Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | |
| 3 | #ifdef CONFIG_SCHEDSTATS |
| 4 | |
| 5 | /* |
| 6 | * Expects runqueue lock to be held for atomicity of update |
| 7 | */ |
| 8 | static inline void |
| 9 | rq_sched_info_arrive(struct rq *rq, unsigned long long delta) |
| 10 | { |
| 11 | if (rq) { |
| 12 | rq->rq_sched_info.run_delay += delta; |
| 13 | rq->rq_sched_info.pcount++; |
| 14 | } |
| 15 | } |
| 16 | |
| 17 | /* |
| 18 | * Expects runqueue lock to be held for atomicity of update |
| 19 | */ |
| 20 | static inline void |
| 21 | rq_sched_info_depart(struct rq *rq, unsigned long long delta) |
| 22 | { |
| 23 | if (rq) |
| 24 | rq->rq_cpu_time += delta; |
| 25 | } |
| 26 | |
| 27 | static inline void |
| 28 | rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) |
| 29 | { |
| 30 | if (rq) |
| 31 | rq->rq_sched_info.run_delay += delta; |
| 32 | } |
| 33 | #define schedstat_enabled() static_branch_unlikely(&sched_schedstats) |
| 34 | #define __schedstat_inc(var) do { var++; } while (0) |
| 35 | #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0) |
| 36 | #define __schedstat_add(var, amt) do { var += (amt); } while (0) |
| 37 | #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0) |
| 38 | #define __schedstat_set(var, val) do { var = (val); } while (0) |
| 39 | #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0) |
| 40 | #define schedstat_val(var) (var) |
| 41 | #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0) |
| 42 | |
| 43 | #else /* !CONFIG_SCHEDSTATS: */ |
| 44 | static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { } |
| 45 | static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { } |
| 46 | static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { } |
| 47 | # define schedstat_enabled() 0 |
| 48 | # define __schedstat_inc(var) do { } while (0) |
| 49 | # define schedstat_inc(var) do { } while (0) |
| 50 | # define __schedstat_add(var, amt) do { } while (0) |
| 51 | # define schedstat_add(var, amt) do { } while (0) |
| 52 | # define __schedstat_set(var, val) do { } while (0) |
| 53 | # define schedstat_set(var, val) do { } while (0) |
| 54 | # define schedstat_val(var) 0 |
| 55 | # define schedstat_val_or_zero(var) 0 |
| 56 | #endif /* CONFIG_SCHEDSTATS */ |
| 57 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 58 | #ifdef CONFIG_PSI |
| 59 | /* |
| 60 | * PSI tracks state that persists across sleeps, such as iowaits and |
| 61 | * memory stalls. As a result, it has to distinguish between sleeps, |
| 62 | * where a task's runnable state changes, and requeues, where a task |
| 63 | * and its state are being moved between CPUs and runqueues. |
| 64 | */ |
| 65 | static inline void psi_enqueue(struct task_struct *p, bool wakeup) |
| 66 | { |
| 67 | int clear = 0, set = TSK_RUNNING; |
| 68 | |
| 69 | if (static_branch_likely(&psi_disabled)) |
| 70 | return; |
| 71 | |
| 72 | if (!wakeup || p->sched_psi_wake_requeue) { |
| 73 | if (p->flags & PF_MEMSTALL) |
| 74 | set |= TSK_MEMSTALL; |
| 75 | if (p->sched_psi_wake_requeue) |
| 76 | p->sched_psi_wake_requeue = 0; |
| 77 | } else { |
| 78 | if (p->in_iowait) |
| 79 | clear |= TSK_IOWAIT; |
| 80 | } |
| 81 | |
| 82 | psi_task_change(p, clear, set); |
| 83 | } |
| 84 | |
| 85 | static inline void psi_dequeue(struct task_struct *p, bool sleep) |
| 86 | { |
| 87 | int clear = TSK_RUNNING, set = 0; |
| 88 | |
| 89 | if (static_branch_likely(&psi_disabled)) |
| 90 | return; |
| 91 | |
| 92 | if (!sleep) { |
| 93 | if (p->flags & PF_MEMSTALL) |
| 94 | clear |= TSK_MEMSTALL; |
| 95 | } else { |
| 96 | if (p->in_iowait) |
| 97 | set |= TSK_IOWAIT; |
| 98 | } |
| 99 | |
| 100 | psi_task_change(p, clear, set); |
| 101 | } |
| 102 | |
| 103 | static inline void psi_ttwu_dequeue(struct task_struct *p) |
| 104 | { |
| 105 | if (static_branch_likely(&psi_disabled)) |
| 106 | return; |
| 107 | /* |
| 108 | * Is the task being migrated during a wakeup? Make sure to |
| 109 | * deregister its sleep-persistent psi states from the old |
| 110 | * queue, and let psi_enqueue() know it has to requeue. |
| 111 | */ |
| 112 | if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) { |
| 113 | struct rq_flags rf; |
| 114 | struct rq *rq; |
| 115 | int clear = 0; |
| 116 | |
| 117 | if (p->in_iowait) |
| 118 | clear |= TSK_IOWAIT; |
| 119 | if (p->flags & PF_MEMSTALL) |
| 120 | clear |= TSK_MEMSTALL; |
| 121 | |
| 122 | rq = __task_rq_lock(p, &rf); |
| 123 | psi_task_change(p, clear, 0); |
| 124 | p->sched_psi_wake_requeue = 1; |
| 125 | __task_rq_unlock(rq, &rf); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | static inline void psi_task_tick(struct rq *rq) |
| 130 | { |
| 131 | if (static_branch_likely(&psi_disabled)) |
| 132 | return; |
| 133 | |
| 134 | if (unlikely(rq->curr->flags & PF_MEMSTALL)) |
| 135 | psi_memstall_tick(rq->curr, cpu_of(rq)); |
| 136 | } |
| 137 | #else /* CONFIG_PSI */ |
| 138 | static inline void psi_enqueue(struct task_struct *p, bool wakeup) {} |
| 139 | static inline void psi_dequeue(struct task_struct *p, bool sleep) {} |
| 140 | static inline void psi_ttwu_dequeue(struct task_struct *p) {} |
| 141 | static inline void psi_task_tick(struct rq *rq) {} |
| 142 | #endif /* CONFIG_PSI */ |
| 143 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 144 | #ifdef CONFIG_SCHED_INFO |
| 145 | static inline void sched_info_reset_dequeued(struct task_struct *t) |
| 146 | { |
| 147 | t->sched_info.last_queued = 0; |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * We are interested in knowing how long it was from the *first* time a |
| 152 | * task was queued to the time that it finally hit a CPU, we call this routine |
| 153 | * from dequeue_task() to account for possible rq->clock skew across CPUs. The |
| 154 | * delta taken on each CPU would annul the skew. |
| 155 | */ |
| 156 | static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t) |
| 157 | { |
| 158 | unsigned long long now = rq_clock(rq), delta = 0; |
| 159 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 160 | if (sched_info_on()) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 161 | if (t->sched_info.last_queued) |
| 162 | delta = now - t->sched_info.last_queued; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 163 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 164 | sched_info_reset_dequeued(t); |
| 165 | t->sched_info.run_delay += delta; |
| 166 | |
| 167 | rq_sched_info_dequeued(rq, delta); |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * Called when a task finally hits the CPU. We can now calculate how |
| 172 | * long it was waiting to run. We also note when it began so that we |
| 173 | * can keep stats on how long its timeslice is. |
| 174 | */ |
| 175 | static void sched_info_arrive(struct rq *rq, struct task_struct *t) |
| 176 | { |
| 177 | unsigned long long now = rq_clock(rq), delta = 0; |
| 178 | |
| 179 | if (t->sched_info.last_queued) |
| 180 | delta = now - t->sched_info.last_queued; |
| 181 | sched_info_reset_dequeued(t); |
| 182 | t->sched_info.run_delay += delta; |
| 183 | t->sched_info.last_arrival = now; |
| 184 | t->sched_info.pcount++; |
| 185 | |
| 186 | rq_sched_info_arrive(rq, delta); |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * This function is only called from enqueue_task(), but also only updates |
| 191 | * the timestamp if it is already not set. It's assumed that |
| 192 | * sched_info_dequeued() will clear that stamp when appropriate. |
| 193 | */ |
| 194 | static inline void sched_info_queued(struct rq *rq, struct task_struct *t) |
| 195 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 196 | if (sched_info_on()) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 197 | if (!t->sched_info.last_queued) |
| 198 | t->sched_info.last_queued = rq_clock(rq); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Called when a process ceases being the active-running process involuntarily |
| 204 | * due, typically, to expiring its time slice (this may also be called when |
| 205 | * switching to the idle task). Now we can calculate how long we ran. |
| 206 | * Also, if the process is still in the TASK_RUNNING state, call |
| 207 | * sched_info_queued() to mark that it has now again started waiting on |
| 208 | * the runqueue. |
| 209 | */ |
| 210 | static inline void sched_info_depart(struct rq *rq, struct task_struct *t) |
| 211 | { |
| 212 | unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; |
| 213 | |
| 214 | rq_sched_info_depart(rq, delta); |
| 215 | |
| 216 | if (t->state == TASK_RUNNING) |
| 217 | sched_info_queued(rq, t); |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * Called when tasks are switched involuntarily due, typically, to expiring |
| 222 | * their time slice. (This may also be called when switching to or from |
| 223 | * the idle task.) We are only called when prev != next. |
| 224 | */ |
| 225 | static inline void |
| 226 | __sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) |
| 227 | { |
| 228 | /* |
| 229 | * prev now departs the CPU. It's not interesting to record |
| 230 | * stats about how efficient we were at scheduling the idle |
| 231 | * process, however. |
| 232 | */ |
| 233 | if (prev != rq->idle) |
| 234 | sched_info_depart(rq, prev); |
| 235 | |
| 236 | if (next != rq->idle) |
| 237 | sched_info_arrive(rq, next); |
| 238 | } |
| 239 | |
| 240 | static inline void |
| 241 | sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) |
| 242 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 243 | if (sched_info_on()) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 244 | __sched_info_switch(rq, prev, next); |
| 245 | } |
| 246 | |
| 247 | #else /* !CONFIG_SCHED_INFO: */ |
| 248 | # define sched_info_queued(rq, t) do { } while (0) |
| 249 | # define sched_info_reset_dequeued(t) do { } while (0) |
| 250 | # define sched_info_dequeued(rq, t) do { } while (0) |
| 251 | # define sched_info_depart(rq, t) do { } while (0) |
| 252 | # define sched_info_arrive(rq, next) do { } while (0) |
| 253 | # define sched_info_switch(rq, t, next) do { } while (0) |
| 254 | #endif /* CONFIG_SCHED_INFO */ |