UP",
10496 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10497 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10498 };
10499
10500 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10501 return name ? name : "unknown";
10502}
10503
10504/* return the link state reason name */
10505static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10506{
10507 if (state == HLS_UP_INIT) {
10508 switch (ppd->linkinit_reason) {
10509 case OPA_LINKINIT_REASON_LINKUP:
10510 return "(LINKUP)";
10511 case OPA_LINKINIT_REASON_FLAPPING:
10512 return "(FLAPPING)";
10513 case OPA_LINKINIT_OUTSIDE_POLICY:
10514 return "(OUTSIDE_POLICY)";
10515 case OPA_LINKINIT_QUARANTINED:
10516 return "(QUARANTINED)";
10517 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10518 return "(INSUFIC_CAPABILITY)";
10519 default:
10520 break;
10521 }
10522 }
10523 return "";
10524}
10525
10526/*
10527 * driver_pstate - convert the driver's notion of a port's
10528 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10529 * Return -1 (converted to a u32) to indicate error.
10530 */
10531u32 driver_pstate(struct hfi1_pportdata *ppd)
10532{
10533 switch (ppd->host_link_state) {
10534 case HLS_UP_INIT:
10535 case HLS_UP_ARMED:
10536 case HLS_UP_ACTIVE:
10537 return IB_PORTPHYSSTATE_LINKUP;
10538 case HLS_DN_POLL:
10539 return IB_PORTPHYSSTATE_POLLING;
10540 case HLS_DN_DISABLE:
10541 return IB_PORTPHYSSTATE_DISABLED;
10542 case HLS_DN_OFFLINE:
10543 return OPA_PORTPHYSSTATE_OFFLINE;
10544 case HLS_VERIFY_CAP:
10545 return IB_PORTPHYSSTATE_TRAINING;
10546 case HLS_GOING_UP:
10547 return IB_PORTPHYSSTATE_TRAINING;
10548 case HLS_GOING_OFFLINE:
10549 return OPA_PORTPHYSSTATE_OFFLINE;
10550 case HLS_LINK_COOLDOWN:
10551 return OPA_PORTPHYSSTATE_OFFLINE;
10552 case HLS_DN_DOWNDEF:
10553 default:
10554 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10555 ppd->host_link_state);
10556 return -1;
10557 }
10558}
10559
10560/*
10561 * driver_lstate - convert the driver's notion of a port's
10562 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10563 * (converted to a u32) to indicate error.
10564 */
10565u32 driver_lstate(struct hfi1_pportdata *ppd)
10566{
10567 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10568 return IB_PORT_DOWN;
10569
10570 switch (ppd->host_link_state & HLS_UP) {
10571 case HLS_UP_INIT:
10572 return IB_PORT_INIT;
10573 case HLS_UP_ARMED:
10574 return IB_PORT_ARMED;
10575 case HLS_UP_ACTIVE:
10576 return IB_PORT_ACTIVE;
10577 default:
10578 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10579 ppd->host_link_state);
10580 return -1;
10581 }
10582}
10583
10584void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10585 u8 neigh_reason, u8 rem_reason)
10586{
10587 if (ppd->local_link_down_reason.latest == 0 &&
10588 ppd->neigh_link_down_reason.latest == 0) {
10589 ppd->local_link_down_reason.latest = lcl_reason;
10590 ppd->neigh_link_down_reason.latest = neigh_reason;
10591 ppd->remote_link_down_reason = rem_reason;
10592 }
10593}
10594
David Brazdil0f672f62019-12-10 10:32:29 +000010595/**
10596 * data_vls_operational() - Verify if data VL BCT credits and MTU
10597 * are both set.
10598 * @ppd: pointer to hfi1_pportdata structure
10599 *
10600 * Return: true - Ok, false -otherwise.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010601 */
10602static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10603{
David Brazdil0f672f62019-12-10 10:32:29 +000010604 int i;
10605 u64 reg;
10606
10607 if (!ppd->actual_vls_operational)
10608 return false;
10609
10610 for (i = 0; i < ppd->vls_supported; i++) {
10611 reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10612 if ((reg && !ppd->dd->vld[i].mtu) ||
10613 (!reg && ppd->dd->vld[i].mtu))
10614 return false;
10615 }
10616
10617 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010618}
10619
10620/*
10621 * Change the physical and/or logical link state.
10622 *
10623 * Do not call this routine while inside an interrupt. It contains
10624 * calls to routines that can take multiple seconds to finish.
10625 *
10626 * Returns 0 on success, -errno on failure.
10627 */
10628int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10629{
10630 struct hfi1_devdata *dd = ppd->dd;
10631 struct ib_event event = {.device = NULL};
10632 int ret1, ret = 0;
10633 int orig_new_state, poll_bounce;
10634
10635 mutex_lock(&ppd->hls_lock);
10636
10637 orig_new_state = state;
10638 if (state == HLS_DN_DOWNDEF)
10639 state = HLS_DEFAULT;
10640
10641 /* interpret poll -> poll as a link bounce */
10642 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10643 state == HLS_DN_POLL;
10644
10645 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10646 link_state_name(ppd->host_link_state),
10647 link_state_name(orig_new_state),
10648 poll_bounce ? "(bounce) " : "",
10649 link_state_reason_name(ppd, state));
10650
10651 /*
10652 * If we're going to a (HLS_*) link state that implies the logical
10653 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10654 * reset is_sm_config_started to 0.
10655 */
10656 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10657 ppd->is_sm_config_started = 0;
10658
10659 /*
10660 * Do nothing if the states match. Let a poll to poll link bounce
10661 * go through.
10662 */
10663 if (ppd->host_link_state == state && !poll_bounce)
10664 goto done;
10665
10666 switch (state) {
10667 case HLS_UP_INIT:
10668 if (ppd->host_link_state == HLS_DN_POLL &&
10669 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10670 /*
10671 * Quick link up jumps from polling to here.
10672 *
10673 * Whether in normal or loopback mode, the
10674 * simulator jumps from polling to link up.
10675 * Accept that here.
10676 */
10677 /* OK */
10678 } else if (ppd->host_link_state != HLS_GOING_UP) {
10679 goto unexpected;
10680 }
10681
10682 /*
10683 * Wait for Link_Up physical state.
10684 * Physical and Logical states should already be
10685 * be transitioned to LinkUp and LinkInit respectively.
10686 */
10687 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10688 if (ret) {
10689 dd_dev_err(dd,
10690 "%s: physical state did not change to LINK-UP\n",
10691 __func__);
10692 break;
10693 }
10694
10695 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10696 if (ret) {
10697 dd_dev_err(dd,
10698 "%s: logical state did not change to INIT\n",
10699 __func__);
10700 break;
10701 }
10702
10703 /* clear old transient LINKINIT_REASON code */
10704 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10705 ppd->linkinit_reason =
10706 OPA_LINKINIT_REASON_LINKUP;
10707
10708 /* enable the port */
10709 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10710
10711 handle_linkup_change(dd, 1);
10712 pio_kernel_linkup(dd);
10713
10714 /*
10715 * After link up, a new link width will have been set.
10716 * Update the xmit counters with regards to the new
10717 * link width.
10718 */
10719 update_xmit_counters(ppd, ppd->link_width_active);
10720
10721 ppd->host_link_state = HLS_UP_INIT;
10722 update_statusp(ppd, IB_PORT_INIT);
10723 break;
10724 case HLS_UP_ARMED:
10725 if (ppd->host_link_state != HLS_UP_INIT)
10726 goto unexpected;
10727
10728 if (!data_vls_operational(ppd)) {
10729 dd_dev_err(dd,
David Brazdil0f672f62019-12-10 10:32:29 +000010730 "%s: Invalid data VL credits or mtu\n",
10731 __func__);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010732 ret = -EINVAL;
10733 break;
10734 }
10735
10736 set_logical_state(dd, LSTATE_ARMED);
10737 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10738 if (ret) {
10739 dd_dev_err(dd,
10740 "%s: logical state did not change to ARMED\n",
10741 __func__);
10742 break;
10743 }
10744 ppd->host_link_state = HLS_UP_ARMED;
10745 update_statusp(ppd, IB_PORT_ARMED);
10746 /*
10747 * The simulator does not currently implement SMA messages,
10748 * so neighbor_normal is not set. Set it here when we first
10749 * move to Armed.
10750 */
10751 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10752 ppd->neighbor_normal = 1;
10753 break;
10754 case HLS_UP_ACTIVE:
10755 if (ppd->host_link_state != HLS_UP_ARMED)
10756 goto unexpected;
10757
10758 set_logical_state(dd, LSTATE_ACTIVE);
10759 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10760 if (ret) {
10761 dd_dev_err(dd,
10762 "%s: logical state did not change to ACTIVE\n",
10763 __func__);
10764 } else {
10765 /* tell all engines to go running */
10766 sdma_all_running(dd);
10767 ppd->host_link_state = HLS_UP_ACTIVE;
10768 update_statusp(ppd, IB_PORT_ACTIVE);
10769
10770 /* Signal the IB layer that the port has went active */
10771 event.device = &dd->verbs_dev.rdi.ibdev;
10772 event.element.port_num = ppd->port;
10773 event.event = IB_EVENT_PORT_ACTIVE;
10774 }
10775 break;
10776 case HLS_DN_POLL:
10777 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10778 ppd->host_link_state == HLS_DN_OFFLINE) &&
10779 dd->dc_shutdown)
10780 dc_start(dd);
10781 /* Hand LED control to the DC */
10782 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10783
10784 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10785 u8 tmp = ppd->link_enabled;
10786
10787 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10788 if (ret) {
10789 ppd->link_enabled = tmp;
10790 break;
10791 }
10792 ppd->remote_link_down_reason = 0;
10793
10794 if (ppd->driver_link_ready)
10795 ppd->link_enabled = 1;
10796 }
10797
10798 set_all_slowpath(ppd->dd);
10799 ret = set_local_link_attributes(ppd);
10800 if (ret)
10801 break;
10802
10803 ppd->port_error_action = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010804
10805 if (quick_linkup) {
10806 /* quick linkup does not go into polling */
10807 ret = do_quick_linkup(dd);
10808 } else {
10809 ret1 = set_physical_link_state(dd, PLS_POLLING);
David Brazdil0f672f62019-12-10 10:32:29 +000010810 if (!ret1)
10811 ret1 = wait_phys_link_out_of_offline(ppd,
10812 3000);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010813 if (ret1 != HCMD_SUCCESS) {
10814 dd_dev_err(dd,
10815 "Failed to transition to Polling link state, return 0x%x\n",
10816 ret1);
10817 ret = -EINVAL;
10818 }
10819 }
David Brazdil0f672f62019-12-10 10:32:29 +000010820
10821 /*
10822 * Change the host link state after requesting DC8051 to
10823 * change its physical state so that we can ignore any
10824 * interrupt with stale LNI(XX) error, which will not be
10825 * cleared until DC8051 transitions to Polling state.
10826 */
10827 ppd->host_link_state = HLS_DN_POLL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010828 ppd->offline_disabled_reason =
10829 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10830 /*
10831 * If an error occurred above, go back to offline. The
10832 * caller may reschedule another attempt.
10833 */
10834 if (ret)
10835 goto_offline(ppd, 0);
10836 else
10837 log_physical_state(ppd, PLS_POLLING);
10838 break;
10839 case HLS_DN_DISABLE:
10840 /* link is disabled */
10841 ppd->link_enabled = 0;
10842
10843 /* allow any state to transition to disabled */
10844
10845 /* must transition to offline first */
10846 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10847 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10848 if (ret)
10849 break;
10850 ppd->remote_link_down_reason = 0;
10851 }
10852
10853 if (!dd->dc_shutdown) {
10854 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10855 if (ret1 != HCMD_SUCCESS) {
10856 dd_dev_err(dd,
10857 "Failed to transition to Disabled link state, return 0x%x\n",
10858 ret1);
10859 ret = -EINVAL;
10860 break;
10861 }
10862 ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10863 if (ret) {
10864 dd_dev_err(dd,
10865 "%s: physical state did not change to DISABLED\n",
10866 __func__);
10867 break;
10868 }
10869 dc_shutdown(dd);
10870 }
10871 ppd->host_link_state = HLS_DN_DISABLE;
10872 break;
10873 case HLS_DN_OFFLINE:
10874 if (ppd->host_link_state == HLS_DN_DISABLE)
10875 dc_start(dd);
10876
10877 /* allow any state to transition to offline */
10878 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10879 if (!ret)
10880 ppd->remote_link_down_reason = 0;
10881 break;
10882 case HLS_VERIFY_CAP:
10883 if (ppd->host_link_state != HLS_DN_POLL)
10884 goto unexpected;
10885 ppd->host_link_state = HLS_VERIFY_CAP;
10886 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10887 break;
10888 case HLS_GOING_UP:
10889 if (ppd->host_link_state != HLS_VERIFY_CAP)
10890 goto unexpected;
10891
10892 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10893 if (ret1 != HCMD_SUCCESS) {
10894 dd_dev_err(dd,
10895 "Failed to transition to link up state, return 0x%x\n",
10896 ret1);
10897 ret = -EINVAL;
10898 break;
10899 }
10900 ppd->host_link_state = HLS_GOING_UP;
10901 break;
10902
10903 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10904 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10905 default:
10906 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10907 __func__, state);
10908 ret = -EINVAL;
10909 break;
10910 }
10911
10912 goto done;
10913
10914unexpected:
10915 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10916 __func__, link_state_name(ppd->host_link_state),
10917 link_state_name(state));
10918 ret = -EINVAL;
10919
10920done:
10921 mutex_unlock(&ppd->hls_lock);
10922
10923 if (event.device)
10924 ib_dispatch_event(&event);
10925
10926 return ret;
10927}
10928
10929int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10930{
10931 u64 reg;
10932 int ret = 0;
10933
10934 switch (which) {
10935 case HFI1_IB_CFG_LIDLMC:
10936 set_lidlmc(ppd);
10937 break;
10938 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10939 /*
10940 * The VL Arbitrator high limit is sent in units of 4k
10941 * bytes, while HFI stores it in units of 64 bytes.
10942 */
10943 val *= 4096 / 64;
10944 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10945 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10946 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10947 break;
10948 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10949 /* HFI only supports POLL as the default link down state */
10950 if (val != HLS_DN_POLL)
10951 ret = -EINVAL;
10952 break;
10953 case HFI1_IB_CFG_OP_VLS:
10954 if (ppd->vls_operational != val) {
10955 ppd->vls_operational = val;
10956 if (!ppd->port)
10957 ret = -EINVAL;
10958 }
10959 break;
10960 /*
10961 * For link width, link width downgrade, and speed enable, always AND
10962 * the setting with what is actually supported. This has two benefits.
10963 * First, enabled can't have unsupported values, no matter what the
10964 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10965 * "fill in with your supported value" have all the bits in the
10966 * field set, so simply ANDing with supported has the desired result.
10967 */
10968 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10969 ppd->link_width_enabled = val & ppd->link_width_supported;
10970 break;
10971 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10972 ppd->link_width_downgrade_enabled =
10973 val & ppd->link_width_downgrade_supported;
10974 break;
10975 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10976 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10977 break;
10978 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10979 /*
10980 * HFI does not follow IB specs, save this value
10981 * so we can report it, if asked.
10982 */
10983 ppd->overrun_threshold = val;
10984 break;
10985 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10986 /*
10987 * HFI does not follow IB specs, save this value
10988 * so we can report it, if asked.
10989 */
10990 ppd->phy_error_threshold = val;
10991 break;
10992
10993 case HFI1_IB_CFG_MTU:
10994 set_send_length(ppd);
10995 break;
10996
10997 case HFI1_IB_CFG_PKEYS:
10998 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10999 set_partition_keys(ppd);
11000 break;
11001
11002 default:
11003 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11004 dd_dev_info(ppd->dd,
11005 "%s: which %s, val 0x%x: not implemented\n",
11006 __func__, ib_cfg_name(which), val);
11007 break;
11008 }
11009 return ret;
11010}
11011
11012/* begin functions related to vl arbitration table caching */
11013static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11014{
11015 int i;
11016
11017 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11018 VL_ARB_LOW_PRIO_TABLE_SIZE);
11019 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11020 VL_ARB_HIGH_PRIO_TABLE_SIZE);
11021
11022 /*
11023 * Note that we always return values directly from the
11024 * 'vl_arb_cache' (and do no CSR reads) in response to a
11025 * 'Get(VLArbTable)'. This is obviously correct after a
11026 * 'Set(VLArbTable)', since the cache will then be up to
11027 * date. But it's also correct prior to any 'Set(VLArbTable)'
11028 * since then both the cache, and the relevant h/w registers
11029 * will be zeroed.
11030 */
11031
11032 for (i = 0; i < MAX_PRIO_TABLE; i++)
11033 spin_lock_init(&ppd->vl_arb_cache[i].lock);
11034}
11035
11036/*
11037 * vl_arb_lock_cache
11038 *
11039 * All other vl_arb_* functions should be called only after locking
11040 * the cache.
11041 */
11042static inline struct vl_arb_cache *
11043vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11044{
11045 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11046 return NULL;
11047 spin_lock(&ppd->vl_arb_cache[idx].lock);
11048 return &ppd->vl_arb_cache[idx];
11049}
11050
11051static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11052{
11053 spin_unlock(&ppd->vl_arb_cache[idx].lock);
11054}
11055
11056static void vl_arb_get_cache(struct vl_arb_cache *cache,
11057 struct ib_vl_weight_elem *vl)
11058{
11059 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11060}
11061
11062static void vl_arb_set_cache(struct vl_arb_cache *cache,
11063 struct ib_vl_weight_elem *vl)
11064{
11065 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11066}
11067
11068static int vl_arb_match_cache(struct vl_arb_cache *cache,
11069 struct ib_vl_weight_elem *vl)
11070{
11071 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11072}
11073
11074/* end functions related to vl arbitration table caching */
11075
11076static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11077 u32 size, struct ib_vl_weight_elem *vl)
11078{
11079 struct hfi1_devdata *dd = ppd->dd;
11080 u64 reg;
11081 unsigned int i, is_up = 0;
11082 int drain, ret = 0;
11083
11084 mutex_lock(&ppd->hls_lock);
11085
11086 if (ppd->host_link_state & HLS_UP)
11087 is_up = 1;
11088
11089 drain = !is_ax(dd) && is_up;
11090
11091 if (drain)
11092 /*
11093 * Before adjusting VL arbitration weights, empty per-VL
11094 * FIFOs, otherwise a packet whose VL weight is being
11095 * set to 0 could get stuck in a FIFO with no chance to
11096 * egress.
11097 */
11098 ret = stop_drain_data_vls(dd);
11099
11100 if (ret) {
11101 dd_dev_err(
11102 dd,
11103 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11104 __func__);
11105 goto err;
11106 }
11107
11108 for (i = 0; i < size; i++, vl++) {
11109 /*
11110 * NOTE: The low priority shift and mask are used here, but
11111 * they are the same for both the low and high registers.
11112 */
11113 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11114 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11115 | (((u64)vl->weight
11116 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11117 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11118 write_csr(dd, target + (i * 8), reg);
11119 }
11120 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11121
11122 if (drain)
11123 open_fill_data_vls(dd); /* reopen all VLs */
11124
11125err:
11126 mutex_unlock(&ppd->hls_lock);
11127
11128 return ret;
11129}
11130
11131/*
11132 * Read one credit merge VL register.
11133 */
11134static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11135 struct vl_limit *vll)
11136{
11137 u64 reg = read_csr(dd, csr);
11138
11139 vll->dedicated = cpu_to_be16(
11140 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11141 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11142 vll->shared = cpu_to_be16(
11143 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11144 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11145}
11146
11147/*
11148 * Read the current credit merge limits.
11149 */
11150static int get_buffer_control(struct hfi1_devdata *dd,
11151 struct buffer_control *bc, u16 *overall_limit)
11152{
11153 u64 reg;
11154 int i;
11155
11156 /* not all entries are filled in */
11157 memset(bc, 0, sizeof(*bc));
11158
11159 /* OPA and HFI have a 1-1 mapping */
11160 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11161 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11162
11163 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11164 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11165
11166 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11167 bc->overall_shared_limit = cpu_to_be16(
11168 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11169 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11170 if (overall_limit)
11171 *overall_limit = (reg
11172 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11173 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11174 return sizeof(struct buffer_control);
11175}
11176
11177static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11178{
11179 u64 reg;
11180 int i;
11181
11182 /* each register contains 16 SC->VLnt mappings, 4 bits each */
11183 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11184 for (i = 0; i < sizeof(u64); i++) {
11185 u8 byte = *(((u8 *)&reg) + i);
11186
11187 dp->vlnt[2 * i] = byte & 0xf;
11188 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11189 }
11190
11191 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11192 for (i = 0; i < sizeof(u64); i++) {
11193 u8 byte = *(((u8 *)&reg) + i);
11194
11195 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11196 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11197 }
11198 return sizeof(struct sc2vlnt);
11199}
11200
11201static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11202 struct ib_vl_weight_elem *vl)
11203{
11204 unsigned int i;
11205
11206 for (i = 0; i < nelems; i++, vl++) {
11207 vl->vl = 0xf;
11208 vl->weight = 0;
11209 }
11210}
11211
11212static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11213{
11214 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11215 DC_SC_VL_VAL(15_0,
11216 0, dp->vlnt[0] & 0xf,
11217 1, dp->vlnt[1] & 0xf,
11218 2, dp->vlnt[2] & 0xf,
11219 3, dp->vlnt[3] & 0xf,
11220 4, dp->vlnt[4] & 0xf,
11221 5, dp->vlnt[5] & 0xf,
11222 6, dp->vlnt[6] & 0xf,
11223 7, dp->vlnt[7] & 0xf,
11224 8, dp->vlnt[8] & 0xf,
11225 9, dp->vlnt[9] & 0xf,
11226 10, dp->vlnt[10] & 0xf,
11227 11, dp->vlnt[11] & 0xf,
11228 12, dp->vlnt[12] & 0xf,
11229 13, dp->vlnt[13] & 0xf,
11230 14, dp->vlnt[14] & 0xf,
11231 15, dp->vlnt[15] & 0xf));
11232 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11233 DC_SC_VL_VAL(31_16,
11234 16, dp->vlnt[16] & 0xf,
11235 17, dp->vlnt[17] & 0xf,
11236 18, dp->vlnt[18] & 0xf,
11237 19, dp->vlnt[19] & 0xf,
11238 20, dp->vlnt[20] & 0xf,
11239 21, dp->vlnt[21] & 0xf,
11240 22, dp->vlnt[22] & 0xf,
11241 23, dp->vlnt[23] & 0xf,
11242 24, dp->vlnt[24] & 0xf,
11243 25, dp->vlnt[25] & 0xf,
11244 26, dp->vlnt[26] & 0xf,
11245 27, dp->vlnt[27] & 0xf,
11246 28, dp->vlnt[28] & 0xf,
11247 29, dp->vlnt[29] & 0xf,
11248 30, dp->vlnt[30] & 0xf,
11249 31, dp->vlnt[31] & 0xf));
11250}
11251
11252static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11253 u16 limit)
11254{
11255 if (limit != 0)
11256 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11257 what, (int)limit, idx);
11258}
11259
11260/* change only the shared limit portion of SendCmGLobalCredit */
11261static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11262{
11263 u64 reg;
11264
11265 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11266 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11267 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11268 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11269}
11270
11271/* change only the total credit limit portion of SendCmGLobalCredit */
11272static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11273{
11274 u64 reg;
11275
11276 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11277 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11278 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11279 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11280}
11281
11282/* set the given per-VL shared limit */
11283static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11284{
11285 u64 reg;
11286 u32 addr;
11287
11288 if (vl < TXE_NUM_DATA_VL)
11289 addr = SEND_CM_CREDIT_VL + (8 * vl);
11290 else
11291 addr = SEND_CM_CREDIT_VL15;
11292
11293 reg = read_csr(dd, addr);
11294 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11295 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11296 write_csr(dd, addr, reg);
11297}
11298
11299/* set the given per-VL dedicated limit */
11300static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11301{
11302 u64 reg;
11303 u32 addr;
11304
11305 if (vl < TXE_NUM_DATA_VL)
11306 addr = SEND_CM_CREDIT_VL + (8 * vl);
11307 else
11308 addr = SEND_CM_CREDIT_VL15;
11309
11310 reg = read_csr(dd, addr);
11311 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11312 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11313 write_csr(dd, addr, reg);
11314}
11315
11316/* spin until the given per-VL status mask bits clear */
11317static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11318 const char *which)
11319{
11320 unsigned long timeout;
11321 u64 reg;
11322
11323 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11324 while (1) {
11325 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11326
11327 if (reg == 0)
11328 return; /* success */
11329 if (time_after(jiffies, timeout))
11330 break; /* timed out */
11331 udelay(1);
11332 }
11333
11334 dd_dev_err(dd,
11335 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11336 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11337 /*
11338 * If this occurs, it is likely there was a credit loss on the link.
11339 * The only recovery from that is a link bounce.
11340 */
11341 dd_dev_err(dd,
11342 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
11343}
11344
11345/*
11346 * The number of credits on the VLs may be changed while everything
11347 * is "live", but the following algorithm must be followed due to
11348 * how the hardware is actually implemented. In particular,
11349 * Return_Credit_Status[] is the only correct status check.
11350 *
11351 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11352 * set Global_Shared_Credit_Limit = 0
11353 * use_all_vl = 1
11354 * mask0 = all VLs that are changing either dedicated or shared limits
11355 * set Shared_Limit[mask0] = 0
11356 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11357 * if (changing any dedicated limit)
11358 * mask1 = all VLs that are lowering dedicated limits
11359 * lower Dedicated_Limit[mask1]
11360 * spin until Return_Credit_Status[mask1] == 0
11361 * raise Dedicated_Limits
11362 * raise Shared_Limits
11363 * raise Global_Shared_Credit_Limit
11364 *
11365 * lower = if the new limit is lower, set the limit to the new value
11366 * raise = if the new limit is higher than the current value (may be changed
11367 * earlier in the algorithm), set the new limit to the new value
11368 */
11369int set_buffer_control(struct hfi1_pportdata *ppd,
11370 struct buffer_control *new_bc)
11371{
11372 struct hfi1_devdata *dd = ppd->dd;
11373 u64 changing_mask, ld_mask, stat_mask;
11374 int change_count;
11375 int i, use_all_mask;
11376 int this_shared_changing;
11377 int vl_count = 0, ret;
11378 /*
11379 * A0: add the variable any_shared_limit_changing below and in the
11380 * algorithm above. If removing A0 support, it can be removed.
11381 */
11382 int any_shared_limit_changing;
11383 struct buffer_control cur_bc;
11384 u8 changing[OPA_MAX_VLS];
11385 u8 lowering_dedicated[OPA_MAX_VLS];
11386 u16 cur_total;
11387 u32 new_total = 0;
11388 const u64 all_mask =
11389 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11390 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11391 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11392 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11393 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11394 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11395 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11396 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11397 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11398
11399#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11400#define NUM_USABLE_VLS 16 /* look at VL15 and less */
11401
11402 /* find the new total credits, do sanity check on unused VLs */
11403 for (i = 0; i < OPA_MAX_VLS; i++) {
11404 if (valid_vl(i)) {
11405 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11406 continue;
11407 }
11408 nonzero_msg(dd, i, "dedicated",
11409 be16_to_cpu(new_bc->vl[i].dedicated));
11410 nonzero_msg(dd, i, "shared",
11411 be16_to_cpu(new_bc->vl[i].shared));
11412 new_bc->vl[i].dedicated = 0;
11413 new_bc->vl[i].shared = 0;
11414 }
11415 new_total += be16_to_cpu(new_bc->overall_shared_limit);
11416
11417 /* fetch the current values */
11418 get_buffer_control(dd, &cur_bc, &cur_total);
11419
11420 /*
11421 * Create the masks we will use.
11422 */
11423 memset(changing, 0, sizeof(changing));
11424 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11425 /*
11426 * NOTE: Assumes that the individual VL bits are adjacent and in
11427 * increasing order
11428 */
11429 stat_mask =
11430 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11431 changing_mask = 0;
11432 ld_mask = 0;
11433 change_count = 0;
11434 any_shared_limit_changing = 0;
11435 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11436 if (!valid_vl(i))
11437 continue;
11438 this_shared_changing = new_bc->vl[i].shared
11439 != cur_bc.vl[i].shared;
11440 if (this_shared_changing)
11441 any_shared_limit_changing = 1;
11442 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11443 this_shared_changing) {
11444 changing[i] = 1;
11445 changing_mask |= stat_mask;
11446 change_count++;
11447 }
11448 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11449 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11450 lowering_dedicated[i] = 1;
11451 ld_mask |= stat_mask;
11452 }
11453 }
11454
11455 /* bracket the credit change with a total adjustment */
11456 if (new_total > cur_total)
11457 set_global_limit(dd, new_total);
11458
11459 /*
11460 * Start the credit change algorithm.
11461 */
11462 use_all_mask = 0;
11463 if ((be16_to_cpu(new_bc->overall_shared_limit) <
11464 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11465 (is_ax(dd) && any_shared_limit_changing)) {
11466 set_global_shared(dd, 0);
11467 cur_bc.overall_shared_limit = 0;
11468 use_all_mask = 1;
11469 }
11470
11471 for (i = 0; i < NUM_USABLE_VLS; i++) {
11472 if (!valid_vl(i))
11473 continue;
11474
11475 if (changing[i]) {
11476 set_vl_shared(dd, i, 0);
11477 cur_bc.vl[i].shared = 0;
11478 }
11479 }
11480
11481 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11482 "shared");
11483
11484 if (change_count > 0) {
11485 for (i = 0; i < NUM_USABLE_VLS; i++) {
11486 if (!valid_vl(i))
11487 continue;
11488
11489 if (lowering_dedicated[i]) {
11490 set_vl_dedicated(dd, i,
11491 be16_to_cpu(new_bc->
11492 vl[i].dedicated));
11493 cur_bc.vl[i].dedicated =
11494 new_bc->vl[i].dedicated;
11495 }
11496 }
11497
11498 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11499
11500 /* now raise all dedicated that are going up */
11501 for (i = 0; i < NUM_USABLE_VLS; i++) {
11502 if (!valid_vl(i))
11503 continue;
11504
11505 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11506 be16_to_cpu(cur_bc.vl[i].dedicated))
11507 set_vl_dedicated(dd, i,
11508 be16_to_cpu(new_bc->
11509 vl[i].dedicated));
11510 }
11511 }
11512
11513 /* next raise all shared that are going up */
11514 for (i = 0; i < NUM_USABLE_VLS; i++) {
11515 if (!valid_vl(i))
11516 continue;
11517
11518 if (be16_to_cpu(new_bc->vl[i].shared) >
11519 be16_to_cpu(cur_bc.vl[i].shared))
11520 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11521 }
11522
11523 /* finally raise the global shared */
11524 if (be16_to_cpu(new_bc->overall_shared_limit) >
11525 be16_to_cpu(cur_bc.overall_shared_limit))
11526 set_global_shared(dd,
11527 be16_to_cpu(new_bc->overall_shared_limit));
11528
11529 /* bracket the credit change with a total adjustment */
11530 if (new_total < cur_total)
11531 set_global_limit(dd, new_total);
11532
11533 /*
11534 * Determine the actual number of operational VLS using the number of
11535 * dedicated and shared credits for each VL.
11536 */
11537 if (change_count > 0) {
11538 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11539 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11540 be16_to_cpu(new_bc->vl[i].shared) > 0)
11541 vl_count++;
11542 ppd->actual_vls_operational = vl_count;
11543 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11544 ppd->actual_vls_operational :
11545 ppd->vls_operational,
11546 NULL);
11547 if (ret == 0)
11548 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11549 ppd->actual_vls_operational :
11550 ppd->vls_operational, NULL);
11551 if (ret)
11552 return ret;
11553 }
11554 return 0;
11555}
11556
11557/*
11558 * Read the given fabric manager table. Return the size of the
11559 * table (in bytes) on success, and a negative error code on
11560 * failure.
11561 */
11562int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11563
11564{
11565 int size;
11566 struct vl_arb_cache *vlc;
11567
11568 switch (which) {
11569 case FM_TBL_VL_HIGH_ARB:
11570 size = 256;
11571 /*
11572 * OPA specifies 128 elements (of 2 bytes each), though
11573 * HFI supports only 16 elements in h/w.
11574 */
11575 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11576 vl_arb_get_cache(vlc, t);
11577 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11578 break;
11579 case FM_TBL_VL_LOW_ARB:
11580 size = 256;
11581 /*
11582 * OPA specifies 128 elements (of 2 bytes each), though
11583 * HFI supports only 16 elements in h/w.
11584 */
11585 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11586 vl_arb_get_cache(vlc, t);
11587 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11588 break;
11589 case FM_TBL_BUFFER_CONTROL:
11590 size = get_buffer_control(ppd->dd, t, NULL);
11591 break;
11592 case FM_TBL_SC2VLNT:
11593 size = get_sc2vlnt(ppd->dd, t);
11594 break;
11595 case FM_TBL_VL_PREEMPT_ELEMS:
11596 size = 256;
11597 /* OPA specifies 128 elements, of 2 bytes each */
11598 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11599 break;
11600 case FM_TBL_VL_PREEMPT_MATRIX:
11601 size = 256;
11602 /*
11603 * OPA specifies that this is the same size as the VL
11604 * arbitration tables (i.e., 256 bytes).
11605 */
11606 break;
11607 default:
11608 return -EINVAL;
11609 }
11610 return size;
11611}
11612
11613/*
11614 * Write the given fabric manager table.
11615 */
11616int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11617{
11618 int ret = 0;
11619 struct vl_arb_cache *vlc;
11620
11621 switch (which) {
11622 case FM_TBL_VL_HIGH_ARB:
11623 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11624 if (vl_arb_match_cache(vlc, t)) {
11625 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11626 break;
11627 }
11628 vl_arb_set_cache(vlc, t);
11629 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11630 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11631 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11632 break;
11633 case FM_TBL_VL_LOW_ARB:
11634 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11635 if (vl_arb_match_cache(vlc, t)) {
11636 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11637 break;
11638 }
11639 vl_arb_set_cache(vlc, t);
11640 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11641 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11642 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11643 break;
11644 case FM_TBL_BUFFER_CONTROL:
11645 ret = set_buffer_control(ppd, t);
11646 break;
11647 case FM_TBL_SC2VLNT:
11648 set_sc2vlnt(ppd->dd, t);
11649 break;
11650 default:
11651 ret = -EINVAL;
11652 }
11653 return ret;
11654}
11655
11656/*
11657 * Disable all data VLs.
11658 *
11659 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11660 */
11661static int disable_data_vls(struct hfi1_devdata *dd)
11662{
11663 if (is_ax(dd))
11664 return 1;
11665
11666 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11667
11668 return 0;
11669}
11670
11671/*
11672 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11673 * Just re-enables all data VLs (the "fill" part happens
11674 * automatically - the name was chosen for symmetry with
11675 * stop_drain_data_vls()).
11676 *
11677 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11678 */
11679int open_fill_data_vls(struct hfi1_devdata *dd)
11680{
11681 if (is_ax(dd))
11682 return 1;
11683
11684 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11685
11686 return 0;
11687}
11688
11689/*
11690 * drain_data_vls() - assumes that disable_data_vls() has been called,
11691 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11692 * engines to drop to 0.
11693 */
11694static void drain_data_vls(struct hfi1_devdata *dd)
11695{
11696 sc_wait(dd);
11697 sdma_wait(dd);
11698 pause_for_credit_return(dd);
11699}
11700
11701/*
11702 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11703 *
11704 * Use open_fill_data_vls() to resume using data VLs. This pair is
11705 * meant to be used like this:
11706 *
11707 * stop_drain_data_vls(dd);
11708 * // do things with per-VL resources
11709 * open_fill_data_vls(dd);
11710 */
11711int stop_drain_data_vls(struct hfi1_devdata *dd)
11712{
11713 int ret;
11714
11715 ret = disable_data_vls(dd);
11716 if (ret == 0)
11717 drain_data_vls(dd);
11718
11719 return ret;
11720}
11721
11722/*
11723 * Convert a nanosecond time to a cclock count. No matter how slow
11724 * the cclock, a non-zero ns will always have a non-zero result.
11725 */
11726u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11727{
11728 u32 cclocks;
11729
11730 if (dd->icode == ICODE_FPGA_EMULATION)
11731 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11732 else /* simulation pretends to be ASIC */
11733 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11734 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11735 cclocks = 1;
11736 return cclocks;
11737}
11738
11739/*
11740 * Convert a cclock count to nanoseconds. Not matter how slow
11741 * the cclock, a non-zero cclocks will always have a non-zero result.
11742 */
11743u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11744{
11745 u32 ns;
11746
11747 if (dd->icode == ICODE_FPGA_EMULATION)
11748 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11749 else /* simulation pretends to be ASIC */
11750 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11751 if (cclocks && !ns)
11752 ns = 1;
11753 return ns;
11754}
11755
11756/*
11757 * Dynamically adjust the receive interrupt timeout for a context based on
11758 * incoming packet rate.
11759 *
11760 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11761 */
11762static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11763{
11764 struct hfi1_devdata *dd = rcd->dd;
11765 u32 timeout = rcd->rcvavail_timeout;
11766
11767 /*
11768 * This algorithm doubles or halves the timeout depending on whether
11769 * the number of packets received in this interrupt were less than or
11770 * greater equal the interrupt count.
11771 *
11772 * The calculations below do not allow a steady state to be achieved.
11773 * Only at the endpoints it is possible to have an unchanging
11774 * timeout.
11775 */
11776 if (npkts < rcv_intr_count) {
11777 /*
11778 * Not enough packets arrived before the timeout, adjust
11779 * timeout downward.
11780 */
11781 if (timeout < 2) /* already at minimum? */
11782 return;
11783 timeout >>= 1;
11784 } else {
11785 /*
11786 * More than enough packets arrived before the timeout, adjust
11787 * timeout upward.
11788 */
11789 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11790 return;
11791 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11792 }
11793
11794 rcd->rcvavail_timeout = timeout;
11795 /*
11796 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11797 * been verified to be in range
11798 */
11799 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11800 (u64)timeout <<
11801 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11802}
11803
11804void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11805 u32 intr_adjust, u32 npkts)
11806{
11807 struct hfi1_devdata *dd = rcd->dd;
11808 u64 reg;
11809 u32 ctxt = rcd->ctxt;
11810
11811 /*
11812 * Need to write timeout register before updating RcvHdrHead to ensure
11813 * that a new value is used when the HW decides to restart counting.
11814 */
11815 if (intr_adjust)
11816 adjust_rcv_timeout(rcd, npkts);
11817 if (updegr) {
11818 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11819 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11820 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11821 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011822 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11823 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11824 << RCV_HDR_HEAD_HEAD_SHIFT);
11825 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011826}
11827
11828u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11829{
11830 u32 head, tail;
11831
11832 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11833 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11834
11835 if (rcd->rcvhdrtail_kvaddr)
11836 tail = get_rcvhdrtail(rcd);
11837 else
11838 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11839
11840 return head == tail;
11841}
11842
11843/*
11844 * Context Control and Receive Array encoding for buffer size:
11845 * 0x0 invalid
11846 * 0x1 4 KB
11847 * 0x2 8 KB
11848 * 0x3 16 KB
11849 * 0x4 32 KB
11850 * 0x5 64 KB
11851 * 0x6 128 KB
11852 * 0x7 256 KB
11853 * 0x8 512 KB (Receive Array only)
11854 * 0x9 1 MB (Receive Array only)
11855 * 0xa 2 MB (Receive Array only)
11856 *
11857 * 0xB-0xF - reserved (Receive Array only)
11858 *
11859 *
11860 * This routine assumes that the value has already been sanity checked.
11861 */
11862static u32 encoded_size(u32 size)
11863{
11864 switch (size) {
11865 case 4 * 1024: return 0x1;
11866 case 8 * 1024: return 0x2;
11867 case 16 * 1024: return 0x3;
11868 case 32 * 1024: return 0x4;
11869 case 64 * 1024: return 0x5;
11870 case 128 * 1024: return 0x6;
11871 case 256 * 1024: return 0x7;
11872 case 512 * 1024: return 0x8;
11873 case 1 * 1024 * 1024: return 0x9;
11874 case 2 * 1024 * 1024: return 0xa;
11875 }
11876 return 0x1; /* if invalid, go with the minimum size */
11877}
11878
11879void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11880 struct hfi1_ctxtdata *rcd)
11881{
11882 u64 rcvctrl, reg;
11883 int did_enable = 0;
11884 u16 ctxt;
11885
11886 if (!rcd)
11887 return;
11888
11889 ctxt = rcd->ctxt;
11890
11891 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11892
11893 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11894 /* if the context already enabled, don't do the extra steps */
11895 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11896 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11897 /* reset the tail and hdr addresses, and sequence count */
11898 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11899 rcd->rcvhdrq_dma);
11900 if (rcd->rcvhdrtail_kvaddr)
11901 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11902 rcd->rcvhdrqtailaddr_dma);
11903 rcd->seq_cnt = 1;
11904
11905 /* reset the cached receive header queue head value */
11906 rcd->head = 0;
11907
11908 /*
11909 * Zero the receive header queue so we don't get false
11910 * positives when checking the sequence number. The
11911 * sequence numbers could land exactly on the same spot.
11912 * E.g. a rcd restart before the receive header wrapped.
11913 */
11914 memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11915
11916 /* starting timeout */
11917 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11918
11919 /* enable the context */
11920 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11921
11922 /* clean the egr buffer size first */
11923 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11924 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11925 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11926 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11927
11928 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11929 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11930 did_enable = 1;
11931
11932 /* zero RcvEgrIndexHead */
11933 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11934
11935 /* set eager count and base index */
11936 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11937 & RCV_EGR_CTRL_EGR_CNT_MASK)
11938 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11939 (((rcd->eager_base >> RCV_SHIFT)
11940 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11941 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11942 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11943
11944 /*
11945 * Set TID (expected) count and base index.
11946 * rcd->expected_count is set to individual RcvArray entries,
11947 * not pairs, and the CSR takes a pair-count in groups of
11948 * four, so divide by 8.
11949 */
11950 reg = (((rcd->expected_count >> RCV_SHIFT)
11951 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11952 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11953 (((rcd->expected_base >> RCV_SHIFT)
11954 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11955 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11956 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11957 if (ctxt == HFI1_CTRL_CTXT)
11958 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11959 }
11960 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11961 write_csr(dd, RCV_VL15, 0);
11962 /*
11963 * When receive context is being disabled turn on tail
11964 * update with a dummy tail address and then disable
11965 * receive context.
11966 */
11967 if (dd->rcvhdrtail_dummy_dma) {
11968 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11969 dd->rcvhdrtail_dummy_dma);
11970 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11971 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11972 }
11973
11974 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11975 }
David Brazdil0f672f62019-12-10 10:32:29 +000011976 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
11977 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11978 IS_RCVAVAIL_START + rcd->ctxt, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011979 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
David Brazdil0f672f62019-12-10 10:32:29 +000011980 }
11981 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
11982 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11983 IS_RCVAVAIL_START + rcd->ctxt, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011984 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
David Brazdil0f672f62019-12-10 10:32:29 +000011985 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011986 if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11987 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11988 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11989 /* See comment on RcvCtxtCtrl.TailUpd above */
11990 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11991 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11992 }
11993 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11994 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11995 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11996 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11997 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11998 /*
11999 * In one-packet-per-eager mode, the size comes from
12000 * the RcvArray entry.
12001 */
12002 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12003 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12004 }
12005 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12006 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12007 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12008 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12009 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12010 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12011 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12012 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12013 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12014 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
David Brazdil0f672f62019-12-10 10:32:29 +000012015 if (op & HFI1_RCVCTRL_URGENT_ENB)
12016 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12017 IS_RCVURGENT_START + rcd->ctxt, true);
12018 if (op & HFI1_RCVCTRL_URGENT_DIS)
12019 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12020 IS_RCVURGENT_START + rcd->ctxt, false);
12021
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012022 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12023 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12024
12025 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
12026 if (did_enable &&
12027 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12028 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12029 if (reg != 0) {
12030 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12031 ctxt, reg);
12032 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12033 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12034 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12035 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12036 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12037 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12038 ctxt, reg, reg == 0 ? "not" : "still");
12039 }
12040 }
12041
12042 if (did_enable) {
12043 /*
12044 * The interrupt timeout and count must be set after
12045 * the context is enabled to take effect.
12046 */
12047 /* set interrupt timeout */
12048 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12049 (u64)rcd->rcvavail_timeout <<
12050 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12051
12052 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12053 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12054 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12055 }
12056
12057 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12058 /*
12059 * If the context has been disabled and the Tail Update has
12060 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12061 * so it doesn't contain an address that is invalid.
12062 */
12063 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12064 dd->rcvhdrtail_dummy_dma);
12065}
12066
12067u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12068{
12069 int ret;
12070 u64 val = 0;
12071
12072 if (namep) {
12073 ret = dd->cntrnameslen;
12074 *namep = dd->cntrnames;
12075 } else {
12076 const struct cntr_entry *entry;
12077 int i, j;
12078
12079 ret = (dd->ndevcntrs) * sizeof(u64);
12080
12081 /* Get the start of the block of counters */
12082 *cntrp = dd->cntrs;
12083
12084 /*
12085 * Now go and fill in each counter in the block.
12086 */
12087 for (i = 0; i < DEV_CNTR_LAST; i++) {
12088 entry = &dev_cntrs[i];
12089 hfi1_cdbg(CNTR, "reading %s", entry->name);
12090 if (entry->flags & CNTR_DISABLED) {
12091 /* Nothing */
12092 hfi1_cdbg(CNTR, "\tDisabled\n");
12093 } else {
12094 if (entry->flags & CNTR_VL) {
12095 hfi1_cdbg(CNTR, "\tPer VL\n");
12096 for (j = 0; j < C_VL_COUNT; j++) {
12097 val = entry->rw_cntr(entry,
12098 dd, j,
12099 CNTR_MODE_R,
12100 0);
12101 hfi1_cdbg(
12102 CNTR,
12103 "\t\tRead 0x%llx for %d\n",
12104 val, j);
12105 dd->cntrs[entry->offset + j] =
12106 val;
12107 }
12108 } else if (entry->flags & CNTR_SDMA) {
12109 hfi1_cdbg(CNTR,
12110 "\t Per SDMA Engine\n");
12111 for (j = 0; j < chip_sdma_engines(dd);
12112 j++) {
12113 val =
12114 entry->rw_cntr(entry, dd, j,
12115 CNTR_MODE_R, 0);
12116 hfi1_cdbg(CNTR,
12117 "\t\tRead 0x%llx for %d\n",
12118 val, j);
12119 dd->cntrs[entry->offset + j] =
12120 val;
12121 }
12122 } else {
12123 val = entry->rw_cntr(entry, dd,
12124 CNTR_INVALID_VL,
12125 CNTR_MODE_R, 0);
12126 dd->cntrs[entry->offset] = val;
12127 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12128 }
12129 }
12130 }
12131 }
12132 return ret;
12133}
12134
12135/*
12136 * Used by sysfs to create files for hfi stats to read
12137 */
12138u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12139{
12140 int ret;
12141 u64 val = 0;
12142
12143 if (namep) {
12144 ret = ppd->dd->portcntrnameslen;
12145 *namep = ppd->dd->portcntrnames;
12146 } else {
12147 const struct cntr_entry *entry;
12148 int i, j;
12149
12150 ret = ppd->dd->nportcntrs * sizeof(u64);
12151 *cntrp = ppd->cntrs;
12152
12153 for (i = 0; i < PORT_CNTR_LAST; i++) {
12154 entry = &port_cntrs[i];
12155 hfi1_cdbg(CNTR, "reading %s", entry->name);
12156 if (entry->flags & CNTR_DISABLED) {
12157 /* Nothing */
12158 hfi1_cdbg(CNTR, "\tDisabled\n");
12159 continue;
12160 }
12161
12162 if (entry->flags & CNTR_VL) {
12163 hfi1_cdbg(CNTR, "\tPer VL");
12164 for (j = 0; j < C_VL_COUNT; j++) {
12165 val = entry->rw_cntr(entry, ppd, j,
12166 CNTR_MODE_R,
12167 0);
12168 hfi1_cdbg(
12169 CNTR,
12170 "\t\tRead 0x%llx for %d",
12171 val, j);
12172 ppd->cntrs[entry->offset + j] = val;
12173 }
12174 } else {
12175 val = entry->rw_cntr(entry, ppd,
12176 CNTR_INVALID_VL,
12177 CNTR_MODE_R,
12178 0);
12179 ppd->cntrs[entry->offset] = val;
12180 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12181 }
12182 }
12183 }
12184 return ret;
12185}
12186
12187static void free_cntrs(struct hfi1_devdata *dd)
12188{
12189 struct hfi1_pportdata *ppd;
12190 int i;
12191
12192 if (dd->synth_stats_timer.function)
12193 del_timer_sync(&dd->synth_stats_timer);
12194 ppd = (struct hfi1_pportdata *)(dd + 1);
12195 for (i = 0; i < dd->num_pports; i++, ppd++) {
12196 kfree(ppd->cntrs);
12197 kfree(ppd->scntrs);
12198 free_percpu(ppd->ibport_data.rvp.rc_acks);
12199 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12200 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12201 ppd->cntrs = NULL;
12202 ppd->scntrs = NULL;
12203 ppd->ibport_data.rvp.rc_acks = NULL;
12204 ppd->ibport_data.rvp.rc_qacks = NULL;
12205 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12206 }
12207 kfree(dd->portcntrnames);
12208 dd->portcntrnames = NULL;
12209 kfree(dd->cntrs);
12210 dd->cntrs = NULL;
12211 kfree(dd->scntrs);
12212 dd->scntrs = NULL;
12213 kfree(dd->cntrnames);
12214 dd->cntrnames = NULL;
12215 if (dd->update_cntr_wq) {
12216 destroy_workqueue(dd->update_cntr_wq);
12217 dd->update_cntr_wq = NULL;
12218 }
12219}
12220
12221static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12222 u64 *psval, void *context, int vl)
12223{
12224 u64 val;
12225 u64 sval = *psval;
12226
12227 if (entry->flags & CNTR_DISABLED) {
12228 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12229 return 0;
12230 }
12231
12232 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12233
12234 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12235
12236 /* If its a synthetic counter there is more work we need to do */
12237 if (entry->flags & CNTR_SYNTH) {
12238 if (sval == CNTR_MAX) {
12239 /* No need to read already saturated */
12240 return CNTR_MAX;
12241 }
12242
12243 if (entry->flags & CNTR_32BIT) {
12244 /* 32bit counters can wrap multiple times */
12245 u64 upper = sval >> 32;
12246 u64 lower = (sval << 32) >> 32;
12247
12248 if (lower > val) { /* hw wrapped */
12249 if (upper == CNTR_32BIT_MAX)
12250 val = CNTR_MAX;
12251 else
12252 upper++;
12253 }
12254
12255 if (val != CNTR_MAX)
12256 val = (upper << 32) | val;
12257
12258 } else {
12259 /* If we rolled we are saturated */
12260 if ((val < sval) || (val > CNTR_MAX))
12261 val = CNTR_MAX;
12262 }
12263 }
12264
12265 *psval = val;
12266
12267 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12268
12269 return val;
12270}
12271
12272static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12273 struct cntr_entry *entry,
12274 u64 *psval, void *context, int vl, u64 data)
12275{
12276 u64 val;
12277
12278 if (entry->flags & CNTR_DISABLED) {
12279 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12280 return 0;
12281 }
12282
12283 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12284
12285 if (entry->flags & CNTR_SYNTH) {
12286 *psval = data;
12287 if (entry->flags & CNTR_32BIT) {
12288 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12289 (data << 32) >> 32);
12290 val = data; /* return the full 64bit value */
12291 } else {
12292 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12293 data);
12294 }
12295 } else {
12296 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12297 }
12298
12299 *psval = val;
12300
12301 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12302
12303 return val;
12304}
12305
12306u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12307{
12308 struct cntr_entry *entry;
12309 u64 *sval;
12310
12311 entry = &dev_cntrs[index];
12312 sval = dd->scntrs + entry->offset;
12313
12314 if (vl != CNTR_INVALID_VL)
12315 sval += vl;
12316
12317 return read_dev_port_cntr(dd, entry, sval, dd, vl);
12318}
12319
12320u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12321{
12322 struct cntr_entry *entry;
12323 u64 *sval;
12324
12325 entry = &dev_cntrs[index];
12326 sval = dd->scntrs + entry->offset;
12327
12328 if (vl != CNTR_INVALID_VL)
12329 sval += vl;
12330
12331 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12332}
12333
12334u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12335{
12336 struct cntr_entry *entry;
12337 u64 *sval;
12338
12339 entry = &port_cntrs[index];
12340 sval = ppd->scntrs + entry->offset;
12341
12342 if (vl != CNTR_INVALID_VL)
12343 sval += vl;
12344
12345 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12346 (index <= C_RCV_HDR_OVF_LAST)) {
12347 /* We do not want to bother for disabled contexts */
12348 return 0;
12349 }
12350
12351 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12352}
12353
12354u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12355{
12356 struct cntr_entry *entry;
12357 u64 *sval;
12358
12359 entry = &port_cntrs[index];
12360 sval = ppd->scntrs + entry->offset;
12361
12362 if (vl != CNTR_INVALID_VL)
12363 sval += vl;
12364
12365 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12366 (index <= C_RCV_HDR_OVF_LAST)) {
12367 /* We do not want to bother for disabled contexts */
12368 return 0;
12369 }
12370
12371 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12372}
12373
12374static void do_update_synth_timer(struct work_struct *work)
12375{
12376 u64 cur_tx;
12377 u64 cur_rx;
12378 u64 total_flits;
12379 u8 update = 0;
12380 int i, j, vl;
12381 struct hfi1_pportdata *ppd;
12382 struct cntr_entry *entry;
12383 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12384 update_cntr_work);
12385
12386 /*
12387 * Rather than keep beating on the CSRs pick a minimal set that we can
12388 * check to watch for potential roll over. We can do this by looking at
12389 * the number of flits sent/recv. If the total flits exceeds 32bits then
12390 * we have to iterate all the counters and update.
12391 */
12392 entry = &dev_cntrs[C_DC_RCV_FLITS];
12393 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12394
12395 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12396 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12397
12398 hfi1_cdbg(
12399 CNTR,
12400 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12401 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12402
12403 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12404 /*
12405 * May not be strictly necessary to update but it won't hurt and
12406 * simplifies the logic here.
12407 */
12408 update = 1;
12409 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12410 dd->unit);
12411 } else {
12412 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12413 hfi1_cdbg(CNTR,
12414 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12415 total_flits, (u64)CNTR_32BIT_MAX);
12416 if (total_flits >= CNTR_32BIT_MAX) {
12417 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12418 dd->unit);
12419 update = 1;
12420 }
12421 }
12422
12423 if (update) {
12424 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12425 for (i = 0; i < DEV_CNTR_LAST; i++) {
12426 entry = &dev_cntrs[i];
12427 if (entry->flags & CNTR_VL) {
12428 for (vl = 0; vl < C_VL_COUNT; vl++)
12429 read_dev_cntr(dd, i, vl);
12430 } else {
12431 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12432 }
12433 }
12434 ppd = (struct hfi1_pportdata *)(dd + 1);
12435 for (i = 0; i < dd->num_pports; i++, ppd++) {
12436 for (j = 0; j < PORT_CNTR_LAST; j++) {
12437 entry = &port_cntrs[j];
12438 if (entry->flags & CNTR_VL) {
12439 for (vl = 0; vl < C_VL_COUNT; vl++)
12440 read_port_cntr(ppd, j, vl);
12441 } else {
12442 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12443 }
12444 }
12445 }
12446
12447 /*
12448 * We want the value in the register. The goal is to keep track
12449 * of the number of "ticks" not the counter value. In other
12450 * words if the register rolls we want to notice it and go ahead
12451 * and force an update.
12452 */
12453 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12454 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12455 CNTR_MODE_R, 0);
12456
12457 entry = &dev_cntrs[C_DC_RCV_FLITS];
12458 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12459 CNTR_MODE_R, 0);
12460
12461 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12462 dd->unit, dd->last_tx, dd->last_rx);
12463
12464 } else {
12465 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12466 }
12467}
12468
12469static void update_synth_timer(struct timer_list *t)
12470{
12471 struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12472
12473 queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12474 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12475}
12476
12477#define C_MAX_NAME 16 /* 15 chars + one for /0 */
12478static int init_cntrs(struct hfi1_devdata *dd)
12479{
12480 int i, rcv_ctxts, j;
12481 size_t sz;
12482 char *p;
12483 char name[C_MAX_NAME];
12484 struct hfi1_pportdata *ppd;
12485 const char *bit_type_32 = ",32";
12486 const int bit_type_32_sz = strlen(bit_type_32);
12487 u32 sdma_engines = chip_sdma_engines(dd);
12488
12489 /* set up the stats timer; the add_timer is done at the end */
12490 timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12491
12492 /***********************/
12493 /* per device counters */
12494 /***********************/
12495
12496 /* size names and determine how many we have*/
12497 dd->ndevcntrs = 0;
12498 sz = 0;
12499
12500 for (i = 0; i < DEV_CNTR_LAST; i++) {
12501 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12502 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12503 continue;
12504 }
12505
12506 if (dev_cntrs[i].flags & CNTR_VL) {
12507 dev_cntrs[i].offset = dd->ndevcntrs;
12508 for (j = 0; j < C_VL_COUNT; j++) {
12509 snprintf(name, C_MAX_NAME, "%s%d",
12510 dev_cntrs[i].name, vl_from_idx(j));
12511 sz += strlen(name);
12512 /* Add ",32" for 32-bit counters */
12513 if (dev_cntrs[i].flags & CNTR_32BIT)
12514 sz += bit_type_32_sz;
12515 sz++;
12516 dd->ndevcntrs++;
12517 }
12518 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12519 dev_cntrs[i].offset = dd->ndevcntrs;
12520 for (j = 0; j < sdma_engines; j++) {
12521 snprintf(name, C_MAX_NAME, "%s%d",
12522 dev_cntrs[i].name, j);
12523 sz += strlen(name);
12524 /* Add ",32" for 32-bit counters */
12525 if (dev_cntrs[i].flags & CNTR_32BIT)
12526 sz += bit_type_32_sz;
12527 sz++;
12528 dd->ndevcntrs++;
12529 }
12530 } else {
12531 /* +1 for newline. */
12532 sz += strlen(dev_cntrs[i].name) + 1;
12533 /* Add ",32" for 32-bit counters */
12534 if (dev_cntrs[i].flags & CNTR_32BIT)
12535 sz += bit_type_32_sz;
12536 dev_cntrs[i].offset = dd->ndevcntrs;
12537 dd->ndevcntrs++;
12538 }
12539 }
12540
12541 /* allocate space for the counter values */
12542 dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12543 GFP_KERNEL);
12544 if (!dd->cntrs)
12545 goto bail;
12546
12547 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12548 if (!dd->scntrs)
12549 goto bail;
12550
12551 /* allocate space for the counter names */
12552 dd->cntrnameslen = sz;
12553 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12554 if (!dd->cntrnames)
12555 goto bail;
12556
12557 /* fill in the names */
12558 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12559 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12560 /* Nothing */
12561 } else if (dev_cntrs[i].flags & CNTR_VL) {
12562 for (j = 0; j < C_VL_COUNT; j++) {
12563 snprintf(name, C_MAX_NAME, "%s%d",
12564 dev_cntrs[i].name,
12565 vl_from_idx(j));
12566 memcpy(p, name, strlen(name));
12567 p += strlen(name);
12568
12569 /* Counter is 32 bits */
12570 if (dev_cntrs[i].flags & CNTR_32BIT) {
12571 memcpy(p, bit_type_32, bit_type_32_sz);
12572 p += bit_type_32_sz;
12573 }
12574
12575 *p++ = '\n';
12576 }
12577 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12578 for (j = 0; j < sdma_engines; j++) {
12579 snprintf(name, C_MAX_NAME, "%s%d",
12580 dev_cntrs[i].name, j);
12581 memcpy(p, name, strlen(name));
12582 p += strlen(name);
12583
12584 /* Counter is 32 bits */
12585 if (dev_cntrs[i].flags & CNTR_32BIT) {
12586 memcpy(p, bit_type_32, bit_type_32_sz);
12587 p += bit_type_32_sz;
12588 }
12589
12590 *p++ = '\n';
12591 }
12592 } else {
12593 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12594 p += strlen(dev_cntrs[i].name);
12595
12596 /* Counter is 32 bits */
12597 if (dev_cntrs[i].flags & CNTR_32BIT) {
12598 memcpy(p, bit_type_32, bit_type_32_sz);
12599 p += bit_type_32_sz;
12600 }
12601
12602 *p++ = '\n';
12603 }
12604 }
12605
12606 /*********************/
12607 /* per port counters */
12608 /*********************/
12609
12610 /*
12611 * Go through the counters for the overflows and disable the ones we
12612 * don't need. This varies based on platform so we need to do it
12613 * dynamically here.
12614 */
12615 rcv_ctxts = dd->num_rcv_contexts;
12616 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12617 i <= C_RCV_HDR_OVF_LAST; i++) {
12618 port_cntrs[i].flags |= CNTR_DISABLED;
12619 }
12620
12621 /* size port counter names and determine how many we have*/
12622 sz = 0;
12623 dd->nportcntrs = 0;
12624 for (i = 0; i < PORT_CNTR_LAST; i++) {
12625 if (port_cntrs[i].flags & CNTR_DISABLED) {
12626 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12627 continue;
12628 }
12629
12630 if (port_cntrs[i].flags & CNTR_VL) {
12631 port_cntrs[i].offset = dd->nportcntrs;
12632 for (j = 0; j < C_VL_COUNT; j++) {
12633 snprintf(name, C_MAX_NAME, "%s%d",
12634 port_cntrs[i].name, vl_from_idx(j));
12635 sz += strlen(name);
12636 /* Add ",32" for 32-bit counters */
12637 if (port_cntrs[i].flags & CNTR_32BIT)
12638 sz += bit_type_32_sz;
12639 sz++;
12640 dd->nportcntrs++;
12641 }
12642 } else {
12643 /* +1 for newline */
12644 sz += strlen(port_cntrs[i].name) + 1;
12645 /* Add ",32" for 32-bit counters */
12646 if (port_cntrs[i].flags & CNTR_32BIT)
12647 sz += bit_type_32_sz;
12648 port_cntrs[i].offset = dd->nportcntrs;
12649 dd->nportcntrs++;
12650 }
12651 }
12652
12653 /* allocate space for the counter names */
12654 dd->portcntrnameslen = sz;
12655 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12656 if (!dd->portcntrnames)
12657 goto bail;
12658
12659 /* fill in port cntr names */
12660 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12661 if (port_cntrs[i].flags & CNTR_DISABLED)
12662 continue;
12663
12664 if (port_cntrs[i].flags & CNTR_VL) {
12665 for (j = 0; j < C_VL_COUNT; j++) {
12666 snprintf(name, C_MAX_NAME, "%s%d",
12667 port_cntrs[i].name, vl_from_idx(j));
12668 memcpy(p, name, strlen(name));
12669 p += strlen(name);
12670
12671 /* Counter is 32 bits */
12672 if (port_cntrs[i].flags & CNTR_32BIT) {
12673 memcpy(p, bit_type_32, bit_type_32_sz);
12674 p += bit_type_32_sz;
12675 }
12676
12677 *p++ = '\n';
12678 }
12679 } else {
12680 memcpy(p, port_cntrs[i].name,
12681 strlen(port_cntrs[i].name));
12682 p += strlen(port_cntrs[i].name);
12683
12684 /* Counter is 32 bits */
12685 if (port_cntrs[i].flags & CNTR_32BIT) {
12686 memcpy(p, bit_type_32, bit_type_32_sz);
12687 p += bit_type_32_sz;
12688 }
12689
12690 *p++ = '\n';
12691 }
12692 }
12693
12694 /* allocate per port storage for counter values */
12695 ppd = (struct hfi1_pportdata *)(dd + 1);
12696 for (i = 0; i < dd->num_pports; i++, ppd++) {
12697 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12698 if (!ppd->cntrs)
12699 goto bail;
12700
12701 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12702 if (!ppd->scntrs)
12703 goto bail;
12704 }
12705
12706 /* CPU counters need to be allocated and zeroed */
12707 if (init_cpu_counters(dd))
12708 goto bail;
12709
12710 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12711 WQ_MEM_RECLAIM, dd->unit);
12712 if (!dd->update_cntr_wq)
12713 goto bail;
12714
12715 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12716
12717 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12718 return 0;
12719bail:
12720 free_cntrs(dd);
12721 return -ENOMEM;
12722}
12723
12724static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12725{
12726 switch (chip_lstate) {
12727 default:
12728 dd_dev_err(dd,
12729 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12730 chip_lstate);
12731 /* fall through */
12732 case LSTATE_DOWN:
12733 return IB_PORT_DOWN;
12734 case LSTATE_INIT:
12735 return IB_PORT_INIT;
12736 case LSTATE_ARMED:
12737 return IB_PORT_ARMED;
12738 case LSTATE_ACTIVE:
12739 return IB_PORT_ACTIVE;
12740 }
12741}
12742
12743u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12744{
12745 /* look at the HFI meta-states only */
12746 switch (chip_pstate & 0xf0) {
12747 default:
12748 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12749 chip_pstate);
12750 /* fall through */
12751 case PLS_DISABLED:
12752 return IB_PORTPHYSSTATE_DISABLED;
12753 case PLS_OFFLINE:
12754 return OPA_PORTPHYSSTATE_OFFLINE;
12755 case PLS_POLLING:
12756 return IB_PORTPHYSSTATE_POLLING;
12757 case PLS_CONFIGPHY:
12758 return IB_PORTPHYSSTATE_TRAINING;
12759 case PLS_LINKUP:
12760 return IB_PORTPHYSSTATE_LINKUP;
12761 case PLS_PHYTEST:
12762 return IB_PORTPHYSSTATE_PHY_TEST;
12763 }
12764}
12765
12766/* return the OPA port logical state name */
12767const char *opa_lstate_name(u32 lstate)
12768{
12769 static const char * const port_logical_names[] = {
12770 "PORT_NOP",
12771 "PORT_DOWN",
12772 "PORT_INIT",
12773 "PORT_ARMED",
12774 "PORT_ACTIVE",
12775 "PORT_ACTIVE_DEFER",
12776 };
12777 if (lstate < ARRAY_SIZE(port_logical_names))
12778 return port_logical_names[lstate];
12779 return "unknown";
12780}
12781
12782/* return the OPA port physical state name */
12783const char *opa_pstate_name(u32 pstate)
12784{
12785 static const char * const port_physical_names[] = {
12786 "PHYS_NOP",
12787 "reserved1",
12788 "PHYS_POLL",
12789 "PHYS_DISABLED",
12790 "PHYS_TRAINING",
12791 "PHYS_LINKUP",
12792 "PHYS_LINK_ERR_RECOVER",
12793 "PHYS_PHY_TEST",
12794 "reserved8",
12795 "PHYS_OFFLINE",
12796 "PHYS_GANGED",
12797 "PHYS_TEST",
12798 };
12799 if (pstate < ARRAY_SIZE(port_physical_names))
12800 return port_physical_names[pstate];
12801 return "unknown";
12802}
12803
12804/**
12805 * update_statusp - Update userspace status flag
12806 * @ppd: Port data structure
12807 * @state: port state information
12808 *
12809 * Actual port status is determined by the host_link_state value
12810 * in the ppd.
12811 *
12812 * host_link_state MUST be updated before updating the user space
12813 * statusp.
12814 */
12815static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12816{
12817 /*
12818 * Set port status flags in the page mapped into userspace
12819 * memory. Do it here to ensure a reliable state - this is
12820 * the only function called by all state handling code.
12821 * Always set the flags due to the fact that the cache value
12822 * might have been changed explicitly outside of this
12823 * function.
12824 */
12825 if (ppd->statusp) {
12826 switch (state) {
12827 case IB_PORT_DOWN:
12828 case IB_PORT_INIT:
12829 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12830 HFI1_STATUS_IB_READY);
12831 break;
12832 case IB_PORT_ARMED:
12833 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12834 break;
12835 case IB_PORT_ACTIVE:
12836 *ppd->statusp |= HFI1_STATUS_IB_READY;
12837 break;
12838 }
12839 }
12840 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12841 opa_lstate_name(state), state);
12842}
12843
12844/**
12845 * wait_logical_linkstate - wait for an IB link state change to occur
12846 * @ppd: port device
12847 * @state: the state to wait for
12848 * @msecs: the number of milliseconds to wait
12849 *
12850 * Wait up to msecs milliseconds for IB link state change to occur.
12851 * For now, take the easy polling route.
12852 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12853 */
12854static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12855 int msecs)
12856{
12857 unsigned long timeout;
12858 u32 new_state;
12859
12860 timeout = jiffies + msecs_to_jiffies(msecs);
12861 while (1) {
12862 new_state = chip_to_opa_lstate(ppd->dd,
12863 read_logical_state(ppd->dd));
12864 if (new_state == state)
12865 break;
12866 if (time_after(jiffies, timeout)) {
12867 dd_dev_err(ppd->dd,
12868 "timeout waiting for link state 0x%x\n",
12869 state);
12870 return -ETIMEDOUT;
12871 }
12872 msleep(20);
12873 }
12874
12875 return 0;
12876}
12877
12878static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12879{
12880 u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12881
12882 dd_dev_info(ppd->dd,
12883 "physical state changed to %s (0x%x), phy 0x%x\n",
12884 opa_pstate_name(ib_pstate), ib_pstate, state);
12885}
12886
12887/*
12888 * Read the physical hardware link state and check if it matches host
12889 * drivers anticipated state.
12890 */
12891static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12892{
12893 u32 read_state = read_physical_state(ppd->dd);
12894
12895 if (read_state == state) {
12896 log_state_transition(ppd, state);
12897 } else {
12898 dd_dev_err(ppd->dd,
12899 "anticipated phy link state 0x%x, read 0x%x\n",
12900 state, read_state);
12901 }
12902}
12903
12904/*
12905 * wait_physical_linkstate - wait for an physical link state change to occur
12906 * @ppd: port device
12907 * @state: the state to wait for
12908 * @msecs: the number of milliseconds to wait
12909 *
12910 * Wait up to msecs milliseconds for physical link state change to occur.
12911 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12912 */
12913static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12914 int msecs)
12915{
12916 u32 read_state;
12917 unsigned long timeout;
12918
12919 timeout = jiffies + msecs_to_jiffies(msecs);
12920 while (1) {
12921 read_state = read_physical_state(ppd->dd);
12922 if (read_state == state)
12923 break;
12924 if (time_after(jiffies, timeout)) {
12925 dd_dev_err(ppd->dd,
12926 "timeout waiting for phy link state 0x%x\n",
12927 state);
12928 return -ETIMEDOUT;
12929 }
12930 usleep_range(1950, 2050); /* sleep 2ms-ish */
12931 }
12932
12933 log_state_transition(ppd, state);
12934 return 0;
12935}
12936
12937/*
12938 * wait_phys_link_offline_quiet_substates - wait for any offline substate
12939 * @ppd: port device
12940 * @msecs: the number of milliseconds to wait
12941 *
12942 * Wait up to msecs milliseconds for any offline physical link
12943 * state change to occur.
12944 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12945 */
12946static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12947 int msecs)
12948{
12949 u32 read_state;
12950 unsigned long timeout;
12951
12952 timeout = jiffies + msecs_to_jiffies(msecs);
12953 while (1) {
12954 read_state = read_physical_state(ppd->dd);
12955 if ((read_state & 0xF0) == PLS_OFFLINE)
12956 break;
12957 if (time_after(jiffies, timeout)) {
12958 dd_dev_err(ppd->dd,
12959 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12960 read_state, msecs);
12961 return -ETIMEDOUT;
12962 }
12963 usleep_range(1950, 2050); /* sleep 2ms-ish */
12964 }
12965
12966 log_state_transition(ppd, read_state);
12967 return read_state;
12968}
12969
David Brazdil0f672f62019-12-10 10:32:29 +000012970/*
12971 * wait_phys_link_out_of_offline - wait for any out of offline state
12972 * @ppd: port device
12973 * @msecs: the number of milliseconds to wait
12974 *
12975 * Wait up to msecs milliseconds for any out of offline physical link
12976 * state change to occur.
12977 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12978 */
12979static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
12980 int msecs)
12981{
12982 u32 read_state;
12983 unsigned long timeout;
12984
12985 timeout = jiffies + msecs_to_jiffies(msecs);
12986 while (1) {
12987 read_state = read_physical_state(ppd->dd);
12988 if ((read_state & 0xF0) != PLS_OFFLINE)
12989 break;
12990 if (time_after(jiffies, timeout)) {
12991 dd_dev_err(ppd->dd,
12992 "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
12993 read_state, msecs);
12994 return -ETIMEDOUT;
12995 }
12996 usleep_range(1950, 2050); /* sleep 2ms-ish */
12997 }
12998
12999 log_state_transition(ppd, read_state);
13000 return read_state;
13001}
13002
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013003#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13004(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13005
13006#define SET_STATIC_RATE_CONTROL_SMASK(r) \
13007(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13008
13009void hfi1_init_ctxt(struct send_context *sc)
13010{
13011 if (sc) {
13012 struct hfi1_devdata *dd = sc->dd;
13013 u64 reg;
13014 u8 set = (sc->type == SC_USER ?
13015 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13016 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13017 reg = read_kctxt_csr(dd, sc->hw_context,
13018 SEND_CTXT_CHECK_ENABLE);
13019 if (set)
13020 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13021 else
13022 SET_STATIC_RATE_CONTROL_SMASK(reg);
13023 write_kctxt_csr(dd, sc->hw_context,
13024 SEND_CTXT_CHECK_ENABLE, reg);
13025 }
13026}
13027
13028int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13029{
13030 int ret = 0;
13031 u64 reg;
13032
13033 if (dd->icode != ICODE_RTL_SILICON) {
13034 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13035 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13036 __func__);
13037 return -EINVAL;
13038 }
13039 reg = read_csr(dd, ASIC_STS_THERM);
13040 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13041 ASIC_STS_THERM_CURR_TEMP_MASK);
13042 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13043 ASIC_STS_THERM_LO_TEMP_MASK);
13044 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13045 ASIC_STS_THERM_HI_TEMP_MASK);
13046 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13047 ASIC_STS_THERM_CRIT_TEMP_MASK);
13048 /* triggers is a 3-bit value - 1 bit per trigger. */
13049 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13050
13051 return ret;
13052}
13053
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013054/* ========================================================================= */
13055
David Brazdil0f672f62019-12-10 10:32:29 +000013056/**
13057 * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13058 * @dd: valid devdata
13059 * @src: IRQ source to determine register index from
13060 * @bits: the bits to set or clear
13061 * @set: true == set the bits, false == clear the bits
13062 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013063 */
David Brazdil0f672f62019-12-10 10:32:29 +000013064static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13065 bool set)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013066{
David Brazdil0f672f62019-12-10 10:32:29 +000013067 u64 reg;
13068 u16 idx = src / BITS_PER_REGISTER;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013069
David Brazdil0f672f62019-12-10 10:32:29 +000013070 spin_lock(&dd->irq_src_lock);
13071 reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13072 if (set)
13073 reg |= bits;
13074 else
13075 reg &= ~bits;
13076 write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13077 spin_unlock(&dd->irq_src_lock);
13078}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013079
David Brazdil0f672f62019-12-10 10:32:29 +000013080/**
13081 * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13082 * @dd: valid devdata
13083 * @first: first IRQ source to set/clear
13084 * @last: last IRQ source (inclusive) to set/clear
13085 * @set: true == set the bits, false == clear the bits
13086 *
13087 * If first == last, set the exact source.
13088 */
13089int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13090{
13091 u64 bits = 0;
13092 u64 bit;
13093 u16 src;
13094
13095 if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13096 return -EINVAL;
13097
13098 if (last < first)
13099 return -ERANGE;
13100
13101 for (src = first; src <= last; src++) {
13102 bit = src % BITS_PER_REGISTER;
13103 /* wrapped to next register? */
13104 if (!bit && bits) {
13105 read_mod_write(dd, src - 1, bits, set);
13106 bits = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013107 }
David Brazdil0f672f62019-12-10 10:32:29 +000013108 bits |= BIT_ULL(bit);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013109 }
David Brazdil0f672f62019-12-10 10:32:29 +000013110 read_mod_write(dd, last, bits, set);
13111
13112 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013113}
13114
13115/*
13116 * Clear all interrupt sources on the chip.
13117 */
David Brazdil0f672f62019-12-10 10:32:29 +000013118void clear_all_interrupts(struct hfi1_devdata *dd)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013119{
13120 int i;
13121
13122 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13123 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13124
13125 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13126 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13127 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13128 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13129 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13130 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13131 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13132 for (i = 0; i < chip_send_contexts(dd); i++)
13133 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13134 for (i = 0; i < chip_sdma_engines(dd); i++)
13135 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13136
13137 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13138 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13139 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13140}
13141
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013142/*
13143 * Remap the interrupt source from the general handler to the given MSI-X
13144 * interrupt.
13145 */
David Brazdil0f672f62019-12-10 10:32:29 +000013146void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013147{
13148 u64 reg;
13149 int m, n;
13150
13151 /* clear from the handled mask of the general interrupt */
13152 m = isrc / 64;
13153 n = isrc % 64;
13154 if (likely(m < CCE_NUM_INT_CSRS)) {
13155 dd->gi_mask[m] &= ~((u64)1 << n);
13156 } else {
13157 dd_dev_err(dd, "remap interrupt err\n");
13158 return;
13159 }
13160
13161 /* direct the chip source to the given MSI-X interrupt */
13162 m = isrc / 8;
13163 n = isrc % 8;
13164 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13165 reg &= ~((u64)0xff << (8 * n));
13166 reg |= ((u64)msix_intr & 0xff) << (8 * n);
13167 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13168}
13169
David Brazdil0f672f62019-12-10 10:32:29 +000013170void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013171{
13172 /*
13173 * SDMA engine interrupt sources grouped by type, rather than
13174 * engine. Per-engine interrupts are as follows:
13175 * SDMA
13176 * SDMAProgress
13177 * SDMAIdle
13178 */
David Brazdil0f672f62019-12-10 10:32:29 +000013179 remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13180 remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13181 remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013182}
13183
13184/*
13185 * Set the general handler to accept all interrupts, remap all
13186 * chip interrupts back to MSI-X 0.
13187 */
David Brazdil0f672f62019-12-10 10:32:29 +000013188void reset_interrupts(struct hfi1_devdata *dd)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013189{
13190 int i;
13191
13192 /* all interrupts handled by the general handler */
13193 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13194 dd->gi_mask[i] = ~(u64)0;
13195
13196 /* all chip interrupts map to MSI-X 0 */
13197 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13198 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13199}
13200
David Brazdil0f672f62019-12-10 10:32:29 +000013201/**
13202 * set_up_interrupts() - Initialize the IRQ resources and state
13203 * @dd: valid devdata
13204 *
13205 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013206static int set_up_interrupts(struct hfi1_devdata *dd)
13207{
David Brazdil0f672f62019-12-10 10:32:29 +000013208 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013209
13210 /* mask all interrupts */
David Brazdil0f672f62019-12-10 10:32:29 +000013211 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13212
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013213 /* clear all pending interrupts */
13214 clear_all_interrupts(dd);
13215
13216 /* reset general handler mask, chip MSI-X mappings */
13217 reset_interrupts(dd);
13218
David Brazdil0f672f62019-12-10 10:32:29 +000013219 /* ask for MSI-X interrupts */
13220 ret = msix_initialize(dd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013221 if (ret)
David Brazdil0f672f62019-12-10 10:32:29 +000013222 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013223
David Brazdil0f672f62019-12-10 10:32:29 +000013224 ret = msix_request_irqs(dd);
13225 if (ret)
13226 msix_clean_up_interrupts(dd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013227
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013228 return ret;
13229}
13230
13231/*
13232 * Set up context values in dd. Sets:
13233 *
13234 * num_rcv_contexts - number of contexts being used
13235 * n_krcv_queues - number of kernel contexts
13236 * first_dyn_alloc_ctxt - first dynamically allocated context
13237 * in array of contexts
13238 * freectxts - number of free user contexts
13239 * num_send_contexts - number of PIO send contexts being used
13240 * num_vnic_contexts - number of contexts reserved for VNIC
13241 */
13242static int set_up_context_variables(struct hfi1_devdata *dd)
13243{
13244 unsigned long num_kernel_contexts;
13245 u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13246 int total_contexts;
13247 int ret;
13248 unsigned ngroups;
David Brazdil0f672f62019-12-10 10:32:29 +000013249 int rmt_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013250 int user_rmt_reduced;
13251 u32 n_usr_ctxts;
13252 u32 send_contexts = chip_send_contexts(dd);
13253 u32 rcv_contexts = chip_rcv_contexts(dd);
13254
13255 /*
13256 * Kernel receive contexts:
13257 * - Context 0 - control context (VL15/multicast/error)
13258 * - Context 1 - first kernel context
13259 * - Context 2 - second kernel context
13260 * ...
13261 */
13262 if (n_krcvqs)
13263 /*
13264 * n_krcvqs is the sum of module parameter kernel receive
13265 * contexts, krcvqs[]. It does not include the control
13266 * context, so add that.
13267 */
13268 num_kernel_contexts = n_krcvqs + 1;
13269 else
13270 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13271 /*
13272 * Every kernel receive context needs an ACK send context.
13273 * one send context is allocated for each VL{0-7} and VL15
13274 */
13275 if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13276 dd_dev_err(dd,
13277 "Reducing # kernel rcv contexts to: %d, from %lu\n",
13278 send_contexts - num_vls - 1,
13279 num_kernel_contexts);
13280 num_kernel_contexts = send_contexts - num_vls - 1;
13281 }
13282
13283 /* Accommodate VNIC contexts if possible */
13284 if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13285 dd_dev_err(dd, "No receive contexts available for VNIC\n");
13286 num_vnic_contexts = 0;
13287 }
13288 total_contexts = num_kernel_contexts + num_vnic_contexts;
13289
13290 /*
13291 * User contexts:
13292 * - default to 1 user context per real (non-HT) CPU core if
13293 * num_user_contexts is negative
13294 */
13295 if (num_user_contexts < 0)
13296 n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13297 else
13298 n_usr_ctxts = num_user_contexts;
13299 /*
13300 * Adjust the counts given a global max.
13301 */
13302 if (total_contexts + n_usr_ctxts > rcv_contexts) {
13303 dd_dev_err(dd,
13304 "Reducing # user receive contexts to: %d, from %u\n",
13305 rcv_contexts - total_contexts,
13306 n_usr_ctxts);
13307 /* recalculate */
13308 n_usr_ctxts = rcv_contexts - total_contexts;
13309 }
13310
David Brazdil0f672f62019-12-10 10:32:29 +000013311 /*
13312 * The RMT entries are currently allocated as shown below:
13313 * 1. QOS (0 to 128 entries);
13314 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13315 * num_vnic_contexts);
13316 * 3. VNIC (num_vnic_contexts).
13317 * It should be noted that FECN oversubscribe num_vnic_contexts
13318 * entries of RMT because both VNIC and PSM could allocate any receive
13319 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13320 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13321 * context.
13322 */
13323 rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_vnic_contexts * 2);
13324 if (HFI1_CAP_IS_KSET(TID_RDMA))
13325 rmt_count += num_kernel_contexts - 1;
13326 if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13327 user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013328 dd_dev_err(dd,
13329 "RMT size is reducing the number of user receive contexts from %u to %d\n",
13330 n_usr_ctxts,
13331 user_rmt_reduced);
13332 /* recalculate */
13333 n_usr_ctxts = user_rmt_reduced;
13334 }
13335
13336 total_contexts += n_usr_ctxts;
13337
13338 /* the first N are kernel contexts, the rest are user/vnic contexts */
13339 dd->num_rcv_contexts = total_contexts;
13340 dd->n_krcv_queues = num_kernel_contexts;
13341 dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13342 dd->num_vnic_contexts = num_vnic_contexts;
13343 dd->num_user_contexts = n_usr_ctxts;
13344 dd->freectxts = n_usr_ctxts;
13345 dd_dev_info(dd,
13346 "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13347 rcv_contexts,
13348 (int)dd->num_rcv_contexts,
13349 (int)dd->n_krcv_queues,
13350 dd->num_vnic_contexts,
13351 dd->num_user_contexts);
13352
13353 /*
13354 * Receive array allocation:
13355 * All RcvArray entries are divided into groups of 8. This
13356 * is required by the hardware and will speed up writes to
13357 * consecutive entries by using write-combining of the entire
13358 * cacheline.
13359 *
13360 * The number of groups are evenly divided among all contexts.
13361 * any left over groups will be given to the first N user
13362 * contexts.
13363 */
13364 dd->rcv_entries.group_size = RCV_INCREMENT;
13365 ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13366 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13367 dd->rcv_entries.nctxt_extra = ngroups -
13368 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13369 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13370 dd->rcv_entries.ngroups,
13371 dd->rcv_entries.nctxt_extra);
13372 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13373 MAX_EAGER_ENTRIES * 2) {
13374 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13375 dd->rcv_entries.group_size;
13376 dd_dev_info(dd,
13377 "RcvArray group count too high, change to %u\n",
13378 dd->rcv_entries.ngroups);
13379 dd->rcv_entries.nctxt_extra = 0;
13380 }
13381 /*
13382 * PIO send contexts
13383 */
13384 ret = init_sc_pools_and_sizes(dd);
13385 if (ret >= 0) { /* success */
13386 dd->num_send_contexts = ret;
13387 dd_dev_info(
13388 dd,
13389 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13390 send_contexts,
13391 dd->num_send_contexts,
13392 dd->sc_sizes[SC_KERNEL].count,
13393 dd->sc_sizes[SC_ACK].count,
13394 dd->sc_sizes[SC_USER].count,
13395 dd->sc_sizes[SC_VL15].count);
13396 ret = 0; /* success */
13397 }
13398
13399 return ret;
13400}
13401
13402/*
13403 * Set the device/port partition key table. The MAD code
13404 * will ensure that, at least, the partial management
13405 * partition key is present in the table.
13406 */
13407static void set_partition_keys(struct hfi1_pportdata *ppd)
13408{
13409 struct hfi1_devdata *dd = ppd->dd;
13410 u64 reg = 0;
13411 int i;
13412
13413 dd_dev_info(dd, "Setting partition keys\n");
13414 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13415 reg |= (ppd->pkeys[i] &
13416 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13417 ((i % 4) *
13418 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13419 /* Each register holds 4 PKey values. */
13420 if ((i % 4) == 3) {
13421 write_csr(dd, RCV_PARTITION_KEY +
13422 ((i - 3) * 2), reg);
13423 reg = 0;
13424 }
13425 }
13426
13427 /* Always enable HW pkeys check when pkeys table is set */
13428 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13429}
13430
13431/*
13432 * These CSRs and memories are uninitialized on reset and must be
13433 * written before reading to set the ECC/parity bits.
13434 *
13435 * NOTE: All user context CSRs that are not mmaped write-only
13436 * (e.g. the TID flows) must be initialized even if the driver never
13437 * reads them.
13438 */
13439static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13440{
13441 int i, j;
13442
13443 /* CceIntMap */
13444 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13445 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13446
13447 /* SendCtxtCreditReturnAddr */
13448 for (i = 0; i < chip_send_contexts(dd); i++)
13449 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13450
13451 /* PIO Send buffers */
13452 /* SDMA Send buffers */
13453 /*
13454 * These are not normally read, and (presently) have no method
13455 * to be read, so are not pre-initialized
13456 */
13457
13458 /* RcvHdrAddr */
13459 /* RcvHdrTailAddr */
13460 /* RcvTidFlowTable */
13461 for (i = 0; i < chip_rcv_contexts(dd); i++) {
13462 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13463 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13464 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13465 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13466 }
13467
13468 /* RcvArray */
13469 for (i = 0; i < chip_rcv_array_count(dd); i++)
13470 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13471
13472 /* RcvQPMapTable */
13473 for (i = 0; i < 32; i++)
13474 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13475}
13476
13477/*
13478 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13479 */
13480static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13481 u64 ctrl_bits)
13482{
13483 unsigned long timeout;
13484 u64 reg;
13485
13486 /* is the condition present? */
13487 reg = read_csr(dd, CCE_STATUS);
13488 if ((reg & status_bits) == 0)
13489 return;
13490
13491 /* clear the condition */
13492 write_csr(dd, CCE_CTRL, ctrl_bits);
13493
13494 /* wait for the condition to clear */
13495 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13496 while (1) {
13497 reg = read_csr(dd, CCE_STATUS);
13498 if ((reg & status_bits) == 0)
13499 return;
13500 if (time_after(jiffies, timeout)) {
13501 dd_dev_err(dd,
13502 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13503 status_bits, reg & status_bits);
13504 return;
13505 }
13506 udelay(1);
13507 }
13508}
13509
13510/* set CCE CSRs to chip reset defaults */
13511static void reset_cce_csrs(struct hfi1_devdata *dd)
13512{
13513 int i;
13514
13515 /* CCE_REVISION read-only */
13516 /* CCE_REVISION2 read-only */
13517 /* CCE_CTRL - bits clear automatically */
13518 /* CCE_STATUS read-only, use CceCtrl to clear */
13519 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13520 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13521 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13522 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13523 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13524 /* CCE_ERR_STATUS read-only */
13525 write_csr(dd, CCE_ERR_MASK, 0);
13526 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13527 /* CCE_ERR_FORCE leave alone */
13528 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13529 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13530 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13531 /* CCE_PCIE_CTRL leave alone */
13532 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13533 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13534 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13535 CCE_MSIX_TABLE_UPPER_RESETCSR);
13536 }
13537 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13538 /* CCE_MSIX_PBA read-only */
13539 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13540 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13541 }
13542 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13543 write_csr(dd, CCE_INT_MAP, 0);
13544 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13545 /* CCE_INT_STATUS read-only */
13546 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13547 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13548 /* CCE_INT_FORCE leave alone */
13549 /* CCE_INT_BLOCKED read-only */
13550 }
13551 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13552 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13553}
13554
13555/* set MISC CSRs to chip reset defaults */
13556static void reset_misc_csrs(struct hfi1_devdata *dd)
13557{
13558 int i;
13559
13560 for (i = 0; i < 32; i++) {
13561 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13562 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13563 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13564 }
13565 /*
13566 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13567 * only be written 128-byte chunks
13568 */
13569 /* init RSA engine to clear lingering errors */
13570 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13571 write_csr(dd, MISC_CFG_RSA_MU, 0);
13572 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13573 /* MISC_STS_8051_DIGEST read-only */
13574 /* MISC_STS_SBM_DIGEST read-only */
13575 /* MISC_STS_PCIE_DIGEST read-only */
13576 /* MISC_STS_FAB_DIGEST read-only */
13577 /* MISC_ERR_STATUS read-only */
13578 write_csr(dd, MISC_ERR_MASK, 0);
13579 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13580 /* MISC_ERR_FORCE leave alone */
13581}
13582
13583/* set TXE CSRs to chip reset defaults */
13584static void reset_txe_csrs(struct hfi1_devdata *dd)
13585{
13586 int i;
13587
13588 /*
13589 * TXE Kernel CSRs
13590 */
13591 write_csr(dd, SEND_CTRL, 0);
13592 __cm_reset(dd, 0); /* reset CM internal state */
13593 /* SEND_CONTEXTS read-only */
13594 /* SEND_DMA_ENGINES read-only */
13595 /* SEND_PIO_MEM_SIZE read-only */
13596 /* SEND_DMA_MEM_SIZE read-only */
13597 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13598 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13599 /* SEND_PIO_ERR_STATUS read-only */
13600 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13601 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13602 /* SEND_PIO_ERR_FORCE leave alone */
13603 /* SEND_DMA_ERR_STATUS read-only */
13604 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13605 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13606 /* SEND_DMA_ERR_FORCE leave alone */
13607 /* SEND_EGRESS_ERR_STATUS read-only */
13608 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13609 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13610 /* SEND_EGRESS_ERR_FORCE leave alone */
13611 write_csr(dd, SEND_BTH_QP, 0);
13612 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13613 write_csr(dd, SEND_SC2VLT0, 0);
13614 write_csr(dd, SEND_SC2VLT1, 0);
13615 write_csr(dd, SEND_SC2VLT2, 0);
13616 write_csr(dd, SEND_SC2VLT3, 0);
13617 write_csr(dd, SEND_LEN_CHECK0, 0);
13618 write_csr(dd, SEND_LEN_CHECK1, 0);
13619 /* SEND_ERR_STATUS read-only */
13620 write_csr(dd, SEND_ERR_MASK, 0);
13621 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13622 /* SEND_ERR_FORCE read-only */
13623 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13624 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13625 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13626 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13627 for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13628 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13629 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13630 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13631 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13632 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13633 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13634 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13635 /* SEND_CM_CREDIT_USED_STATUS read-only */
13636 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13637 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13638 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13639 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13640 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13641 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13642 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13643 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13644 /* SEND_CM_CREDIT_USED_VL read-only */
13645 /* SEND_CM_CREDIT_USED_VL15 read-only */
13646 /* SEND_EGRESS_CTXT_STATUS read-only */
13647 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13648 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13649 /* SEND_EGRESS_ERR_INFO read-only */
13650 /* SEND_EGRESS_ERR_SOURCE read-only */
13651
13652 /*
13653 * TXE Per-Context CSRs
13654 */
13655 for (i = 0; i < chip_send_contexts(dd); i++) {
13656 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13657 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13658 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13659 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13660 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13661 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13662 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13663 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13664 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13665 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13666 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13667 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13668 }
13669
13670 /*
13671 * TXE Per-SDMA CSRs
13672 */
13673 for (i = 0; i < chip_sdma_engines(dd); i++) {
13674 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13675 /* SEND_DMA_STATUS read-only */
13676 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13677 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13678 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13679 /* SEND_DMA_HEAD read-only */
13680 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13681 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13682 /* SEND_DMA_IDLE_CNT read-only */
13683 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13684 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13685 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13686 /* SEND_DMA_ENG_ERR_STATUS read-only */
13687 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13688 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13689 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13690 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13691 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13692 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13693 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13694 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13695 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13696 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13697 }
13698}
13699
13700/*
13701 * Expect on entry:
13702 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13703 */
13704static void init_rbufs(struct hfi1_devdata *dd)
13705{
13706 u64 reg;
13707 int count;
13708
13709 /*
13710 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13711 * clear.
13712 */
13713 count = 0;
13714 while (1) {
13715 reg = read_csr(dd, RCV_STATUS);
13716 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13717 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13718 break;
13719 /*
13720 * Give up after 1ms - maximum wait time.
13721 *
13722 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
13723 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13724 * 136 KB / (66% * 250MB/s) = 844us
13725 */
13726 if (count++ > 500) {
13727 dd_dev_err(dd,
13728 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13729 __func__, reg);
13730 break;
13731 }
13732 udelay(2); /* do not busy-wait the CSR */
13733 }
13734
13735 /* start the init - expect RcvCtrl to be 0 */
13736 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13737
13738 /*
13739 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13740 * period after the write before RcvStatus.RxRbufInitDone is valid.
13741 * The delay in the first run through the loop below is sufficient and
13742 * required before the first read of RcvStatus.RxRbufInintDone.
13743 */
13744 read_csr(dd, RCV_CTRL);
13745
13746 /* wait for the init to finish */
13747 count = 0;
13748 while (1) {
13749 /* delay is required first time through - see above */
13750 udelay(2); /* do not busy-wait the CSR */
13751 reg = read_csr(dd, RCV_STATUS);
13752 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13753 break;
13754
13755 /* give up after 100us - slowest possible at 33MHz is 73us */
13756 if (count++ > 50) {
13757 dd_dev_err(dd,
13758 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13759 __func__);
13760 break;
13761 }
13762 }
13763}
13764
13765/* set RXE CSRs to chip reset defaults */
13766static void reset_rxe_csrs(struct hfi1_devdata *dd)
13767{
13768 int i, j;
13769
13770 /*
13771 * RXE Kernel CSRs
13772 */
13773 write_csr(dd, RCV_CTRL, 0);
13774 init_rbufs(dd);
13775 /* RCV_STATUS read-only */
13776 /* RCV_CONTEXTS read-only */
13777 /* RCV_ARRAY_CNT read-only */
13778 /* RCV_BUF_SIZE read-only */
13779 write_csr(dd, RCV_BTH_QP, 0);
13780 write_csr(dd, RCV_MULTICAST, 0);
13781 write_csr(dd, RCV_BYPASS, 0);
13782 write_csr(dd, RCV_VL15, 0);
13783 /* this is a clear-down */
13784 write_csr(dd, RCV_ERR_INFO,
13785 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13786 /* RCV_ERR_STATUS read-only */
13787 write_csr(dd, RCV_ERR_MASK, 0);
13788 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13789 /* RCV_ERR_FORCE leave alone */
13790 for (i = 0; i < 32; i++)
13791 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13792 for (i = 0; i < 4; i++)
13793 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13794 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13795 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13796 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13797 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13798 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13799 clear_rsm_rule(dd, i);
13800 for (i = 0; i < 32; i++)
13801 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13802
13803 /*
13804 * RXE Kernel and User Per-Context CSRs
13805 */
13806 for (i = 0; i < chip_rcv_contexts(dd); i++) {
13807 /* kernel */
13808 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13809 /* RCV_CTXT_STATUS read-only */
13810 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13811 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13812 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13813 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13814 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13815 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13816 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13817 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13818 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13819 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13820
13821 /* user */
13822 /* RCV_HDR_TAIL read-only */
13823 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13824 /* RCV_EGR_INDEX_TAIL read-only */
13825 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13826 /* RCV_EGR_OFFSET_TAIL read-only */
13827 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13828 write_uctxt_csr(dd, i,
13829 RCV_TID_FLOW_TABLE + (8 * j), 0);
13830 }
13831 }
13832}
13833
13834/*
13835 * Set sc2vl tables.
13836 *
13837 * They power on to zeros, so to avoid send context errors
13838 * they need to be set:
13839 *
13840 * SC 0-7 -> VL 0-7 (respectively)
13841 * SC 15 -> VL 15
13842 * otherwise
13843 * -> VL 0
13844 */
13845static void init_sc2vl_tables(struct hfi1_devdata *dd)
13846{
13847 int i;
13848 /* init per architecture spec, constrained by hardware capability */
13849
13850 /* HFI maps sent packets */
13851 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13852 0,
13853 0, 0, 1, 1,
13854 2, 2, 3, 3,
13855 4, 4, 5, 5,
13856 6, 6, 7, 7));
13857 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13858 1,
13859 8, 0, 9, 0,
13860 10, 0, 11, 0,
13861 12, 0, 13, 0,
13862 14, 0, 15, 15));
13863 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13864 2,
13865 16, 0, 17, 0,
13866 18, 0, 19, 0,
13867 20, 0, 21, 0,
13868 22, 0, 23, 0));
13869 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13870 3,
13871 24, 0, 25, 0,
13872 26, 0, 27, 0,
13873 28, 0, 29, 0,
13874 30, 0, 31, 0));
13875
13876 /* DC maps received packets */
13877 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13878 15_0,
13879 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13880 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13881 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13882 31_16,
13883 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13884 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13885
13886 /* initialize the cached sc2vl values consistently with h/w */
13887 for (i = 0; i < 32; i++) {
13888 if (i < 8 || i == 15)
13889 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13890 else
13891 *((u8 *)(dd->sc2vl) + i) = 0;
13892 }
13893}
13894
13895/*
13896 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13897 * depend on the chip going through a power-on reset - a driver may be loaded
13898 * and unloaded many times.
13899 *
13900 * Do not write any CSR values to the chip in this routine - there may be
13901 * a reset following the (possible) FLR in this routine.
13902 *
13903 */
13904static int init_chip(struct hfi1_devdata *dd)
13905{
13906 int i;
13907 int ret = 0;
13908
13909 /*
13910 * Put the HFI CSRs in a known state.
13911 * Combine this with a DC reset.
13912 *
13913 * Stop the device from doing anything while we do a
13914 * reset. We know there are no other active users of
13915 * the device since we are now in charge. Turn off
13916 * off all outbound and inbound traffic and make sure
13917 * the device does not generate any interrupts.
13918 */
13919
13920 /* disable send contexts and SDMA engines */
13921 write_csr(dd, SEND_CTRL, 0);
13922 for (i = 0; i < chip_send_contexts(dd); i++)
13923 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13924 for (i = 0; i < chip_sdma_engines(dd); i++)
13925 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13926 /* disable port (turn off RXE inbound traffic) and contexts */
13927 write_csr(dd, RCV_CTRL, 0);
13928 for (i = 0; i < chip_rcv_contexts(dd); i++)
13929 write_csr(dd, RCV_CTXT_CTRL, 0);
13930 /* mask all interrupt sources */
13931 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13932 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13933
13934 /*
13935 * DC Reset: do a full DC reset before the register clear.
13936 * A recommended length of time to hold is one CSR read,
13937 * so reread the CceDcCtrl. Then, hold the DC in reset
13938 * across the clear.
13939 */
13940 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13941 (void)read_csr(dd, CCE_DC_CTRL);
13942
13943 if (use_flr) {
13944 /*
13945 * A FLR will reset the SPC core and part of the PCIe.
13946 * The parts that need to be restored have already been
13947 * saved.
13948 */
13949 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13950
13951 /* do the FLR, the DC reset will remain */
13952 pcie_flr(dd->pcidev);
13953
13954 /* restore command and BARs */
13955 ret = restore_pci_variables(dd);
13956 if (ret) {
13957 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13958 __func__);
13959 return ret;
13960 }
13961
13962 if (is_ax(dd)) {
13963 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13964 pcie_flr(dd->pcidev);
13965 ret = restore_pci_variables(dd);
13966 if (ret) {
13967 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13968 __func__);
13969 return ret;
13970 }
13971 }
13972 } else {
13973 dd_dev_info(dd, "Resetting CSRs with writes\n");
13974 reset_cce_csrs(dd);
13975 reset_txe_csrs(dd);
13976 reset_rxe_csrs(dd);
13977 reset_misc_csrs(dd);
13978 }
13979 /* clear the DC reset */
13980 write_csr(dd, CCE_DC_CTRL, 0);
13981
13982 /* Set the LED off */
13983 setextled(dd, 0);
13984
13985 /*
13986 * Clear the QSFP reset.
13987 * An FLR enforces a 0 on all out pins. The driver does not touch
13988 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
13989 * anything plugged constantly in reset, if it pays attention
13990 * to RESET_N.
13991 * Prime examples of this are optical cables. Set all pins high.
13992 * I2CCLK and I2CDAT will change per direction, and INT_N and
13993 * MODPRS_N are input only and their value is ignored.
13994 */
13995 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13996 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13997 init_chip_resources(dd);
13998 return ret;
13999}
14000
14001static void init_early_variables(struct hfi1_devdata *dd)
14002{
14003 int i;
14004
14005 /* assign link credit variables */
14006 dd->vau = CM_VAU;
14007 dd->link_credits = CM_GLOBAL_CREDITS;
14008 if (is_ax(dd))
14009 dd->link_credits--;
14010 dd->vcu = cu_to_vcu(hfi1_cu);
14011 /* enough room for 8 MAD packets plus header - 17K */
14012 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14013 if (dd->vl15_init > dd->link_credits)
14014 dd->vl15_init = dd->link_credits;
14015
14016 write_uninitialized_csrs_and_memories(dd);
14017
14018 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14019 for (i = 0; i < dd->num_pports; i++) {
14020 struct hfi1_pportdata *ppd = &dd->pport[i];
14021
14022 set_partition_keys(ppd);
14023 }
14024 init_sc2vl_tables(dd);
14025}
14026
14027static void init_kdeth_qp(struct hfi1_devdata *dd)
14028{
14029 /* user changed the KDETH_QP */
14030 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14031 /* out of range or illegal value */
14032 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14033 kdeth_qp = 0;
14034 }
14035 if (kdeth_qp == 0) /* not set, or failed range check */
14036 kdeth_qp = DEFAULT_KDETH_QP;
14037
14038 write_csr(dd, SEND_BTH_QP,
14039 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14040 SEND_BTH_QP_KDETH_QP_SHIFT);
14041
14042 write_csr(dd, RCV_BTH_QP,
14043 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14044 RCV_BTH_QP_KDETH_QP_SHIFT);
14045}
14046
14047/**
David Brazdil0f672f62019-12-10 10:32:29 +000014048 * hfi1_get_qp_map
14049 * @dd: device data
14050 * @idx: index to read
14051 */
14052u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14053{
14054 u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14055
14056 reg >>= (idx % 8) * 8;
14057 return reg;
14058}
14059
14060/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014061 * init_qpmap_table
14062 * @dd - device data
14063 * @first_ctxt - first context
14064 * @last_ctxt - first context
14065 *
14066 * This return sets the qpn mapping table that
14067 * is indexed by qpn[8:1].
14068 *
14069 * The routine will round robin the 256 settings
14070 * from first_ctxt to last_ctxt.
14071 *
14072 * The first/last looks ahead to having specialized
14073 * receive contexts for mgmt and bypass. Normal
14074 * verbs traffic will assumed to be on a range
14075 * of receive contexts.
14076 */
14077static void init_qpmap_table(struct hfi1_devdata *dd,
14078 u32 first_ctxt,
14079 u32 last_ctxt)
14080{
14081 u64 reg = 0;
14082 u64 regno = RCV_QP_MAP_TABLE;
14083 int i;
14084 u64 ctxt = first_ctxt;
14085
14086 for (i = 0; i < 256; i++) {
14087 reg |= ctxt << (8 * (i % 8));
14088 ctxt++;
14089 if (ctxt > last_ctxt)
14090 ctxt = first_ctxt;
14091 if (i % 8 == 7) {
14092 write_csr(dd, regno, reg);
14093 reg = 0;
14094 regno += 8;
14095 }
14096 }
14097
14098 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14099 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14100}
14101
14102struct rsm_map_table {
14103 u64 map[NUM_MAP_REGS];
14104 unsigned int used;
14105};
14106
14107struct rsm_rule_data {
14108 u8 offset;
14109 u8 pkt_type;
14110 u32 field1_off;
14111 u32 field2_off;
14112 u32 index1_off;
14113 u32 index1_width;
14114 u32 index2_off;
14115 u32 index2_width;
14116 u32 mask1;
14117 u32 value1;
14118 u32 mask2;
14119 u32 value2;
14120};
14121
14122/*
14123 * Return an initialized RMT map table for users to fill in. OK if it
14124 * returns NULL, indicating no table.
14125 */
14126static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14127{
14128 struct rsm_map_table *rmt;
14129 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
14130
14131 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14132 if (rmt) {
14133 memset(rmt->map, rxcontext, sizeof(rmt->map));
14134 rmt->used = 0;
14135 }
14136
14137 return rmt;
14138}
14139
14140/*
14141 * Write the final RMT map table to the chip and free the table. OK if
14142 * table is NULL.
14143 */
14144static void complete_rsm_map_table(struct hfi1_devdata *dd,
14145 struct rsm_map_table *rmt)
14146{
14147 int i;
14148
14149 if (rmt) {
14150 /* write table to chip */
14151 for (i = 0; i < NUM_MAP_REGS; i++)
14152 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14153
14154 /* enable RSM */
14155 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14156 }
14157}
14158
14159/*
14160 * Add a receive side mapping rule.
14161 */
14162static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14163 struct rsm_rule_data *rrd)
14164{
14165 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14166 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14167 1ull << rule_index | /* enable bit */
14168 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14169 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14170 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14171 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14172 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14173 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14174 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14175 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14176 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14177 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14178 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14179 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14180 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14181}
14182
14183/*
14184 * Clear a receive side mapping rule.
14185 */
14186static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14187{
14188 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14189 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14190 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14191}
14192
14193/* return the number of RSM map table entries that will be used for QOS */
14194static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14195 unsigned int *np)
14196{
14197 int i;
14198 unsigned int m, n;
14199 u8 max_by_vl = 0;
14200
14201 /* is QOS active at all? */
14202 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14203 num_vls == 1 ||
14204 krcvqsset <= 1)
14205 goto no_qos;
14206
14207 /* determine bits for qpn */
14208 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14209 if (krcvqs[i] > max_by_vl)
14210 max_by_vl = krcvqs[i];
14211 if (max_by_vl > 32)
14212 goto no_qos;
14213 m = ilog2(__roundup_pow_of_two(max_by_vl));
14214
14215 /* determine bits for vl */
14216 n = ilog2(__roundup_pow_of_two(num_vls));
14217
14218 /* reject if too much is used */
14219 if ((m + n) > 7)
14220 goto no_qos;
14221
14222 if (mp)
14223 *mp = m;
14224 if (np)
14225 *np = n;
14226
14227 return 1 << (m + n);
14228
14229no_qos:
14230 if (mp)
14231 *mp = 0;
14232 if (np)
14233 *np = 0;
14234 return 0;
14235}
14236
14237/**
14238 * init_qos - init RX qos
14239 * @dd - device data
14240 * @rmt - RSM map table
14241 *
14242 * This routine initializes Rule 0 and the RSM map table to implement
14243 * quality of service (qos).
14244 *
14245 * If all of the limit tests succeed, qos is applied based on the array
14246 * interpretation of krcvqs where entry 0 is VL0.
14247 *
14248 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14249 * feed both the RSM map table and the single rule.
14250 */
14251static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14252{
14253 struct rsm_rule_data rrd;
14254 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14255 unsigned int rmt_entries;
14256 u64 reg;
14257
14258 if (!rmt)
14259 goto bail;
14260 rmt_entries = qos_rmt_entries(dd, &m, &n);
14261 if (rmt_entries == 0)
14262 goto bail;
14263 qpns_per_vl = 1 << m;
14264
14265 /* enough room in the map table? */
14266 rmt_entries = 1 << (m + n);
14267 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14268 goto bail;
14269
14270 /* add qos entries to the the RSM map table */
14271 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14272 unsigned tctxt;
14273
14274 for (qpn = 0, tctxt = ctxt;
14275 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14276 unsigned idx, regoff, regidx;
14277
14278 /* generate the index the hardware will produce */
14279 idx = rmt->used + ((qpn << n) ^ i);
14280 regoff = (idx % 8) * 8;
14281 regidx = idx / 8;
14282 /* replace default with context number */
14283 reg = rmt->map[regidx];
14284 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14285 << regoff);
14286 reg |= (u64)(tctxt++) << regoff;
14287 rmt->map[regidx] = reg;
14288 if (tctxt == ctxt + krcvqs[i])
14289 tctxt = ctxt;
14290 }
14291 ctxt += krcvqs[i];
14292 }
14293
14294 rrd.offset = rmt->used;
14295 rrd.pkt_type = 2;
14296 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14297 rrd.field2_off = LRH_SC_MATCH_OFFSET;
14298 rrd.index1_off = LRH_SC_SELECT_OFFSET;
14299 rrd.index1_width = n;
14300 rrd.index2_off = QPN_SELECT_OFFSET;
14301 rrd.index2_width = m + n;
14302 rrd.mask1 = LRH_BTH_MASK;
14303 rrd.value1 = LRH_BTH_VALUE;
14304 rrd.mask2 = LRH_SC_MASK;
14305 rrd.value2 = LRH_SC_VALUE;
14306
14307 /* add rule 0 */
14308 add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14309
14310 /* mark RSM map entries as used */
14311 rmt->used += rmt_entries;
14312 /* map everything else to the mcast/err/vl15 context */
14313 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14314 dd->qos_shift = n + 1;
14315 return;
14316bail:
14317 dd->qos_shift = 1;
14318 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14319}
14320
David Brazdil0f672f62019-12-10 10:32:29 +000014321static void init_fecn_handling(struct hfi1_devdata *dd,
14322 struct rsm_map_table *rmt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014323{
14324 struct rsm_rule_data rrd;
14325 u64 reg;
David Brazdil0f672f62019-12-10 10:32:29 +000014326 int i, idx, regoff, regidx, start;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014327 u8 offset;
David Brazdil0f672f62019-12-10 10:32:29 +000014328 u32 total_cnt;
14329
14330 if (HFI1_CAP_IS_KSET(TID_RDMA))
14331 /* Exclude context 0 */
14332 start = 1;
14333 else
14334 start = dd->first_dyn_alloc_ctxt;
14335
14336 total_cnt = dd->num_rcv_contexts - start;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014337
14338 /* there needs to be enough room in the map table */
David Brazdil0f672f62019-12-10 10:32:29 +000014339 if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14340 dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014341 return;
14342 }
14343
14344 /*
14345 * RSM will extract the destination context as an index into the
14346 * map table. The destination contexts are a sequential block
David Brazdil0f672f62019-12-10 10:32:29 +000014347 * in the range start...num_rcv_contexts-1 (inclusive).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014348 * Map entries are accessed as offset + extracted value. Adjust
14349 * the added offset so this sequence can be placed anywhere in
14350 * the table - as long as the entries themselves do not wrap.
14351 * There are only enough bits in offset for the table size, so
14352 * start with that to allow for a "negative" offset.
14353 */
David Brazdil0f672f62019-12-10 10:32:29 +000014354 offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014355
David Brazdil0f672f62019-12-10 10:32:29 +000014356 for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14357 i++, idx++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014358 /* replace with identity mapping */
14359 regoff = (idx % 8) * 8;
14360 regidx = idx / 8;
14361 reg = rmt->map[regidx];
14362 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14363 reg |= (u64)i << regoff;
14364 rmt->map[regidx] = reg;
14365 }
14366
14367 /*
14368 * For RSM intercept of Expected FECN packets:
14369 * o packet type 0 - expected
14370 * o match on F (bit 95), using select/match 1, and
14371 * o match on SH (bit 133), using select/match 2.
14372 *
14373 * Use index 1 to extract the 8-bit receive context from DestQP
14374 * (start at bit 64). Use that as the RSM map table index.
14375 */
14376 rrd.offset = offset;
14377 rrd.pkt_type = 0;
14378 rrd.field1_off = 95;
14379 rrd.field2_off = 133;
14380 rrd.index1_off = 64;
14381 rrd.index1_width = 8;
14382 rrd.index2_off = 0;
14383 rrd.index2_width = 0;
14384 rrd.mask1 = 1;
14385 rrd.value1 = 1;
14386 rrd.mask2 = 1;
14387 rrd.value2 = 1;
14388
14389 /* add rule 1 */
14390 add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14391
David Brazdil0f672f62019-12-10 10:32:29 +000014392 rmt->used += total_cnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014393}
14394
14395/* Initialize RSM for VNIC */
14396void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14397{
14398 u8 i, j;
14399 u8 ctx_id = 0;
14400 u64 reg;
14401 u32 regoff;
14402 struct rsm_rule_data rrd;
14403
14404 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14405 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14406 dd->vnic.rmt_start);
14407 return;
14408 }
14409
14410 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14411 dd->vnic.rmt_start,
14412 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14413
14414 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14415 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14416 reg = read_csr(dd, regoff);
14417 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14418 /* Update map register with vnic context */
14419 j = (dd->vnic.rmt_start + i) % 8;
14420 reg &= ~(0xffllu << (j * 8));
14421 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14422 /* Wrap up vnic ctx index */
14423 ctx_id %= dd->vnic.num_ctxt;
14424 /* Write back map register */
14425 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14426 dev_dbg(&(dd)->pcidev->dev,
14427 "Vnic rsm map reg[%d] =0x%llx\n",
14428 regoff - RCV_RSM_MAP_TABLE, reg);
14429
14430 write_csr(dd, regoff, reg);
14431 regoff += 8;
14432 if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14433 reg = read_csr(dd, regoff);
14434 }
14435 }
14436
14437 /* Add rule for vnic */
14438 rrd.offset = dd->vnic.rmt_start;
14439 rrd.pkt_type = 4;
14440 /* Match 16B packets */
14441 rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14442 rrd.mask1 = L2_TYPE_MASK;
14443 rrd.value1 = L2_16B_VALUE;
14444 /* Match ETH L4 packets */
14445 rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14446 rrd.mask2 = L4_16B_TYPE_MASK;
14447 rrd.value2 = L4_16B_ETH_VALUE;
14448 /* Calc context from veswid and entropy */
14449 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14450 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14451 rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14452 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14453 add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14454
14455 /* Enable RSM if not already enabled */
14456 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14457}
14458
14459void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14460{
14461 clear_rsm_rule(dd, RSM_INS_VNIC);
14462
14463 /* Disable RSM if used only by vnic */
14464 if (dd->vnic.rmt_start == 0)
14465 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14466}
14467
David Brazdil0f672f62019-12-10 10:32:29 +000014468static int init_rxe(struct hfi1_devdata *dd)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014469{
14470 struct rsm_map_table *rmt;
14471 u64 val;
14472
14473 /* enable all receive errors */
14474 write_csr(dd, RCV_ERR_MASK, ~0ull);
14475
14476 rmt = alloc_rsm_map_table(dd);
David Brazdil0f672f62019-12-10 10:32:29 +000014477 if (!rmt)
14478 return -ENOMEM;
14479
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014480 /* set up QOS, including the QPN map table */
14481 init_qos(dd, rmt);
David Brazdil0f672f62019-12-10 10:32:29 +000014482 init_fecn_handling(dd, rmt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014483 complete_rsm_map_table(dd, rmt);
14484 /* record number of used rsm map entries for vnic */
14485 dd->vnic.rmt_start = rmt->used;
14486 kfree(rmt);
14487
14488 /*
14489 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14490 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14491 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14492 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14493 * Max_PayLoad_Size set to its minimum of 128.
14494 *
14495 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14496 * (64 bytes). Max_Payload_Size is possibly modified upward in
14497 * tune_pcie_caps() which is called after this routine.
14498 */
14499
14500 /* Have 16 bytes (4DW) of bypass header available in header queue */
14501 val = read_csr(dd, RCV_BYPASS);
14502 val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14503 val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14504 RCV_BYPASS_HDR_SIZE_SHIFT);
14505 write_csr(dd, RCV_BYPASS, val);
David Brazdil0f672f62019-12-10 10:32:29 +000014506 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014507}
14508
14509static void init_other(struct hfi1_devdata *dd)
14510{
14511 /* enable all CCE errors */
14512 write_csr(dd, CCE_ERR_MASK, ~0ull);
14513 /* enable *some* Misc errors */
14514 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14515 /* enable all DC errors, except LCB */
14516 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14517 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14518}
14519
14520/*
14521 * Fill out the given AU table using the given CU. A CU is defined in terms
14522 * AUs. The table is a an encoding: given the index, how many AUs does that
14523 * represent?
14524 *
14525 * NOTE: Assumes that the register layout is the same for the
14526 * local and remote tables.
14527 */
14528static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14529 u32 csr0to3, u32 csr4to7)
14530{
14531 write_csr(dd, csr0to3,
14532 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14533 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14534 2ull * cu <<
14535 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14536 4ull * cu <<
14537 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14538 write_csr(dd, csr4to7,
14539 8ull * cu <<
14540 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14541 16ull * cu <<
14542 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14543 32ull * cu <<
14544 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14545 64ull * cu <<
14546 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14547}
14548
14549static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14550{
14551 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14552 SEND_CM_LOCAL_AU_TABLE4_TO7);
14553}
14554
14555void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14556{
14557 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14558 SEND_CM_REMOTE_AU_TABLE4_TO7);
14559}
14560
14561static void init_txe(struct hfi1_devdata *dd)
14562{
14563 int i;
14564
14565 /* enable all PIO, SDMA, general, and Egress errors */
14566 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14567 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14568 write_csr(dd, SEND_ERR_MASK, ~0ull);
14569 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14570
14571 /* enable all per-context and per-SDMA engine errors */
14572 for (i = 0; i < chip_send_contexts(dd); i++)
14573 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14574 for (i = 0; i < chip_sdma_engines(dd); i++)
14575 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14576
14577 /* set the local CU to AU mapping */
14578 assign_local_cm_au_table(dd, dd->vcu);
14579
14580 /*
14581 * Set reasonable default for Credit Return Timer
14582 * Don't set on Simulator - causes it to choke.
14583 */
14584 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14585 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14586}
14587
14588int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14589 u16 jkey)
14590{
14591 u8 hw_ctxt;
14592 u64 reg;
14593
14594 if (!rcd || !rcd->sc)
14595 return -EINVAL;
14596
14597 hw_ctxt = rcd->sc->hw_context;
14598 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14599 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14600 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14601 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14602 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14603 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14604 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14605 /*
14606 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14607 */
14608 if (!is_ax(dd)) {
14609 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14610 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14611 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14612 }
14613
14614 /* Enable J_KEY check on receive context. */
14615 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14616 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14617 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14618 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14619
14620 return 0;
14621}
14622
14623int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14624{
14625 u8 hw_ctxt;
14626 u64 reg;
14627
14628 if (!rcd || !rcd->sc)
14629 return -EINVAL;
14630
14631 hw_ctxt = rcd->sc->hw_context;
14632 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14633 /*
14634 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14635 * This check would not have been enabled for A0 h/w, see
14636 * set_ctxt_jkey().
14637 */
14638 if (!is_ax(dd)) {
14639 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14640 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14641 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14642 }
14643 /* Turn off the J_KEY on the receive side */
14644 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14645
14646 return 0;
14647}
14648
14649int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14650 u16 pkey)
14651{
14652 u8 hw_ctxt;
14653 u64 reg;
14654
14655 if (!rcd || !rcd->sc)
14656 return -EINVAL;
14657
14658 hw_ctxt = rcd->sc->hw_context;
14659 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14660 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14661 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14662 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14663 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14664 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14665 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14666
14667 return 0;
14668}
14669
14670int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14671{
14672 u8 hw_ctxt;
14673 u64 reg;
14674
14675 if (!ctxt || !ctxt->sc)
14676 return -EINVAL;
14677
14678 hw_ctxt = ctxt->sc->hw_context;
14679 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14680 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14681 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14682 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14683
14684 return 0;
14685}
14686
14687/*
14688 * Start doing the clean up the the chip. Our clean up happens in multiple
14689 * stages and this is just the first.
14690 */
14691void hfi1_start_cleanup(struct hfi1_devdata *dd)
14692{
14693 aspm_exit(dd);
14694 free_cntrs(dd);
14695 free_rcverr(dd);
14696 finish_chip_resources(dd);
14697}
14698
14699#define HFI_BASE_GUID(dev) \
14700 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14701
14702/*
14703 * Information can be shared between the two HFIs on the same ASIC
14704 * in the same OS. This function finds the peer device and sets
14705 * up a shared structure.
14706 */
14707static int init_asic_data(struct hfi1_devdata *dd)
14708{
David Brazdil0f672f62019-12-10 10:32:29 +000014709 unsigned long index;
14710 struct hfi1_devdata *peer;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014711 struct hfi1_asic_data *asic_data;
14712 int ret = 0;
14713
14714 /* pre-allocate the asic structure in case we are the first device */
14715 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14716 if (!asic_data)
14717 return -ENOMEM;
14718
David Brazdil0f672f62019-12-10 10:32:29 +000014719 xa_lock_irq(&hfi1_dev_table);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014720 /* Find our peer device */
David Brazdil0f672f62019-12-10 10:32:29 +000014721 xa_for_each(&hfi1_dev_table, index, peer) {
14722 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14723 dd->unit != peer->unit)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014724 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014725 }
14726
14727 if (peer) {
14728 /* use already allocated structure */
14729 dd->asic_data = peer->asic_data;
14730 kfree(asic_data);
14731 } else {
14732 dd->asic_data = asic_data;
14733 mutex_init(&dd->asic_data->asic_resource_mutex);
14734 }
14735 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
David Brazdil0f672f62019-12-10 10:32:29 +000014736 xa_unlock_irq(&hfi1_dev_table);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014737
14738 /* first one through - set up i2c devices */
14739 if (!peer)
14740 ret = set_up_i2c(dd, dd->asic_data);
14741
14742 return ret;
14743}
14744
14745/*
14746 * Set dd->boardname. Use a generic name if a name is not returned from
14747 * EFI variable space.
14748 *
14749 * Return 0 on success, -ENOMEM if space could not be allocated.
14750 */
14751static int obtain_boardname(struct hfi1_devdata *dd)
14752{
14753 /* generic board description */
14754 const char generic[] =
14755 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14756 unsigned long size;
14757 int ret;
14758
14759 ret = read_hfi1_efi_var(dd, "description", &size,
14760 (void **)&dd->boardname);
14761 if (ret) {
14762 dd_dev_info(dd, "Board description not found\n");
14763 /* use generic description */
14764 dd->boardname = kstrdup(generic, GFP_KERNEL);
14765 if (!dd->boardname)
14766 return -ENOMEM;
14767 }
14768 return 0;
14769}
14770
14771/*
14772 * Check the interrupt registers to make sure that they are mapped correctly.
14773 * It is intended to help user identify any mismapping by VMM when the driver
14774 * is running in a VM. This function should only be called before interrupt
14775 * is set up properly.
14776 *
14777 * Return 0 on success, -EINVAL on failure.
14778 */
14779static int check_int_registers(struct hfi1_devdata *dd)
14780{
14781 u64 reg;
14782 u64 all_bits = ~(u64)0;
14783 u64 mask;
14784
14785 /* Clear CceIntMask[0] to avoid raising any interrupts */
14786 mask = read_csr(dd, CCE_INT_MASK);
14787 write_csr(dd, CCE_INT_MASK, 0ull);
14788 reg = read_csr(dd, CCE_INT_MASK);
14789 if (reg)
14790 goto err_exit;
14791
14792 /* Clear all interrupt status bits */
14793 write_csr(dd, CCE_INT_CLEAR, all_bits);
14794 reg = read_csr(dd, CCE_INT_STATUS);
14795 if (reg)
14796 goto err_exit;
14797
14798 /* Set all interrupt status bits */
14799 write_csr(dd, CCE_INT_FORCE, all_bits);
14800 reg = read_csr(dd, CCE_INT_STATUS);
14801 if (reg != all_bits)
14802 goto err_exit;
14803
14804 /* Restore the interrupt mask */
14805 write_csr(dd, CCE_INT_CLEAR, all_bits);
14806 write_csr(dd, CCE_INT_MASK, mask);
14807
14808 return 0;
14809err_exit:
14810 write_csr(dd, CCE_INT_MASK, mask);
14811 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14812 return -EINVAL;
14813}
14814
14815/**
David Brazdil0f672f62019-12-10 10:32:29 +000014816 * hfi1_init_dd() - Initialize most of the dd structure.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014817 * @dev: the pci_dev for hfi1_ib device
14818 * @ent: pci_device_id struct for this dev
14819 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014820 * This is global, and is called directly at init to set up the
14821 * chip-specific function pointers for later use.
14822 */
David Brazdil0f672f62019-12-10 10:32:29 +000014823int hfi1_init_dd(struct hfi1_devdata *dd)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014824{
David Brazdil0f672f62019-12-10 10:32:29 +000014825 struct pci_dev *pdev = dd->pcidev;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014826 struct hfi1_pportdata *ppd;
14827 u64 reg;
14828 int i, ret;
14829 static const char * const inames[] = { /* implementation names */
14830 "RTL silicon",
14831 "RTL VCS simulation",
14832 "RTL FPGA emulation",
14833 "Functional simulator"
14834 };
14835 struct pci_dev *parent = pdev->bus->self;
David Brazdil0f672f62019-12-10 10:32:29 +000014836 u32 sdma_engines = chip_sdma_engines(dd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014837
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014838 ppd = dd->pport;
14839 for (i = 0; i < dd->num_pports; i++, ppd++) {
14840 int vl;
14841 /* init common fields */
14842 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14843 /* DC supports 4 link widths */
14844 ppd->link_width_supported =
14845 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14846 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14847 ppd->link_width_downgrade_supported =
14848 ppd->link_width_supported;
14849 /* start out enabling only 4X */
14850 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14851 ppd->link_width_downgrade_enabled =
14852 ppd->link_width_downgrade_supported;
14853 /* link width active is 0 when link is down */
14854 /* link width downgrade active is 0 when link is down */
14855
14856 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14857 num_vls > HFI1_MAX_VLS_SUPPORTED) {
14858 dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14859 num_vls, HFI1_MAX_VLS_SUPPORTED);
14860 num_vls = HFI1_MAX_VLS_SUPPORTED;
14861 }
14862 ppd->vls_supported = num_vls;
14863 ppd->vls_operational = ppd->vls_supported;
14864 /* Set the default MTU. */
14865 for (vl = 0; vl < num_vls; vl++)
14866 dd->vld[vl].mtu = hfi1_max_mtu;
14867 dd->vld[15].mtu = MAX_MAD_PACKET;
14868 /*
14869 * Set the initial values to reasonable default, will be set
14870 * for real when link is up.
14871 */
14872 ppd->overrun_threshold = 0x4;
14873 ppd->phy_error_threshold = 0xf;
14874 ppd->port_crc_mode_enabled = link_crc_mask;
14875 /* initialize supported LTP CRC mode */
14876 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14877 /* initialize enabled LTP CRC mode */
14878 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14879 /* start in offline */
14880 ppd->host_link_state = HLS_DN_OFFLINE;
14881 init_vl_arb_caches(ppd);
14882 }
14883
14884 /*
14885 * Do remaining PCIe setup and save PCIe values in dd.
14886 * Any error printing is already done by the init code.
14887 * On return, we have the chip mapped.
14888 */
14889 ret = hfi1_pcie_ddinit(dd, pdev);
14890 if (ret < 0)
14891 goto bail_free;
14892
14893 /* Save PCI space registers to rewrite after device reset */
14894 ret = save_pci_variables(dd);
14895 if (ret < 0)
14896 goto bail_cleanup;
14897
14898 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14899 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14900 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14901 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14902
14903 /*
14904 * Check interrupt registers mapping if the driver has no access to
14905 * the upstream component. In this case, it is likely that the driver
14906 * is running in a VM.
14907 */
14908 if (!parent) {
14909 ret = check_int_registers(dd);
14910 if (ret)
14911 goto bail_cleanup;
14912 }
14913
14914 /*
14915 * obtain the hardware ID - NOT related to unit, which is a
14916 * software enumeration
14917 */
14918 reg = read_csr(dd, CCE_REVISION2);
14919 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14920 & CCE_REVISION2_HFI_ID_MASK;
14921 /* the variable size will remove unwanted bits */
14922 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14923 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14924 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14925 dd->icode < ARRAY_SIZE(inames) ?
14926 inames[dd->icode] : "unknown", (int)dd->irev);
14927
14928 /* speeds the hardware can support */
14929 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14930 /* speeds allowed to run at */
14931 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14932 /* give a reasonable active value, will be set on link up */
14933 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14934
14935 /* fix up link widths for emulation _p */
14936 ppd = dd->pport;
14937 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14938 ppd->link_width_supported =
14939 ppd->link_width_enabled =
14940 ppd->link_width_downgrade_supported =
14941 ppd->link_width_downgrade_enabled =
14942 OPA_LINK_WIDTH_1X;
14943 }
14944 /* insure num_vls isn't larger than number of sdma engines */
14945 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
14946 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14947 num_vls, sdma_engines);
14948 num_vls = sdma_engines;
14949 ppd->vls_supported = sdma_engines;
14950 ppd->vls_operational = ppd->vls_supported;
14951 }
14952
14953 /*
14954 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14955 * Limit the max if larger than the field holds. If timeout is
14956 * non-zero, then the calculated field will be at least 1.
14957 *
14958 * Must be after icode is set up - the cclock rate depends
14959 * on knowing the hardware being used.
14960 */
14961 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14962 if (dd->rcv_intr_timeout_csr >
14963 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14964 dd->rcv_intr_timeout_csr =
14965 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14966 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14967 dd->rcv_intr_timeout_csr = 1;
14968
14969 /* needs to be done before we look for the peer device */
14970 read_guid(dd);
14971
14972 /* set up shared ASIC data with peer device */
14973 ret = init_asic_data(dd);
14974 if (ret)
14975 goto bail_cleanup;
14976
14977 /* obtain chip sizes, reset chip CSRs */
14978 ret = init_chip(dd);
14979 if (ret)
14980 goto bail_cleanup;
14981
14982 /* read in the PCIe link speed information */
14983 ret = pcie_speeds(dd);
14984 if (ret)
14985 goto bail_cleanup;
14986
14987 /* call before get_platform_config(), after init_chip_resources() */
14988 ret = eprom_init(dd);
14989 if (ret)
14990 goto bail_free_rcverr;
14991
14992 /* Needs to be called before hfi1_firmware_init */
14993 get_platform_config(dd);
14994
14995 /* read in firmware */
14996 ret = hfi1_firmware_init(dd);
14997 if (ret)
14998 goto bail_cleanup;
14999
15000 /*
15001 * In general, the PCIe Gen3 transition must occur after the
15002 * chip has been idled (so it won't initiate any PCIe transactions
15003 * e.g. an interrupt) and before the driver changes any registers
15004 * (the transition will reset the registers).
15005 *
15006 * In particular, place this call after:
15007 * - init_chip() - the chip will not initiate any PCIe transactions
15008 * - pcie_speeds() - reads the current link speed
15009 * - hfi1_firmware_init() - the needed firmware is ready to be
15010 * downloaded
15011 */
15012 ret = do_pcie_gen3_transition(dd);
15013 if (ret)
15014 goto bail_cleanup;
15015
David Brazdil0f672f62019-12-10 10:32:29 +000015016 /*
15017 * This should probably occur in hfi1_pcie_init(), but historically
15018 * occurs after the do_pcie_gen3_transition() code.
15019 */
15020 tune_pcie_caps(dd);
15021
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000015022 /* start setting dd values and adjusting CSRs */
15023 init_early_variables(dd);
15024
15025 parse_platform_config(dd);
15026
15027 ret = obtain_boardname(dd);
15028 if (ret)
15029 goto bail_cleanup;
15030
15031 snprintf(dd->boardversion, BOARD_VERS_MAX,
15032 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15033 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15034 (u32)dd->majrev,
15035 (u32)dd->minrev,
15036 (dd->revision >> CCE_REVISION_SW_SHIFT)
15037 & CCE_REVISION_SW_MASK);
15038
15039 ret = set_up_context_variables(dd);
15040 if (ret)
15041 goto bail_cleanup;
15042
15043 /* set initial RXE CSRs */
David Brazdil0f672f62019-12-10 10:32:29 +000015044 ret = init_rxe(dd);
15045 if (ret)
15046 goto bail_cleanup;
15047
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000015048 /* set initial TXE CSRs */
15049 init_txe(dd);
15050 /* set initial non-RXE, non-TXE CSRs */
15051 init_other(dd);
15052 /* set up KDETH QP prefix in both RX and TX CSRs */
15053 init_kdeth_qp(dd);
15054
15055 ret = hfi1_dev_affinity_init(dd);
15056 if (ret)
15057 goto bail_cleanup;
15058
15059 /* send contexts must be set up before receive contexts */
15060 ret = init_send_contexts(dd);
15061 if (ret)
15062 goto bail_cleanup;
15063
15064 ret = hfi1_create_kctxts(dd);
15065 if (ret)
15066 goto bail_cleanup;
15067
15068 /*
15069 * Initialize aspm, to be done after gen3 transition and setting up
15070 * contexts and before enabling interrupts
15071 */
15072 aspm_init(dd);
15073
15074 ret = init_pervl_scs(dd);
15075 if (ret)
15076 goto bail_cleanup;
15077
15078 /* sdma init */
15079 for (i = 0; i < dd->num_pports; ++i) {
15080 ret = sdma_init(dd, i);
15081 if (ret)
15082 goto bail_cleanup;
15083 }
15084
15085 /* use contexts created by hfi1_create_kctxts */
15086 ret = set_up_interrupts(dd);
15087 if (ret)
15088 goto bail_cleanup;
15089
15090 ret = hfi1_comp_vectors_set_up(dd);
15091 if (ret)
15092 goto bail_clear_intr;
15093
15094 /* set up LCB access - must be after set_up_interrupts() */
15095 init_lcb_access(dd);
15096
15097 /*
15098 * Serial number is created from the base guid:
15099 * [27:24] = base guid [38:35]
15100 * [23: 0] = base guid [23: 0]
15101 */
15102 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15103 (dd->base_guid & 0xFFFFFF) |
15104 ((dd->base_guid >> 11) & 0xF000000));
15105
15106 dd->oui1 = dd->base_guid >> 56 & 0xFF;
15107 dd->oui2 = dd->base_guid >> 48 & 0xFF;
15108 dd->oui3 = dd->base_guid >> 40 & 0xFF;
15109
15110 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15111 if (ret)
15112 goto bail_clear_intr;
15113
15114 thermal_init(dd);
15115
15116 ret = init_cntrs(dd);
15117 if (ret)
15118 goto bail_clear_intr;
15119
15120 ret = init_rcverr(dd);
15121 if (ret)
15122 goto bail_free_cntrs;
15123
15124 init_completion(&dd->user_comp);
15125
15126 /* The user refcount starts with one to inidicate an active device */
15127 atomic_set(&dd->user_refcount, 1);
15128
15129 goto bail;
15130
15131bail_free_rcverr:
15132 free_rcverr(dd);
15133bail_free_cntrs:
15134 free_cntrs(dd);
15135bail_clear_intr:
15136 hfi1_comp_vectors_clean_up(dd);
David Brazdil0f672f62019-12-10 10:32:29 +000015137 msix_clean_up_interrupts(dd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000015138bail_cleanup:
15139 hfi1_pcie_ddcleanup(dd);
15140bail_free:
15141 hfi1_free_devdata(dd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000015142bail:
David Brazdil0f672f62019-12-10 10:32:29 +000015143 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000015144}
15145
15146static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15147 u32 dw_len)
15148{
15149 u32 delta_cycles;
15150 u32 current_egress_rate = ppd->current_egress_rate;
15151 /* rates here are in units of 10^6 bits/sec */
15152
15153 if (desired_egress_rate == -1)
15154 return 0; /* shouldn't happen */
15155
15156 if (desired_egress_rate >= current_egress_rate)
15157 return 0; /* we can't help go faster, only slower */
15158
15159 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15160 egress_cycles(dw_len * 4, current_egress_rate);
15161
15162 return (u16)delta_cycles;
15163}
15164
15165/**
15166 * create_pbc - build a pbc for transmission
15167 * @flags: special case flags or-ed in built pbc
15168 * @srate: static rate
15169 * @vl: vl
15170 * @dwlen: dword length (header words + data words + pbc words)
15171 *
15172 * Create a PBC with the given flags, rate, VL, and length.
15173 *
15174 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15175 * for verbs, which does not use this PSM feature. The lone other caller
15176 * is for the diagnostic interface which calls this if the user does not
15177 * supply their own PBC.
15178 */
15179u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15180 u32 dw_len)
15181{
15182 u64 pbc, delay = 0;
15183
15184 if (unlikely(srate_mbs))
15185 delay = delay_cycles(ppd, srate_mbs, dw_len);
15186
15187 pbc = flags
15188 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15189 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15190 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15191 | (dw_len & PBC_LENGTH_DWS_MASK)
15192 << PBC_LENGTH_DWS_SHIFT;
15193
15194 return pbc;
15195}
15196
15197#define SBUS_THERMAL 0x4f
15198#define SBUS_THERM_MONITOR_MODE 0x1
15199
15200#define THERM_FAILURE(dev, ret, reason) \
15201 dd_dev_err((dd), \
15202 "Thermal sensor initialization failed: %s (%d)\n", \
15203 (reason), (ret))
15204
15205/*
15206 * Initialize the thermal sensor.
15207 *
15208 * After initialization, enable polling of thermal sensor through
15209 * SBus interface. In order for this to work, the SBus Master
15210 * firmware has to be loaded due to the fact that the HW polling
15211 * logic uses SBus interrupts, which are not supported with
15212 * default firmware. Otherwise, no data will be returned through
15213 * the ASIC_STS_THERM CSR.
15214 */
15215static int thermal_init(struct hfi1_devdata *dd)
15216{
15217 int ret = 0;
15218
15219 if (dd->icode != ICODE_RTL_SILICON ||
15220 check_chip_resource(dd, CR_THERM_INIT, NULL))
15221 return ret;
15222
15223 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15224 if (ret) {
15225 THERM_FAILURE(dd, ret, "Acquire SBus");
15226 return ret;
15227 }
15228
15229 dd_dev_info(dd, "Initializing thermal sensor\n");
15230 /* Disable polling of thermal readings */
15231 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15232 msleep(100);
15233 /* Thermal Sensor Initialization */
15234 /* Step 1: Reset the Thermal SBus Receiver */
15235 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15236 RESET_SBUS_RECEIVER, 0);
15237 if (ret) {
15238 THERM_FAILURE(dd, ret, "Bus Reset");
15239 goto done;
15240 }
15241 /* Step 2: Set Reset bit in Thermal block */
15242 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15243 WRITE_SBUS_RECEIVER, 0x1);
15244 if (ret) {
15245 THERM_FAILURE(dd, ret, "Therm Block Reset");
15246 goto done;
15247 }
15248 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
15249 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15250 WRITE_SBUS_RECEIVER, 0x32);
15251 if (ret) {
15252 THERM_FAILURE(dd, ret, "Write Clock Div");
15253 goto done;
15254 }
15255 /* Step 4: Select temperature mode */
15256 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15257 WRITE_SBUS_RECEIVER,
15258 SBUS_THERM_MONITOR_MODE);
15259 if (ret) {
15260 THERM_FAILURE(dd, ret, "Write Mode Sel");
15261 goto done;
15262 }
15263 /* Step 5: De-assert block reset and start conversion */
15264 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15265 WRITE_SBUS_RECEIVER, 0x2);
15266 if (ret) {
15267 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15268 goto done;
15269 }
15270 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
15271 msleep(22);
15272
15273 /* Enable polling of thermal readings */
15274 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15275
15276 /* Set initialized flag */
15277 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15278 if (ret)
15279 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15280
15281done:
15282 release_chip_resource(dd, CR_SBUS);
15283 return ret;
15284}
15285
15286static void handle_temp_err(struct hfi1_devdata *dd)
15287{
15288 struct hfi1_pportdata *ppd = &dd->pport[0];
15289 /*
15290 * Thermal Critical Interrupt
15291 * Put the device into forced freeze mode, take link down to
15292 * offline, and put DC into reset.
15293 */
15294 dd_dev_emerg(dd,
15295 "Critical temperature reached! Forcing device into freeze mode!\n");
15296 dd->flags |= HFI1_FORCED_FREEZE;
15297 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15298 /*
15299 * Shut DC down as much and as quickly as possible.
15300 *
15301 * Step 1: Take the link down to OFFLINE. This will cause the
15302 * 8051 to put the Serdes in reset. However, we don't want to
15303 * go through the entire link state machine since we want to
15304 * shutdown ASAP. Furthermore, this is not a graceful shutdown
15305 * but rather an attempt to save the chip.
15306 * Code below is almost the same as quiet_serdes() but avoids
15307 * all the extra work and the sleeps.
15308 */
15309 ppd->driver_link_ready = 0;
15310 ppd->link_enabled = 0;
15311 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15312 PLS_OFFLINE);
15313 /*
15314 * Step 2: Shutdown LCB and 8051
15315 * After shutdown, do not restore DC_CFG_RESET value.
15316 */
15317 dc_shutdown(dd);
15318}