blob: 5dd0f01913c012f9bc91a5070db971a47647480a [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
David Brazdil0f672f62019-12-10 10:32:29 +00007 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38#include <linux/sched/signal.h>
39#include <linux/module.h>
40#include <crypto/aead.h>
41
42#include <net/strparser.h>
43#include <net/tls.h>
44
David Brazdil0f672f62019-12-10 10:32:29 +000045static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
47{
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
51 int elt = 0;
52
53 if (unlikely(recursion_level >= 24))
54 return -EMSGSIZE;
55
56 if (chunk > 0) {
57 if (chunk > len)
58 chunk = len;
59 elt++;
60 len -= chunk;
61 if (len == 0)
62 return elt;
63 offset += chunk;
64 }
65
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67 int end;
68
69 WARN_ON(start > offset + len);
70
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72 chunk = end - offset;
73 if (chunk > 0) {
74 if (chunk > len)
75 chunk = len;
76 elt++;
77 len -= chunk;
78 if (len == 0)
79 return elt;
80 offset += chunk;
81 }
82 start = end;
83 }
84
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
87 int end, ret;
88
89 WARN_ON(start > offset + len);
90
91 end = start + frag_iter->len;
92 chunk = end - offset;
93 if (chunk > 0) {
94 if (chunk > len)
95 chunk = len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
97 recursion_level + 1);
98 if (unlikely(ret < 0))
99 return ret;
100 elt += ret;
101 len -= chunk;
102 if (len == 0)
103 return elt;
104 offset += chunk;
105 }
106 start = end;
107 }
108 }
109 BUG_ON(len);
110 return elt;
111}
112
113/* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
115 */
116static int skb_nsg(struct sk_buff *skb, int offset, int len)
117{
118 return __skb_nsg(skb, offset, len, 0);
119}
120
121static int padding_length(struct tls_sw_context_rx *ctx,
122 struct tls_prot_info *prot, struct sk_buff *skb)
123{
124 struct strp_msg *rxm = strp_msg(skb);
125 int sub = 0;
126
127 /* Determine zero-padding length */
128 if (prot->version == TLS_1_3_VERSION) {
129 char content_type = 0;
130 int err;
131 int back = 17;
132
133 while (content_type == 0) {
134 if (back > rxm->full_len - prot->prepend_size)
135 return -EBADMSG;
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
138 &content_type, 1);
139 if (err)
140 return err;
141 if (content_type)
142 break;
143 sub++;
144 back++;
145 }
146 ctx->control = content_type;
147 }
148 return sub;
149}
150
151static void tls_decrypt_done(struct crypto_async_request *req, int err)
152{
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
160 struct sk_buff *skb;
161 unsigned int pages;
162 int pending;
163
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
168
169 /* Propagate if there was an err */
170 if (err) {
171 ctx->async_wait.err = err;
172 tls_err_abort(skb->sk, err);
173 } else {
174 struct strp_msg *rxm = strp_msg(skb);
175 int pad;
176
177 pad = padding_length(ctx, prot, skb);
178 if (pad < 0) {
179 ctx->async_wait.err = pad;
180 tls_err_abort(skb->sk, pad);
181 } else {
182 rxm->full_len -= pad;
183 rxm->offset += prot->prepend_size;
184 rxm->full_len -= prot->overhead_size;
185 }
186 }
187
188 /* After using skb->sk to propagate sk through crypto async callback
189 * we need to NULL it again.
190 */
191 skb->sk = NULL;
192
193
194 /* Free the destination pages if skb was not decrypted inplace */
195 if (sgout != sgin) {
196 /* Skip the first S/G entry as it points to AAD */
197 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198 if (!sg)
199 break;
200 put_page(sg_page(sg));
201 }
202 }
203
204 kfree(aead_req);
205
206 pending = atomic_dec_return(&ctx->decrypt_pending);
207
208 if (!pending && READ_ONCE(ctx->async_notify))
209 complete(&ctx->async_wait.completion);
210}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000211
212static int tls_do_decryption(struct sock *sk,
David Brazdil0f672f62019-12-10 10:32:29 +0000213 struct sk_buff *skb,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000214 struct scatterlist *sgin,
215 struct scatterlist *sgout,
216 char *iv_recv,
217 size_t data_len,
David Brazdil0f672f62019-12-10 10:32:29 +0000218 struct aead_request *aead_req,
219 bool async)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000220{
221 struct tls_context *tls_ctx = tls_get_ctx(sk);
David Brazdil0f672f62019-12-10 10:32:29 +0000222 struct tls_prot_info *prot = &tls_ctx->prot_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
224 int ret;
225
226 aead_request_set_tfm(aead_req, ctx->aead_recv);
David Brazdil0f672f62019-12-10 10:32:29 +0000227 aead_request_set_ad(aead_req, prot->aad_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000228 aead_request_set_crypt(aead_req, sgin, sgout,
David Brazdil0f672f62019-12-10 10:32:29 +0000229 data_len + prot->tag_size,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000230 (u8 *)iv_recv);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000231
David Brazdil0f672f62019-12-10 10:32:29 +0000232 if (async) {
233 /* Using skb->sk to push sk through to crypto async callback
234 * handler. This allows propagating errors up to the socket
235 * if needed. It _must_ be cleared in the async handler
236 * before consume_skb is called. We _know_ skb->sk is NULL
237 * because it is a clone from strparser.
238 */
239 skb->sk = sk;
240 aead_request_set_callback(aead_req,
241 CRYPTO_TFM_REQ_MAY_BACKLOG,
242 tls_decrypt_done, skb);
243 atomic_inc(&ctx->decrypt_pending);
244 } else {
245 aead_request_set_callback(aead_req,
246 CRYPTO_TFM_REQ_MAY_BACKLOG,
247 crypto_req_done, &ctx->async_wait);
248 }
249
250 ret = crypto_aead_decrypt(aead_req);
251 if (ret == -EINPROGRESS) {
252 if (async)
253 return ret;
254
255 ret = crypto_wait_req(ret, &ctx->async_wait);
256 }
257
258 if (async)
259 atomic_dec(&ctx->decrypt_pending);
260
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000261 return ret;
262}
263
David Brazdil0f672f62019-12-10 10:32:29 +0000264static void tls_trim_both_msgs(struct sock *sk, int target_size)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000265{
266 struct tls_context *tls_ctx = tls_get_ctx(sk);
David Brazdil0f672f62019-12-10 10:32:29 +0000267 struct tls_prot_info *prot = &tls_ctx->prot_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000268 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +0000269 struct tls_rec *rec = ctx->open_rec;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000270
David Brazdil0f672f62019-12-10 10:32:29 +0000271 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000272 if (target_size > 0)
David Brazdil0f672f62019-12-10 10:32:29 +0000273 target_size += prot->overhead_size;
274 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000275}
276
David Brazdil0f672f62019-12-10 10:32:29 +0000277static int tls_alloc_encrypted_msg(struct sock *sk, int len)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000278{
279 struct tls_context *tls_ctx = tls_get_ctx(sk);
280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +0000281 struct tls_rec *rec = ctx->open_rec;
282 struct sk_msg *msg_en = &rec->msg_encrypted;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000283
David Brazdil0f672f62019-12-10 10:32:29 +0000284 return sk_msg_alloc(sk, msg_en, len, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000285}
286
David Brazdil0f672f62019-12-10 10:32:29 +0000287static int tls_clone_plaintext_msg(struct sock *sk, int required)
288{
289 struct tls_context *tls_ctx = tls_get_ctx(sk);
290 struct tls_prot_info *prot = &tls_ctx->prot_info;
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_pl = &rec->msg_plaintext;
294 struct sk_msg *msg_en = &rec->msg_encrypted;
295 int skip, len;
296
297 /* We add page references worth len bytes from encrypted sg
298 * at the end of plaintext sg. It is guaranteed that msg_en
299 * has enough required room (ensured by caller).
300 */
301 len = required - msg_pl->sg.size;
302
303 /* Skip initial bytes in msg_en's data to be able to use
304 * same offset of both plain and encrypted data.
305 */
306 skip = prot->prepend_size + msg_pl->sg.size;
307
308 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
309}
310
311static struct tls_rec *tls_get_rec(struct sock *sk)
312{
313 struct tls_context *tls_ctx = tls_get_ctx(sk);
314 struct tls_prot_info *prot = &tls_ctx->prot_info;
315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316 struct sk_msg *msg_pl, *msg_en;
317 struct tls_rec *rec;
318 int mem_size;
319
320 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321
322 rec = kzalloc(mem_size, sk->sk_allocation);
323 if (!rec)
324 return NULL;
325
326 msg_pl = &rec->msg_plaintext;
327 msg_en = &rec->msg_encrypted;
328
329 sk_msg_init(msg_pl);
330 sk_msg_init(msg_en);
331
332 sg_init_table(rec->sg_aead_in, 2);
333 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334 sg_unmark_end(&rec->sg_aead_in[1]);
335
336 sg_init_table(rec->sg_aead_out, 2);
337 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338 sg_unmark_end(&rec->sg_aead_out[1]);
339
340 return rec;
341}
342
343static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344{
345 sk_msg_free(sk, &rec->msg_encrypted);
346 sk_msg_free(sk, &rec->msg_plaintext);
347 kfree(rec);
348}
349
350static void tls_free_open_rec(struct sock *sk)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000351{
352 struct tls_context *tls_ctx = tls_get_ctx(sk);
353 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +0000354 struct tls_rec *rec = ctx->open_rec;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000355
David Brazdil0f672f62019-12-10 10:32:29 +0000356 if (rec) {
357 tls_free_rec(sk, rec);
358 ctx->open_rec = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000359 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000360}
361
David Brazdil0f672f62019-12-10 10:32:29 +0000362int tls_tx_records(struct sock *sk, int flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000363{
364 struct tls_context *tls_ctx = tls_get_ctx(sk);
365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +0000366 struct tls_rec *rec, *tmp;
367 struct sk_msg *msg_en;
368 int tx_flags, rc = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000369
David Brazdil0f672f62019-12-10 10:32:29 +0000370 if (tls_is_partially_sent_record(tls_ctx)) {
371 rec = list_first_entry(&ctx->tx_list,
372 struct tls_rec, list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000373
David Brazdil0f672f62019-12-10 10:32:29 +0000374 if (flags == -1)
375 tx_flags = rec->tx_flags;
376 else
377 tx_flags = flags;
378
379 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380 if (rc)
381 goto tx_err;
382
383 /* Full record has been transmitted.
384 * Remove the head of tx_list
385 */
386 list_del(&rec->list);
387 sk_msg_free(sk, &rec->msg_plaintext);
388 kfree(rec);
389 }
390
391 /* Tx all ready records */
392 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393 if (READ_ONCE(rec->tx_ready)) {
394 if (flags == -1)
395 tx_flags = rec->tx_flags;
396 else
397 tx_flags = flags;
398
399 msg_en = &rec->msg_encrypted;
400 rc = tls_push_sg(sk, tls_ctx,
401 &msg_en->sg.data[msg_en->sg.curr],
402 0, tx_flags);
403 if (rc)
404 goto tx_err;
405
406 list_del(&rec->list);
407 sk_msg_free(sk, &rec->msg_plaintext);
408 kfree(rec);
409 } else {
410 break;
411 }
412 }
413
414tx_err:
415 if (rc < 0 && rc != -EAGAIN)
416 tls_err_abort(sk, EBADMSG);
417
418 return rc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000419}
420
David Brazdil0f672f62019-12-10 10:32:29 +0000421static void tls_encrypt_done(struct crypto_async_request *req, int err)
422{
423 struct aead_request *aead_req = (struct aead_request *)req;
424 struct sock *sk = req->data;
425 struct tls_context *tls_ctx = tls_get_ctx(sk);
426 struct tls_prot_info *prot = &tls_ctx->prot_info;
427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428 struct scatterlist *sge;
429 struct sk_msg *msg_en;
430 struct tls_rec *rec;
431 bool ready = false;
432 int pending;
433
434 rec = container_of(aead_req, struct tls_rec, aead_req);
435 msg_en = &rec->msg_encrypted;
436
437 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438 sge->offset -= prot->prepend_size;
439 sge->length += prot->prepend_size;
440
441 /* Check if error is previously set on socket */
442 if (err || sk->sk_err) {
443 rec = NULL;
444
445 /* If err is already set on socket, return the same code */
446 if (sk->sk_err) {
447 ctx->async_wait.err = sk->sk_err;
448 } else {
449 ctx->async_wait.err = err;
450 tls_err_abort(sk, err);
451 }
452 }
453
454 if (rec) {
455 struct tls_rec *first_rec;
456
457 /* Mark the record as ready for transmission */
458 smp_store_mb(rec->tx_ready, true);
459
460 /* If received record is at head of tx_list, schedule tx */
461 first_rec = list_first_entry(&ctx->tx_list,
462 struct tls_rec, list);
463 if (rec == first_rec)
464 ready = true;
465 }
466
467 pending = atomic_dec_return(&ctx->encrypt_pending);
468
469 if (!pending && READ_ONCE(ctx->async_notify))
470 complete(&ctx->async_wait.completion);
471
472 if (!ready)
473 return;
474
475 /* Schedule the transmission */
476 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
477 schedule_delayed_work(&ctx->tx_work.work, 1);
478}
479
480static int tls_do_encryption(struct sock *sk,
481 struct tls_context *tls_ctx,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000482 struct tls_sw_context_tx *ctx,
483 struct aead_request *aead_req,
David Brazdil0f672f62019-12-10 10:32:29 +0000484 size_t data_len, u32 start)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000485{
David Brazdil0f672f62019-12-10 10:32:29 +0000486 struct tls_prot_info *prot = &tls_ctx->prot_info;
487 struct tls_rec *rec = ctx->open_rec;
488 struct sk_msg *msg_en = &rec->msg_encrypted;
489 struct scatterlist *sge = sk_msg_elem(msg_en, start);
490 int rc, iv_offset = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000491
David Brazdil0f672f62019-12-10 10:32:29 +0000492 /* For CCM based ciphers, first byte of IV is a constant */
493 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
495 iv_offset = 1;
496 }
497
498 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499 prot->iv_size + prot->salt_size);
500
501 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
502
503 sge->offset += prot->prepend_size;
504 sge->length -= prot->prepend_size;
505
506 msg_en->sg.curr = start;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000507
508 aead_request_set_tfm(aead_req, ctx->aead_send);
David Brazdil0f672f62019-12-10 10:32:29 +0000509 aead_request_set_ad(aead_req, prot->aad_size);
510 aead_request_set_crypt(aead_req, rec->sg_aead_in,
511 rec->sg_aead_out,
512 data_len, rec->iv_data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000513
514 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
David Brazdil0f672f62019-12-10 10:32:29 +0000515 tls_encrypt_done, sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000516
David Brazdil0f672f62019-12-10 10:32:29 +0000517 /* Add the record in tx_list */
518 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
519 atomic_inc(&ctx->encrypt_pending);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000520
David Brazdil0f672f62019-12-10 10:32:29 +0000521 rc = crypto_aead_encrypt(aead_req);
522 if (!rc || rc != -EINPROGRESS) {
523 atomic_dec(&ctx->encrypt_pending);
524 sge->offset -= prot->prepend_size;
525 sge->length += prot->prepend_size;
526 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000527
David Brazdil0f672f62019-12-10 10:32:29 +0000528 if (!rc) {
529 WRITE_ONCE(rec->tx_ready, true);
530 } else if (rc != -EINPROGRESS) {
531 list_del(&rec->list);
532 return rc;
533 }
534
535 /* Unhook the record from context if encryption is not failure */
536 ctx->open_rec = NULL;
537 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000538 return rc;
539}
540
David Brazdil0f672f62019-12-10 10:32:29 +0000541static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542 struct tls_rec **to, struct sk_msg *msg_opl,
543 struct sk_msg *msg_oen, u32 split_point,
544 u32 tx_overhead_size, u32 *orig_end)
545{
546 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547 struct scatterlist *sge, *osge, *nsge;
548 u32 orig_size = msg_opl->sg.size;
549 struct scatterlist tmp = { };
550 struct sk_msg *msg_npl;
551 struct tls_rec *new;
552 int ret;
553
554 new = tls_get_rec(sk);
555 if (!new)
556 return -ENOMEM;
557 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558 tx_overhead_size, 0);
559 if (ret < 0) {
560 tls_free_rec(sk, new);
561 return ret;
562 }
563
564 *orig_end = msg_opl->sg.end;
565 i = msg_opl->sg.start;
566 sge = sk_msg_elem(msg_opl, i);
567 while (apply && sge->length) {
568 if (sge->length > apply) {
569 u32 len = sge->length - apply;
570
571 get_page(sg_page(sge));
572 sg_set_page(&tmp, sg_page(sge), len,
573 sge->offset + apply);
574 sge->length = apply;
575 bytes += apply;
576 apply = 0;
577 } else {
578 apply -= sge->length;
579 bytes += sge->length;
580 }
581
582 sk_msg_iter_var_next(i);
583 if (i == msg_opl->sg.end)
584 break;
585 sge = sk_msg_elem(msg_opl, i);
586 }
587
588 msg_opl->sg.end = i;
589 msg_opl->sg.curr = i;
590 msg_opl->sg.copybreak = 0;
591 msg_opl->apply_bytes = 0;
592 msg_opl->sg.size = bytes;
593
594 msg_npl = &new->msg_plaintext;
595 msg_npl->apply_bytes = apply;
596 msg_npl->sg.size = orig_size - bytes;
597
598 j = msg_npl->sg.start;
599 nsge = sk_msg_elem(msg_npl, j);
600 if (tmp.length) {
601 memcpy(nsge, &tmp, sizeof(*nsge));
602 sk_msg_iter_var_next(j);
603 nsge = sk_msg_elem(msg_npl, j);
604 }
605
606 osge = sk_msg_elem(msg_opl, i);
607 while (osge->length) {
608 memcpy(nsge, osge, sizeof(*nsge));
609 sg_unmark_end(nsge);
610 sk_msg_iter_var_next(i);
611 sk_msg_iter_var_next(j);
612 if (i == *orig_end)
613 break;
614 osge = sk_msg_elem(msg_opl, i);
615 nsge = sk_msg_elem(msg_npl, j);
616 }
617
618 msg_npl->sg.end = j;
619 msg_npl->sg.curr = j;
620 msg_npl->sg.copybreak = 0;
621
622 *to = new;
623 return 0;
624}
625
626static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627 struct tls_rec *from, u32 orig_end)
628{
629 struct sk_msg *msg_npl = &from->msg_plaintext;
630 struct sk_msg *msg_opl = &to->msg_plaintext;
631 struct scatterlist *osge, *nsge;
632 u32 i, j;
633
634 i = msg_opl->sg.end;
635 sk_msg_iter_var_prev(i);
636 j = msg_npl->sg.start;
637
638 osge = sk_msg_elem(msg_opl, i);
639 nsge = sk_msg_elem(msg_npl, j);
640
641 if (sg_page(osge) == sg_page(nsge) &&
642 osge->offset + osge->length == nsge->offset) {
643 osge->length += nsge->length;
644 put_page(sg_page(nsge));
645 }
646
647 msg_opl->sg.end = orig_end;
648 msg_opl->sg.curr = orig_end;
649 msg_opl->sg.copybreak = 0;
650 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651 msg_opl->sg.size += msg_npl->sg.size;
652
653 sk_msg_free(sk, &to->msg_encrypted);
654 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
655
656 kfree(from);
657}
658
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000659static int tls_push_record(struct sock *sk, int flags,
660 unsigned char record_type)
661{
662 struct tls_context *tls_ctx = tls_get_ctx(sk);
David Brazdil0f672f62019-12-10 10:32:29 +0000663 struct tls_prot_info *prot = &tls_ctx->prot_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000664 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +0000665 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666 u32 i, split_point, uninitialized_var(orig_end);
667 struct sk_msg *msg_pl, *msg_en;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000668 struct aead_request *req;
David Brazdil0f672f62019-12-10 10:32:29 +0000669 bool split;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000670 int rc;
671
David Brazdil0f672f62019-12-10 10:32:29 +0000672 if (!rec)
673 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000674
David Brazdil0f672f62019-12-10 10:32:29 +0000675 msg_pl = &rec->msg_plaintext;
676 msg_en = &rec->msg_encrypted;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000677
David Brazdil0f672f62019-12-10 10:32:29 +0000678 split_point = msg_pl->apply_bytes;
679 split = split_point && split_point < msg_pl->sg.size;
680 if (split) {
681 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
682 split_point, prot->overhead_size,
683 &orig_end);
684 if (rc < 0)
685 return rc;
686 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
687 prot->overhead_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000688 }
689
David Brazdil0f672f62019-12-10 10:32:29 +0000690 rec->tx_flags = flags;
691 req = &rec->aead_req;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000692
David Brazdil0f672f62019-12-10 10:32:29 +0000693 i = msg_pl->sg.end;
694 sk_msg_iter_var_prev(i);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000695
David Brazdil0f672f62019-12-10 10:32:29 +0000696 rec->content_type = record_type;
697 if (prot->version == TLS_1_3_VERSION) {
698 /* Add content type to end of message. No padding added */
699 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
700 sg_mark_end(&rec->sg_content_type);
701 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
702 &rec->sg_content_type);
703 } else {
704 sg_mark_end(sk_msg_elem(msg_pl, i));
705 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000706
David Brazdil0f672f62019-12-10 10:32:29 +0000707 i = msg_pl->sg.start;
708 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
709
710 i = msg_en->sg.end;
711 sk_msg_iter_var_prev(i);
712 sg_mark_end(sk_msg_elem(msg_en, i));
713
714 i = msg_en->sg.start;
715 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
716
717 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
718 tls_ctx->tx.rec_seq, prot->rec_seq_size,
719 record_type, prot->version);
720
721 tls_fill_prepend(tls_ctx,
722 page_address(sg_page(&msg_en->sg.data[i])) +
723 msg_en->sg.data[i].offset,
724 msg_pl->sg.size + prot->tail_size,
725 record_type, prot->version);
726
727 tls_ctx->pending_open_record_frags = false;
728
729 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
730 msg_pl->sg.size + prot->tail_size, i);
731 if (rc < 0) {
732 if (rc != -EINPROGRESS) {
733 tls_err_abort(sk, EBADMSG);
734 if (split) {
735 tls_ctx->pending_open_record_frags = true;
736 tls_merge_open_record(sk, rec, tmp, orig_end);
737 }
738 }
739 ctx->async_capable = 1;
740 return rc;
741 } else if (split) {
742 msg_pl = &tmp->msg_plaintext;
743 msg_en = &tmp->msg_encrypted;
744 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
745 tls_ctx->pending_open_record_frags = true;
746 ctx->open_rec = tmp;
747 }
748
749 return tls_tx_records(sk, flags);
750}
751
752static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
753 bool full_record, u8 record_type,
754 size_t *copied, int flags)
755{
756 struct tls_context *tls_ctx = tls_get_ctx(sk);
757 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
758 struct sk_msg msg_redir = { };
759 struct sk_psock *psock;
760 struct sock *sk_redir;
761 struct tls_rec *rec;
762 bool enospc, policy;
763 int err = 0, send;
764 u32 delta = 0;
765
766 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
767 psock = sk_psock_get(sk);
768 if (!psock || !policy) {
769 err = tls_push_record(sk, flags, record_type);
770 if (err) {
771 *copied -= sk_msg_free(sk, msg);
772 tls_free_open_rec(sk);
773 }
774 return err;
775 }
776more_data:
777 enospc = sk_msg_full(msg);
778 if (psock->eval == __SK_NONE) {
779 delta = msg->sg.size;
780 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
781 if (delta < msg->sg.size)
782 delta -= msg->sg.size;
783 else
784 delta = 0;
785 }
786 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
787 !enospc && !full_record) {
788 err = -ENOSPC;
789 goto out_err;
790 }
791 msg->cork_bytes = 0;
792 send = msg->sg.size;
793 if (msg->apply_bytes && msg->apply_bytes < send)
794 send = msg->apply_bytes;
795
796 switch (psock->eval) {
797 case __SK_PASS:
798 err = tls_push_record(sk, flags, record_type);
799 if (err < 0) {
800 *copied -= sk_msg_free(sk, msg);
801 tls_free_open_rec(sk);
802 goto out_err;
803 }
804 break;
805 case __SK_REDIRECT:
806 sk_redir = psock->sk_redir;
807 memcpy(&msg_redir, msg, sizeof(*msg));
808 if (msg->apply_bytes < send)
809 msg->apply_bytes = 0;
810 else
811 msg->apply_bytes -= send;
812 sk_msg_return_zero(sk, msg, send);
813 msg->sg.size -= send;
814 release_sock(sk);
815 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
816 lock_sock(sk);
817 if (err < 0) {
818 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
819 msg->sg.size = 0;
820 }
821 if (msg->sg.size == 0)
822 tls_free_open_rec(sk);
823 break;
824 case __SK_DROP:
825 default:
826 sk_msg_free_partial(sk, msg, send);
827 if (msg->apply_bytes < send)
828 msg->apply_bytes = 0;
829 else
830 msg->apply_bytes -= send;
831 if (msg->sg.size == 0)
832 tls_free_open_rec(sk);
833 *copied -= (send + delta);
834 err = -EACCES;
835 }
836
837 if (likely(!err)) {
838 bool reset_eval = !ctx->open_rec;
839
840 rec = ctx->open_rec;
841 if (rec) {
842 msg = &rec->msg_plaintext;
843 if (!msg->apply_bytes)
844 reset_eval = true;
845 }
846 if (reset_eval) {
847 psock->eval = __SK_NONE;
848 if (psock->sk_redir) {
849 sock_put(psock->sk_redir);
850 psock->sk_redir = NULL;
851 }
852 }
853 if (rec)
854 goto more_data;
855 }
856 out_err:
857 sk_psock_put(sk, psock);
858 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000859}
860
861static int tls_sw_push_pending_record(struct sock *sk, int flags)
862{
David Brazdil0f672f62019-12-10 10:32:29 +0000863 struct tls_context *tls_ctx = tls_get_ctx(sk);
864 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
865 struct tls_rec *rec = ctx->open_rec;
866 struct sk_msg *msg_pl;
867 size_t copied;
868
869 if (!rec)
870 return 0;
871
872 msg_pl = &rec->msg_plaintext;
873 copied = msg_pl->sg.size;
874 if (!copied)
875 return 0;
876
877 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
878 &copied, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000879}
880
David Brazdil0f672f62019-12-10 10:32:29 +0000881int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000882{
David Brazdil0f672f62019-12-10 10:32:29 +0000883 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
884 struct tls_context *tls_ctx = tls_get_ctx(sk);
885 struct tls_prot_info *prot = &tls_ctx->prot_info;
886 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
887 bool async_capable = ctx->async_capable;
888 unsigned char record_type = TLS_RECORD_TYPE_DATA;
889 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
890 bool eor = !(msg->msg_flags & MSG_MORE);
891 size_t try_to_copy, copied = 0;
892 struct sk_msg *msg_pl, *msg_en;
893 struct tls_rec *rec;
894 int required_size;
895 int num_async = 0;
896 bool full_record;
897 int record_room;
898 int num_zc = 0;
899 int orig_size;
900 int ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000901
David Brazdil0f672f62019-12-10 10:32:29 +0000902 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
903 return -ENOTSUPP;
904
905 mutex_lock(&tls_ctx->tx_lock);
906 lock_sock(sk);
907
908 if (unlikely(msg->msg_controllen)) {
909 ret = tls_proccess_cmsg(sk, msg, &record_type);
910 if (ret) {
911 if (ret == -EINPROGRESS)
912 num_async++;
913 else if (ret != -EAGAIN)
914 goto send_end;
915 }
916 }
917
918 while (msg_data_left(msg)) {
919 if (sk->sk_err) {
920 ret = -sk->sk_err;
921 goto send_end;
922 }
923
924 if (ctx->open_rec)
925 rec = ctx->open_rec;
926 else
927 rec = ctx->open_rec = tls_get_rec(sk);
928 if (!rec) {
929 ret = -ENOMEM;
930 goto send_end;
931 }
932
933 msg_pl = &rec->msg_plaintext;
934 msg_en = &rec->msg_encrypted;
935
936 orig_size = msg_pl->sg.size;
937 full_record = false;
938 try_to_copy = msg_data_left(msg);
939 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
940 if (try_to_copy >= record_room) {
941 try_to_copy = record_room;
942 full_record = true;
943 }
944
945 required_size = msg_pl->sg.size + try_to_copy +
946 prot->overhead_size;
947
948 if (!sk_stream_memory_free(sk))
949 goto wait_for_sndbuf;
950
951alloc_encrypted:
952 ret = tls_alloc_encrypted_msg(sk, required_size);
953 if (ret) {
954 if (ret != -ENOSPC)
955 goto wait_for_memory;
956
957 /* Adjust try_to_copy according to the amount that was
958 * actually allocated. The difference is due
959 * to max sg elements limit
960 */
961 try_to_copy -= required_size - msg_en->sg.size;
962 full_record = true;
963 }
964
965 if (!is_kvec && (full_record || eor) && !async_capable) {
966 u32 first = msg_pl->sg.end;
967
968 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
969 msg_pl, try_to_copy);
970 if (ret)
971 goto fallback_to_reg_send;
972
973 num_zc++;
974 copied += try_to_copy;
975
976 sk_msg_sg_copy_set(msg_pl, first);
977 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
978 record_type, &copied,
979 msg->msg_flags);
980 if (ret) {
981 if (ret == -EINPROGRESS)
982 num_async++;
983 else if (ret == -ENOMEM)
984 goto wait_for_memory;
985 else if (ctx->open_rec && ret == -ENOSPC)
986 goto rollback_iter;
987 else if (ret != -EAGAIN)
988 goto send_end;
989 }
990 continue;
991rollback_iter:
992 copied -= try_to_copy;
993 sk_msg_sg_copy_clear(msg_pl, first);
994 iov_iter_revert(&msg->msg_iter,
995 msg_pl->sg.size - orig_size);
996fallback_to_reg_send:
997 sk_msg_trim(sk, msg_pl, orig_size);
998 }
999
1000 required_size = msg_pl->sg.size + try_to_copy;
1001
1002 ret = tls_clone_plaintext_msg(sk, required_size);
1003 if (ret) {
1004 if (ret != -ENOSPC)
1005 goto send_end;
1006
1007 /* Adjust try_to_copy according to the amount that was
1008 * actually allocated. The difference is due
1009 * to max sg elements limit
1010 */
1011 try_to_copy -= required_size - msg_pl->sg.size;
1012 full_record = true;
1013 sk_msg_trim(sk, msg_en,
1014 msg_pl->sg.size + prot->overhead_size);
1015 }
1016
1017 if (try_to_copy) {
1018 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1019 msg_pl, try_to_copy);
1020 if (ret < 0)
1021 goto trim_sgl;
1022 }
1023
1024 /* Open records defined only if successfully copied, otherwise
1025 * we would trim the sg but not reset the open record frags.
1026 */
1027 tls_ctx->pending_open_record_frags = true;
1028 copied += try_to_copy;
1029 if (full_record || eor) {
1030 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1031 record_type, &copied,
1032 msg->msg_flags);
1033 if (ret) {
1034 if (ret == -EINPROGRESS)
1035 num_async++;
1036 else if (ret == -ENOMEM)
1037 goto wait_for_memory;
1038 else if (ret != -EAGAIN) {
1039 if (ret == -ENOSPC)
1040 ret = 0;
1041 goto send_end;
1042 }
1043 }
1044 }
1045
1046 continue;
1047
1048wait_for_sndbuf:
1049 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1050wait_for_memory:
1051 ret = sk_stream_wait_memory(sk, &timeo);
1052 if (ret) {
1053trim_sgl:
1054 if (ctx->open_rec)
1055 tls_trim_both_msgs(sk, orig_size);
1056 goto send_end;
1057 }
1058
1059 if (ctx->open_rec && msg_en->sg.size < required_size)
1060 goto alloc_encrypted;
1061 }
1062
1063 if (!num_async) {
1064 goto send_end;
1065 } else if (num_zc) {
1066 /* Wait for pending encryptions to get completed */
1067 smp_store_mb(ctx->async_notify, true);
1068
1069 if (atomic_read(&ctx->encrypt_pending))
1070 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1071 else
1072 reinit_completion(&ctx->async_wait.completion);
1073
1074 WRITE_ONCE(ctx->async_notify, false);
1075
1076 if (ctx->async_wait.err) {
1077 ret = ctx->async_wait.err;
1078 copied = 0;
1079 }
1080 }
1081
1082 /* Transmit if any encryptions have completed */
1083 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1084 cancel_delayed_work(&ctx->tx_work.work);
1085 tls_tx_records(sk, msg->msg_flags);
1086 }
1087
1088send_end:
1089 ret = sk_stream_error(sk, msg->msg_flags, ret);
1090
1091 release_sock(sk);
1092 mutex_unlock(&tls_ctx->tx_lock);
1093 return copied ? copied : ret;
1094}
1095
1096static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1097 int offset, size_t size, int flags)
1098{
1099 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1100 struct tls_context *tls_ctx = tls_get_ctx(sk);
1101 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1102 struct tls_prot_info *prot = &tls_ctx->prot_info;
1103 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1104 struct sk_msg *msg_pl;
1105 struct tls_rec *rec;
1106 int num_async = 0;
1107 size_t copied = 0;
1108 bool full_record;
1109 int record_room;
1110 int ret = 0;
1111 bool eor;
1112
1113 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1114 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1115
1116 /* Call the sk_stream functions to manage the sndbuf mem. */
1117 while (size > 0) {
1118 size_t copy, required_size;
1119
1120 if (sk->sk_err) {
1121 ret = -sk->sk_err;
1122 goto sendpage_end;
1123 }
1124
1125 if (ctx->open_rec)
1126 rec = ctx->open_rec;
1127 else
1128 rec = ctx->open_rec = tls_get_rec(sk);
1129 if (!rec) {
1130 ret = -ENOMEM;
1131 goto sendpage_end;
1132 }
1133
1134 msg_pl = &rec->msg_plaintext;
1135
1136 full_record = false;
1137 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1138 copy = size;
1139 if (copy >= record_room) {
1140 copy = record_room;
1141 full_record = true;
1142 }
1143
1144 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1145
1146 if (!sk_stream_memory_free(sk))
1147 goto wait_for_sndbuf;
1148alloc_payload:
1149 ret = tls_alloc_encrypted_msg(sk, required_size);
1150 if (ret) {
1151 if (ret != -ENOSPC)
1152 goto wait_for_memory;
1153
1154 /* Adjust copy according to the amount that was
1155 * actually allocated. The difference is due
1156 * to max sg elements limit
1157 */
1158 copy -= required_size - msg_pl->sg.size;
1159 full_record = true;
1160 }
1161
1162 sk_msg_page_add(msg_pl, page, copy, offset);
1163 sk_mem_charge(sk, copy);
1164
1165 offset += copy;
1166 size -= copy;
1167 copied += copy;
1168
1169 tls_ctx->pending_open_record_frags = true;
1170 if (full_record || eor || sk_msg_full(msg_pl)) {
1171 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1172 record_type, &copied, flags);
1173 if (ret) {
1174 if (ret == -EINPROGRESS)
1175 num_async++;
1176 else if (ret == -ENOMEM)
1177 goto wait_for_memory;
1178 else if (ret != -EAGAIN) {
1179 if (ret == -ENOSPC)
1180 ret = 0;
1181 goto sendpage_end;
1182 }
1183 }
1184 }
1185 continue;
1186wait_for_sndbuf:
1187 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1188wait_for_memory:
1189 ret = sk_stream_wait_memory(sk, &timeo);
1190 if (ret) {
1191 if (ctx->open_rec)
1192 tls_trim_both_msgs(sk, msg_pl->sg.size);
1193 goto sendpage_end;
1194 }
1195
1196 if (ctx->open_rec)
1197 goto alloc_payload;
1198 }
1199
1200 if (num_async) {
1201 /* Transmit if any encryptions have completed */
1202 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1203 cancel_delayed_work(&ctx->tx_work.work);
1204 tls_tx_records(sk, flags);
1205 }
1206 }
1207sendpage_end:
1208 ret = sk_stream_error(sk, flags, ret);
1209 return copied ? copied : ret;
1210}
1211
1212int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1213 int offset, size_t size, int flags)
1214{
1215 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1216 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1217 MSG_NO_SHARED_FRAGS))
1218 return -ENOTSUPP;
1219
1220 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1221}
1222
1223int tls_sw_sendpage(struct sock *sk, struct page *page,
1224 int offset, size_t size, int flags)
1225{
1226 struct tls_context *tls_ctx = tls_get_ctx(sk);
1227 int ret;
1228
1229 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1230 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1231 return -ENOTSUPP;
1232
1233 mutex_lock(&tls_ctx->tx_lock);
1234 lock_sock(sk);
1235 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1236 release_sock(sk);
1237 mutex_unlock(&tls_ctx->tx_lock);
1238 return ret;
1239}
1240
1241static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1242 int flags, long timeo, int *err)
1243{
1244 struct tls_context *tls_ctx = tls_get_ctx(sk);
1245 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1246 struct sk_buff *skb;
1247 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1248
1249 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1250 if (sk->sk_err) {
1251 *err = sock_error(sk);
1252 return NULL;
1253 }
1254
1255 if (sk->sk_shutdown & RCV_SHUTDOWN)
1256 return NULL;
1257
1258 if (sock_flag(sk, SOCK_DONE))
1259 return NULL;
1260
1261 if ((flags & MSG_DONTWAIT) || !timeo) {
1262 *err = -EAGAIN;
1263 return NULL;
1264 }
1265
1266 add_wait_queue(sk_sleep(sk), &wait);
1267 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1268 sk_wait_event(sk, &timeo,
1269 ctx->recv_pkt != skb ||
1270 !sk_psock_queue_empty(psock),
1271 &wait);
1272 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1273 remove_wait_queue(sk_sleep(sk), &wait);
1274
1275 /* Handle signals */
1276 if (signal_pending(current)) {
1277 *err = sock_intr_errno(timeo);
1278 return NULL;
1279 }
1280 }
1281
1282 return skb;
1283}
1284
1285static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1286 int length, int *pages_used,
1287 unsigned int *size_used,
1288 struct scatterlist *to,
1289 int to_max_pages)
1290{
1291 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1292 struct page *pages[MAX_SKB_FRAGS];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001293 unsigned int size = *size_used;
David Brazdil0f672f62019-12-10 10:32:29 +00001294 ssize_t copied, use;
1295 size_t offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001296
1297 while (length > 0) {
1298 i = 0;
1299 maxpages = to_max_pages - num_elem;
1300 if (maxpages == 0) {
1301 rc = -EFAULT;
1302 goto out;
1303 }
1304 copied = iov_iter_get_pages(from, pages,
1305 length,
1306 maxpages, &offset);
1307 if (copied <= 0) {
1308 rc = -EFAULT;
1309 goto out;
1310 }
1311
1312 iov_iter_advance(from, copied);
1313
1314 length -= copied;
1315 size += copied;
1316 while (copied) {
1317 use = min_t(int, copied, PAGE_SIZE - offset);
1318
1319 sg_set_page(&to[num_elem],
1320 pages[i], use, offset);
1321 sg_unmark_end(&to[num_elem]);
David Brazdil0f672f62019-12-10 10:32:29 +00001322 /* We do not uncharge memory from this API */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001323
1324 offset = 0;
1325 copied -= use;
1326
David Brazdil0f672f62019-12-10 10:32:29 +00001327 i++;
1328 num_elem++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001329 }
1330 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001331 /* Mark the end in the last sg entry if newly added */
1332 if (num_elem > *pages_used)
1333 sg_mark_end(&to[num_elem - 1]);
1334out:
1335 if (rc)
1336 iov_iter_revert(from, size - *size_used);
1337 *size_used = size;
1338 *pages_used = num_elem;
1339
1340 return rc;
1341}
1342
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001343/* This function decrypts the input skb into either out_iov or in out_sg
1344 * or in skb buffers itself. The input parameter 'zc' indicates if
1345 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1346 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1347 * NULL, then the decryption happens inside skb buffers itself, i.e.
1348 * zero-copy gets disabled and 'zc' is updated.
1349 */
1350
1351static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1352 struct iov_iter *out_iov,
1353 struct scatterlist *out_sg,
David Brazdil0f672f62019-12-10 10:32:29 +00001354 int *chunk, bool *zc, bool async)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001355{
1356 struct tls_context *tls_ctx = tls_get_ctx(sk);
1357 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +00001358 struct tls_prot_info *prot = &tls_ctx->prot_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001359 struct strp_msg *rxm = strp_msg(skb);
1360 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1361 struct aead_request *aead_req;
1362 struct sk_buff *unused;
1363 u8 *aad, *iv, *mem = NULL;
1364 struct scatterlist *sgin = NULL;
1365 struct scatterlist *sgout = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00001366 const int data_len = rxm->full_len - prot->overhead_size +
1367 prot->tail_size;
1368 int iv_offset = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001369
1370 if (*zc && (out_iov || out_sg)) {
1371 if (out_iov)
1372 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1373 else
1374 n_sgout = sg_nents(out_sg);
David Brazdil0f672f62019-12-10 10:32:29 +00001375 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1376 rxm->full_len - prot->prepend_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001377 } else {
1378 n_sgout = 0;
1379 *zc = false;
David Brazdil0f672f62019-12-10 10:32:29 +00001380 n_sgin = skb_cow_data(skb, 0, &unused);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001381 }
1382
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001383 if (n_sgin < 1)
1384 return -EBADMSG;
1385
1386 /* Increment to accommodate AAD */
1387 n_sgin = n_sgin + 1;
1388
1389 nsg = n_sgin + n_sgout;
1390
1391 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1392 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
David Brazdil0f672f62019-12-10 10:32:29 +00001393 mem_size = mem_size + prot->aad_size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001394 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1395
1396 /* Allocate a single block of memory which contains
1397 * aead_req || sgin[] || sgout[] || aad || iv.
1398 * This order achieves correct alignment for aead_req, sgin, sgout.
1399 */
1400 mem = kmalloc(mem_size, sk->sk_allocation);
1401 if (!mem)
1402 return -ENOMEM;
1403
1404 /* Segment the allocated memory */
1405 aead_req = (struct aead_request *)mem;
1406 sgin = (struct scatterlist *)(mem + aead_size);
1407 sgout = sgin + n_sgin;
1408 aad = (u8 *)(sgout + n_sgout);
David Brazdil0f672f62019-12-10 10:32:29 +00001409 iv = aad + prot->aad_size;
1410
1411 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1412 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1413 iv[0] = 2;
1414 iv_offset = 1;
1415 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001416
1417 /* Prepare IV */
1418 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
David Brazdil0f672f62019-12-10 10:32:29 +00001419 iv + iv_offset + prot->salt_size,
1420 prot->iv_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001421 if (err < 0) {
1422 kfree(mem);
1423 return err;
1424 }
David Brazdil0f672f62019-12-10 10:32:29 +00001425 if (prot->version == TLS_1_3_VERSION)
1426 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1427 crypto_aead_ivsize(ctx->aead_recv));
1428 else
1429 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1430
1431 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001432
1433 /* Prepare AAD */
David Brazdil0f672f62019-12-10 10:32:29 +00001434 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1435 prot->tail_size,
1436 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1437 ctx->control, prot->version);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001438
1439 /* Prepare sgin */
1440 sg_init_table(sgin, n_sgin);
David Brazdil0f672f62019-12-10 10:32:29 +00001441 sg_set_buf(&sgin[0], aad, prot->aad_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001442 err = skb_to_sgvec(skb, &sgin[1],
David Brazdil0f672f62019-12-10 10:32:29 +00001443 rxm->offset + prot->prepend_size,
1444 rxm->full_len - prot->prepend_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001445 if (err < 0) {
1446 kfree(mem);
1447 return err;
1448 }
1449
1450 if (n_sgout) {
1451 if (out_iov) {
1452 sg_init_table(sgout, n_sgout);
David Brazdil0f672f62019-12-10 10:32:29 +00001453 sg_set_buf(&sgout[0], aad, prot->aad_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001454
1455 *chunk = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001456 err = tls_setup_from_iter(sk, out_iov, data_len,
1457 &pages, chunk, &sgout[1],
1458 (n_sgout - 1));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001459 if (err < 0)
1460 goto fallback_to_reg_recv;
1461 } else if (out_sg) {
1462 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1463 } else {
1464 goto fallback_to_reg_recv;
1465 }
1466 } else {
1467fallback_to_reg_recv:
1468 sgout = sgin;
1469 pages = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001470 *chunk = data_len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001471 *zc = false;
1472 }
1473
1474 /* Prepare and submit AEAD request */
David Brazdil0f672f62019-12-10 10:32:29 +00001475 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1476 data_len, aead_req, async);
1477 if (err == -EINPROGRESS)
1478 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001479
1480 /* Release the pages in case iov was mapped to pages */
1481 for (; pages > 0; pages--)
1482 put_page(sg_page(&sgout[pages]));
1483
1484 kfree(mem);
1485 return err;
1486}
1487
1488static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
David Brazdil0f672f62019-12-10 10:32:29 +00001489 struct iov_iter *dest, int *chunk, bool *zc,
1490 bool async)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001491{
1492 struct tls_context *tls_ctx = tls_get_ctx(sk);
1493 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +00001494 struct tls_prot_info *prot = &tls_ctx->prot_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001495 struct strp_msg *rxm = strp_msg(skb);
David Brazdil0f672f62019-12-10 10:32:29 +00001496 int pad, err = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001497
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001498 if (!ctx->decrypted) {
David Brazdil0f672f62019-12-10 10:32:29 +00001499 if (tls_ctx->rx_conf == TLS_HW) {
1500 err = tls_device_decrypted(sk, skb);
1501 if (err < 0)
1502 return err;
1503 }
1504
1505 /* Still not decrypted after tls_device */
1506 if (!ctx->decrypted) {
1507 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1508 async);
1509 if (err < 0) {
1510 if (err == -EINPROGRESS)
1511 tls_advance_record_sn(sk, prot,
1512 &tls_ctx->rx);
1513
1514 return err;
1515 }
1516 } else {
1517 *zc = false;
1518 }
1519
1520 pad = padding_length(ctx, prot, skb);
1521 if (pad < 0)
1522 return pad;
1523
1524 rxm->full_len -= pad;
1525 rxm->offset += prot->prepend_size;
1526 rxm->full_len -= prot->overhead_size;
1527 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1528 ctx->decrypted = true;
1529 ctx->saved_data_ready(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001530 } else {
1531 *zc = false;
1532 }
1533
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001534 return err;
1535}
1536
1537int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1538 struct scatterlist *sgout)
1539{
1540 bool zc = true;
1541 int chunk;
1542
David Brazdil0f672f62019-12-10 10:32:29 +00001543 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001544}
1545
1546static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1547 unsigned int len)
1548{
1549 struct tls_context *tls_ctx = tls_get_ctx(sk);
1550 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001551
David Brazdil0f672f62019-12-10 10:32:29 +00001552 if (skb) {
1553 struct strp_msg *rxm = strp_msg(skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001554
David Brazdil0f672f62019-12-10 10:32:29 +00001555 if (len < rxm->full_len) {
1556 rxm->offset += len;
1557 rxm->full_len -= len;
1558 return false;
1559 }
1560 consume_skb(skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001561 }
1562
1563 /* Finished with message */
1564 ctx->recv_pkt = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001565 __strp_unpause(&ctx->strp);
1566
1567 return true;
1568}
1569
David Brazdil0f672f62019-12-10 10:32:29 +00001570/* This function traverses the rx_list in tls receive context to copies the
1571 * decrypted records into the buffer provided by caller zero copy is not
1572 * true. Further, the records are removed from the rx_list if it is not a peek
1573 * case and the record has been consumed completely.
1574 */
1575static int process_rx_list(struct tls_sw_context_rx *ctx,
1576 struct msghdr *msg,
1577 u8 *control,
1578 bool *cmsg,
1579 size_t skip,
1580 size_t len,
1581 bool zc,
1582 bool is_peek)
1583{
1584 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1585 u8 ctrl = *control;
1586 u8 msgc = *cmsg;
1587 struct tls_msg *tlm;
1588 ssize_t copied = 0;
1589
1590 /* Set the record type in 'control' if caller didn't pass it */
1591 if (!ctrl && skb) {
1592 tlm = tls_msg(skb);
1593 ctrl = tlm->control;
1594 }
1595
1596 while (skip && skb) {
1597 struct strp_msg *rxm = strp_msg(skb);
1598 tlm = tls_msg(skb);
1599
1600 /* Cannot process a record of different type */
1601 if (ctrl != tlm->control)
1602 return 0;
1603
1604 if (skip < rxm->full_len)
1605 break;
1606
1607 skip = skip - rxm->full_len;
1608 skb = skb_peek_next(skb, &ctx->rx_list);
1609 }
1610
1611 while (len && skb) {
1612 struct sk_buff *next_skb;
1613 struct strp_msg *rxm = strp_msg(skb);
1614 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1615
1616 tlm = tls_msg(skb);
1617
1618 /* Cannot process a record of different type */
1619 if (ctrl != tlm->control)
1620 return 0;
1621
1622 /* Set record type if not already done. For a non-data record,
1623 * do not proceed if record type could not be copied.
1624 */
1625 if (!msgc) {
1626 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1627 sizeof(ctrl), &ctrl);
1628 msgc = true;
1629 if (ctrl != TLS_RECORD_TYPE_DATA) {
1630 if (cerr || msg->msg_flags & MSG_CTRUNC)
1631 return -EIO;
1632
1633 *cmsg = msgc;
1634 }
1635 }
1636
1637 if (!zc || (rxm->full_len - skip) > len) {
1638 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1639 msg, chunk);
1640 if (err < 0)
1641 return err;
1642 }
1643
1644 len = len - chunk;
1645 copied = copied + chunk;
1646
1647 /* Consume the data from record if it is non-peek case*/
1648 if (!is_peek) {
1649 rxm->offset = rxm->offset + chunk;
1650 rxm->full_len = rxm->full_len - chunk;
1651
1652 /* Return if there is unconsumed data in the record */
1653 if (rxm->full_len - skip)
1654 break;
1655 }
1656
1657 /* The remaining skip-bytes must lie in 1st record in rx_list.
1658 * So from the 2nd record, 'skip' should be 0.
1659 */
1660 skip = 0;
1661
1662 if (msg)
1663 msg->msg_flags |= MSG_EOR;
1664
1665 next_skb = skb_peek_next(skb, &ctx->rx_list);
1666
1667 if (!is_peek) {
1668 skb_unlink(skb, &ctx->rx_list);
1669 consume_skb(skb);
1670 }
1671
1672 skb = next_skb;
1673 }
1674
1675 *control = ctrl;
1676 return copied;
1677}
1678
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001679int tls_sw_recvmsg(struct sock *sk,
1680 struct msghdr *msg,
1681 size_t len,
1682 int nonblock,
1683 int flags,
1684 int *addr_len)
1685{
1686 struct tls_context *tls_ctx = tls_get_ctx(sk);
1687 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +00001688 struct tls_prot_info *prot = &tls_ctx->prot_info;
1689 struct sk_psock *psock;
1690 unsigned char control = 0;
1691 ssize_t decrypted = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001692 struct strp_msg *rxm;
David Brazdil0f672f62019-12-10 10:32:29 +00001693 struct tls_msg *tlm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001694 struct sk_buff *skb;
1695 ssize_t copied = 0;
1696 bool cmsg = false;
1697 int target, err = 0;
1698 long timeo;
David Brazdil0f672f62019-12-10 10:32:29 +00001699 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1700 bool is_peek = flags & MSG_PEEK;
1701 int num_async = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001702
1703 flags |= nonblock;
1704
1705 if (unlikely(flags & MSG_ERRQUEUE))
1706 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1707
David Brazdil0f672f62019-12-10 10:32:29 +00001708 psock = sk_psock_get(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001709 lock_sock(sk);
1710
David Brazdil0f672f62019-12-10 10:32:29 +00001711 /* Process pending decrypted records. It must be non-zero-copy */
1712 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1713 is_peek);
1714 if (err < 0) {
1715 tls_err_abort(sk, err);
1716 goto end;
1717 } else {
1718 copied = err;
1719 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001720
David Brazdil0f672f62019-12-10 10:32:29 +00001721 if (len <= copied)
1722 goto recv_end;
1723
1724 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1725 len = len - copied;
1726 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1727
1728 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1729 bool retain_skb = false;
1730 bool zc = false;
1731 int to_decrypt;
1732 int chunk = 0;
1733 bool async_capable;
1734 bool async = false;
1735
1736 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1737 if (!skb) {
1738 if (psock) {
1739 int ret = __tcp_bpf_recvmsg(sk, psock,
1740 msg, len, flags);
1741
1742 if (ret > 0) {
1743 decrypted += ret;
1744 len -= ret;
1745 continue;
1746 }
1747 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001748 goto recv_end;
David Brazdil0f672f62019-12-10 10:32:29 +00001749 } else {
1750 tlm = tls_msg(skb);
1751 if (prot->version == TLS_1_3_VERSION)
1752 tlm->control = 0;
1753 else
1754 tlm->control = ctx->control;
1755 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001756
1757 rxm = strp_msg(skb);
David Brazdil0f672f62019-12-10 10:32:29 +00001758
1759 to_decrypt = rxm->full_len - prot->overhead_size;
1760
1761 if (to_decrypt <= len && !is_kvec && !is_peek &&
1762 ctx->control == TLS_RECORD_TYPE_DATA &&
1763 prot->version != TLS_1_3_VERSION)
1764 zc = true;
1765
1766 /* Do not use async mode if record is non-data */
1767 if (ctx->control == TLS_RECORD_TYPE_DATA)
1768 async_capable = ctx->async_capable;
1769 else
1770 async_capable = false;
1771
1772 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1773 &chunk, &zc, async_capable);
1774 if (err < 0 && err != -EINPROGRESS) {
1775 tls_err_abort(sk, EBADMSG);
1776 goto recv_end;
1777 }
1778
1779 if (err == -EINPROGRESS) {
1780 async = true;
1781 num_async++;
1782 } else if (prot->version == TLS_1_3_VERSION) {
1783 tlm->control = ctx->control;
1784 }
1785
1786 /* If the type of records being processed is not known yet,
1787 * set it to record type just dequeued. If it is already known,
1788 * but does not match the record type just dequeued, go to end.
1789 * We always get record type here since for tls1.2, record type
1790 * is known just after record is dequeued from stream parser.
1791 * For tls1.3, we disable async.
1792 */
1793
1794 if (!control)
1795 control = tlm->control;
1796 else if (control != tlm->control)
1797 goto recv_end;
1798
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001799 if (!cmsg) {
1800 int cerr;
1801
1802 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
David Brazdil0f672f62019-12-10 10:32:29 +00001803 sizeof(control), &control);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001804 cmsg = true;
David Brazdil0f672f62019-12-10 10:32:29 +00001805 if (control != TLS_RECORD_TYPE_DATA) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001806 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1807 err = -EIO;
1808 goto recv_end;
1809 }
1810 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001811 }
1812
David Brazdil0f672f62019-12-10 10:32:29 +00001813 if (async)
1814 goto pick_next_record;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001815
1816 if (!zc) {
David Brazdil0f672f62019-12-10 10:32:29 +00001817 if (rxm->full_len > len) {
1818 retain_skb = true;
1819 chunk = len;
1820 } else {
1821 chunk = rxm->full_len;
1822 }
1823
1824 err = skb_copy_datagram_msg(skb, rxm->offset,
1825 msg, chunk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001826 if (err < 0)
1827 goto recv_end;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001828
David Brazdil0f672f62019-12-10 10:32:29 +00001829 if (!is_peek) {
1830 rxm->offset = rxm->offset + chunk;
1831 rxm->full_len = rxm->full_len - chunk;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001832 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001833 }
1834
David Brazdil0f672f62019-12-10 10:32:29 +00001835pick_next_record:
1836 if (chunk > len)
1837 chunk = len;
1838
1839 decrypted += chunk;
1840 len -= chunk;
1841
1842 /* For async or peek case, queue the current skb */
1843 if (async || is_peek || retain_skb) {
1844 skb_queue_tail(&ctx->rx_list, skb);
1845 skb = NULL;
1846 }
1847
1848 if (tls_sw_advance_skb(sk, skb, chunk)) {
1849 /* Return full control message to
1850 * userspace before trying to parse
1851 * another message type
1852 */
1853 msg->msg_flags |= MSG_EOR;
1854 if (ctx->control != TLS_RECORD_TYPE_DATA)
1855 goto recv_end;
1856 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001857 break;
David Brazdil0f672f62019-12-10 10:32:29 +00001858 }
1859 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001860
1861recv_end:
David Brazdil0f672f62019-12-10 10:32:29 +00001862 if (num_async) {
1863 /* Wait for all previously submitted records to be decrypted */
1864 smp_store_mb(ctx->async_notify, true);
1865 if (atomic_read(&ctx->decrypt_pending)) {
1866 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1867 if (err) {
1868 /* one of async decrypt failed */
1869 tls_err_abort(sk, err);
1870 copied = 0;
1871 decrypted = 0;
1872 goto end;
1873 }
1874 } else {
1875 reinit_completion(&ctx->async_wait.completion);
1876 }
1877 WRITE_ONCE(ctx->async_notify, false);
1878
1879 /* Drain records from the rx_list & copy if required */
1880 if (is_peek || is_kvec)
1881 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1882 decrypted, false, is_peek);
1883 else
1884 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1885 decrypted, true, is_peek);
1886 if (err < 0) {
1887 tls_err_abort(sk, err);
1888 copied = 0;
1889 goto end;
1890 }
1891 }
1892
1893 copied += decrypted;
1894
1895end:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001896 release_sock(sk);
David Brazdil0f672f62019-12-10 10:32:29 +00001897 if (psock)
1898 sk_psock_put(sk, psock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001899 return copied ? : err;
1900}
1901
1902ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1903 struct pipe_inode_info *pipe,
1904 size_t len, unsigned int flags)
1905{
1906 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1907 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1908 struct strp_msg *rxm = NULL;
1909 struct sock *sk = sock->sk;
1910 struct sk_buff *skb;
1911 ssize_t copied = 0;
1912 int err = 0;
1913 long timeo;
1914 int chunk;
1915 bool zc = false;
1916
1917 lock_sock(sk);
1918
1919 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1920
David Brazdil0f672f62019-12-10 10:32:29 +00001921 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001922 if (!skb)
1923 goto splice_read_end;
1924
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001925 if (!ctx->decrypted) {
David Brazdil0f672f62019-12-10 10:32:29 +00001926 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1927
1928 /* splice does not support reading control messages */
1929 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1930 err = -ENOTSUPP;
1931 goto splice_read_end;
1932 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001933
1934 if (err < 0) {
1935 tls_err_abort(sk, EBADMSG);
1936 goto splice_read_end;
1937 }
1938 ctx->decrypted = true;
1939 }
1940 rxm = strp_msg(skb);
1941
1942 chunk = min_t(unsigned int, rxm->full_len, len);
1943 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1944 if (copied < 0)
1945 goto splice_read_end;
1946
1947 if (likely(!(flags & MSG_PEEK)))
1948 tls_sw_advance_skb(sk, skb, copied);
1949
1950splice_read_end:
1951 release_sock(sk);
1952 return copied ? : err;
1953}
1954
David Brazdil0f672f62019-12-10 10:32:29 +00001955bool tls_sw_stream_read(const struct sock *sk)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001956{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001957 struct tls_context *tls_ctx = tls_get_ctx(sk);
1958 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +00001959 bool ingress_empty = true;
1960 struct sk_psock *psock;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001961
David Brazdil0f672f62019-12-10 10:32:29 +00001962 rcu_read_lock();
1963 psock = sk_psock(sk);
1964 if (psock)
1965 ingress_empty = list_empty(&psock->ingress_msg);
1966 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001967
David Brazdil0f672f62019-12-10 10:32:29 +00001968 return !ingress_empty || ctx->recv_pkt ||
1969 !skb_queue_empty(&ctx->rx_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001970}
1971
1972static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1973{
1974 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1975 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +00001976 struct tls_prot_info *prot = &tls_ctx->prot_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001977 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1978 struct strp_msg *rxm = strp_msg(skb);
1979 size_t cipher_overhead;
1980 size_t data_len = 0;
1981 int ret;
1982
1983 /* Verify that we have a full TLS header, or wait for more data */
David Brazdil0f672f62019-12-10 10:32:29 +00001984 if (rxm->offset + prot->prepend_size > skb->len)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001985 return 0;
1986
1987 /* Sanity-check size of on-stack buffer. */
David Brazdil0f672f62019-12-10 10:32:29 +00001988 if (WARN_ON(prot->prepend_size > sizeof(header))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001989 ret = -EINVAL;
1990 goto read_failure;
1991 }
1992
1993 /* Linearize header to local buffer */
David Brazdil0f672f62019-12-10 10:32:29 +00001994 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001995
1996 if (ret < 0)
1997 goto read_failure;
1998
1999 ctx->control = header[0];
2000
2001 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2002
David Brazdil0f672f62019-12-10 10:32:29 +00002003 cipher_overhead = prot->tag_size;
2004 if (prot->version != TLS_1_3_VERSION)
2005 cipher_overhead += prot->iv_size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002006
David Brazdil0f672f62019-12-10 10:32:29 +00002007 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2008 prot->tail_size) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002009 ret = -EMSGSIZE;
2010 goto read_failure;
2011 }
2012 if (data_len < cipher_overhead) {
2013 ret = -EBADMSG;
2014 goto read_failure;
2015 }
2016
David Brazdil0f672f62019-12-10 10:32:29 +00002017 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2018 if (header[1] != TLS_1_2_VERSION_MINOR ||
2019 header[2] != TLS_1_2_VERSION_MAJOR) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002020 ret = -EINVAL;
2021 goto read_failure;
2022 }
2023
David Brazdil0f672f62019-12-10 10:32:29 +00002024 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2025 TCP_SKB_CB(skb)->seq + rxm->offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002026 return data_len + TLS_HEADER_SIZE;
2027
2028read_failure:
2029 tls_err_abort(strp->sk, ret);
2030
2031 return ret;
2032}
2033
2034static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2035{
2036 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2037 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2038
2039 ctx->decrypted = false;
2040
2041 ctx->recv_pkt = skb;
2042 strp_pause(strp);
2043
2044 ctx->saved_data_ready(strp->sk);
2045}
2046
2047static void tls_data_ready(struct sock *sk)
2048{
2049 struct tls_context *tls_ctx = tls_get_ctx(sk);
2050 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +00002051 struct sk_psock *psock;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002052
2053 strp_data_ready(&ctx->strp);
David Brazdil0f672f62019-12-10 10:32:29 +00002054
2055 psock = sk_psock_get(sk);
2056 if (psock && !list_empty(&psock->ingress_msg)) {
2057 ctx->saved_data_ready(sk);
2058 sk_psock_put(sk, psock);
2059 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002060}
2061
David Brazdil0f672f62019-12-10 10:32:29 +00002062void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2063{
2064 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2065
2066 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2067 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2068 cancel_delayed_work_sync(&ctx->tx_work.work);
2069}
2070
2071void tls_sw_release_resources_tx(struct sock *sk)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002072{
2073 struct tls_context *tls_ctx = tls_get_ctx(sk);
2074 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
David Brazdil0f672f62019-12-10 10:32:29 +00002075 struct tls_rec *rec, *tmp;
2076
2077 /* Wait for any pending async encryptions to complete */
2078 smp_store_mb(ctx->async_notify, true);
2079 if (atomic_read(&ctx->encrypt_pending))
2080 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2081
2082 tls_tx_records(sk, -1);
2083
2084 /* Free up un-sent records in tx_list. First, free
2085 * the partially sent record if any at head of tx_list.
2086 */
2087 if (tls_ctx->partially_sent_record) {
2088 tls_free_partial_record(sk, tls_ctx);
2089 rec = list_first_entry(&ctx->tx_list,
2090 struct tls_rec, list);
2091 list_del(&rec->list);
2092 sk_msg_free(sk, &rec->msg_plaintext);
2093 kfree(rec);
2094 }
2095
2096 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2097 list_del(&rec->list);
2098 sk_msg_free(sk, &rec->msg_encrypted);
2099 sk_msg_free(sk, &rec->msg_plaintext);
2100 kfree(rec);
2101 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002102
2103 crypto_free_aead(ctx->aead_send);
David Brazdil0f672f62019-12-10 10:32:29 +00002104 tls_free_open_rec(sk);
2105}
2106
2107void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2108{
2109 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002110
2111 kfree(ctx);
2112}
2113
2114void tls_sw_release_resources_rx(struct sock *sk)
2115{
2116 struct tls_context *tls_ctx = tls_get_ctx(sk);
2117 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2118
David Brazdil0f672f62019-12-10 10:32:29 +00002119 kfree(tls_ctx->rx.rec_seq);
2120 kfree(tls_ctx->rx.iv);
2121
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002122 if (ctx->aead_recv) {
2123 kfree_skb(ctx->recv_pkt);
2124 ctx->recv_pkt = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00002125 skb_queue_purge(&ctx->rx_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002126 crypto_free_aead(ctx->aead_recv);
2127 strp_stop(&ctx->strp);
David Brazdil0f672f62019-12-10 10:32:29 +00002128 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2129 * we still want to strp_stop(), but sk->sk_data_ready was
2130 * never swapped.
2131 */
2132 if (ctx->saved_data_ready) {
2133 write_lock_bh(&sk->sk_callback_lock);
2134 sk->sk_data_ready = ctx->saved_data_ready;
2135 write_unlock_bh(&sk->sk_callback_lock);
2136 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002137 }
2138}
2139
David Brazdil0f672f62019-12-10 10:32:29 +00002140void tls_sw_strparser_done(struct tls_context *tls_ctx)
2141{
2142 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2143
2144 strp_done(&ctx->strp);
2145}
2146
2147void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2148{
2149 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2150
2151 kfree(ctx);
2152}
2153
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002154void tls_sw_free_resources_rx(struct sock *sk)
2155{
2156 struct tls_context *tls_ctx = tls_get_ctx(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002157
2158 tls_sw_release_resources_rx(sk);
David Brazdil0f672f62019-12-10 10:32:29 +00002159 tls_sw_free_ctx_rx(tls_ctx);
2160}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002161
David Brazdil0f672f62019-12-10 10:32:29 +00002162/* The work handler to transmitt the encrypted records in tx_list */
2163static void tx_work_handler(struct work_struct *work)
2164{
2165 struct delayed_work *delayed_work = to_delayed_work(work);
2166 struct tx_work *tx_work = container_of(delayed_work,
2167 struct tx_work, work);
2168 struct sock *sk = tx_work->sk;
2169 struct tls_context *tls_ctx = tls_get_ctx(sk);
2170 struct tls_sw_context_tx *ctx;
2171
2172 if (unlikely(!tls_ctx))
2173 return;
2174
2175 ctx = tls_sw_ctx_tx(tls_ctx);
2176 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2177 return;
2178
2179 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2180 return;
2181 mutex_lock(&tls_ctx->tx_lock);
2182 lock_sock(sk);
2183 tls_tx_records(sk, -1);
2184 release_sock(sk);
2185 mutex_unlock(&tls_ctx->tx_lock);
2186}
2187
2188void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2189{
2190 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2191
2192 /* Schedule the transmission if tx list is ready */
2193 if (is_tx_ready(tx_ctx) &&
2194 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2195 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2196}
2197
2198void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2199{
2200 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2201
2202 write_lock_bh(&sk->sk_callback_lock);
2203 rx_ctx->saved_data_ready = sk->sk_data_ready;
2204 sk->sk_data_ready = tls_data_ready;
2205 write_unlock_bh(&sk->sk_callback_lock);
2206
2207 strp_check_rcv(&rx_ctx->strp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002208}
2209
2210int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2211{
David Brazdil0f672f62019-12-10 10:32:29 +00002212 struct tls_context *tls_ctx = tls_get_ctx(sk);
2213 struct tls_prot_info *prot = &tls_ctx->prot_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002214 struct tls_crypto_info *crypto_info;
2215 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
David Brazdil0f672f62019-12-10 10:32:29 +00002216 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2217 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002218 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2219 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2220 struct cipher_context *cctx;
2221 struct crypto_aead **aead;
2222 struct strp_callbacks cb;
David Brazdil0f672f62019-12-10 10:32:29 +00002223 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2224 struct crypto_tfm *tfm;
2225 char *iv, *rec_seq, *key, *salt, *cipher_name;
2226 size_t keysize;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002227 int rc = 0;
2228
2229 if (!ctx) {
2230 rc = -EINVAL;
2231 goto out;
2232 }
2233
2234 if (tx) {
2235 if (!ctx->priv_ctx_tx) {
2236 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2237 if (!sw_ctx_tx) {
2238 rc = -ENOMEM;
2239 goto out;
2240 }
2241 ctx->priv_ctx_tx = sw_ctx_tx;
2242 } else {
2243 sw_ctx_tx =
2244 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2245 }
2246 } else {
2247 if (!ctx->priv_ctx_rx) {
2248 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2249 if (!sw_ctx_rx) {
2250 rc = -ENOMEM;
2251 goto out;
2252 }
2253 ctx->priv_ctx_rx = sw_ctx_rx;
2254 } else {
2255 sw_ctx_rx =
2256 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2257 }
2258 }
2259
2260 if (tx) {
2261 crypto_init_wait(&sw_ctx_tx->async_wait);
2262 crypto_info = &ctx->crypto_send.info;
2263 cctx = &ctx->tx;
2264 aead = &sw_ctx_tx->aead_send;
David Brazdil0f672f62019-12-10 10:32:29 +00002265 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2266 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2267 sw_ctx_tx->tx_work.sk = sk;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002268 } else {
2269 crypto_init_wait(&sw_ctx_rx->async_wait);
2270 crypto_info = &ctx->crypto_recv.info;
2271 cctx = &ctx->rx;
David Brazdil0f672f62019-12-10 10:32:29 +00002272 skb_queue_head_init(&sw_ctx_rx->rx_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002273 aead = &sw_ctx_rx->aead_recv;
2274 }
2275
2276 switch (crypto_info->cipher_type) {
2277 case TLS_CIPHER_AES_GCM_128: {
2278 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2279 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2280 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2281 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2282 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2283 rec_seq =
2284 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2285 gcm_128_info =
2286 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
David Brazdil0f672f62019-12-10 10:32:29 +00002287 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2288 key = gcm_128_info->key;
2289 salt = gcm_128_info->salt;
2290 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2291 cipher_name = "gcm(aes)";
2292 break;
2293 }
2294 case TLS_CIPHER_AES_GCM_256: {
2295 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2296 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2297 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2298 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2299 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2300 rec_seq =
2301 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2302 gcm_256_info =
2303 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2304 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2305 key = gcm_256_info->key;
2306 salt = gcm_256_info->salt;
2307 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2308 cipher_name = "gcm(aes)";
2309 break;
2310 }
2311 case TLS_CIPHER_AES_CCM_128: {
2312 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2313 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2314 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2315 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2316 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2317 rec_seq =
2318 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2319 ccm_128_info =
2320 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2321 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2322 key = ccm_128_info->key;
2323 salt = ccm_128_info->salt;
2324 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2325 cipher_name = "ccm(aes)";
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002326 break;
2327 }
2328 default:
2329 rc = -EINVAL;
2330 goto free_priv;
2331 }
2332
David Brazdil0f672f62019-12-10 10:32:29 +00002333 /* Sanity-check the sizes for stack allocations. */
2334 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2335 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002336 rc = -EINVAL;
2337 goto free_priv;
2338 }
2339
David Brazdil0f672f62019-12-10 10:32:29 +00002340 if (crypto_info->version == TLS_1_3_VERSION) {
2341 nonce_size = 0;
2342 prot->aad_size = TLS_HEADER_SIZE;
2343 prot->tail_size = 1;
2344 } else {
2345 prot->aad_size = TLS_AAD_SPACE_SIZE;
2346 prot->tail_size = 0;
2347 }
2348
2349 prot->version = crypto_info->version;
2350 prot->cipher_type = crypto_info->cipher_type;
2351 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2352 prot->tag_size = tag_size;
2353 prot->overhead_size = prot->prepend_size +
2354 prot->tag_size + prot->tail_size;
2355 prot->iv_size = iv_size;
2356 prot->salt_size = salt_size;
2357 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002358 if (!cctx->iv) {
2359 rc = -ENOMEM;
2360 goto free_priv;
2361 }
David Brazdil0f672f62019-12-10 10:32:29 +00002362 /* Note: 128 & 256 bit salt are the same size */
2363 prot->rec_seq_size = rec_seq_size;
2364 memcpy(cctx->iv, salt, salt_size);
2365 memcpy(cctx->iv + salt_size, iv, iv_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002366 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2367 if (!cctx->rec_seq) {
2368 rc = -ENOMEM;
2369 goto free_iv;
2370 }
2371
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002372 if (!*aead) {
David Brazdil0f672f62019-12-10 10:32:29 +00002373 *aead = crypto_alloc_aead(cipher_name, 0, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002374 if (IS_ERR(*aead)) {
2375 rc = PTR_ERR(*aead);
2376 *aead = NULL;
2377 goto free_rec_seq;
2378 }
2379 }
2380
2381 ctx->push_pending_record = tls_sw_push_pending_record;
2382
David Brazdil0f672f62019-12-10 10:32:29 +00002383 rc = crypto_aead_setkey(*aead, key, keysize);
2384
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002385 if (rc)
2386 goto free_aead;
2387
David Brazdil0f672f62019-12-10 10:32:29 +00002388 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002389 if (rc)
2390 goto free_aead;
2391
2392 if (sw_ctx_rx) {
David Brazdil0f672f62019-12-10 10:32:29 +00002393 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2394
2395 if (crypto_info->version == TLS_1_3_VERSION)
2396 sw_ctx_rx->async_capable = false;
2397 else
2398 sw_ctx_rx->async_capable =
2399 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2400
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002401 /* Set up strparser */
2402 memset(&cb, 0, sizeof(cb));
2403 cb.rcv_msg = tls_queue;
2404 cb.parse_msg = tls_read_size;
2405
2406 strp_init(&sw_ctx_rx->strp, sk, &cb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002407 }
2408
2409 goto out;
2410
2411free_aead:
2412 crypto_free_aead(*aead);
2413 *aead = NULL;
2414free_rec_seq:
2415 kfree(cctx->rec_seq);
2416 cctx->rec_seq = NULL;
2417free_iv:
2418 kfree(cctx->iv);
2419 cctx->iv = NULL;
2420free_priv:
2421 if (tx) {
2422 kfree(ctx->priv_ctx_tx);
2423 ctx->priv_ctx_tx = NULL;
2424 } else {
2425 kfree(ctx->priv_ctx_rx);
2426 ctx->priv_ctx_rx = NULL;
2427 }
2428out:
2429 return rc;
2430}