David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3 | * |
| 4 | * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet |
| 5 | * & Swedish University of Agricultural Sciences. |
| 6 | * |
| 7 | * Jens Laas <jens.laas@data.slu.se> Swedish University of |
| 8 | * Agricultural Sciences. |
| 9 | * |
| 10 | * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet |
| 11 | * |
| 12 | * This work is based on the LPC-trie which is originally described in: |
| 13 | * |
| 14 | * An experimental study of compression methods for dynamic tries |
| 15 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. |
| 16 | * http://www.csc.kth.se/~snilsson/software/dyntrie2/ |
| 17 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 18 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson |
| 19 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 |
| 20 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 21 | * Code from fib_hash has been reused which includes the following header: |
| 22 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 23 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 24 | * operating system. INET is implemented using the BSD Socket |
| 25 | * interface as the means of communication with the user level. |
| 26 | * |
| 27 | * IPv4 FIB: lookup engine and maintenance routines. |
| 28 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 29 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| 30 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 31 | * Substantial contributions to this work comes from: |
| 32 | * |
| 33 | * David S. Miller, <davem@davemloft.net> |
| 34 | * Stephen Hemminger <shemminger@osdl.org> |
| 35 | * Paul E. McKenney <paulmck@us.ibm.com> |
| 36 | * Patrick McHardy <kaber@trash.net> |
| 37 | */ |
| 38 | |
| 39 | #define VERSION "0.409" |
| 40 | |
| 41 | #include <linux/cache.h> |
| 42 | #include <linux/uaccess.h> |
| 43 | #include <linux/bitops.h> |
| 44 | #include <linux/types.h> |
| 45 | #include <linux/kernel.h> |
| 46 | #include <linux/mm.h> |
| 47 | #include <linux/string.h> |
| 48 | #include <linux/socket.h> |
| 49 | #include <linux/sockios.h> |
| 50 | #include <linux/errno.h> |
| 51 | #include <linux/in.h> |
| 52 | #include <linux/inet.h> |
| 53 | #include <linux/inetdevice.h> |
| 54 | #include <linux/netdevice.h> |
| 55 | #include <linux/if_arp.h> |
| 56 | #include <linux/proc_fs.h> |
| 57 | #include <linux/rcupdate.h> |
| 58 | #include <linux/skbuff.h> |
| 59 | #include <linux/netlink.h> |
| 60 | #include <linux/init.h> |
| 61 | #include <linux/list.h> |
| 62 | #include <linux/slab.h> |
| 63 | #include <linux/export.h> |
| 64 | #include <linux/vmalloc.h> |
| 65 | #include <linux/notifier.h> |
| 66 | #include <net/net_namespace.h> |
| 67 | #include <net/ip.h> |
| 68 | #include <net/protocol.h> |
| 69 | #include <net/route.h> |
| 70 | #include <net/tcp.h> |
| 71 | #include <net/sock.h> |
| 72 | #include <net/ip_fib.h> |
| 73 | #include <net/fib_notifier.h> |
| 74 | #include <trace/events/fib.h> |
| 75 | #include "fib_lookup.h" |
| 76 | |
| 77 | static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, |
| 78 | enum fib_event_type event_type, u32 dst, |
| 79 | int dst_len, struct fib_alias *fa) |
| 80 | { |
| 81 | struct fib_entry_notifier_info info = { |
| 82 | .dst = dst, |
| 83 | .dst_len = dst_len, |
| 84 | .fi = fa->fa_info, |
| 85 | .tos = fa->fa_tos, |
| 86 | .type = fa->fa_type, |
| 87 | .tb_id = fa->tb_id, |
| 88 | }; |
| 89 | return call_fib4_notifier(nb, net, event_type, &info.info); |
| 90 | } |
| 91 | |
| 92 | static int call_fib_entry_notifiers(struct net *net, |
| 93 | enum fib_event_type event_type, u32 dst, |
| 94 | int dst_len, struct fib_alias *fa, |
| 95 | struct netlink_ext_ack *extack) |
| 96 | { |
| 97 | struct fib_entry_notifier_info info = { |
| 98 | .info.extack = extack, |
| 99 | .dst = dst, |
| 100 | .dst_len = dst_len, |
| 101 | .fi = fa->fa_info, |
| 102 | .tos = fa->fa_tos, |
| 103 | .type = fa->fa_type, |
| 104 | .tb_id = fa->tb_id, |
| 105 | }; |
| 106 | return call_fib4_notifiers(net, event_type, &info.info); |
| 107 | } |
| 108 | |
| 109 | #define MAX_STAT_DEPTH 32 |
| 110 | |
| 111 | #define KEYLENGTH (8*sizeof(t_key)) |
| 112 | #define KEY_MAX ((t_key)~0) |
| 113 | |
| 114 | typedef unsigned int t_key; |
| 115 | |
| 116 | #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) |
| 117 | #define IS_TNODE(n) ((n)->bits) |
| 118 | #define IS_LEAF(n) (!(n)->bits) |
| 119 | |
| 120 | struct key_vector { |
| 121 | t_key key; |
| 122 | unsigned char pos; /* 2log(KEYLENGTH) bits needed */ |
| 123 | unsigned char bits; /* 2log(KEYLENGTH) bits needed */ |
| 124 | unsigned char slen; |
| 125 | union { |
| 126 | /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ |
| 127 | struct hlist_head leaf; |
| 128 | /* This array is valid if (pos | bits) > 0 (TNODE) */ |
| 129 | struct key_vector __rcu *tnode[0]; |
| 130 | }; |
| 131 | }; |
| 132 | |
| 133 | struct tnode { |
| 134 | struct rcu_head rcu; |
| 135 | t_key empty_children; /* KEYLENGTH bits needed */ |
| 136 | t_key full_children; /* KEYLENGTH bits needed */ |
| 137 | struct key_vector __rcu *parent; |
| 138 | struct key_vector kv[1]; |
| 139 | #define tn_bits kv[0].bits |
| 140 | }; |
| 141 | |
| 142 | #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) |
| 143 | #define LEAF_SIZE TNODE_SIZE(1) |
| 144 | |
| 145 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 146 | struct trie_use_stats { |
| 147 | unsigned int gets; |
| 148 | unsigned int backtrack; |
| 149 | unsigned int semantic_match_passed; |
| 150 | unsigned int semantic_match_miss; |
| 151 | unsigned int null_node_hit; |
| 152 | unsigned int resize_node_skipped; |
| 153 | }; |
| 154 | #endif |
| 155 | |
| 156 | struct trie_stat { |
| 157 | unsigned int totdepth; |
| 158 | unsigned int maxdepth; |
| 159 | unsigned int tnodes; |
| 160 | unsigned int leaves; |
| 161 | unsigned int nullpointers; |
| 162 | unsigned int prefixes; |
| 163 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
| 164 | }; |
| 165 | |
| 166 | struct trie { |
| 167 | struct key_vector kv[1]; |
| 168 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 169 | struct trie_use_stats __percpu *stats; |
| 170 | #endif |
| 171 | }; |
| 172 | |
| 173 | static struct key_vector *resize(struct trie *t, struct key_vector *tn); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 174 | static unsigned int tnode_free_size; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 175 | |
| 176 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 177 | * synchronize_rcu after call_rcu for outstanding dirty memory; it should be |
| 178 | * especially useful before resizing the root node with PREEMPT_NONE configs; |
| 179 | * the value was obtained experimentally, aiming to avoid visible slowdown. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 180 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 181 | unsigned int sysctl_fib_sync_mem = 512 * 1024; |
| 182 | unsigned int sysctl_fib_sync_mem_min = 64 * 1024; |
| 183 | unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 184 | |
| 185 | static struct kmem_cache *fn_alias_kmem __ro_after_init; |
| 186 | static struct kmem_cache *trie_leaf_kmem __ro_after_init; |
| 187 | |
| 188 | static inline struct tnode *tn_info(struct key_vector *kv) |
| 189 | { |
| 190 | return container_of(kv, struct tnode, kv[0]); |
| 191 | } |
| 192 | |
| 193 | /* caller must hold RTNL */ |
| 194 | #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) |
| 195 | #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) |
| 196 | |
| 197 | /* caller must hold RCU read lock or RTNL */ |
| 198 | #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) |
| 199 | #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) |
| 200 | |
| 201 | /* wrapper for rcu_assign_pointer */ |
| 202 | static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) |
| 203 | { |
| 204 | if (n) |
| 205 | rcu_assign_pointer(tn_info(n)->parent, tp); |
| 206 | } |
| 207 | |
| 208 | #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) |
| 209 | |
| 210 | /* This provides us with the number of children in this node, in the case of a |
| 211 | * leaf this will return 0 meaning none of the children are accessible. |
| 212 | */ |
| 213 | static inline unsigned long child_length(const struct key_vector *tn) |
| 214 | { |
| 215 | return (1ul << tn->bits) & ~(1ul); |
| 216 | } |
| 217 | |
| 218 | #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) |
| 219 | |
| 220 | static inline unsigned long get_index(t_key key, struct key_vector *kv) |
| 221 | { |
| 222 | unsigned long index = key ^ kv->key; |
| 223 | |
| 224 | if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) |
| 225 | return 0; |
| 226 | |
| 227 | return index >> kv->pos; |
| 228 | } |
| 229 | |
| 230 | /* To understand this stuff, an understanding of keys and all their bits is |
| 231 | * necessary. Every node in the trie has a key associated with it, but not |
| 232 | * all of the bits in that key are significant. |
| 233 | * |
| 234 | * Consider a node 'n' and its parent 'tp'. |
| 235 | * |
| 236 | * If n is a leaf, every bit in its key is significant. Its presence is |
| 237 | * necessitated by path compression, since during a tree traversal (when |
| 238 | * searching for a leaf - unless we are doing an insertion) we will completely |
| 239 | * ignore all skipped bits we encounter. Thus we need to verify, at the end of |
| 240 | * a potentially successful search, that we have indeed been walking the |
| 241 | * correct key path. |
| 242 | * |
| 243 | * Note that we can never "miss" the correct key in the tree if present by |
| 244 | * following the wrong path. Path compression ensures that segments of the key |
| 245 | * that are the same for all keys with a given prefix are skipped, but the |
| 246 | * skipped part *is* identical for each node in the subtrie below the skipped |
| 247 | * bit! trie_insert() in this implementation takes care of that. |
| 248 | * |
| 249 | * if n is an internal node - a 'tnode' here, the various parts of its key |
| 250 | * have many different meanings. |
| 251 | * |
| 252 | * Example: |
| 253 | * _________________________________________________________________ |
| 254 | * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | |
| 255 | * ----------------------------------------------------------------- |
| 256 | * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 |
| 257 | * |
| 258 | * _________________________________________________________________ |
| 259 | * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | |
| 260 | * ----------------------------------------------------------------- |
| 261 | * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| 262 | * |
| 263 | * tp->pos = 22 |
| 264 | * tp->bits = 3 |
| 265 | * n->pos = 13 |
| 266 | * n->bits = 4 |
| 267 | * |
| 268 | * First, let's just ignore the bits that come before the parent tp, that is |
| 269 | * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this |
| 270 | * point we do not use them for anything. |
| 271 | * |
| 272 | * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the |
| 273 | * index into the parent's child array. That is, they will be used to find |
| 274 | * 'n' among tp's children. |
| 275 | * |
| 276 | * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits |
| 277 | * for the node n. |
| 278 | * |
| 279 | * All the bits we have seen so far are significant to the node n. The rest |
| 280 | * of the bits are really not needed or indeed known in n->key. |
| 281 | * |
| 282 | * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into |
| 283 | * n's child array, and will of course be different for each child. |
| 284 | * |
| 285 | * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown |
| 286 | * at this point. |
| 287 | */ |
| 288 | |
| 289 | static const int halve_threshold = 25; |
| 290 | static const int inflate_threshold = 50; |
| 291 | static const int halve_threshold_root = 15; |
| 292 | static const int inflate_threshold_root = 30; |
| 293 | |
| 294 | static void __alias_free_mem(struct rcu_head *head) |
| 295 | { |
| 296 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
| 297 | kmem_cache_free(fn_alias_kmem, fa); |
| 298 | } |
| 299 | |
| 300 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
| 301 | { |
| 302 | call_rcu(&fa->rcu, __alias_free_mem); |
| 303 | } |
| 304 | |
| 305 | #define TNODE_KMALLOC_MAX \ |
| 306 | ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
| 307 | #define TNODE_VMALLOC_MAX \ |
| 308 | ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
| 309 | |
| 310 | static void __node_free_rcu(struct rcu_head *head) |
| 311 | { |
| 312 | struct tnode *n = container_of(head, struct tnode, rcu); |
| 313 | |
| 314 | if (!n->tn_bits) |
| 315 | kmem_cache_free(trie_leaf_kmem, n); |
| 316 | else |
| 317 | kvfree(n); |
| 318 | } |
| 319 | |
| 320 | #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) |
| 321 | |
| 322 | static struct tnode *tnode_alloc(int bits) |
| 323 | { |
| 324 | size_t size; |
| 325 | |
| 326 | /* verify bits is within bounds */ |
| 327 | if (bits > TNODE_VMALLOC_MAX) |
| 328 | return NULL; |
| 329 | |
| 330 | /* determine size and verify it is non-zero and didn't overflow */ |
| 331 | size = TNODE_SIZE(1ul << bits); |
| 332 | |
| 333 | if (size <= PAGE_SIZE) |
| 334 | return kzalloc(size, GFP_KERNEL); |
| 335 | else |
| 336 | return vzalloc(size); |
| 337 | } |
| 338 | |
| 339 | static inline void empty_child_inc(struct key_vector *n) |
| 340 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 341 | tn_info(n)->empty_children++; |
| 342 | |
| 343 | if (!tn_info(n)->empty_children) |
| 344 | tn_info(n)->full_children++; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 345 | } |
| 346 | |
| 347 | static inline void empty_child_dec(struct key_vector *n) |
| 348 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 349 | if (!tn_info(n)->empty_children) |
| 350 | tn_info(n)->full_children--; |
| 351 | |
| 352 | tn_info(n)->empty_children--; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 353 | } |
| 354 | |
| 355 | static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) |
| 356 | { |
| 357 | struct key_vector *l; |
| 358 | struct tnode *kv; |
| 359 | |
| 360 | kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); |
| 361 | if (!kv) |
| 362 | return NULL; |
| 363 | |
| 364 | /* initialize key vector */ |
| 365 | l = kv->kv; |
| 366 | l->key = key; |
| 367 | l->pos = 0; |
| 368 | l->bits = 0; |
| 369 | l->slen = fa->fa_slen; |
| 370 | |
| 371 | /* link leaf to fib alias */ |
| 372 | INIT_HLIST_HEAD(&l->leaf); |
| 373 | hlist_add_head(&fa->fa_list, &l->leaf); |
| 374 | |
| 375 | return l; |
| 376 | } |
| 377 | |
| 378 | static struct key_vector *tnode_new(t_key key, int pos, int bits) |
| 379 | { |
| 380 | unsigned int shift = pos + bits; |
| 381 | struct key_vector *tn; |
| 382 | struct tnode *tnode; |
| 383 | |
| 384 | /* verify bits and pos their msb bits clear and values are valid */ |
| 385 | BUG_ON(!bits || (shift > KEYLENGTH)); |
| 386 | |
| 387 | tnode = tnode_alloc(bits); |
| 388 | if (!tnode) |
| 389 | return NULL; |
| 390 | |
| 391 | pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), |
| 392 | sizeof(struct key_vector *) << bits); |
| 393 | |
| 394 | if (bits == KEYLENGTH) |
| 395 | tnode->full_children = 1; |
| 396 | else |
| 397 | tnode->empty_children = 1ul << bits; |
| 398 | |
| 399 | tn = tnode->kv; |
| 400 | tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; |
| 401 | tn->pos = pos; |
| 402 | tn->bits = bits; |
| 403 | tn->slen = pos; |
| 404 | |
| 405 | return tn; |
| 406 | } |
| 407 | |
| 408 | /* Check whether a tnode 'n' is "full", i.e. it is an internal node |
| 409 | * and no bits are skipped. See discussion in dyntree paper p. 6 |
| 410 | */ |
| 411 | static inline int tnode_full(struct key_vector *tn, struct key_vector *n) |
| 412 | { |
| 413 | return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); |
| 414 | } |
| 415 | |
| 416 | /* Add a child at position i overwriting the old value. |
| 417 | * Update the value of full_children and empty_children. |
| 418 | */ |
| 419 | static void put_child(struct key_vector *tn, unsigned long i, |
| 420 | struct key_vector *n) |
| 421 | { |
| 422 | struct key_vector *chi = get_child(tn, i); |
| 423 | int isfull, wasfull; |
| 424 | |
| 425 | BUG_ON(i >= child_length(tn)); |
| 426 | |
| 427 | /* update emptyChildren, overflow into fullChildren */ |
| 428 | if (!n && chi) |
| 429 | empty_child_inc(tn); |
| 430 | if (n && !chi) |
| 431 | empty_child_dec(tn); |
| 432 | |
| 433 | /* update fullChildren */ |
| 434 | wasfull = tnode_full(tn, chi); |
| 435 | isfull = tnode_full(tn, n); |
| 436 | |
| 437 | if (wasfull && !isfull) |
| 438 | tn_info(tn)->full_children--; |
| 439 | else if (!wasfull && isfull) |
| 440 | tn_info(tn)->full_children++; |
| 441 | |
| 442 | if (n && (tn->slen < n->slen)) |
| 443 | tn->slen = n->slen; |
| 444 | |
| 445 | rcu_assign_pointer(tn->tnode[i], n); |
| 446 | } |
| 447 | |
| 448 | static void update_children(struct key_vector *tn) |
| 449 | { |
| 450 | unsigned long i; |
| 451 | |
| 452 | /* update all of the child parent pointers */ |
| 453 | for (i = child_length(tn); i;) { |
| 454 | struct key_vector *inode = get_child(tn, --i); |
| 455 | |
| 456 | if (!inode) |
| 457 | continue; |
| 458 | |
| 459 | /* Either update the children of a tnode that |
| 460 | * already belongs to us or update the child |
| 461 | * to point to ourselves. |
| 462 | */ |
| 463 | if (node_parent(inode) == tn) |
| 464 | update_children(inode); |
| 465 | else |
| 466 | node_set_parent(inode, tn); |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | static inline void put_child_root(struct key_vector *tp, t_key key, |
| 471 | struct key_vector *n) |
| 472 | { |
| 473 | if (IS_TRIE(tp)) |
| 474 | rcu_assign_pointer(tp->tnode[0], n); |
| 475 | else |
| 476 | put_child(tp, get_index(key, tp), n); |
| 477 | } |
| 478 | |
| 479 | static inline void tnode_free_init(struct key_vector *tn) |
| 480 | { |
| 481 | tn_info(tn)->rcu.next = NULL; |
| 482 | } |
| 483 | |
| 484 | static inline void tnode_free_append(struct key_vector *tn, |
| 485 | struct key_vector *n) |
| 486 | { |
| 487 | tn_info(n)->rcu.next = tn_info(tn)->rcu.next; |
| 488 | tn_info(tn)->rcu.next = &tn_info(n)->rcu; |
| 489 | } |
| 490 | |
| 491 | static void tnode_free(struct key_vector *tn) |
| 492 | { |
| 493 | struct callback_head *head = &tn_info(tn)->rcu; |
| 494 | |
| 495 | while (head) { |
| 496 | head = head->next; |
| 497 | tnode_free_size += TNODE_SIZE(1ul << tn->bits); |
| 498 | node_free(tn); |
| 499 | |
| 500 | tn = container_of(head, struct tnode, rcu)->kv; |
| 501 | } |
| 502 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 503 | if (tnode_free_size >= sysctl_fib_sync_mem) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 504 | tnode_free_size = 0; |
| 505 | synchronize_rcu(); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | static struct key_vector *replace(struct trie *t, |
| 510 | struct key_vector *oldtnode, |
| 511 | struct key_vector *tn) |
| 512 | { |
| 513 | struct key_vector *tp = node_parent(oldtnode); |
| 514 | unsigned long i; |
| 515 | |
| 516 | /* setup the parent pointer out of and back into this node */ |
| 517 | NODE_INIT_PARENT(tn, tp); |
| 518 | put_child_root(tp, tn->key, tn); |
| 519 | |
| 520 | /* update all of the child parent pointers */ |
| 521 | update_children(tn); |
| 522 | |
| 523 | /* all pointers should be clean so we are done */ |
| 524 | tnode_free(oldtnode); |
| 525 | |
| 526 | /* resize children now that oldtnode is freed */ |
| 527 | for (i = child_length(tn); i;) { |
| 528 | struct key_vector *inode = get_child(tn, --i); |
| 529 | |
| 530 | /* resize child node */ |
| 531 | if (tnode_full(tn, inode)) |
| 532 | tn = resize(t, inode); |
| 533 | } |
| 534 | |
| 535 | return tp; |
| 536 | } |
| 537 | |
| 538 | static struct key_vector *inflate(struct trie *t, |
| 539 | struct key_vector *oldtnode) |
| 540 | { |
| 541 | struct key_vector *tn; |
| 542 | unsigned long i; |
| 543 | t_key m; |
| 544 | |
| 545 | pr_debug("In inflate\n"); |
| 546 | |
| 547 | tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); |
| 548 | if (!tn) |
| 549 | goto notnode; |
| 550 | |
| 551 | /* prepare oldtnode to be freed */ |
| 552 | tnode_free_init(oldtnode); |
| 553 | |
| 554 | /* Assemble all of the pointers in our cluster, in this case that |
| 555 | * represents all of the pointers out of our allocated nodes that |
| 556 | * point to existing tnodes and the links between our allocated |
| 557 | * nodes. |
| 558 | */ |
| 559 | for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { |
| 560 | struct key_vector *inode = get_child(oldtnode, --i); |
| 561 | struct key_vector *node0, *node1; |
| 562 | unsigned long j, k; |
| 563 | |
| 564 | /* An empty child */ |
| 565 | if (!inode) |
| 566 | continue; |
| 567 | |
| 568 | /* A leaf or an internal node with skipped bits */ |
| 569 | if (!tnode_full(oldtnode, inode)) { |
| 570 | put_child(tn, get_index(inode->key, tn), inode); |
| 571 | continue; |
| 572 | } |
| 573 | |
| 574 | /* drop the node in the old tnode free list */ |
| 575 | tnode_free_append(oldtnode, inode); |
| 576 | |
| 577 | /* An internal node with two children */ |
| 578 | if (inode->bits == 1) { |
| 579 | put_child(tn, 2 * i + 1, get_child(inode, 1)); |
| 580 | put_child(tn, 2 * i, get_child(inode, 0)); |
| 581 | continue; |
| 582 | } |
| 583 | |
| 584 | /* We will replace this node 'inode' with two new |
| 585 | * ones, 'node0' and 'node1', each with half of the |
| 586 | * original children. The two new nodes will have |
| 587 | * a position one bit further down the key and this |
| 588 | * means that the "significant" part of their keys |
| 589 | * (see the discussion near the top of this file) |
| 590 | * will differ by one bit, which will be "0" in |
| 591 | * node0's key and "1" in node1's key. Since we are |
| 592 | * moving the key position by one step, the bit that |
| 593 | * we are moving away from - the bit at position |
| 594 | * (tn->pos) - is the one that will differ between |
| 595 | * node0 and node1. So... we synthesize that bit in the |
| 596 | * two new keys. |
| 597 | */ |
| 598 | node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); |
| 599 | if (!node1) |
| 600 | goto nomem; |
| 601 | node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); |
| 602 | |
| 603 | tnode_free_append(tn, node1); |
| 604 | if (!node0) |
| 605 | goto nomem; |
| 606 | tnode_free_append(tn, node0); |
| 607 | |
| 608 | /* populate child pointers in new nodes */ |
| 609 | for (k = child_length(inode), j = k / 2; j;) { |
| 610 | put_child(node1, --j, get_child(inode, --k)); |
| 611 | put_child(node0, j, get_child(inode, j)); |
| 612 | put_child(node1, --j, get_child(inode, --k)); |
| 613 | put_child(node0, j, get_child(inode, j)); |
| 614 | } |
| 615 | |
| 616 | /* link new nodes to parent */ |
| 617 | NODE_INIT_PARENT(node1, tn); |
| 618 | NODE_INIT_PARENT(node0, tn); |
| 619 | |
| 620 | /* link parent to nodes */ |
| 621 | put_child(tn, 2 * i + 1, node1); |
| 622 | put_child(tn, 2 * i, node0); |
| 623 | } |
| 624 | |
| 625 | /* setup the parent pointers into and out of this node */ |
| 626 | return replace(t, oldtnode, tn); |
| 627 | nomem: |
| 628 | /* all pointers should be clean so we are done */ |
| 629 | tnode_free(tn); |
| 630 | notnode: |
| 631 | return NULL; |
| 632 | } |
| 633 | |
| 634 | static struct key_vector *halve(struct trie *t, |
| 635 | struct key_vector *oldtnode) |
| 636 | { |
| 637 | struct key_vector *tn; |
| 638 | unsigned long i; |
| 639 | |
| 640 | pr_debug("In halve\n"); |
| 641 | |
| 642 | tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); |
| 643 | if (!tn) |
| 644 | goto notnode; |
| 645 | |
| 646 | /* prepare oldtnode to be freed */ |
| 647 | tnode_free_init(oldtnode); |
| 648 | |
| 649 | /* Assemble all of the pointers in our cluster, in this case that |
| 650 | * represents all of the pointers out of our allocated nodes that |
| 651 | * point to existing tnodes and the links between our allocated |
| 652 | * nodes. |
| 653 | */ |
| 654 | for (i = child_length(oldtnode); i;) { |
| 655 | struct key_vector *node1 = get_child(oldtnode, --i); |
| 656 | struct key_vector *node0 = get_child(oldtnode, --i); |
| 657 | struct key_vector *inode; |
| 658 | |
| 659 | /* At least one of the children is empty */ |
| 660 | if (!node1 || !node0) { |
| 661 | put_child(tn, i / 2, node1 ? : node0); |
| 662 | continue; |
| 663 | } |
| 664 | |
| 665 | /* Two nonempty children */ |
| 666 | inode = tnode_new(node0->key, oldtnode->pos, 1); |
| 667 | if (!inode) |
| 668 | goto nomem; |
| 669 | tnode_free_append(tn, inode); |
| 670 | |
| 671 | /* initialize pointers out of node */ |
| 672 | put_child(inode, 1, node1); |
| 673 | put_child(inode, 0, node0); |
| 674 | NODE_INIT_PARENT(inode, tn); |
| 675 | |
| 676 | /* link parent to node */ |
| 677 | put_child(tn, i / 2, inode); |
| 678 | } |
| 679 | |
| 680 | /* setup the parent pointers into and out of this node */ |
| 681 | return replace(t, oldtnode, tn); |
| 682 | nomem: |
| 683 | /* all pointers should be clean so we are done */ |
| 684 | tnode_free(tn); |
| 685 | notnode: |
| 686 | return NULL; |
| 687 | } |
| 688 | |
| 689 | static struct key_vector *collapse(struct trie *t, |
| 690 | struct key_vector *oldtnode) |
| 691 | { |
| 692 | struct key_vector *n, *tp; |
| 693 | unsigned long i; |
| 694 | |
| 695 | /* scan the tnode looking for that one child that might still exist */ |
| 696 | for (n = NULL, i = child_length(oldtnode); !n && i;) |
| 697 | n = get_child(oldtnode, --i); |
| 698 | |
| 699 | /* compress one level */ |
| 700 | tp = node_parent(oldtnode); |
| 701 | put_child_root(tp, oldtnode->key, n); |
| 702 | node_set_parent(n, tp); |
| 703 | |
| 704 | /* drop dead node */ |
| 705 | node_free(oldtnode); |
| 706 | |
| 707 | return tp; |
| 708 | } |
| 709 | |
| 710 | static unsigned char update_suffix(struct key_vector *tn) |
| 711 | { |
| 712 | unsigned char slen = tn->pos; |
| 713 | unsigned long stride, i; |
| 714 | unsigned char slen_max; |
| 715 | |
| 716 | /* only vector 0 can have a suffix length greater than or equal to |
| 717 | * tn->pos + tn->bits, the second highest node will have a suffix |
| 718 | * length at most of tn->pos + tn->bits - 1 |
| 719 | */ |
| 720 | slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); |
| 721 | |
| 722 | /* search though the list of children looking for nodes that might |
| 723 | * have a suffix greater than the one we currently have. This is |
| 724 | * why we start with a stride of 2 since a stride of 1 would |
| 725 | * represent the nodes with suffix length equal to tn->pos |
| 726 | */ |
| 727 | for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { |
| 728 | struct key_vector *n = get_child(tn, i); |
| 729 | |
| 730 | if (!n || (n->slen <= slen)) |
| 731 | continue; |
| 732 | |
| 733 | /* update stride and slen based on new value */ |
| 734 | stride <<= (n->slen - slen); |
| 735 | slen = n->slen; |
| 736 | i &= ~(stride - 1); |
| 737 | |
| 738 | /* stop searching if we have hit the maximum possible value */ |
| 739 | if (slen >= slen_max) |
| 740 | break; |
| 741 | } |
| 742 | |
| 743 | tn->slen = slen; |
| 744 | |
| 745 | return slen; |
| 746 | } |
| 747 | |
| 748 | /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
| 749 | * the Helsinki University of Technology and Matti Tikkanen of Nokia |
| 750 | * Telecommunications, page 6: |
| 751 | * "A node is doubled if the ratio of non-empty children to all |
| 752 | * children in the *doubled* node is at least 'high'." |
| 753 | * |
| 754 | * 'high' in this instance is the variable 'inflate_threshold'. It |
| 755 | * is expressed as a percentage, so we multiply it with |
| 756 | * child_length() and instead of multiplying by 2 (since the |
| 757 | * child array will be doubled by inflate()) and multiplying |
| 758 | * the left-hand side by 100 (to handle the percentage thing) we |
| 759 | * multiply the left-hand side by 50. |
| 760 | * |
| 761 | * The left-hand side may look a bit weird: child_length(tn) |
| 762 | * - tn->empty_children is of course the number of non-null children |
| 763 | * in the current node. tn->full_children is the number of "full" |
| 764 | * children, that is non-null tnodes with a skip value of 0. |
| 765 | * All of those will be doubled in the resulting inflated tnode, so |
| 766 | * we just count them one extra time here. |
| 767 | * |
| 768 | * A clearer way to write this would be: |
| 769 | * |
| 770 | * to_be_doubled = tn->full_children; |
| 771 | * not_to_be_doubled = child_length(tn) - tn->empty_children - |
| 772 | * tn->full_children; |
| 773 | * |
| 774 | * new_child_length = child_length(tn) * 2; |
| 775 | * |
| 776 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
| 777 | * new_child_length; |
| 778 | * if (new_fill_factor >= inflate_threshold) |
| 779 | * |
| 780 | * ...and so on, tho it would mess up the while () loop. |
| 781 | * |
| 782 | * anyway, |
| 783 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= |
| 784 | * inflate_threshold |
| 785 | * |
| 786 | * avoid a division: |
| 787 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= |
| 788 | * inflate_threshold * new_child_length |
| 789 | * |
| 790 | * expand not_to_be_doubled and to_be_doubled, and shorten: |
| 791 | * 100 * (child_length(tn) - tn->empty_children + |
| 792 | * tn->full_children) >= inflate_threshold * new_child_length |
| 793 | * |
| 794 | * expand new_child_length: |
| 795 | * 100 * (child_length(tn) - tn->empty_children + |
| 796 | * tn->full_children) >= |
| 797 | * inflate_threshold * child_length(tn) * 2 |
| 798 | * |
| 799 | * shorten again: |
| 800 | * 50 * (tn->full_children + child_length(tn) - |
| 801 | * tn->empty_children) >= inflate_threshold * |
| 802 | * child_length(tn) |
| 803 | * |
| 804 | */ |
| 805 | static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) |
| 806 | { |
| 807 | unsigned long used = child_length(tn); |
| 808 | unsigned long threshold = used; |
| 809 | |
| 810 | /* Keep root node larger */ |
| 811 | threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; |
| 812 | used -= tn_info(tn)->empty_children; |
| 813 | used += tn_info(tn)->full_children; |
| 814 | |
| 815 | /* if bits == KEYLENGTH then pos = 0, and will fail below */ |
| 816 | |
| 817 | return (used > 1) && tn->pos && ((50 * used) >= threshold); |
| 818 | } |
| 819 | |
| 820 | static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) |
| 821 | { |
| 822 | unsigned long used = child_length(tn); |
| 823 | unsigned long threshold = used; |
| 824 | |
| 825 | /* Keep root node larger */ |
| 826 | threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; |
| 827 | used -= tn_info(tn)->empty_children; |
| 828 | |
| 829 | /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ |
| 830 | |
| 831 | return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); |
| 832 | } |
| 833 | |
| 834 | static inline bool should_collapse(struct key_vector *tn) |
| 835 | { |
| 836 | unsigned long used = child_length(tn); |
| 837 | |
| 838 | used -= tn_info(tn)->empty_children; |
| 839 | |
| 840 | /* account for bits == KEYLENGTH case */ |
| 841 | if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) |
| 842 | used -= KEY_MAX; |
| 843 | |
| 844 | /* One child or none, time to drop us from the trie */ |
| 845 | return used < 2; |
| 846 | } |
| 847 | |
| 848 | #define MAX_WORK 10 |
| 849 | static struct key_vector *resize(struct trie *t, struct key_vector *tn) |
| 850 | { |
| 851 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 852 | struct trie_use_stats __percpu *stats = t->stats; |
| 853 | #endif |
| 854 | struct key_vector *tp = node_parent(tn); |
| 855 | unsigned long cindex = get_index(tn->key, tp); |
| 856 | int max_work = MAX_WORK; |
| 857 | |
| 858 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
| 859 | tn, inflate_threshold, halve_threshold); |
| 860 | |
| 861 | /* track the tnode via the pointer from the parent instead of |
| 862 | * doing it ourselves. This way we can let RCU fully do its |
| 863 | * thing without us interfering |
| 864 | */ |
| 865 | BUG_ON(tn != get_child(tp, cindex)); |
| 866 | |
| 867 | /* Double as long as the resulting node has a number of |
| 868 | * nonempty nodes that are above the threshold. |
| 869 | */ |
| 870 | while (should_inflate(tp, tn) && max_work) { |
| 871 | tp = inflate(t, tn); |
| 872 | if (!tp) { |
| 873 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 874 | this_cpu_inc(stats->resize_node_skipped); |
| 875 | #endif |
| 876 | break; |
| 877 | } |
| 878 | |
| 879 | max_work--; |
| 880 | tn = get_child(tp, cindex); |
| 881 | } |
| 882 | |
| 883 | /* update parent in case inflate failed */ |
| 884 | tp = node_parent(tn); |
| 885 | |
| 886 | /* Return if at least one inflate is run */ |
| 887 | if (max_work != MAX_WORK) |
| 888 | return tp; |
| 889 | |
| 890 | /* Halve as long as the number of empty children in this |
| 891 | * node is above threshold. |
| 892 | */ |
| 893 | while (should_halve(tp, tn) && max_work) { |
| 894 | tp = halve(t, tn); |
| 895 | if (!tp) { |
| 896 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 897 | this_cpu_inc(stats->resize_node_skipped); |
| 898 | #endif |
| 899 | break; |
| 900 | } |
| 901 | |
| 902 | max_work--; |
| 903 | tn = get_child(tp, cindex); |
| 904 | } |
| 905 | |
| 906 | /* Only one child remains */ |
| 907 | if (should_collapse(tn)) |
| 908 | return collapse(t, tn); |
| 909 | |
| 910 | /* update parent in case halve failed */ |
| 911 | return node_parent(tn); |
| 912 | } |
| 913 | |
| 914 | static void node_pull_suffix(struct key_vector *tn, unsigned char slen) |
| 915 | { |
| 916 | unsigned char node_slen = tn->slen; |
| 917 | |
| 918 | while ((node_slen > tn->pos) && (node_slen > slen)) { |
| 919 | slen = update_suffix(tn); |
| 920 | if (node_slen == slen) |
| 921 | break; |
| 922 | |
| 923 | tn = node_parent(tn); |
| 924 | node_slen = tn->slen; |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | static void node_push_suffix(struct key_vector *tn, unsigned char slen) |
| 929 | { |
| 930 | while (tn->slen < slen) { |
| 931 | tn->slen = slen; |
| 932 | tn = node_parent(tn); |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | /* rcu_read_lock needs to be hold by caller from readside */ |
| 937 | static struct key_vector *fib_find_node(struct trie *t, |
| 938 | struct key_vector **tp, u32 key) |
| 939 | { |
| 940 | struct key_vector *pn, *n = t->kv; |
| 941 | unsigned long index = 0; |
| 942 | |
| 943 | do { |
| 944 | pn = n; |
| 945 | n = get_child_rcu(n, index); |
| 946 | |
| 947 | if (!n) |
| 948 | break; |
| 949 | |
| 950 | index = get_cindex(key, n); |
| 951 | |
| 952 | /* This bit of code is a bit tricky but it combines multiple |
| 953 | * checks into a single check. The prefix consists of the |
| 954 | * prefix plus zeros for the bits in the cindex. The index |
| 955 | * is the difference between the key and this value. From |
| 956 | * this we can actually derive several pieces of data. |
| 957 | * if (index >= (1ul << bits)) |
| 958 | * we have a mismatch in skip bits and failed |
| 959 | * else |
| 960 | * we know the value is cindex |
| 961 | * |
| 962 | * This check is safe even if bits == KEYLENGTH due to the |
| 963 | * fact that we can only allocate a node with 32 bits if a |
| 964 | * long is greater than 32 bits. |
| 965 | */ |
| 966 | if (index >= (1ul << n->bits)) { |
| 967 | n = NULL; |
| 968 | break; |
| 969 | } |
| 970 | |
| 971 | /* keep searching until we find a perfect match leaf or NULL */ |
| 972 | } while (IS_TNODE(n)); |
| 973 | |
| 974 | *tp = pn; |
| 975 | |
| 976 | return n; |
| 977 | } |
| 978 | |
| 979 | /* Return the first fib alias matching TOS with |
| 980 | * priority less than or equal to PRIO. |
| 981 | */ |
| 982 | static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, |
| 983 | u8 tos, u32 prio, u32 tb_id) |
| 984 | { |
| 985 | struct fib_alias *fa; |
| 986 | |
| 987 | if (!fah) |
| 988 | return NULL; |
| 989 | |
| 990 | hlist_for_each_entry(fa, fah, fa_list) { |
| 991 | if (fa->fa_slen < slen) |
| 992 | continue; |
| 993 | if (fa->fa_slen != slen) |
| 994 | break; |
| 995 | if (fa->tb_id > tb_id) |
| 996 | continue; |
| 997 | if (fa->tb_id != tb_id) |
| 998 | break; |
| 999 | if (fa->fa_tos > tos) |
| 1000 | continue; |
| 1001 | if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) |
| 1002 | return fa; |
| 1003 | } |
| 1004 | |
| 1005 | return NULL; |
| 1006 | } |
| 1007 | |
| 1008 | static void trie_rebalance(struct trie *t, struct key_vector *tn) |
| 1009 | { |
| 1010 | while (!IS_TRIE(tn)) |
| 1011 | tn = resize(t, tn); |
| 1012 | } |
| 1013 | |
| 1014 | static int fib_insert_node(struct trie *t, struct key_vector *tp, |
| 1015 | struct fib_alias *new, t_key key) |
| 1016 | { |
| 1017 | struct key_vector *n, *l; |
| 1018 | |
| 1019 | l = leaf_new(key, new); |
| 1020 | if (!l) |
| 1021 | goto noleaf; |
| 1022 | |
| 1023 | /* retrieve child from parent node */ |
| 1024 | n = get_child(tp, get_index(key, tp)); |
| 1025 | |
| 1026 | /* Case 2: n is a LEAF or a TNODE and the key doesn't match. |
| 1027 | * |
| 1028 | * Add a new tnode here |
| 1029 | * first tnode need some special handling |
| 1030 | * leaves us in position for handling as case 3 |
| 1031 | */ |
| 1032 | if (n) { |
| 1033 | struct key_vector *tn; |
| 1034 | |
| 1035 | tn = tnode_new(key, __fls(key ^ n->key), 1); |
| 1036 | if (!tn) |
| 1037 | goto notnode; |
| 1038 | |
| 1039 | /* initialize routes out of node */ |
| 1040 | NODE_INIT_PARENT(tn, tp); |
| 1041 | put_child(tn, get_index(key, tn) ^ 1, n); |
| 1042 | |
| 1043 | /* start adding routes into the node */ |
| 1044 | put_child_root(tp, key, tn); |
| 1045 | node_set_parent(n, tn); |
| 1046 | |
| 1047 | /* parent now has a NULL spot where the leaf can go */ |
| 1048 | tp = tn; |
| 1049 | } |
| 1050 | |
| 1051 | /* Case 3: n is NULL, and will just insert a new leaf */ |
| 1052 | node_push_suffix(tp, new->fa_slen); |
| 1053 | NODE_INIT_PARENT(l, tp); |
| 1054 | put_child_root(tp, key, l); |
| 1055 | trie_rebalance(t, tp); |
| 1056 | |
| 1057 | return 0; |
| 1058 | notnode: |
| 1059 | node_free(l); |
| 1060 | noleaf: |
| 1061 | return -ENOMEM; |
| 1062 | } |
| 1063 | |
| 1064 | /* fib notifier for ADD is sent before calling fib_insert_alias with |
| 1065 | * the expectation that the only possible failure ENOMEM |
| 1066 | */ |
| 1067 | static int fib_insert_alias(struct trie *t, struct key_vector *tp, |
| 1068 | struct key_vector *l, struct fib_alias *new, |
| 1069 | struct fib_alias *fa, t_key key) |
| 1070 | { |
| 1071 | if (!l) |
| 1072 | return fib_insert_node(t, tp, new, key); |
| 1073 | |
| 1074 | if (fa) { |
| 1075 | hlist_add_before_rcu(&new->fa_list, &fa->fa_list); |
| 1076 | } else { |
| 1077 | struct fib_alias *last; |
| 1078 | |
| 1079 | hlist_for_each_entry(last, &l->leaf, fa_list) { |
| 1080 | if (new->fa_slen < last->fa_slen) |
| 1081 | break; |
| 1082 | if ((new->fa_slen == last->fa_slen) && |
| 1083 | (new->tb_id > last->tb_id)) |
| 1084 | break; |
| 1085 | fa = last; |
| 1086 | } |
| 1087 | |
| 1088 | if (fa) |
| 1089 | hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); |
| 1090 | else |
| 1091 | hlist_add_head_rcu(&new->fa_list, &l->leaf); |
| 1092 | } |
| 1093 | |
| 1094 | /* if we added to the tail node then we need to update slen */ |
| 1095 | if (l->slen < new->fa_slen) { |
| 1096 | l->slen = new->fa_slen; |
| 1097 | node_push_suffix(tp, new->fa_slen); |
| 1098 | } |
| 1099 | |
| 1100 | return 0; |
| 1101 | } |
| 1102 | |
| 1103 | static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) |
| 1104 | { |
| 1105 | if (plen > KEYLENGTH) { |
| 1106 | NL_SET_ERR_MSG(extack, "Invalid prefix length"); |
| 1107 | return false; |
| 1108 | } |
| 1109 | |
| 1110 | if ((plen < KEYLENGTH) && (key << plen)) { |
| 1111 | NL_SET_ERR_MSG(extack, |
| 1112 | "Invalid prefix for given prefix length"); |
| 1113 | return false; |
| 1114 | } |
| 1115 | |
| 1116 | return true; |
| 1117 | } |
| 1118 | |
| 1119 | /* Caller must hold RTNL. */ |
| 1120 | int fib_table_insert(struct net *net, struct fib_table *tb, |
| 1121 | struct fib_config *cfg, struct netlink_ext_ack *extack) |
| 1122 | { |
| 1123 | enum fib_event_type event = FIB_EVENT_ENTRY_ADD; |
| 1124 | struct trie *t = (struct trie *)tb->tb_data; |
| 1125 | struct fib_alias *fa, *new_fa; |
| 1126 | struct key_vector *l, *tp; |
| 1127 | u16 nlflags = NLM_F_EXCL; |
| 1128 | struct fib_info *fi; |
| 1129 | u8 plen = cfg->fc_dst_len; |
| 1130 | u8 slen = KEYLENGTH - plen; |
| 1131 | u8 tos = cfg->fc_tos; |
| 1132 | u32 key; |
| 1133 | int err; |
| 1134 | |
| 1135 | key = ntohl(cfg->fc_dst); |
| 1136 | |
| 1137 | if (!fib_valid_key_len(key, plen, extack)) |
| 1138 | return -EINVAL; |
| 1139 | |
| 1140 | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); |
| 1141 | |
| 1142 | fi = fib_create_info(cfg, extack); |
| 1143 | if (IS_ERR(fi)) { |
| 1144 | err = PTR_ERR(fi); |
| 1145 | goto err; |
| 1146 | } |
| 1147 | |
| 1148 | l = fib_find_node(t, &tp, key); |
| 1149 | fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, |
| 1150 | tb->tb_id) : NULL; |
| 1151 | |
| 1152 | /* Now fa, if non-NULL, points to the first fib alias |
| 1153 | * with the same keys [prefix,tos,priority], if such key already |
| 1154 | * exists or to the node before which we will insert new one. |
| 1155 | * |
| 1156 | * If fa is NULL, we will need to allocate a new one and |
| 1157 | * insert to the tail of the section matching the suffix length |
| 1158 | * of the new alias. |
| 1159 | */ |
| 1160 | |
| 1161 | if (fa && fa->fa_tos == tos && |
| 1162 | fa->fa_info->fib_priority == fi->fib_priority) { |
| 1163 | struct fib_alias *fa_first, *fa_match; |
| 1164 | |
| 1165 | err = -EEXIST; |
| 1166 | if (cfg->fc_nlflags & NLM_F_EXCL) |
| 1167 | goto out; |
| 1168 | |
| 1169 | nlflags &= ~NLM_F_EXCL; |
| 1170 | |
| 1171 | /* We have 2 goals: |
| 1172 | * 1. Find exact match for type, scope, fib_info to avoid |
| 1173 | * duplicate routes |
| 1174 | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it |
| 1175 | */ |
| 1176 | fa_match = NULL; |
| 1177 | fa_first = fa; |
| 1178 | hlist_for_each_entry_from(fa, fa_list) { |
| 1179 | if ((fa->fa_slen != slen) || |
| 1180 | (fa->tb_id != tb->tb_id) || |
| 1181 | (fa->fa_tos != tos)) |
| 1182 | break; |
| 1183 | if (fa->fa_info->fib_priority != fi->fib_priority) |
| 1184 | break; |
| 1185 | if (fa->fa_type == cfg->fc_type && |
| 1186 | fa->fa_info == fi) { |
| 1187 | fa_match = fa; |
| 1188 | break; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | if (cfg->fc_nlflags & NLM_F_REPLACE) { |
| 1193 | struct fib_info *fi_drop; |
| 1194 | u8 state; |
| 1195 | |
| 1196 | nlflags |= NLM_F_REPLACE; |
| 1197 | fa = fa_first; |
| 1198 | if (fa_match) { |
| 1199 | if (fa == fa_match) |
| 1200 | err = 0; |
| 1201 | goto out; |
| 1202 | } |
| 1203 | err = -ENOBUFS; |
| 1204 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
| 1205 | if (!new_fa) |
| 1206 | goto out; |
| 1207 | |
| 1208 | fi_drop = fa->fa_info; |
| 1209 | new_fa->fa_tos = fa->fa_tos; |
| 1210 | new_fa->fa_info = fi; |
| 1211 | new_fa->fa_type = cfg->fc_type; |
| 1212 | state = fa->fa_state; |
| 1213 | new_fa->fa_state = state & ~FA_S_ACCESSED; |
| 1214 | new_fa->fa_slen = fa->fa_slen; |
| 1215 | new_fa->tb_id = tb->tb_id; |
| 1216 | new_fa->fa_default = -1; |
| 1217 | |
| 1218 | err = call_fib_entry_notifiers(net, |
| 1219 | FIB_EVENT_ENTRY_REPLACE, |
| 1220 | key, plen, new_fa, |
| 1221 | extack); |
| 1222 | if (err) |
| 1223 | goto out_free_new_fa; |
| 1224 | |
| 1225 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, |
| 1226 | tb->tb_id, &cfg->fc_nlinfo, nlflags); |
| 1227 | |
| 1228 | hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
| 1229 | |
| 1230 | alias_free_mem_rcu(fa); |
| 1231 | |
| 1232 | fib_release_info(fi_drop); |
| 1233 | if (state & FA_S_ACCESSED) |
| 1234 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
| 1235 | |
| 1236 | goto succeeded; |
| 1237 | } |
| 1238 | /* Error if we find a perfect match which |
| 1239 | * uses the same scope, type, and nexthop |
| 1240 | * information. |
| 1241 | */ |
| 1242 | if (fa_match) |
| 1243 | goto out; |
| 1244 | |
| 1245 | if (cfg->fc_nlflags & NLM_F_APPEND) { |
| 1246 | event = FIB_EVENT_ENTRY_APPEND; |
| 1247 | nlflags |= NLM_F_APPEND; |
| 1248 | } else { |
| 1249 | fa = fa_first; |
| 1250 | } |
| 1251 | } |
| 1252 | err = -ENOENT; |
| 1253 | if (!(cfg->fc_nlflags & NLM_F_CREATE)) |
| 1254 | goto out; |
| 1255 | |
| 1256 | nlflags |= NLM_F_CREATE; |
| 1257 | err = -ENOBUFS; |
| 1258 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
| 1259 | if (!new_fa) |
| 1260 | goto out; |
| 1261 | |
| 1262 | new_fa->fa_info = fi; |
| 1263 | new_fa->fa_tos = tos; |
| 1264 | new_fa->fa_type = cfg->fc_type; |
| 1265 | new_fa->fa_state = 0; |
| 1266 | new_fa->fa_slen = slen; |
| 1267 | new_fa->tb_id = tb->tb_id; |
| 1268 | new_fa->fa_default = -1; |
| 1269 | |
| 1270 | err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack); |
| 1271 | if (err) |
| 1272 | goto out_free_new_fa; |
| 1273 | |
| 1274 | /* Insert new entry to the list. */ |
| 1275 | err = fib_insert_alias(t, tp, l, new_fa, fa, key); |
| 1276 | if (err) |
| 1277 | goto out_fib_notif; |
| 1278 | |
| 1279 | if (!plen) |
| 1280 | tb->tb_num_default++; |
| 1281 | |
| 1282 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
| 1283 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, |
| 1284 | &cfg->fc_nlinfo, nlflags); |
| 1285 | succeeded: |
| 1286 | return 0; |
| 1287 | |
| 1288 | out_fib_notif: |
| 1289 | /* notifier was sent that entry would be added to trie, but |
| 1290 | * the add failed and need to recover. Only failure for |
| 1291 | * fib_insert_alias is ENOMEM. |
| 1292 | */ |
| 1293 | NL_SET_ERR_MSG(extack, "Failed to insert route into trie"); |
| 1294 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, |
| 1295 | plen, new_fa, NULL); |
| 1296 | out_free_new_fa: |
| 1297 | kmem_cache_free(fn_alias_kmem, new_fa); |
| 1298 | out: |
| 1299 | fib_release_info(fi); |
| 1300 | err: |
| 1301 | return err; |
| 1302 | } |
| 1303 | |
| 1304 | static inline t_key prefix_mismatch(t_key key, struct key_vector *n) |
| 1305 | { |
| 1306 | t_key prefix = n->key; |
| 1307 | |
| 1308 | return (key ^ prefix) & (prefix | -prefix); |
| 1309 | } |
| 1310 | |
| 1311 | /* should be called with rcu_read_lock */ |
| 1312 | int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, |
| 1313 | struct fib_result *res, int fib_flags) |
| 1314 | { |
| 1315 | struct trie *t = (struct trie *) tb->tb_data; |
| 1316 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1317 | struct trie_use_stats __percpu *stats = t->stats; |
| 1318 | #endif |
| 1319 | const t_key key = ntohl(flp->daddr); |
| 1320 | struct key_vector *n, *pn; |
| 1321 | struct fib_alias *fa; |
| 1322 | unsigned long index; |
| 1323 | t_key cindex; |
| 1324 | |
| 1325 | pn = t->kv; |
| 1326 | cindex = 0; |
| 1327 | |
| 1328 | n = get_child_rcu(pn, cindex); |
| 1329 | if (!n) { |
| 1330 | trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); |
| 1331 | return -EAGAIN; |
| 1332 | } |
| 1333 | |
| 1334 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1335 | this_cpu_inc(stats->gets); |
| 1336 | #endif |
| 1337 | |
| 1338 | /* Step 1: Travel to the longest prefix match in the trie */ |
| 1339 | for (;;) { |
| 1340 | index = get_cindex(key, n); |
| 1341 | |
| 1342 | /* This bit of code is a bit tricky but it combines multiple |
| 1343 | * checks into a single check. The prefix consists of the |
| 1344 | * prefix plus zeros for the "bits" in the prefix. The index |
| 1345 | * is the difference between the key and this value. From |
| 1346 | * this we can actually derive several pieces of data. |
| 1347 | * if (index >= (1ul << bits)) |
| 1348 | * we have a mismatch in skip bits and failed |
| 1349 | * else |
| 1350 | * we know the value is cindex |
| 1351 | * |
| 1352 | * This check is safe even if bits == KEYLENGTH due to the |
| 1353 | * fact that we can only allocate a node with 32 bits if a |
| 1354 | * long is greater than 32 bits. |
| 1355 | */ |
| 1356 | if (index >= (1ul << n->bits)) |
| 1357 | break; |
| 1358 | |
| 1359 | /* we have found a leaf. Prefixes have already been compared */ |
| 1360 | if (IS_LEAF(n)) |
| 1361 | goto found; |
| 1362 | |
| 1363 | /* only record pn and cindex if we are going to be chopping |
| 1364 | * bits later. Otherwise we are just wasting cycles. |
| 1365 | */ |
| 1366 | if (n->slen > n->pos) { |
| 1367 | pn = n; |
| 1368 | cindex = index; |
| 1369 | } |
| 1370 | |
| 1371 | n = get_child_rcu(n, index); |
| 1372 | if (unlikely(!n)) |
| 1373 | goto backtrace; |
| 1374 | } |
| 1375 | |
| 1376 | /* Step 2: Sort out leaves and begin backtracing for longest prefix */ |
| 1377 | for (;;) { |
| 1378 | /* record the pointer where our next node pointer is stored */ |
| 1379 | struct key_vector __rcu **cptr = n->tnode; |
| 1380 | |
| 1381 | /* This test verifies that none of the bits that differ |
| 1382 | * between the key and the prefix exist in the region of |
| 1383 | * the lsb and higher in the prefix. |
| 1384 | */ |
| 1385 | if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) |
| 1386 | goto backtrace; |
| 1387 | |
| 1388 | /* exit out and process leaf */ |
| 1389 | if (unlikely(IS_LEAF(n))) |
| 1390 | break; |
| 1391 | |
| 1392 | /* Don't bother recording parent info. Since we are in |
| 1393 | * prefix match mode we will have to come back to wherever |
| 1394 | * we started this traversal anyway |
| 1395 | */ |
| 1396 | |
| 1397 | while ((n = rcu_dereference(*cptr)) == NULL) { |
| 1398 | backtrace: |
| 1399 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1400 | if (!n) |
| 1401 | this_cpu_inc(stats->null_node_hit); |
| 1402 | #endif |
| 1403 | /* If we are at cindex 0 there are no more bits for |
| 1404 | * us to strip at this level so we must ascend back |
| 1405 | * up one level to see if there are any more bits to |
| 1406 | * be stripped there. |
| 1407 | */ |
| 1408 | while (!cindex) { |
| 1409 | t_key pkey = pn->key; |
| 1410 | |
| 1411 | /* If we don't have a parent then there is |
| 1412 | * nothing for us to do as we do not have any |
| 1413 | * further nodes to parse. |
| 1414 | */ |
| 1415 | if (IS_TRIE(pn)) { |
| 1416 | trace_fib_table_lookup(tb->tb_id, flp, |
| 1417 | NULL, -EAGAIN); |
| 1418 | return -EAGAIN; |
| 1419 | } |
| 1420 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1421 | this_cpu_inc(stats->backtrack); |
| 1422 | #endif |
| 1423 | /* Get Child's index */ |
| 1424 | pn = node_parent_rcu(pn); |
| 1425 | cindex = get_index(pkey, pn); |
| 1426 | } |
| 1427 | |
| 1428 | /* strip the least significant bit from the cindex */ |
| 1429 | cindex &= cindex - 1; |
| 1430 | |
| 1431 | /* grab pointer for next child node */ |
| 1432 | cptr = &pn->tnode[cindex]; |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | found: |
| 1437 | /* this line carries forward the xor from earlier in the function */ |
| 1438 | index = key ^ n->key; |
| 1439 | |
| 1440 | /* Step 3: Process the leaf, if that fails fall back to backtracing */ |
| 1441 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
| 1442 | struct fib_info *fi = fa->fa_info; |
| 1443 | int nhsel, err; |
| 1444 | |
| 1445 | if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { |
| 1446 | if (index >= (1ul << fa->fa_slen)) |
| 1447 | continue; |
| 1448 | } |
| 1449 | if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) |
| 1450 | continue; |
| 1451 | if (fi->fib_dead) |
| 1452 | continue; |
| 1453 | if (fa->fa_info->fib_scope < flp->flowi4_scope) |
| 1454 | continue; |
| 1455 | fib_alias_accessed(fa); |
| 1456 | err = fib_props[fa->fa_type].error; |
| 1457 | if (unlikely(err < 0)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1458 | out_reject: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1459 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1460 | this_cpu_inc(stats->semantic_match_passed); |
| 1461 | #endif |
| 1462 | trace_fib_table_lookup(tb->tb_id, flp, NULL, err); |
| 1463 | return err; |
| 1464 | } |
| 1465 | if (fi->fib_flags & RTNH_F_DEAD) |
| 1466 | continue; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1467 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1468 | if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) { |
| 1469 | err = fib_props[RTN_BLACKHOLE].error; |
| 1470 | goto out_reject; |
| 1471 | } |
| 1472 | |
| 1473 | for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { |
| 1474 | struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel); |
| 1475 | |
| 1476 | if (nhc->nhc_flags & RTNH_F_DEAD) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1477 | continue; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1478 | if (ip_ignore_linkdown(nhc->nhc_dev) && |
| 1479 | nhc->nhc_flags & RTNH_F_LINKDOWN && |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1480 | !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) |
| 1481 | continue; |
| 1482 | if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { |
| 1483 | if (flp->flowi4_oif && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1484 | flp->flowi4_oif != nhc->nhc_oif) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1485 | continue; |
| 1486 | } |
| 1487 | |
| 1488 | if (!(fib_flags & FIB_LOOKUP_NOREF)) |
| 1489 | refcount_inc(&fi->fib_clntref); |
| 1490 | |
| 1491 | res->prefix = htonl(n->key); |
| 1492 | res->prefixlen = KEYLENGTH - fa->fa_slen; |
| 1493 | res->nh_sel = nhsel; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1494 | res->nhc = nhc; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1495 | res->type = fa->fa_type; |
| 1496 | res->scope = fi->fib_scope; |
| 1497 | res->fi = fi; |
| 1498 | res->table = tb; |
| 1499 | res->fa_head = &n->leaf; |
| 1500 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1501 | this_cpu_inc(stats->semantic_match_passed); |
| 1502 | #endif |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1503 | trace_fib_table_lookup(tb->tb_id, flp, nhc, err); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1504 | |
| 1505 | return err; |
| 1506 | } |
| 1507 | } |
| 1508 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1509 | this_cpu_inc(stats->semantic_match_miss); |
| 1510 | #endif |
| 1511 | goto backtrace; |
| 1512 | } |
| 1513 | EXPORT_SYMBOL_GPL(fib_table_lookup); |
| 1514 | |
| 1515 | static void fib_remove_alias(struct trie *t, struct key_vector *tp, |
| 1516 | struct key_vector *l, struct fib_alias *old) |
| 1517 | { |
| 1518 | /* record the location of the previous list_info entry */ |
| 1519 | struct hlist_node **pprev = old->fa_list.pprev; |
| 1520 | struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); |
| 1521 | |
| 1522 | /* remove the fib_alias from the list */ |
| 1523 | hlist_del_rcu(&old->fa_list); |
| 1524 | |
| 1525 | /* if we emptied the list this leaf will be freed and we can sort |
| 1526 | * out parent suffix lengths as a part of trie_rebalance |
| 1527 | */ |
| 1528 | if (hlist_empty(&l->leaf)) { |
| 1529 | if (tp->slen == l->slen) |
| 1530 | node_pull_suffix(tp, tp->pos); |
| 1531 | put_child_root(tp, l->key, NULL); |
| 1532 | node_free(l); |
| 1533 | trie_rebalance(t, tp); |
| 1534 | return; |
| 1535 | } |
| 1536 | |
| 1537 | /* only access fa if it is pointing at the last valid hlist_node */ |
| 1538 | if (*pprev) |
| 1539 | return; |
| 1540 | |
| 1541 | /* update the trie with the latest suffix length */ |
| 1542 | l->slen = fa->fa_slen; |
| 1543 | node_pull_suffix(tp, fa->fa_slen); |
| 1544 | } |
| 1545 | |
| 1546 | /* Caller must hold RTNL. */ |
| 1547 | int fib_table_delete(struct net *net, struct fib_table *tb, |
| 1548 | struct fib_config *cfg, struct netlink_ext_ack *extack) |
| 1549 | { |
| 1550 | struct trie *t = (struct trie *) tb->tb_data; |
| 1551 | struct fib_alias *fa, *fa_to_delete; |
| 1552 | struct key_vector *l, *tp; |
| 1553 | u8 plen = cfg->fc_dst_len; |
| 1554 | u8 slen = KEYLENGTH - plen; |
| 1555 | u8 tos = cfg->fc_tos; |
| 1556 | u32 key; |
| 1557 | |
| 1558 | key = ntohl(cfg->fc_dst); |
| 1559 | |
| 1560 | if (!fib_valid_key_len(key, plen, extack)) |
| 1561 | return -EINVAL; |
| 1562 | |
| 1563 | l = fib_find_node(t, &tp, key); |
| 1564 | if (!l) |
| 1565 | return -ESRCH; |
| 1566 | |
| 1567 | fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); |
| 1568 | if (!fa) |
| 1569 | return -ESRCH; |
| 1570 | |
| 1571 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
| 1572 | |
| 1573 | fa_to_delete = NULL; |
| 1574 | hlist_for_each_entry_from(fa, fa_list) { |
| 1575 | struct fib_info *fi = fa->fa_info; |
| 1576 | |
| 1577 | if ((fa->fa_slen != slen) || |
| 1578 | (fa->tb_id != tb->tb_id) || |
| 1579 | (fa->fa_tos != tos)) |
| 1580 | break; |
| 1581 | |
| 1582 | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && |
| 1583 | (cfg->fc_scope == RT_SCOPE_NOWHERE || |
| 1584 | fa->fa_info->fib_scope == cfg->fc_scope) && |
| 1585 | (!cfg->fc_prefsrc || |
| 1586 | fi->fib_prefsrc == cfg->fc_prefsrc) && |
| 1587 | (!cfg->fc_protocol || |
| 1588 | fi->fib_protocol == cfg->fc_protocol) && |
| 1589 | fib_nh_match(cfg, fi, extack) == 0 && |
| 1590 | fib_metrics_match(cfg, fi)) { |
| 1591 | fa_to_delete = fa; |
| 1592 | break; |
| 1593 | } |
| 1594 | } |
| 1595 | |
| 1596 | if (!fa_to_delete) |
| 1597 | return -ESRCH; |
| 1598 | |
| 1599 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, |
| 1600 | fa_to_delete, extack); |
| 1601 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, |
| 1602 | &cfg->fc_nlinfo, 0); |
| 1603 | |
| 1604 | if (!plen) |
| 1605 | tb->tb_num_default--; |
| 1606 | |
| 1607 | fib_remove_alias(t, tp, l, fa_to_delete); |
| 1608 | |
| 1609 | if (fa_to_delete->fa_state & FA_S_ACCESSED) |
| 1610 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
| 1611 | |
| 1612 | fib_release_info(fa_to_delete->fa_info); |
| 1613 | alias_free_mem_rcu(fa_to_delete); |
| 1614 | return 0; |
| 1615 | } |
| 1616 | |
| 1617 | /* Scan for the next leaf starting at the provided key value */ |
| 1618 | static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) |
| 1619 | { |
| 1620 | struct key_vector *pn, *n = *tn; |
| 1621 | unsigned long cindex; |
| 1622 | |
| 1623 | /* this loop is meant to try and find the key in the trie */ |
| 1624 | do { |
| 1625 | /* record parent and next child index */ |
| 1626 | pn = n; |
| 1627 | cindex = (key > pn->key) ? get_index(key, pn) : 0; |
| 1628 | |
| 1629 | if (cindex >> pn->bits) |
| 1630 | break; |
| 1631 | |
| 1632 | /* descend into the next child */ |
| 1633 | n = get_child_rcu(pn, cindex++); |
| 1634 | if (!n) |
| 1635 | break; |
| 1636 | |
| 1637 | /* guarantee forward progress on the keys */ |
| 1638 | if (IS_LEAF(n) && (n->key >= key)) |
| 1639 | goto found; |
| 1640 | } while (IS_TNODE(n)); |
| 1641 | |
| 1642 | /* this loop will search for the next leaf with a greater key */ |
| 1643 | while (!IS_TRIE(pn)) { |
| 1644 | /* if we exhausted the parent node we will need to climb */ |
| 1645 | if (cindex >= (1ul << pn->bits)) { |
| 1646 | t_key pkey = pn->key; |
| 1647 | |
| 1648 | pn = node_parent_rcu(pn); |
| 1649 | cindex = get_index(pkey, pn) + 1; |
| 1650 | continue; |
| 1651 | } |
| 1652 | |
| 1653 | /* grab the next available node */ |
| 1654 | n = get_child_rcu(pn, cindex++); |
| 1655 | if (!n) |
| 1656 | continue; |
| 1657 | |
| 1658 | /* no need to compare keys since we bumped the index */ |
| 1659 | if (IS_LEAF(n)) |
| 1660 | goto found; |
| 1661 | |
| 1662 | /* Rescan start scanning in new node */ |
| 1663 | pn = n; |
| 1664 | cindex = 0; |
| 1665 | } |
| 1666 | |
| 1667 | *tn = pn; |
| 1668 | return NULL; /* Root of trie */ |
| 1669 | found: |
| 1670 | /* if we are at the limit for keys just return NULL for the tnode */ |
| 1671 | *tn = pn; |
| 1672 | return n; |
| 1673 | } |
| 1674 | |
| 1675 | static void fib_trie_free(struct fib_table *tb) |
| 1676 | { |
| 1677 | struct trie *t = (struct trie *)tb->tb_data; |
| 1678 | struct key_vector *pn = t->kv; |
| 1679 | unsigned long cindex = 1; |
| 1680 | struct hlist_node *tmp; |
| 1681 | struct fib_alias *fa; |
| 1682 | |
| 1683 | /* walk trie in reverse order and free everything */ |
| 1684 | for (;;) { |
| 1685 | struct key_vector *n; |
| 1686 | |
| 1687 | if (!(cindex--)) { |
| 1688 | t_key pkey = pn->key; |
| 1689 | |
| 1690 | if (IS_TRIE(pn)) |
| 1691 | break; |
| 1692 | |
| 1693 | n = pn; |
| 1694 | pn = node_parent(pn); |
| 1695 | |
| 1696 | /* drop emptied tnode */ |
| 1697 | put_child_root(pn, n->key, NULL); |
| 1698 | node_free(n); |
| 1699 | |
| 1700 | cindex = get_index(pkey, pn); |
| 1701 | |
| 1702 | continue; |
| 1703 | } |
| 1704 | |
| 1705 | /* grab the next available node */ |
| 1706 | n = get_child(pn, cindex); |
| 1707 | if (!n) |
| 1708 | continue; |
| 1709 | |
| 1710 | if (IS_TNODE(n)) { |
| 1711 | /* record pn and cindex for leaf walking */ |
| 1712 | pn = n; |
| 1713 | cindex = 1ul << n->bits; |
| 1714 | |
| 1715 | continue; |
| 1716 | } |
| 1717 | |
| 1718 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
| 1719 | hlist_del_rcu(&fa->fa_list); |
| 1720 | alias_free_mem_rcu(fa); |
| 1721 | } |
| 1722 | |
| 1723 | put_child_root(pn, n->key, NULL); |
| 1724 | node_free(n); |
| 1725 | } |
| 1726 | |
| 1727 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1728 | free_percpu(t->stats); |
| 1729 | #endif |
| 1730 | kfree(tb); |
| 1731 | } |
| 1732 | |
| 1733 | struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) |
| 1734 | { |
| 1735 | struct trie *ot = (struct trie *)oldtb->tb_data; |
| 1736 | struct key_vector *l, *tp = ot->kv; |
| 1737 | struct fib_table *local_tb; |
| 1738 | struct fib_alias *fa; |
| 1739 | struct trie *lt; |
| 1740 | t_key key = 0; |
| 1741 | |
| 1742 | if (oldtb->tb_data == oldtb->__data) |
| 1743 | return oldtb; |
| 1744 | |
| 1745 | local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); |
| 1746 | if (!local_tb) |
| 1747 | return NULL; |
| 1748 | |
| 1749 | lt = (struct trie *)local_tb->tb_data; |
| 1750 | |
| 1751 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { |
| 1752 | struct key_vector *local_l = NULL, *local_tp; |
| 1753 | |
| 1754 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
| 1755 | struct fib_alias *new_fa; |
| 1756 | |
| 1757 | if (local_tb->tb_id != fa->tb_id) |
| 1758 | continue; |
| 1759 | |
| 1760 | /* clone fa for new local table */ |
| 1761 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
| 1762 | if (!new_fa) |
| 1763 | goto out; |
| 1764 | |
| 1765 | memcpy(new_fa, fa, sizeof(*fa)); |
| 1766 | |
| 1767 | /* insert clone into table */ |
| 1768 | if (!local_l) |
| 1769 | local_l = fib_find_node(lt, &local_tp, l->key); |
| 1770 | |
| 1771 | if (fib_insert_alias(lt, local_tp, local_l, new_fa, |
| 1772 | NULL, l->key)) { |
| 1773 | kmem_cache_free(fn_alias_kmem, new_fa); |
| 1774 | goto out; |
| 1775 | } |
| 1776 | } |
| 1777 | |
| 1778 | /* stop loop if key wrapped back to 0 */ |
| 1779 | key = l->key + 1; |
| 1780 | if (key < l->key) |
| 1781 | break; |
| 1782 | } |
| 1783 | |
| 1784 | return local_tb; |
| 1785 | out: |
| 1786 | fib_trie_free(local_tb); |
| 1787 | |
| 1788 | return NULL; |
| 1789 | } |
| 1790 | |
| 1791 | /* Caller must hold RTNL */ |
| 1792 | void fib_table_flush_external(struct fib_table *tb) |
| 1793 | { |
| 1794 | struct trie *t = (struct trie *)tb->tb_data; |
| 1795 | struct key_vector *pn = t->kv; |
| 1796 | unsigned long cindex = 1; |
| 1797 | struct hlist_node *tmp; |
| 1798 | struct fib_alias *fa; |
| 1799 | |
| 1800 | /* walk trie in reverse order */ |
| 1801 | for (;;) { |
| 1802 | unsigned char slen = 0; |
| 1803 | struct key_vector *n; |
| 1804 | |
| 1805 | if (!(cindex--)) { |
| 1806 | t_key pkey = pn->key; |
| 1807 | |
| 1808 | /* cannot resize the trie vector */ |
| 1809 | if (IS_TRIE(pn)) |
| 1810 | break; |
| 1811 | |
| 1812 | /* update the suffix to address pulled leaves */ |
| 1813 | if (pn->slen > pn->pos) |
| 1814 | update_suffix(pn); |
| 1815 | |
| 1816 | /* resize completed node */ |
| 1817 | pn = resize(t, pn); |
| 1818 | cindex = get_index(pkey, pn); |
| 1819 | |
| 1820 | continue; |
| 1821 | } |
| 1822 | |
| 1823 | /* grab the next available node */ |
| 1824 | n = get_child(pn, cindex); |
| 1825 | if (!n) |
| 1826 | continue; |
| 1827 | |
| 1828 | if (IS_TNODE(n)) { |
| 1829 | /* record pn and cindex for leaf walking */ |
| 1830 | pn = n; |
| 1831 | cindex = 1ul << n->bits; |
| 1832 | |
| 1833 | continue; |
| 1834 | } |
| 1835 | |
| 1836 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
| 1837 | /* if alias was cloned to local then we just |
| 1838 | * need to remove the local copy from main |
| 1839 | */ |
| 1840 | if (tb->tb_id != fa->tb_id) { |
| 1841 | hlist_del_rcu(&fa->fa_list); |
| 1842 | alias_free_mem_rcu(fa); |
| 1843 | continue; |
| 1844 | } |
| 1845 | |
| 1846 | /* record local slen */ |
| 1847 | slen = fa->fa_slen; |
| 1848 | } |
| 1849 | |
| 1850 | /* update leaf slen */ |
| 1851 | n->slen = slen; |
| 1852 | |
| 1853 | if (hlist_empty(&n->leaf)) { |
| 1854 | put_child_root(pn, n->key, NULL); |
| 1855 | node_free(n); |
| 1856 | } |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | /* Caller must hold RTNL. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1861 | int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1862 | { |
| 1863 | struct trie *t = (struct trie *)tb->tb_data; |
| 1864 | struct key_vector *pn = t->kv; |
| 1865 | unsigned long cindex = 1; |
| 1866 | struct hlist_node *tmp; |
| 1867 | struct fib_alias *fa; |
| 1868 | int found = 0; |
| 1869 | |
| 1870 | /* walk trie in reverse order */ |
| 1871 | for (;;) { |
| 1872 | unsigned char slen = 0; |
| 1873 | struct key_vector *n; |
| 1874 | |
| 1875 | if (!(cindex--)) { |
| 1876 | t_key pkey = pn->key; |
| 1877 | |
| 1878 | /* cannot resize the trie vector */ |
| 1879 | if (IS_TRIE(pn)) |
| 1880 | break; |
| 1881 | |
| 1882 | /* update the suffix to address pulled leaves */ |
| 1883 | if (pn->slen > pn->pos) |
| 1884 | update_suffix(pn); |
| 1885 | |
| 1886 | /* resize completed node */ |
| 1887 | pn = resize(t, pn); |
| 1888 | cindex = get_index(pkey, pn); |
| 1889 | |
| 1890 | continue; |
| 1891 | } |
| 1892 | |
| 1893 | /* grab the next available node */ |
| 1894 | n = get_child(pn, cindex); |
| 1895 | if (!n) |
| 1896 | continue; |
| 1897 | |
| 1898 | if (IS_TNODE(n)) { |
| 1899 | /* record pn and cindex for leaf walking */ |
| 1900 | pn = n; |
| 1901 | cindex = 1ul << n->bits; |
| 1902 | |
| 1903 | continue; |
| 1904 | } |
| 1905 | |
| 1906 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
| 1907 | struct fib_info *fi = fa->fa_info; |
| 1908 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1909 | if (!fi || tb->tb_id != fa->tb_id || |
| 1910 | (!(fi->fib_flags & RTNH_F_DEAD) && |
| 1911 | !fib_props[fa->fa_type].error)) { |
| 1912 | slen = fa->fa_slen; |
| 1913 | continue; |
| 1914 | } |
| 1915 | |
| 1916 | /* Do not flush error routes if network namespace is |
| 1917 | * not being dismantled |
| 1918 | */ |
| 1919 | if (!flush_all && fib_props[fa->fa_type].error) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1920 | slen = fa->fa_slen; |
| 1921 | continue; |
| 1922 | } |
| 1923 | |
| 1924 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, |
| 1925 | n->key, |
| 1926 | KEYLENGTH - fa->fa_slen, fa, |
| 1927 | NULL); |
| 1928 | hlist_del_rcu(&fa->fa_list); |
| 1929 | fib_release_info(fa->fa_info); |
| 1930 | alias_free_mem_rcu(fa); |
| 1931 | found++; |
| 1932 | } |
| 1933 | |
| 1934 | /* update leaf slen */ |
| 1935 | n->slen = slen; |
| 1936 | |
| 1937 | if (hlist_empty(&n->leaf)) { |
| 1938 | put_child_root(pn, n->key, NULL); |
| 1939 | node_free(n); |
| 1940 | } |
| 1941 | } |
| 1942 | |
| 1943 | pr_debug("trie_flush found=%d\n", found); |
| 1944 | return found; |
| 1945 | } |
| 1946 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1947 | /* derived from fib_trie_free */ |
| 1948 | static void __fib_info_notify_update(struct net *net, struct fib_table *tb, |
| 1949 | struct nl_info *info) |
| 1950 | { |
| 1951 | struct trie *t = (struct trie *)tb->tb_data; |
| 1952 | struct key_vector *pn = t->kv; |
| 1953 | unsigned long cindex = 1; |
| 1954 | struct fib_alias *fa; |
| 1955 | |
| 1956 | for (;;) { |
| 1957 | struct key_vector *n; |
| 1958 | |
| 1959 | if (!(cindex--)) { |
| 1960 | t_key pkey = pn->key; |
| 1961 | |
| 1962 | if (IS_TRIE(pn)) |
| 1963 | break; |
| 1964 | |
| 1965 | pn = node_parent(pn); |
| 1966 | cindex = get_index(pkey, pn); |
| 1967 | continue; |
| 1968 | } |
| 1969 | |
| 1970 | /* grab the next available node */ |
| 1971 | n = get_child(pn, cindex); |
| 1972 | if (!n) |
| 1973 | continue; |
| 1974 | |
| 1975 | if (IS_TNODE(n)) { |
| 1976 | /* record pn and cindex for leaf walking */ |
| 1977 | pn = n; |
| 1978 | cindex = 1ul << n->bits; |
| 1979 | |
| 1980 | continue; |
| 1981 | } |
| 1982 | |
| 1983 | hlist_for_each_entry(fa, &n->leaf, fa_list) { |
| 1984 | struct fib_info *fi = fa->fa_info; |
| 1985 | |
| 1986 | if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) |
| 1987 | continue; |
| 1988 | |
| 1989 | rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, |
| 1990 | KEYLENGTH - fa->fa_slen, tb->tb_id, |
| 1991 | info, NLM_F_REPLACE); |
| 1992 | |
| 1993 | /* call_fib_entry_notifiers will be removed when |
| 1994 | * in-kernel notifier is implemented and supported |
| 1995 | * for nexthop objects |
| 1996 | */ |
| 1997 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, |
| 1998 | n->key, |
| 1999 | KEYLENGTH - fa->fa_slen, fa, |
| 2000 | NULL); |
| 2001 | } |
| 2002 | } |
| 2003 | } |
| 2004 | |
| 2005 | void fib_info_notify_update(struct net *net, struct nl_info *info) |
| 2006 | { |
| 2007 | unsigned int h; |
| 2008 | |
| 2009 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
| 2010 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| 2011 | struct fib_table *tb; |
| 2012 | |
| 2013 | hlist_for_each_entry_rcu(tb, head, tb_hlist) |
| 2014 | __fib_info_notify_update(net, tb, info); |
| 2015 | } |
| 2016 | } |
| 2017 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2018 | static void fib_leaf_notify(struct net *net, struct key_vector *l, |
| 2019 | struct fib_table *tb, struct notifier_block *nb) |
| 2020 | { |
| 2021 | struct fib_alias *fa; |
| 2022 | |
| 2023 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
| 2024 | struct fib_info *fi = fa->fa_info; |
| 2025 | |
| 2026 | if (!fi) |
| 2027 | continue; |
| 2028 | |
| 2029 | /* local and main table can share the same trie, |
| 2030 | * so don't notify twice for the same entry. |
| 2031 | */ |
| 2032 | if (tb->tb_id != fa->tb_id) |
| 2033 | continue; |
| 2034 | |
| 2035 | call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, |
| 2036 | KEYLENGTH - fa->fa_slen, fa); |
| 2037 | } |
| 2038 | } |
| 2039 | |
| 2040 | static void fib_table_notify(struct net *net, struct fib_table *tb, |
| 2041 | struct notifier_block *nb) |
| 2042 | { |
| 2043 | struct trie *t = (struct trie *)tb->tb_data; |
| 2044 | struct key_vector *l, *tp = t->kv; |
| 2045 | t_key key = 0; |
| 2046 | |
| 2047 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { |
| 2048 | fib_leaf_notify(net, l, tb, nb); |
| 2049 | |
| 2050 | key = l->key + 1; |
| 2051 | /* stop in case of wrap around */ |
| 2052 | if (key < l->key) |
| 2053 | break; |
| 2054 | } |
| 2055 | } |
| 2056 | |
| 2057 | void fib_notify(struct net *net, struct notifier_block *nb) |
| 2058 | { |
| 2059 | unsigned int h; |
| 2060 | |
| 2061 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
| 2062 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| 2063 | struct fib_table *tb; |
| 2064 | |
| 2065 | hlist_for_each_entry_rcu(tb, head, tb_hlist) |
| 2066 | fib_table_notify(net, tb, nb); |
| 2067 | } |
| 2068 | } |
| 2069 | |
| 2070 | static void __trie_free_rcu(struct rcu_head *head) |
| 2071 | { |
| 2072 | struct fib_table *tb = container_of(head, struct fib_table, rcu); |
| 2073 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 2074 | struct trie *t = (struct trie *)tb->tb_data; |
| 2075 | |
| 2076 | if (tb->tb_data == tb->__data) |
| 2077 | free_percpu(t->stats); |
| 2078 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
| 2079 | kfree(tb); |
| 2080 | } |
| 2081 | |
| 2082 | void fib_free_table(struct fib_table *tb) |
| 2083 | { |
| 2084 | call_rcu(&tb->rcu, __trie_free_rcu); |
| 2085 | } |
| 2086 | |
| 2087 | static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2088 | struct sk_buff *skb, struct netlink_callback *cb, |
| 2089 | struct fib_dump_filter *filter) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2090 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2091 | unsigned int flags = NLM_F_MULTI; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2092 | __be32 xkey = htonl(l->key); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2093 | int i, s_i, i_fa, s_fa, err; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2094 | struct fib_alias *fa; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2095 | |
| 2096 | if (filter->filter_set || |
| 2097 | !filter->dump_exceptions || !filter->dump_routes) |
| 2098 | flags |= NLM_F_DUMP_FILTERED; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2099 | |
| 2100 | s_i = cb->args[4]; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2101 | s_fa = cb->args[5]; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2102 | i = 0; |
| 2103 | |
| 2104 | /* rcu_read_lock is hold by caller */ |
| 2105 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2106 | struct fib_info *fi = fa->fa_info; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2107 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2108 | if (i < s_i) |
| 2109 | goto next; |
| 2110 | |
| 2111 | i_fa = 0; |
| 2112 | |
| 2113 | if (tb->tb_id != fa->tb_id) |
| 2114 | goto next; |
| 2115 | |
| 2116 | if (filter->filter_set) { |
| 2117 | if (filter->rt_type && fa->fa_type != filter->rt_type) |
| 2118 | goto next; |
| 2119 | |
| 2120 | if ((filter->protocol && |
| 2121 | fi->fib_protocol != filter->protocol)) |
| 2122 | goto next; |
| 2123 | |
| 2124 | if (filter->dev && |
| 2125 | !fib_info_nh_uses_dev(fi, filter->dev)) |
| 2126 | goto next; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2127 | } |
| 2128 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2129 | if (filter->dump_routes) { |
| 2130 | if (!s_fa) { |
| 2131 | err = fib_dump_info(skb, |
| 2132 | NETLINK_CB(cb->skb).portid, |
| 2133 | cb->nlh->nlmsg_seq, |
| 2134 | RTM_NEWROUTE, |
| 2135 | tb->tb_id, fa->fa_type, |
| 2136 | xkey, |
| 2137 | KEYLENGTH - fa->fa_slen, |
| 2138 | fa->fa_tos, fi, flags); |
| 2139 | if (err < 0) |
| 2140 | goto stop; |
| 2141 | } |
| 2142 | |
| 2143 | i_fa++; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2144 | } |
| 2145 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2146 | if (filter->dump_exceptions) { |
| 2147 | err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, |
| 2148 | &i_fa, s_fa, flags); |
| 2149 | if (err < 0) |
| 2150 | goto stop; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2151 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2152 | |
| 2153 | next: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2154 | i++; |
| 2155 | } |
| 2156 | |
| 2157 | cb->args[4] = i; |
| 2158 | return skb->len; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2159 | |
| 2160 | stop: |
| 2161 | cb->args[4] = i; |
| 2162 | cb->args[5] = i_fa; |
| 2163 | return err; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2164 | } |
| 2165 | |
| 2166 | /* rcu_read_lock needs to be hold by caller from readside */ |
| 2167 | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2168 | struct netlink_callback *cb, struct fib_dump_filter *filter) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2169 | { |
| 2170 | struct trie *t = (struct trie *)tb->tb_data; |
| 2171 | struct key_vector *l, *tp = t->kv; |
| 2172 | /* Dump starting at last key. |
| 2173 | * Note: 0.0.0.0/0 (ie default) is first key. |
| 2174 | */ |
| 2175 | int count = cb->args[2]; |
| 2176 | t_key key = cb->args[3]; |
| 2177 | |
| 2178 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { |
| 2179 | int err; |
| 2180 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2181 | err = fn_trie_dump_leaf(l, tb, skb, cb, filter); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2182 | if (err < 0) { |
| 2183 | cb->args[3] = key; |
| 2184 | cb->args[2] = count; |
| 2185 | return err; |
| 2186 | } |
| 2187 | |
| 2188 | ++count; |
| 2189 | key = l->key + 1; |
| 2190 | |
| 2191 | memset(&cb->args[4], 0, |
| 2192 | sizeof(cb->args) - 4*sizeof(cb->args[0])); |
| 2193 | |
| 2194 | /* stop loop if key wrapped back to 0 */ |
| 2195 | if (key < l->key) |
| 2196 | break; |
| 2197 | } |
| 2198 | |
| 2199 | cb->args[3] = key; |
| 2200 | cb->args[2] = count; |
| 2201 | |
| 2202 | return skb->len; |
| 2203 | } |
| 2204 | |
| 2205 | void __init fib_trie_init(void) |
| 2206 | { |
| 2207 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
| 2208 | sizeof(struct fib_alias), |
| 2209 | 0, SLAB_PANIC, NULL); |
| 2210 | |
| 2211 | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", |
| 2212 | LEAF_SIZE, |
| 2213 | 0, SLAB_PANIC, NULL); |
| 2214 | } |
| 2215 | |
| 2216 | struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) |
| 2217 | { |
| 2218 | struct fib_table *tb; |
| 2219 | struct trie *t; |
| 2220 | size_t sz = sizeof(*tb); |
| 2221 | |
| 2222 | if (!alias) |
| 2223 | sz += sizeof(struct trie); |
| 2224 | |
| 2225 | tb = kzalloc(sz, GFP_KERNEL); |
| 2226 | if (!tb) |
| 2227 | return NULL; |
| 2228 | |
| 2229 | tb->tb_id = id; |
| 2230 | tb->tb_num_default = 0; |
| 2231 | tb->tb_data = (alias ? alias->__data : tb->__data); |
| 2232 | |
| 2233 | if (alias) |
| 2234 | return tb; |
| 2235 | |
| 2236 | t = (struct trie *) tb->tb_data; |
| 2237 | t->kv[0].pos = KEYLENGTH; |
| 2238 | t->kv[0].slen = KEYLENGTH; |
| 2239 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 2240 | t->stats = alloc_percpu(struct trie_use_stats); |
| 2241 | if (!t->stats) { |
| 2242 | kfree(tb); |
| 2243 | tb = NULL; |
| 2244 | } |
| 2245 | #endif |
| 2246 | |
| 2247 | return tb; |
| 2248 | } |
| 2249 | |
| 2250 | #ifdef CONFIG_PROC_FS |
| 2251 | /* Depth first Trie walk iterator */ |
| 2252 | struct fib_trie_iter { |
| 2253 | struct seq_net_private p; |
| 2254 | struct fib_table *tb; |
| 2255 | struct key_vector *tnode; |
| 2256 | unsigned int index; |
| 2257 | unsigned int depth; |
| 2258 | }; |
| 2259 | |
| 2260 | static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) |
| 2261 | { |
| 2262 | unsigned long cindex = iter->index; |
| 2263 | struct key_vector *pn = iter->tnode; |
| 2264 | t_key pkey; |
| 2265 | |
| 2266 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
| 2267 | iter->tnode, iter->index, iter->depth); |
| 2268 | |
| 2269 | while (!IS_TRIE(pn)) { |
| 2270 | while (cindex < child_length(pn)) { |
| 2271 | struct key_vector *n = get_child_rcu(pn, cindex++); |
| 2272 | |
| 2273 | if (!n) |
| 2274 | continue; |
| 2275 | |
| 2276 | if (IS_LEAF(n)) { |
| 2277 | iter->tnode = pn; |
| 2278 | iter->index = cindex; |
| 2279 | } else { |
| 2280 | /* push down one level */ |
| 2281 | iter->tnode = n; |
| 2282 | iter->index = 0; |
| 2283 | ++iter->depth; |
| 2284 | } |
| 2285 | |
| 2286 | return n; |
| 2287 | } |
| 2288 | |
| 2289 | /* Current node exhausted, pop back up */ |
| 2290 | pkey = pn->key; |
| 2291 | pn = node_parent_rcu(pn); |
| 2292 | cindex = get_index(pkey, pn) + 1; |
| 2293 | --iter->depth; |
| 2294 | } |
| 2295 | |
| 2296 | /* record root node so further searches know we are done */ |
| 2297 | iter->tnode = pn; |
| 2298 | iter->index = 0; |
| 2299 | |
| 2300 | return NULL; |
| 2301 | } |
| 2302 | |
| 2303 | static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, |
| 2304 | struct trie *t) |
| 2305 | { |
| 2306 | struct key_vector *n, *pn; |
| 2307 | |
| 2308 | if (!t) |
| 2309 | return NULL; |
| 2310 | |
| 2311 | pn = t->kv; |
| 2312 | n = rcu_dereference(pn->tnode[0]); |
| 2313 | if (!n) |
| 2314 | return NULL; |
| 2315 | |
| 2316 | if (IS_TNODE(n)) { |
| 2317 | iter->tnode = n; |
| 2318 | iter->index = 0; |
| 2319 | iter->depth = 1; |
| 2320 | } else { |
| 2321 | iter->tnode = pn; |
| 2322 | iter->index = 0; |
| 2323 | iter->depth = 0; |
| 2324 | } |
| 2325 | |
| 2326 | return n; |
| 2327 | } |
| 2328 | |
| 2329 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
| 2330 | { |
| 2331 | struct key_vector *n; |
| 2332 | struct fib_trie_iter iter; |
| 2333 | |
| 2334 | memset(s, 0, sizeof(*s)); |
| 2335 | |
| 2336 | rcu_read_lock(); |
| 2337 | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { |
| 2338 | if (IS_LEAF(n)) { |
| 2339 | struct fib_alias *fa; |
| 2340 | |
| 2341 | s->leaves++; |
| 2342 | s->totdepth += iter.depth; |
| 2343 | if (iter.depth > s->maxdepth) |
| 2344 | s->maxdepth = iter.depth; |
| 2345 | |
| 2346 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) |
| 2347 | ++s->prefixes; |
| 2348 | } else { |
| 2349 | s->tnodes++; |
| 2350 | if (n->bits < MAX_STAT_DEPTH) |
| 2351 | s->nodesizes[n->bits]++; |
| 2352 | s->nullpointers += tn_info(n)->empty_children; |
| 2353 | } |
| 2354 | } |
| 2355 | rcu_read_unlock(); |
| 2356 | } |
| 2357 | |
| 2358 | /* |
| 2359 | * This outputs /proc/net/fib_triestats |
| 2360 | */ |
| 2361 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) |
| 2362 | { |
| 2363 | unsigned int i, max, pointers, bytes, avdepth; |
| 2364 | |
| 2365 | if (stat->leaves) |
| 2366 | avdepth = stat->totdepth*100 / stat->leaves; |
| 2367 | else |
| 2368 | avdepth = 0; |
| 2369 | |
| 2370 | seq_printf(seq, "\tAver depth: %u.%02d\n", |
| 2371 | avdepth / 100, avdepth % 100); |
| 2372 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); |
| 2373 | |
| 2374 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
| 2375 | bytes = LEAF_SIZE * stat->leaves; |
| 2376 | |
| 2377 | seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); |
| 2378 | bytes += sizeof(struct fib_alias) * stat->prefixes; |
| 2379 | |
| 2380 | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); |
| 2381 | bytes += TNODE_SIZE(0) * stat->tnodes; |
| 2382 | |
| 2383 | max = MAX_STAT_DEPTH; |
| 2384 | while (max > 0 && stat->nodesizes[max-1] == 0) |
| 2385 | max--; |
| 2386 | |
| 2387 | pointers = 0; |
| 2388 | for (i = 1; i < max; i++) |
| 2389 | if (stat->nodesizes[i] != 0) { |
| 2390 | seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); |
| 2391 | pointers += (1<<i) * stat->nodesizes[i]; |
| 2392 | } |
| 2393 | seq_putc(seq, '\n'); |
| 2394 | seq_printf(seq, "\tPointers: %u\n", pointers); |
| 2395 | |
| 2396 | bytes += sizeof(struct key_vector *) * pointers; |
| 2397 | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); |
| 2398 | seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); |
| 2399 | } |
| 2400 | |
| 2401 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 2402 | static void trie_show_usage(struct seq_file *seq, |
| 2403 | const struct trie_use_stats __percpu *stats) |
| 2404 | { |
| 2405 | struct trie_use_stats s = { 0 }; |
| 2406 | int cpu; |
| 2407 | |
| 2408 | /* loop through all of the CPUs and gather up the stats */ |
| 2409 | for_each_possible_cpu(cpu) { |
| 2410 | const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); |
| 2411 | |
| 2412 | s.gets += pcpu->gets; |
| 2413 | s.backtrack += pcpu->backtrack; |
| 2414 | s.semantic_match_passed += pcpu->semantic_match_passed; |
| 2415 | s.semantic_match_miss += pcpu->semantic_match_miss; |
| 2416 | s.null_node_hit += pcpu->null_node_hit; |
| 2417 | s.resize_node_skipped += pcpu->resize_node_skipped; |
| 2418 | } |
| 2419 | |
| 2420 | seq_printf(seq, "\nCounters:\n---------\n"); |
| 2421 | seq_printf(seq, "gets = %u\n", s.gets); |
| 2422 | seq_printf(seq, "backtracks = %u\n", s.backtrack); |
| 2423 | seq_printf(seq, "semantic match passed = %u\n", |
| 2424 | s.semantic_match_passed); |
| 2425 | seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); |
| 2426 | seq_printf(seq, "null node hit= %u\n", s.null_node_hit); |
| 2427 | seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); |
| 2428 | } |
| 2429 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
| 2430 | |
| 2431 | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) |
| 2432 | { |
| 2433 | if (tb->tb_id == RT_TABLE_LOCAL) |
| 2434 | seq_puts(seq, "Local:\n"); |
| 2435 | else if (tb->tb_id == RT_TABLE_MAIN) |
| 2436 | seq_puts(seq, "Main:\n"); |
| 2437 | else |
| 2438 | seq_printf(seq, "Id %d:\n", tb->tb_id); |
| 2439 | } |
| 2440 | |
| 2441 | |
| 2442 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
| 2443 | { |
| 2444 | struct net *net = (struct net *)seq->private; |
| 2445 | unsigned int h; |
| 2446 | |
| 2447 | seq_printf(seq, |
| 2448 | "Basic info: size of leaf:" |
| 2449 | " %zd bytes, size of tnode: %zd bytes.\n", |
| 2450 | LEAF_SIZE, TNODE_SIZE(0)); |
| 2451 | |
| 2452 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
| 2453 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| 2454 | struct fib_table *tb; |
| 2455 | |
| 2456 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
| 2457 | struct trie *t = (struct trie *) tb->tb_data; |
| 2458 | struct trie_stat stat; |
| 2459 | |
| 2460 | if (!t) |
| 2461 | continue; |
| 2462 | |
| 2463 | fib_table_print(seq, tb); |
| 2464 | |
| 2465 | trie_collect_stats(t, &stat); |
| 2466 | trie_show_stats(seq, &stat); |
| 2467 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 2468 | trie_show_usage(seq, t->stats); |
| 2469 | #endif |
| 2470 | } |
| 2471 | } |
| 2472 | |
| 2473 | return 0; |
| 2474 | } |
| 2475 | |
| 2476 | static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) |
| 2477 | { |
| 2478 | struct fib_trie_iter *iter = seq->private; |
| 2479 | struct net *net = seq_file_net(seq); |
| 2480 | loff_t idx = 0; |
| 2481 | unsigned int h; |
| 2482 | |
| 2483 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
| 2484 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| 2485 | struct fib_table *tb; |
| 2486 | |
| 2487 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
| 2488 | struct key_vector *n; |
| 2489 | |
| 2490 | for (n = fib_trie_get_first(iter, |
| 2491 | (struct trie *) tb->tb_data); |
| 2492 | n; n = fib_trie_get_next(iter)) |
| 2493 | if (pos == idx++) { |
| 2494 | iter->tb = tb; |
| 2495 | return n; |
| 2496 | } |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | return NULL; |
| 2501 | } |
| 2502 | |
| 2503 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
| 2504 | __acquires(RCU) |
| 2505 | { |
| 2506 | rcu_read_lock(); |
| 2507 | return fib_trie_get_idx(seq, *pos); |
| 2508 | } |
| 2509 | |
| 2510 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 2511 | { |
| 2512 | struct fib_trie_iter *iter = seq->private; |
| 2513 | struct net *net = seq_file_net(seq); |
| 2514 | struct fib_table *tb = iter->tb; |
| 2515 | struct hlist_node *tb_node; |
| 2516 | unsigned int h; |
| 2517 | struct key_vector *n; |
| 2518 | |
| 2519 | ++*pos; |
| 2520 | /* next node in same table */ |
| 2521 | n = fib_trie_get_next(iter); |
| 2522 | if (n) |
| 2523 | return n; |
| 2524 | |
| 2525 | /* walk rest of this hash chain */ |
| 2526 | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); |
| 2527 | while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { |
| 2528 | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); |
| 2529 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); |
| 2530 | if (n) |
| 2531 | goto found; |
| 2532 | } |
| 2533 | |
| 2534 | /* new hash chain */ |
| 2535 | while (++h < FIB_TABLE_HASHSZ) { |
| 2536 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; |
| 2537 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
| 2538 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); |
| 2539 | if (n) |
| 2540 | goto found; |
| 2541 | } |
| 2542 | } |
| 2543 | return NULL; |
| 2544 | |
| 2545 | found: |
| 2546 | iter->tb = tb; |
| 2547 | return n; |
| 2548 | } |
| 2549 | |
| 2550 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
| 2551 | __releases(RCU) |
| 2552 | { |
| 2553 | rcu_read_unlock(); |
| 2554 | } |
| 2555 | |
| 2556 | static void seq_indent(struct seq_file *seq, int n) |
| 2557 | { |
| 2558 | while (n-- > 0) |
| 2559 | seq_puts(seq, " "); |
| 2560 | } |
| 2561 | |
| 2562 | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) |
| 2563 | { |
| 2564 | switch (s) { |
| 2565 | case RT_SCOPE_UNIVERSE: return "universe"; |
| 2566 | case RT_SCOPE_SITE: return "site"; |
| 2567 | case RT_SCOPE_LINK: return "link"; |
| 2568 | case RT_SCOPE_HOST: return "host"; |
| 2569 | case RT_SCOPE_NOWHERE: return "nowhere"; |
| 2570 | default: |
| 2571 | snprintf(buf, len, "scope=%d", s); |
| 2572 | return buf; |
| 2573 | } |
| 2574 | } |
| 2575 | |
| 2576 | static const char *const rtn_type_names[__RTN_MAX] = { |
| 2577 | [RTN_UNSPEC] = "UNSPEC", |
| 2578 | [RTN_UNICAST] = "UNICAST", |
| 2579 | [RTN_LOCAL] = "LOCAL", |
| 2580 | [RTN_BROADCAST] = "BROADCAST", |
| 2581 | [RTN_ANYCAST] = "ANYCAST", |
| 2582 | [RTN_MULTICAST] = "MULTICAST", |
| 2583 | [RTN_BLACKHOLE] = "BLACKHOLE", |
| 2584 | [RTN_UNREACHABLE] = "UNREACHABLE", |
| 2585 | [RTN_PROHIBIT] = "PROHIBIT", |
| 2586 | [RTN_THROW] = "THROW", |
| 2587 | [RTN_NAT] = "NAT", |
| 2588 | [RTN_XRESOLVE] = "XRESOLVE", |
| 2589 | }; |
| 2590 | |
| 2591 | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) |
| 2592 | { |
| 2593 | if (t < __RTN_MAX && rtn_type_names[t]) |
| 2594 | return rtn_type_names[t]; |
| 2595 | snprintf(buf, len, "type %u", t); |
| 2596 | return buf; |
| 2597 | } |
| 2598 | |
| 2599 | /* Pretty print the trie */ |
| 2600 | static int fib_trie_seq_show(struct seq_file *seq, void *v) |
| 2601 | { |
| 2602 | const struct fib_trie_iter *iter = seq->private; |
| 2603 | struct key_vector *n = v; |
| 2604 | |
| 2605 | if (IS_TRIE(node_parent_rcu(n))) |
| 2606 | fib_table_print(seq, iter->tb); |
| 2607 | |
| 2608 | if (IS_TNODE(n)) { |
| 2609 | __be32 prf = htonl(n->key); |
| 2610 | |
| 2611 | seq_indent(seq, iter->depth-1); |
| 2612 | seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", |
| 2613 | &prf, KEYLENGTH - n->pos - n->bits, n->bits, |
| 2614 | tn_info(n)->full_children, |
| 2615 | tn_info(n)->empty_children); |
| 2616 | } else { |
| 2617 | __be32 val = htonl(n->key); |
| 2618 | struct fib_alias *fa; |
| 2619 | |
| 2620 | seq_indent(seq, iter->depth); |
| 2621 | seq_printf(seq, " |-- %pI4\n", &val); |
| 2622 | |
| 2623 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
| 2624 | char buf1[32], buf2[32]; |
| 2625 | |
| 2626 | seq_indent(seq, iter->depth + 1); |
| 2627 | seq_printf(seq, " /%zu %s %s", |
| 2628 | KEYLENGTH - fa->fa_slen, |
| 2629 | rtn_scope(buf1, sizeof(buf1), |
| 2630 | fa->fa_info->fib_scope), |
| 2631 | rtn_type(buf2, sizeof(buf2), |
| 2632 | fa->fa_type)); |
| 2633 | if (fa->fa_tos) |
| 2634 | seq_printf(seq, " tos=%d", fa->fa_tos); |
| 2635 | seq_putc(seq, '\n'); |
| 2636 | } |
| 2637 | } |
| 2638 | |
| 2639 | return 0; |
| 2640 | } |
| 2641 | |
| 2642 | static const struct seq_operations fib_trie_seq_ops = { |
| 2643 | .start = fib_trie_seq_start, |
| 2644 | .next = fib_trie_seq_next, |
| 2645 | .stop = fib_trie_seq_stop, |
| 2646 | .show = fib_trie_seq_show, |
| 2647 | }; |
| 2648 | |
| 2649 | struct fib_route_iter { |
| 2650 | struct seq_net_private p; |
| 2651 | struct fib_table *main_tb; |
| 2652 | struct key_vector *tnode; |
| 2653 | loff_t pos; |
| 2654 | t_key key; |
| 2655 | }; |
| 2656 | |
| 2657 | static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, |
| 2658 | loff_t pos) |
| 2659 | { |
| 2660 | struct key_vector *l, **tp = &iter->tnode; |
| 2661 | t_key key; |
| 2662 | |
| 2663 | /* use cached location of previously found key */ |
| 2664 | if (iter->pos > 0 && pos >= iter->pos) { |
| 2665 | key = iter->key; |
| 2666 | } else { |
| 2667 | iter->pos = 1; |
| 2668 | key = 0; |
| 2669 | } |
| 2670 | |
| 2671 | pos -= iter->pos; |
| 2672 | |
| 2673 | while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { |
| 2674 | key = l->key + 1; |
| 2675 | iter->pos++; |
| 2676 | l = NULL; |
| 2677 | |
| 2678 | /* handle unlikely case of a key wrap */ |
| 2679 | if (!key) |
| 2680 | break; |
| 2681 | } |
| 2682 | |
| 2683 | if (l) |
| 2684 | iter->key = l->key; /* remember it */ |
| 2685 | else |
| 2686 | iter->pos = 0; /* forget it */ |
| 2687 | |
| 2688 | return l; |
| 2689 | } |
| 2690 | |
| 2691 | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) |
| 2692 | __acquires(RCU) |
| 2693 | { |
| 2694 | struct fib_route_iter *iter = seq->private; |
| 2695 | struct fib_table *tb; |
| 2696 | struct trie *t; |
| 2697 | |
| 2698 | rcu_read_lock(); |
| 2699 | |
| 2700 | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); |
| 2701 | if (!tb) |
| 2702 | return NULL; |
| 2703 | |
| 2704 | iter->main_tb = tb; |
| 2705 | t = (struct trie *)tb->tb_data; |
| 2706 | iter->tnode = t->kv; |
| 2707 | |
| 2708 | if (*pos != 0) |
| 2709 | return fib_route_get_idx(iter, *pos); |
| 2710 | |
| 2711 | iter->pos = 0; |
| 2712 | iter->key = KEY_MAX; |
| 2713 | |
| 2714 | return SEQ_START_TOKEN; |
| 2715 | } |
| 2716 | |
| 2717 | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 2718 | { |
| 2719 | struct fib_route_iter *iter = seq->private; |
| 2720 | struct key_vector *l = NULL; |
| 2721 | t_key key = iter->key + 1; |
| 2722 | |
| 2723 | ++*pos; |
| 2724 | |
| 2725 | /* only allow key of 0 for start of sequence */ |
| 2726 | if ((v == SEQ_START_TOKEN) || key) |
| 2727 | l = leaf_walk_rcu(&iter->tnode, key); |
| 2728 | |
| 2729 | if (l) { |
| 2730 | iter->key = l->key; |
| 2731 | iter->pos++; |
| 2732 | } else { |
| 2733 | iter->pos = 0; |
| 2734 | } |
| 2735 | |
| 2736 | return l; |
| 2737 | } |
| 2738 | |
| 2739 | static void fib_route_seq_stop(struct seq_file *seq, void *v) |
| 2740 | __releases(RCU) |
| 2741 | { |
| 2742 | rcu_read_unlock(); |
| 2743 | } |
| 2744 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2745 | static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2746 | { |
| 2747 | unsigned int flags = 0; |
| 2748 | |
| 2749 | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) |
| 2750 | flags = RTF_REJECT; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2751 | if (fi) { |
| 2752 | const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); |
| 2753 | |
| 2754 | if (nhc->nhc_gw.ipv4) |
| 2755 | flags |= RTF_GATEWAY; |
| 2756 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2757 | if (mask == htonl(0xFFFFFFFF)) |
| 2758 | flags |= RTF_HOST; |
| 2759 | flags |= RTF_UP; |
| 2760 | return flags; |
| 2761 | } |
| 2762 | |
| 2763 | /* |
| 2764 | * This outputs /proc/net/route. |
| 2765 | * The format of the file is not supposed to be changed |
| 2766 | * and needs to be same as fib_hash output to avoid breaking |
| 2767 | * legacy utilities |
| 2768 | */ |
| 2769 | static int fib_route_seq_show(struct seq_file *seq, void *v) |
| 2770 | { |
| 2771 | struct fib_route_iter *iter = seq->private; |
| 2772 | struct fib_table *tb = iter->main_tb; |
| 2773 | struct fib_alias *fa; |
| 2774 | struct key_vector *l = v; |
| 2775 | __be32 prefix; |
| 2776 | |
| 2777 | if (v == SEQ_START_TOKEN) { |
| 2778 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " |
| 2779 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" |
| 2780 | "\tWindow\tIRTT"); |
| 2781 | return 0; |
| 2782 | } |
| 2783 | |
| 2784 | prefix = htonl(l->key); |
| 2785 | |
| 2786 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2787 | struct fib_info *fi = fa->fa_info; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2788 | __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); |
| 2789 | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); |
| 2790 | |
| 2791 | if ((fa->fa_type == RTN_BROADCAST) || |
| 2792 | (fa->fa_type == RTN_MULTICAST)) |
| 2793 | continue; |
| 2794 | |
| 2795 | if (fa->tb_id != tb->tb_id) |
| 2796 | continue; |
| 2797 | |
| 2798 | seq_setwidth(seq, 127); |
| 2799 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2800 | if (fi) { |
| 2801 | struct fib_nh_common *nhc = fib_info_nhc(fi, 0); |
| 2802 | __be32 gw = 0; |
| 2803 | |
| 2804 | if (nhc->nhc_gw_family == AF_INET) |
| 2805 | gw = nhc->nhc_gw.ipv4; |
| 2806 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2807 | seq_printf(seq, |
| 2808 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" |
| 2809 | "%d\t%08X\t%d\t%u\t%u", |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2810 | nhc->nhc_dev ? nhc->nhc_dev->name : "*", |
| 2811 | prefix, gw, flags, 0, 0, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2812 | fi->fib_priority, |
| 2813 | mask, |
| 2814 | (fi->fib_advmss ? |
| 2815 | fi->fib_advmss + 40 : 0), |
| 2816 | fi->fib_window, |
| 2817 | fi->fib_rtt >> 3); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2818 | } else { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2819 | seq_printf(seq, |
| 2820 | "*\t%08X\t%08X\t%04X\t%d\t%u\t" |
| 2821 | "%d\t%08X\t%d\t%u\t%u", |
| 2822 | prefix, 0, flags, 0, 0, 0, |
| 2823 | mask, 0, 0, 0); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2824 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2825 | seq_pad(seq, '\n'); |
| 2826 | } |
| 2827 | |
| 2828 | return 0; |
| 2829 | } |
| 2830 | |
| 2831 | static const struct seq_operations fib_route_seq_ops = { |
| 2832 | .start = fib_route_seq_start, |
| 2833 | .next = fib_route_seq_next, |
| 2834 | .stop = fib_route_seq_stop, |
| 2835 | .show = fib_route_seq_show, |
| 2836 | }; |
| 2837 | |
| 2838 | int __net_init fib_proc_init(struct net *net) |
| 2839 | { |
| 2840 | if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, |
| 2841 | sizeof(struct fib_trie_iter))) |
| 2842 | goto out1; |
| 2843 | |
| 2844 | if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, |
| 2845 | fib_triestat_seq_show, NULL)) |
| 2846 | goto out2; |
| 2847 | |
| 2848 | if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, |
| 2849 | sizeof(struct fib_route_iter))) |
| 2850 | goto out3; |
| 2851 | |
| 2852 | return 0; |
| 2853 | |
| 2854 | out3: |
| 2855 | remove_proc_entry("fib_triestat", net->proc_net); |
| 2856 | out2: |
| 2857 | remove_proc_entry("fib_trie", net->proc_net); |
| 2858 | out1: |
| 2859 | return -ENOMEM; |
| 2860 | } |
| 2861 | |
| 2862 | void __net_exit fib_proc_exit(struct net *net) |
| 2863 | { |
| 2864 | remove_proc_entry("fib_trie", net->proc_net); |
| 2865 | remove_proc_entry("fib_triestat", net->proc_net); |
| 2866 | remove_proc_entry("route", net->proc_net); |
| 2867 | } |
| 2868 | |
| 2869 | #endif /* CONFIG_PROC_FS */ |