blob: 6cabc124378c2da49fa1a6385bbea181a8ae7833 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
David Brazdil0f672f62019-12-10 10:32:29 +000015#include <linux/anon_inodes.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000016#include <linux/slab.h>
17#include <linux/sched/autogroup.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/coredump.h>
20#include <linux/sched/user.h>
21#include <linux/sched/numa_balancing.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/task.h>
24#include <linux/sched/task_stack.h>
25#include <linux/sched/cputime.h>
David Brazdil0f672f62019-12-10 10:32:29 +000026#include <linux/seq_file.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000027#include <linux/rtmutex.h>
28#include <linux/init.h>
29#include <linux/unistd.h>
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
37#include <linux/fdtable.h>
38#include <linux/iocontext.h>
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
42#include <linux/mmu_notifier.h>
43#include <linux/hmm.h>
44#include <linux/fs.h>
45#include <linux/mm.h>
46#include <linux/vmacache.h>
47#include <linux/nsproxy.h>
48#include <linux/capability.h>
49#include <linux/cpu.h>
50#include <linux/cgroup.h>
51#include <linux/security.h>
52#include <linux/hugetlb.h>
53#include <linux/seccomp.h>
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
58#include <linux/compat.h>
59#include <linux/kthread.h>
60#include <linux/task_io_accounting_ops.h>
61#include <linux/rcupdate.h>
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
65#include <linux/memcontrol.h>
66#include <linux/ftrace.h>
67#include <linux/proc_fs.h>
68#include <linux/profile.h>
69#include <linux/rmap.h>
70#include <linux/ksm.h>
71#include <linux/acct.h>
72#include <linux/userfaultfd_k.h>
73#include <linux/tsacct_kern.h>
74#include <linux/cn_proc.h>
75#include <linux/freezer.h>
76#include <linux/delayacct.h>
77#include <linux/taskstats_kern.h>
78#include <linux/random.h>
79#include <linux/tty.h>
80#include <linux/blkdev.h>
81#include <linux/fs_struct.h>
82#include <linux/magic.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000083#include <linux/perf_event.h>
84#include <linux/posix-timers.h>
85#include <linux/user-return-notifier.h>
86#include <linux/oom.h>
87#include <linux/khugepaged.h>
88#include <linux/signalfd.h>
89#include <linux/uprobes.h>
90#include <linux/aio.h>
91#include <linux/compiler.h>
92#include <linux/sysctl.h>
93#include <linux/kcov.h>
94#include <linux/livepatch.h>
95#include <linux/thread_info.h>
David Brazdil0f672f62019-12-10 10:32:29 +000096#include <linux/stackleak.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000097
98#include <asm/pgtable.h>
99#include <asm/pgalloc.h>
100#include <linux/uaccess.h>
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
105#include <trace/events/sched.h>
106
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
109
110/*
111 * Minimum number of threads to boot the kernel
112 */
113#define MIN_THREADS 20
114
115/*
116 * Maximum number of threads
117 */
118#define MAX_THREADS FUTEX_TID_MASK
119
120/*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123unsigned long total_forks; /* Handle normal Linux uptimes. */
124int nr_threads; /* The idle threads do not count.. */
125
David Brazdil0f672f62019-12-10 10:32:29 +0000126static int max_threads; /* tunable limit on nr_threads */
127
128#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000136
137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
140
141#ifdef CONFIG_PROVE_RCU
142int lockdep_tasklist_lock_is_held(void)
143{
144 return lockdep_is_held(&tasklist_lock);
145}
146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147#endif /* #ifdef CONFIG_PROVE_RCU */
148
149int nr_processes(void)
150{
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158}
159
160void __weak arch_release_task_struct(struct task_struct *tsk)
161{
162}
163
164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165static struct kmem_cache *task_struct_cachep;
166
167static inline struct task_struct *alloc_task_struct_node(int node)
168{
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170}
171
172static inline void free_task_struct(struct task_struct *tsk)
173{
174 kmem_cache_free(task_struct_cachep, tsk);
175}
176#endif
177
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180/*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186#ifdef CONFIG_VMAP_STACK
187/*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191#define NR_CACHED_STACKS 2
192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194static int free_vm_stack_cache(unsigned int cpu)
195{
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210}
211#endif
212
213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214{
215#ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227 /* Clear stale pointers from reused stack. */
228 memset(s->addr, 0, THREAD_SIZE);
229
230 tsk->stack_vm_area = s;
David Brazdil0f672f62019-12-10 10:32:29 +0000231 tsk->stack = s->addr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000232 return s->addr;
233 }
234
David Brazdil0f672f62019-12-10 10:32:29 +0000235 /*
236 * Allocated stacks are cached and later reused by new threads,
237 * so memcg accounting is performed manually on assigning/releasing
238 * stacks to tasks. Drop __GFP_ACCOUNT.
239 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
241 VMALLOC_START, VMALLOC_END,
David Brazdil0f672f62019-12-10 10:32:29 +0000242 THREADINFO_GFP & ~__GFP_ACCOUNT,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000243 PAGE_KERNEL,
244 0, node, __builtin_return_address(0));
245
246 /*
247 * We can't call find_vm_area() in interrupt context, and
248 * free_thread_stack() can be called in interrupt context,
249 * so cache the vm_struct.
250 */
David Brazdil0f672f62019-12-10 10:32:29 +0000251 if (stack) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000252 tsk->stack_vm_area = find_vm_area(stack);
David Brazdil0f672f62019-12-10 10:32:29 +0000253 tsk->stack = stack;
254 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000255 return stack;
256#else
257 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
258 THREAD_SIZE_ORDER);
259
David Brazdil0f672f62019-12-10 10:32:29 +0000260 if (likely(page)) {
261 tsk->stack = page_address(page);
262 return tsk->stack;
263 }
264 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000265#endif
266}
267
268static inline void free_thread_stack(struct task_struct *tsk)
269{
270#ifdef CONFIG_VMAP_STACK
David Brazdil0f672f62019-12-10 10:32:29 +0000271 struct vm_struct *vm = task_stack_vm_area(tsk);
272
273 if (vm) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000274 int i;
275
David Brazdil0f672f62019-12-10 10:32:29 +0000276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
277 mod_memcg_page_state(vm->pages[i],
278 MEMCG_KERNEL_STACK_KB,
279 -(int)(PAGE_SIZE / 1024));
280
281 memcg_kmem_uncharge(vm->pages[i], 0);
282 }
283
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
287 continue;
288
289 return;
290 }
291
292 vfree_atomic(tsk->stack);
293 return;
294 }
295#endif
296
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298}
299# else
300static struct kmem_cache *thread_stack_cache;
301
302static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 int node)
304{
David Brazdil0f672f62019-12-10 10:32:29 +0000305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 tsk->stack = stack;
308 return stack;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000309}
310
311static void free_thread_stack(struct task_struct *tsk)
312{
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314}
315
316void thread_stack_cache_init(void)
317{
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322}
323# endif
324#endif
325
326/* SLAB cache for signal_struct structures (tsk->signal) */
327static struct kmem_cache *signal_cachep;
328
329/* SLAB cache for sighand_struct structures (tsk->sighand) */
330struct kmem_cache *sighand_cachep;
331
332/* SLAB cache for files_struct structures (tsk->files) */
333struct kmem_cache *files_cachep;
334
335/* SLAB cache for fs_struct structures (tsk->fs) */
336struct kmem_cache *fs_cachep;
337
338/* SLAB cache for vm_area_struct structures */
339static struct kmem_cache *vm_area_cachep;
340
341/* SLAB cache for mm_struct structures (tsk->mm) */
342static struct kmem_cache *mm_cachep;
343
344struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345{
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352}
353
354struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355{
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 *new = *orig;
360 INIT_LIST_HEAD(&new->anon_vma_chain);
361 }
362 return new;
363}
364
365void vm_area_free(struct vm_area_struct *vma)
366{
367 kmem_cache_free(vm_area_cachep, vma);
368}
369
370static void account_kernel_stack(struct task_struct *tsk, int account)
371{
372 void *stack = task_stack_page(tsk);
373 struct vm_struct *vm = task_stack_vm_area(tsk);
374
375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
376
377 if (vm) {
378 int i;
379
380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
381
382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
383 mod_zone_page_state(page_zone(vm->pages[i]),
384 NR_KERNEL_STACK_KB,
385 PAGE_SIZE / 1024 * account);
386 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000387 } else {
388 /*
389 * All stack pages are in the same zone and belong to the
390 * same memcg.
391 */
392 struct page *first_page = virt_to_page(stack);
393
394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
395 THREAD_SIZE / 1024 * account);
396
397 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
398 account * (THREAD_SIZE / 1024));
399 }
400}
401
David Brazdil0f672f62019-12-10 10:32:29 +0000402static int memcg_charge_kernel_stack(struct task_struct *tsk)
403{
404#ifdef CONFIG_VMAP_STACK
405 struct vm_struct *vm = task_stack_vm_area(tsk);
406 int ret;
407
408 if (vm) {
409 int i;
410
411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 /*
413 * If memcg_kmem_charge() fails, page->mem_cgroup
414 * pointer is NULL, and both memcg_kmem_uncharge()
415 * and mod_memcg_page_state() in free_thread_stack()
416 * will ignore this page. So it's safe.
417 */
418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
419 if (ret)
420 return ret;
421
422 mod_memcg_page_state(vm->pages[i],
423 MEMCG_KERNEL_STACK_KB,
424 PAGE_SIZE / 1024);
425 }
426 }
427#endif
428 return 0;
429}
430
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000431static void release_task_stack(struct task_struct *tsk)
432{
433 if (WARN_ON(tsk->state != TASK_DEAD))
434 return; /* Better to leak the stack than to free prematurely */
435
436 account_kernel_stack(tsk, -1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000437 free_thread_stack(tsk);
438 tsk->stack = NULL;
439#ifdef CONFIG_VMAP_STACK
440 tsk->stack_vm_area = NULL;
441#endif
442}
443
444#ifdef CONFIG_THREAD_INFO_IN_TASK
445void put_task_stack(struct task_struct *tsk)
446{
David Brazdil0f672f62019-12-10 10:32:29 +0000447 if (refcount_dec_and_test(&tsk->stack_refcount))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000448 release_task_stack(tsk);
449}
450#endif
451
452void free_task(struct task_struct *tsk)
453{
454#ifndef CONFIG_THREAD_INFO_IN_TASK
455 /*
456 * The task is finally done with both the stack and thread_info,
457 * so free both.
458 */
459 release_task_stack(tsk);
460#else
461 /*
462 * If the task had a separate stack allocation, it should be gone
463 * by now.
464 */
David Brazdil0f672f62019-12-10 10:32:29 +0000465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000466#endif
467 rt_mutex_debug_task_free(tsk);
468 ftrace_graph_exit_task(tsk);
469 put_seccomp_filter(tsk);
470 arch_release_task_struct(tsk);
471 if (tsk->flags & PF_KTHREAD)
472 free_kthread_struct(tsk);
473 free_task_struct(tsk);
474}
475EXPORT_SYMBOL(free_task);
476
477#ifdef CONFIG_MMU
478static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 struct mm_struct *oldmm)
480{
481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
482 struct rb_node **rb_link, *rb_parent;
483 int retval;
484 unsigned long charge;
485 LIST_HEAD(uf);
486
487 uprobe_start_dup_mmap();
488 if (down_write_killable(&oldmm->mmap_sem)) {
489 retval = -EINTR;
490 goto fail_uprobe_end;
491 }
492 flush_cache_dup_mm(oldmm);
493 uprobe_dup_mmap(oldmm, mm);
494 /*
495 * Not linked in yet - no deadlock potential:
496 */
497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
498
499 /* No ordering required: file already has been exposed. */
500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501
502 mm->total_vm = oldmm->total_vm;
503 mm->data_vm = oldmm->data_vm;
504 mm->exec_vm = oldmm->exec_vm;
505 mm->stack_vm = oldmm->stack_vm;
506
507 rb_link = &mm->mm_rb.rb_node;
508 rb_parent = NULL;
509 pprev = &mm->mmap;
510 retval = ksm_fork(mm, oldmm);
511 if (retval)
512 goto out;
513 retval = khugepaged_fork(mm, oldmm);
514 if (retval)
515 goto out;
516
517 prev = NULL;
518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 struct file *file;
520
521 if (mpnt->vm_flags & VM_DONTCOPY) {
522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 continue;
524 }
525 charge = 0;
526 /*
527 * Don't duplicate many vmas if we've been oom-killed (for
528 * example)
529 */
530 if (fatal_signal_pending(current)) {
531 retval = -EINTR;
532 goto out;
533 }
534 if (mpnt->vm_flags & VM_ACCOUNT) {
535 unsigned long len = vma_pages(mpnt);
536
537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 goto fail_nomem;
539 charge = len;
540 }
541 tmp = vm_area_dup(mpnt);
542 if (!tmp)
543 goto fail_nomem;
544 retval = vma_dup_policy(mpnt, tmp);
545 if (retval)
546 goto fail_nomem_policy;
547 tmp->vm_mm = mm;
548 retval = dup_userfaultfd(tmp, &uf);
549 if (retval)
550 goto fail_nomem_anon_vma_fork;
551 if (tmp->vm_flags & VM_WIPEONFORK) {
552 /* VM_WIPEONFORK gets a clean slate in the child. */
553 tmp->anon_vma = NULL;
554 if (anon_vma_prepare(tmp))
555 goto fail_nomem_anon_vma_fork;
556 } else if (anon_vma_fork(tmp, mpnt))
557 goto fail_nomem_anon_vma_fork;
558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 tmp->vm_next = tmp->vm_prev = NULL;
560 file = tmp->vm_file;
561 if (file) {
562 struct inode *inode = file_inode(file);
563 struct address_space *mapping = file->f_mapping;
564
565 get_file(file);
566 if (tmp->vm_flags & VM_DENYWRITE)
567 atomic_dec(&inode->i_writecount);
568 i_mmap_lock_write(mapping);
569 if (tmp->vm_flags & VM_SHARED)
570 atomic_inc(&mapping->i_mmap_writable);
571 flush_dcache_mmap_lock(mapping);
572 /* insert tmp into the share list, just after mpnt */
573 vma_interval_tree_insert_after(tmp, mpnt,
574 &mapping->i_mmap);
575 flush_dcache_mmap_unlock(mapping);
576 i_mmap_unlock_write(mapping);
577 }
578
579 /*
580 * Clear hugetlb-related page reserves for children. This only
581 * affects MAP_PRIVATE mappings. Faults generated by the child
582 * are not guaranteed to succeed, even if read-only
583 */
584 if (is_vm_hugetlb_page(tmp))
585 reset_vma_resv_huge_pages(tmp);
586
587 /*
588 * Link in the new vma and copy the page table entries.
589 */
590 *pprev = tmp;
591 pprev = &tmp->vm_next;
592 tmp->vm_prev = prev;
593 prev = tmp;
594
595 __vma_link_rb(mm, tmp, rb_link, rb_parent);
596 rb_link = &tmp->vm_rb.rb_right;
597 rb_parent = &tmp->vm_rb;
598
599 mm->map_count++;
600 if (!(tmp->vm_flags & VM_WIPEONFORK))
601 retval = copy_page_range(mm, oldmm, mpnt);
602
603 if (tmp->vm_ops && tmp->vm_ops->open)
604 tmp->vm_ops->open(tmp);
605
606 if (retval)
607 goto out;
608 }
609 /* a new mm has just been created */
610 retval = arch_dup_mmap(oldmm, mm);
611out:
612 up_write(&mm->mmap_sem);
613 flush_tlb_mm(oldmm);
614 up_write(&oldmm->mmap_sem);
615 dup_userfaultfd_complete(&uf);
616fail_uprobe_end:
617 uprobe_end_dup_mmap();
618 return retval;
619fail_nomem_anon_vma_fork:
620 mpol_put(vma_policy(tmp));
621fail_nomem_policy:
622 vm_area_free(tmp);
623fail_nomem:
624 retval = -ENOMEM;
625 vm_unacct_memory(charge);
626 goto out;
627}
628
629static inline int mm_alloc_pgd(struct mm_struct *mm)
630{
631 mm->pgd = pgd_alloc(mm);
632 if (unlikely(!mm->pgd))
633 return -ENOMEM;
634 return 0;
635}
636
637static inline void mm_free_pgd(struct mm_struct *mm)
638{
639 pgd_free(mm, mm->pgd);
640}
641#else
642static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
643{
644 down_write(&oldmm->mmap_sem);
645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
646 up_write(&oldmm->mmap_sem);
647 return 0;
648}
649#define mm_alloc_pgd(mm) (0)
650#define mm_free_pgd(mm)
651#endif /* CONFIG_MMU */
652
653static void check_mm(struct mm_struct *mm)
654{
655 int i;
656
David Brazdil0f672f62019-12-10 10:32:29 +0000657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
658 "Please make sure 'struct resident_page_types[]' is updated as well");
659
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000660 for (i = 0; i < NR_MM_COUNTERS; i++) {
661 long x = atomic_long_read(&mm->rss_stat.count[i]);
662
663 if (unlikely(x))
David Brazdil0f672f62019-12-10 10:32:29 +0000664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
665 mm, resident_page_types[i], x);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000666 }
667
668 if (mm_pgtables_bytes(mm))
669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
670 mm_pgtables_bytes(mm));
671
672#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674#endif
675}
676
677#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
678#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
679
680/*
681 * Called when the last reference to the mm
682 * is dropped: either by a lazy thread or by
683 * mmput. Free the page directory and the mm.
684 */
685void __mmdrop(struct mm_struct *mm)
686{
687 BUG_ON(mm == &init_mm);
688 WARN_ON_ONCE(mm == current->mm);
689 WARN_ON_ONCE(mm == current->active_mm);
690 mm_free_pgd(mm);
691 destroy_context(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000692 mmu_notifier_mm_destroy(mm);
693 check_mm(mm);
694 put_user_ns(mm->user_ns);
695 free_mm(mm);
696}
697EXPORT_SYMBOL_GPL(__mmdrop);
698
699static void mmdrop_async_fn(struct work_struct *work)
700{
701 struct mm_struct *mm;
702
703 mm = container_of(work, struct mm_struct, async_put_work);
704 __mmdrop(mm);
705}
706
707static void mmdrop_async(struct mm_struct *mm)
708{
709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
711 schedule_work(&mm->async_put_work);
712 }
713}
714
715static inline void free_signal_struct(struct signal_struct *sig)
716{
717 taskstats_tgid_free(sig);
718 sched_autogroup_exit(sig);
719 /*
720 * __mmdrop is not safe to call from softirq context on x86 due to
721 * pgd_dtor so postpone it to the async context
722 */
723 if (sig->oom_mm)
724 mmdrop_async(sig->oom_mm);
725 kmem_cache_free(signal_cachep, sig);
726}
727
728static inline void put_signal_struct(struct signal_struct *sig)
729{
David Brazdil0f672f62019-12-10 10:32:29 +0000730 if (refcount_dec_and_test(&sig->sigcnt))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000731 free_signal_struct(sig);
732}
733
734void __put_task_struct(struct task_struct *tsk)
735{
736 WARN_ON(!tsk->exit_state);
David Brazdil0f672f62019-12-10 10:32:29 +0000737 WARN_ON(refcount_read(&tsk->usage));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000738 WARN_ON(tsk == current);
739
740 cgroup_free(tsk);
David Brazdil0f672f62019-12-10 10:32:29 +0000741 task_numa_free(tsk, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000742 security_task_free(tsk);
743 exit_creds(tsk);
744 delayacct_tsk_free(tsk);
745 put_signal_struct(tsk->signal);
746
747 if (!profile_handoff_task(tsk))
748 free_task(tsk);
749}
750EXPORT_SYMBOL_GPL(__put_task_struct);
751
752void __init __weak arch_task_cache_init(void) { }
753
754/*
755 * set_max_threads
756 */
757static void set_max_threads(unsigned int max_threads_suggested)
758{
759 u64 threads;
David Brazdil0f672f62019-12-10 10:32:29 +0000760 unsigned long nr_pages = totalram_pages();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000761
762 /*
763 * The number of threads shall be limited such that the thread
764 * structures may only consume a small part of the available memory.
765 */
David Brazdil0f672f62019-12-10 10:32:29 +0000766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000767 threads = MAX_THREADS;
768 else
David Brazdil0f672f62019-12-10 10:32:29 +0000769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000770 (u64) THREAD_SIZE * 8UL);
771
772 if (threads > max_threads_suggested)
773 threads = max_threads_suggested;
774
775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776}
777
778#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779/* Initialized by the architecture: */
780int arch_task_struct_size __read_mostly;
781#endif
782
David Brazdil0f672f62019-12-10 10:32:29 +0000783#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000784static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785{
786 /* Fetch thread_struct whitelist for the architecture. */
787 arch_thread_struct_whitelist(offset, size);
788
789 /*
790 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 * adjust offset to position of thread_struct in task_struct.
792 */
793 if (unlikely(*size == 0))
794 *offset = 0;
795 else
796 *offset += offsetof(struct task_struct, thread);
797}
David Brazdil0f672f62019-12-10 10:32:29 +0000798#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000799
800void __init fork_init(void)
801{
802 int i;
803#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804#ifndef ARCH_MIN_TASKALIGN
805#define ARCH_MIN_TASKALIGN 0
806#endif
807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 unsigned long useroffset, usersize;
809
810 /* create a slab on which task_structs can be allocated */
811 task_struct_whitelist(&useroffset, &usersize);
812 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 arch_task_struct_size, align,
814 SLAB_PANIC|SLAB_ACCOUNT,
815 useroffset, usersize, NULL);
816#endif
817
818 /* do the arch specific task caches init */
819 arch_task_cache_init();
820
821 set_max_threads(MAX_THREADS);
822
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 init_task.signal->rlim[RLIMIT_NPROC];
827
828 for (i = 0; i < UCOUNT_COUNTS; i++) {
829 init_user_ns.ucount_max[i] = max_threads/2;
830 }
831
832#ifdef CONFIG_VMAP_STACK
833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
834 NULL, free_vm_stack_cache);
835#endif
836
837 lockdep_init_task(&init_task);
David Brazdil0f672f62019-12-10 10:32:29 +0000838 uprobes_init();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000839}
840
841int __weak arch_dup_task_struct(struct task_struct *dst,
842 struct task_struct *src)
843{
844 *dst = *src;
845 return 0;
846}
847
848void set_task_stack_end_magic(struct task_struct *tsk)
849{
850 unsigned long *stackend;
851
852 stackend = end_of_stack(tsk);
853 *stackend = STACK_END_MAGIC; /* for overflow detection */
854}
855
856static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857{
858 struct task_struct *tsk;
859 unsigned long *stack;
David Brazdil0f672f62019-12-10 10:32:29 +0000860 struct vm_struct *stack_vm_area __maybe_unused;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000861 int err;
862
863 if (node == NUMA_NO_NODE)
864 node = tsk_fork_get_node(orig);
865 tsk = alloc_task_struct_node(node);
866 if (!tsk)
867 return NULL;
868
869 stack = alloc_thread_stack_node(tsk, node);
870 if (!stack)
871 goto free_tsk;
872
David Brazdil0f672f62019-12-10 10:32:29 +0000873 if (memcg_charge_kernel_stack(tsk))
874 goto free_stack;
875
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000876 stack_vm_area = task_stack_vm_area(tsk);
877
878 err = arch_dup_task_struct(tsk, orig);
879
880 /*
881 * arch_dup_task_struct() clobbers the stack-related fields. Make
882 * sure they're properly initialized before using any stack-related
883 * functions again.
884 */
885 tsk->stack = stack;
886#ifdef CONFIG_VMAP_STACK
887 tsk->stack_vm_area = stack_vm_area;
888#endif
889#ifdef CONFIG_THREAD_INFO_IN_TASK
David Brazdil0f672f62019-12-10 10:32:29 +0000890 refcount_set(&tsk->stack_refcount, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000891#endif
892
893 if (err)
894 goto free_stack;
895
896#ifdef CONFIG_SECCOMP
897 /*
898 * We must handle setting up seccomp filters once we're under
899 * the sighand lock in case orig has changed between now and
900 * then. Until then, filter must be NULL to avoid messing up
901 * the usage counts on the error path calling free_task.
902 */
903 tsk->seccomp.filter = NULL;
904#endif
905
906 setup_thread_stack(tsk, orig);
907 clear_user_return_notifier(tsk);
908 clear_tsk_need_resched(tsk);
909 set_task_stack_end_magic(tsk);
910
911#ifdef CONFIG_STACKPROTECTOR
912 tsk->stack_canary = get_random_canary();
913#endif
David Brazdil0f672f62019-12-10 10:32:29 +0000914 if (orig->cpus_ptr == &orig->cpus_mask)
915 tsk->cpus_ptr = &tsk->cpus_mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000916
917 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000918 * One for the user space visible state that goes away when reaped.
919 * One for the scheduler.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000920 */
David Brazdil0f672f62019-12-10 10:32:29 +0000921 refcount_set(&tsk->rcu_users, 2);
922 /* One for the rcu users */
923 refcount_set(&tsk->usage, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000924#ifdef CONFIG_BLK_DEV_IO_TRACE
925 tsk->btrace_seq = 0;
926#endif
927 tsk->splice_pipe = NULL;
928 tsk->task_frag.page = NULL;
929 tsk->wake_q.next = NULL;
930
931 account_kernel_stack(tsk, 1);
932
933 kcov_task_init(tsk);
934
935#ifdef CONFIG_FAULT_INJECTION
936 tsk->fail_nth = 0;
937#endif
938
939#ifdef CONFIG_BLK_CGROUP
940 tsk->throttle_queue = NULL;
941 tsk->use_memdelay = 0;
942#endif
943
944#ifdef CONFIG_MEMCG
945 tsk->active_memcg = NULL;
946#endif
947 return tsk;
948
949free_stack:
950 free_thread_stack(tsk);
951free_tsk:
952 free_task_struct(tsk);
953 return NULL;
954}
955
956__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
957
958static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
959
960static int __init coredump_filter_setup(char *s)
961{
962 default_dump_filter =
963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
964 MMF_DUMP_FILTER_MASK;
965 return 1;
966}
967
968__setup("coredump_filter=", coredump_filter_setup);
969
970#include <linux/init_task.h>
971
972static void mm_init_aio(struct mm_struct *mm)
973{
974#ifdef CONFIG_AIO
975 spin_lock_init(&mm->ioctx_lock);
976 mm->ioctx_table = NULL;
977#endif
978}
979
David Brazdil0f672f62019-12-10 10:32:29 +0000980static __always_inline void mm_clear_owner(struct mm_struct *mm,
981 struct task_struct *p)
982{
983#ifdef CONFIG_MEMCG
984 if (mm->owner == p)
985 WRITE_ONCE(mm->owner, NULL);
986#endif
987}
988
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000989static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
990{
991#ifdef CONFIG_MEMCG
992 mm->owner = p;
993#endif
994}
995
996static void mm_init_uprobes_state(struct mm_struct *mm)
997{
998#ifdef CONFIG_UPROBES
999 mm->uprobes_state.xol_area = NULL;
1000#endif
1001}
1002
1003static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004 struct user_namespace *user_ns)
1005{
1006 mm->mmap = NULL;
1007 mm->mm_rb = RB_ROOT;
1008 mm->vmacache_seqnum = 0;
1009 atomic_set(&mm->mm_users, 1);
1010 atomic_set(&mm->mm_count, 1);
1011 init_rwsem(&mm->mmap_sem);
1012 INIT_LIST_HEAD(&mm->mmlist);
1013 mm->core_state = NULL;
1014 mm_pgtables_bytes_init(mm);
1015 mm->map_count = 0;
1016 mm->locked_vm = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001017 atomic64_set(&mm->pinned_vm, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019 spin_lock_init(&mm->page_table_lock);
1020 spin_lock_init(&mm->arg_lock);
1021 mm_init_cpumask(mm);
1022 mm_init_aio(mm);
1023 mm_init_owner(mm, p);
1024 RCU_INIT_POINTER(mm->exe_file, NULL);
1025 mmu_notifier_mm_init(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001026 init_tlb_flush_pending(mm);
1027#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 mm->pmd_huge_pte = NULL;
1029#endif
1030 mm_init_uprobes_state(mm);
1031
1032 if (current->mm) {
1033 mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 } else {
1036 mm->flags = default_dump_filter;
1037 mm->def_flags = 0;
1038 }
1039
1040 if (mm_alloc_pgd(mm))
1041 goto fail_nopgd;
1042
1043 if (init_new_context(p, mm))
1044 goto fail_nocontext;
1045
1046 mm->user_ns = get_user_ns(user_ns);
1047 return mm;
1048
1049fail_nocontext:
1050 mm_free_pgd(mm);
1051fail_nopgd:
1052 free_mm(mm);
1053 return NULL;
1054}
1055
1056/*
1057 * Allocate and initialize an mm_struct.
1058 */
1059struct mm_struct *mm_alloc(void)
1060{
1061 struct mm_struct *mm;
1062
1063 mm = allocate_mm();
1064 if (!mm)
1065 return NULL;
1066
1067 memset(mm, 0, sizeof(*mm));
1068 return mm_init(mm, current, current_user_ns());
1069}
1070
1071static inline void __mmput(struct mm_struct *mm)
1072{
1073 VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075 uprobe_clear_state(mm);
1076 exit_aio(mm);
1077 ksm_exit(mm);
1078 khugepaged_exit(mm); /* must run before exit_mmap */
1079 exit_mmap(mm);
1080 mm_put_huge_zero_page(mm);
1081 set_mm_exe_file(mm, NULL);
1082 if (!list_empty(&mm->mmlist)) {
1083 spin_lock(&mmlist_lock);
1084 list_del(&mm->mmlist);
1085 spin_unlock(&mmlist_lock);
1086 }
1087 if (mm->binfmt)
1088 module_put(mm->binfmt->module);
1089 mmdrop(mm);
1090}
1091
1092/*
1093 * Decrement the use count and release all resources for an mm.
1094 */
1095void mmput(struct mm_struct *mm)
1096{
1097 might_sleep();
1098
1099 if (atomic_dec_and_test(&mm->mm_users))
1100 __mmput(mm);
1101}
1102EXPORT_SYMBOL_GPL(mmput);
1103
1104#ifdef CONFIG_MMU
1105static void mmput_async_fn(struct work_struct *work)
1106{
1107 struct mm_struct *mm = container_of(work, struct mm_struct,
1108 async_put_work);
1109
1110 __mmput(mm);
1111}
1112
1113void mmput_async(struct mm_struct *mm)
1114{
1115 if (atomic_dec_and_test(&mm->mm_users)) {
1116 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 schedule_work(&mm->async_put_work);
1118 }
1119}
1120#endif
1121
1122/**
1123 * set_mm_exe_file - change a reference to the mm's executable file
1124 *
1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126 *
1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128 * invocations: in mmput() nobody alive left, in execve task is single
1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130 * mm->exe_file, but does so without using set_mm_exe_file() in order
1131 * to do avoid the need for any locks.
1132 */
1133void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134{
1135 struct file *old_exe_file;
1136
1137 /*
1138 * It is safe to dereference the exe_file without RCU as
1139 * this function is only called if nobody else can access
1140 * this mm -- see comment above for justification.
1141 */
1142 old_exe_file = rcu_dereference_raw(mm->exe_file);
1143
1144 if (new_exe_file)
1145 get_file(new_exe_file);
1146 rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 if (old_exe_file)
1148 fput(old_exe_file);
1149}
1150
1151/**
1152 * get_mm_exe_file - acquire a reference to the mm's executable file
1153 *
1154 * Returns %NULL if mm has no associated executable file.
1155 * User must release file via fput().
1156 */
1157struct file *get_mm_exe_file(struct mm_struct *mm)
1158{
1159 struct file *exe_file;
1160
1161 rcu_read_lock();
1162 exe_file = rcu_dereference(mm->exe_file);
1163 if (exe_file && !get_file_rcu(exe_file))
1164 exe_file = NULL;
1165 rcu_read_unlock();
1166 return exe_file;
1167}
1168EXPORT_SYMBOL(get_mm_exe_file);
1169
1170/**
1171 * get_task_exe_file - acquire a reference to the task's executable file
1172 *
1173 * Returns %NULL if task's mm (if any) has no associated executable file or
1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175 * User must release file via fput().
1176 */
1177struct file *get_task_exe_file(struct task_struct *task)
1178{
1179 struct file *exe_file = NULL;
1180 struct mm_struct *mm;
1181
1182 task_lock(task);
1183 mm = task->mm;
1184 if (mm) {
1185 if (!(task->flags & PF_KTHREAD))
1186 exe_file = get_mm_exe_file(mm);
1187 }
1188 task_unlock(task);
1189 return exe_file;
1190}
1191EXPORT_SYMBOL(get_task_exe_file);
1192
1193/**
1194 * get_task_mm - acquire a reference to the task's mm
1195 *
1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1197 * this kernel workthread has transiently adopted a user mm with use_mm,
1198 * to do its AIO) is not set and if so returns a reference to it, after
1199 * bumping up the use count. User must release the mm via mmput()
1200 * after use. Typically used by /proc and ptrace.
1201 */
1202struct mm_struct *get_task_mm(struct task_struct *task)
1203{
1204 struct mm_struct *mm;
1205
1206 task_lock(task);
1207 mm = task->mm;
1208 if (mm) {
1209 if (task->flags & PF_KTHREAD)
1210 mm = NULL;
1211 else
1212 mmget(mm);
1213 }
1214 task_unlock(task);
1215 return mm;
1216}
1217EXPORT_SYMBOL_GPL(get_task_mm);
1218
1219struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220{
1221 struct mm_struct *mm;
1222 int err;
1223
1224 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1225 if (err)
1226 return ERR_PTR(err);
1227
1228 mm = get_task_mm(task);
1229 if (mm && mm != current->mm &&
1230 !ptrace_may_access(task, mode)) {
1231 mmput(mm);
1232 mm = ERR_PTR(-EACCES);
1233 }
1234 mutex_unlock(&task->signal->cred_guard_mutex);
1235
1236 return mm;
1237}
1238
1239static void complete_vfork_done(struct task_struct *tsk)
1240{
1241 struct completion *vfork;
1242
1243 task_lock(tsk);
1244 vfork = tsk->vfork_done;
1245 if (likely(vfork)) {
1246 tsk->vfork_done = NULL;
1247 complete(vfork);
1248 }
1249 task_unlock(tsk);
1250}
1251
1252static int wait_for_vfork_done(struct task_struct *child,
1253 struct completion *vfork)
1254{
1255 int killed;
1256
1257 freezer_do_not_count();
David Brazdil0f672f62019-12-10 10:32:29 +00001258 cgroup_enter_frozen();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001259 killed = wait_for_completion_killable(vfork);
David Brazdil0f672f62019-12-10 10:32:29 +00001260 cgroup_leave_frozen(false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001261 freezer_count();
1262
1263 if (killed) {
1264 task_lock(child);
1265 child->vfork_done = NULL;
1266 task_unlock(child);
1267 }
1268
1269 put_task_struct(child);
1270 return killed;
1271}
1272
1273/* Please note the differences between mmput and mm_release.
1274 * mmput is called whenever we stop holding onto a mm_struct,
1275 * error success whatever.
1276 *
1277 * mm_release is called after a mm_struct has been removed
1278 * from the current process.
1279 *
1280 * This difference is important for error handling, when we
1281 * only half set up a mm_struct for a new process and need to restore
1282 * the old one. Because we mmput the new mm_struct before
1283 * restoring the old one. . .
1284 * Eric Biederman 10 January 1998
1285 */
David Brazdil0f672f62019-12-10 10:32:29 +00001286static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001287{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001288 uprobe_free_utask(tsk);
1289
1290 /* Get rid of any cached register state */
1291 deactivate_mm(tsk, mm);
1292
1293 /*
1294 * Signal userspace if we're not exiting with a core dump
1295 * because we want to leave the value intact for debugging
1296 * purposes.
1297 */
1298 if (tsk->clear_child_tid) {
1299 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1300 atomic_read(&mm->mm_users) > 1) {
1301 /*
1302 * We don't check the error code - if userspace has
1303 * not set up a proper pointer then tough luck.
1304 */
1305 put_user(0, tsk->clear_child_tid);
1306 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1307 1, NULL, NULL, 0, 0);
1308 }
1309 tsk->clear_child_tid = NULL;
1310 }
1311
1312 /*
1313 * All done, finally we can wake up parent and return this mm to him.
1314 * Also kthread_stop() uses this completion for synchronization.
1315 */
1316 if (tsk->vfork_done)
1317 complete_vfork_done(tsk);
1318}
1319
David Brazdil0f672f62019-12-10 10:32:29 +00001320void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001321{
David Brazdil0f672f62019-12-10 10:32:29 +00001322 futex_exit_release(tsk);
1323 mm_release(tsk, mm);
1324}
1325
1326void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327{
1328 futex_exec_release(tsk);
1329 mm_release(tsk, mm);
1330}
1331
1332/**
1333 * dup_mm() - duplicates an existing mm structure
1334 * @tsk: the task_struct with which the new mm will be associated.
1335 * @oldmm: the mm to duplicate.
1336 *
1337 * Allocates a new mm structure and duplicates the provided @oldmm structure
1338 * content into it.
1339 *
1340 * Return: the duplicated mm or NULL on failure.
1341 */
1342static struct mm_struct *dup_mm(struct task_struct *tsk,
1343 struct mm_struct *oldmm)
1344{
1345 struct mm_struct *mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001346 int err;
1347
1348 mm = allocate_mm();
1349 if (!mm)
1350 goto fail_nomem;
1351
1352 memcpy(mm, oldmm, sizeof(*mm));
1353
1354 if (!mm_init(mm, tsk, mm->user_ns))
1355 goto fail_nomem;
1356
1357 err = dup_mmap(mm, oldmm);
1358 if (err)
1359 goto free_pt;
1360
1361 mm->hiwater_rss = get_mm_rss(mm);
1362 mm->hiwater_vm = mm->total_vm;
1363
1364 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1365 goto free_pt;
1366
1367 return mm;
1368
1369free_pt:
1370 /* don't put binfmt in mmput, we haven't got module yet */
1371 mm->binfmt = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00001372 mm_init_owner(mm, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001373 mmput(mm);
1374
1375fail_nomem:
1376 return NULL;
1377}
1378
1379static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1380{
1381 struct mm_struct *mm, *oldmm;
1382 int retval;
1383
1384 tsk->min_flt = tsk->maj_flt = 0;
1385 tsk->nvcsw = tsk->nivcsw = 0;
1386#ifdef CONFIG_DETECT_HUNG_TASK
1387 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1388 tsk->last_switch_time = 0;
1389#endif
1390
1391 tsk->mm = NULL;
1392 tsk->active_mm = NULL;
1393
1394 /*
1395 * Are we cloning a kernel thread?
1396 *
1397 * We need to steal a active VM for that..
1398 */
1399 oldmm = current->mm;
1400 if (!oldmm)
1401 return 0;
1402
1403 /* initialize the new vmacache entries */
1404 vmacache_flush(tsk);
1405
1406 if (clone_flags & CLONE_VM) {
1407 mmget(oldmm);
1408 mm = oldmm;
1409 goto good_mm;
1410 }
1411
1412 retval = -ENOMEM;
David Brazdil0f672f62019-12-10 10:32:29 +00001413 mm = dup_mm(tsk, current->mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001414 if (!mm)
1415 goto fail_nomem;
1416
1417good_mm:
1418 tsk->mm = mm;
1419 tsk->active_mm = mm;
1420 return 0;
1421
1422fail_nomem:
1423 return retval;
1424}
1425
1426static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1427{
1428 struct fs_struct *fs = current->fs;
1429 if (clone_flags & CLONE_FS) {
1430 /* tsk->fs is already what we want */
1431 spin_lock(&fs->lock);
1432 if (fs->in_exec) {
1433 spin_unlock(&fs->lock);
1434 return -EAGAIN;
1435 }
1436 fs->users++;
1437 spin_unlock(&fs->lock);
1438 return 0;
1439 }
1440 tsk->fs = copy_fs_struct(fs);
1441 if (!tsk->fs)
1442 return -ENOMEM;
1443 return 0;
1444}
1445
1446static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1447{
1448 struct files_struct *oldf, *newf;
1449 int error = 0;
1450
1451 /*
1452 * A background process may not have any files ...
1453 */
1454 oldf = current->files;
1455 if (!oldf)
1456 goto out;
1457
1458 if (clone_flags & CLONE_FILES) {
1459 atomic_inc(&oldf->count);
1460 goto out;
1461 }
1462
1463 newf = dup_fd(oldf, &error);
1464 if (!newf)
1465 goto out;
1466
1467 tsk->files = newf;
1468 error = 0;
1469out:
1470 return error;
1471}
1472
1473static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1474{
1475#ifdef CONFIG_BLOCK
1476 struct io_context *ioc = current->io_context;
1477 struct io_context *new_ioc;
1478
1479 if (!ioc)
1480 return 0;
1481 /*
1482 * Share io context with parent, if CLONE_IO is set
1483 */
1484 if (clone_flags & CLONE_IO) {
1485 ioc_task_link(ioc);
1486 tsk->io_context = ioc;
1487 } else if (ioprio_valid(ioc->ioprio)) {
1488 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1489 if (unlikely(!new_ioc))
1490 return -ENOMEM;
1491
1492 new_ioc->ioprio = ioc->ioprio;
1493 put_io_context(new_ioc);
1494 }
1495#endif
1496 return 0;
1497}
1498
1499static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1500{
1501 struct sighand_struct *sig;
1502
1503 if (clone_flags & CLONE_SIGHAND) {
David Brazdil0f672f62019-12-10 10:32:29 +00001504 refcount_inc(&current->sighand->count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001505 return 0;
1506 }
1507 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1508 rcu_assign_pointer(tsk->sighand, sig);
1509 if (!sig)
1510 return -ENOMEM;
1511
David Brazdil0f672f62019-12-10 10:32:29 +00001512 refcount_set(&sig->count, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001513 spin_lock_irq(&current->sighand->siglock);
1514 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1515 spin_unlock_irq(&current->sighand->siglock);
1516 return 0;
1517}
1518
1519void __cleanup_sighand(struct sighand_struct *sighand)
1520{
David Brazdil0f672f62019-12-10 10:32:29 +00001521 if (refcount_dec_and_test(&sighand->count)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001522 signalfd_cleanup(sighand);
1523 /*
1524 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1525 * without an RCU grace period, see __lock_task_sighand().
1526 */
1527 kmem_cache_free(sighand_cachep, sighand);
1528 }
1529}
1530
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001531/*
1532 * Initialize POSIX timer handling for a thread group.
1533 */
1534static void posix_cpu_timers_init_group(struct signal_struct *sig)
1535{
David Brazdil0f672f62019-12-10 10:32:29 +00001536 struct posix_cputimers *pct = &sig->posix_cputimers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001537 unsigned long cpu_limit;
1538
1539 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
David Brazdil0f672f62019-12-10 10:32:29 +00001540 posix_cputimers_group_init(pct, cpu_limit);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001541}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001542
1543static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1544{
1545 struct signal_struct *sig;
1546
1547 if (clone_flags & CLONE_THREAD)
1548 return 0;
1549
1550 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1551 tsk->signal = sig;
1552 if (!sig)
1553 return -ENOMEM;
1554
1555 sig->nr_threads = 1;
1556 atomic_set(&sig->live, 1);
David Brazdil0f672f62019-12-10 10:32:29 +00001557 refcount_set(&sig->sigcnt, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001558
1559 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1560 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1561 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1562
1563 init_waitqueue_head(&sig->wait_chldexit);
1564 sig->curr_target = tsk;
1565 init_sigpending(&sig->shared_pending);
1566 INIT_HLIST_HEAD(&sig->multiprocess);
1567 seqlock_init(&sig->stats_lock);
1568 prev_cputime_init(&sig->prev_cputime);
1569
1570#ifdef CONFIG_POSIX_TIMERS
1571 INIT_LIST_HEAD(&sig->posix_timers);
1572 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1573 sig->real_timer.function = it_real_fn;
1574#endif
1575
1576 task_lock(current->group_leader);
1577 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1578 task_unlock(current->group_leader);
1579
1580 posix_cpu_timers_init_group(sig);
1581
1582 tty_audit_fork(sig);
1583 sched_autogroup_fork(sig);
1584
1585 sig->oom_score_adj = current->signal->oom_score_adj;
1586 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1587
1588 mutex_init(&sig->cred_guard_mutex);
1589
1590 return 0;
1591}
1592
1593static void copy_seccomp(struct task_struct *p)
1594{
1595#ifdef CONFIG_SECCOMP
1596 /*
1597 * Must be called with sighand->lock held, which is common to
1598 * all threads in the group. Holding cred_guard_mutex is not
1599 * needed because this new task is not yet running and cannot
1600 * be racing exec.
1601 */
1602 assert_spin_locked(&current->sighand->siglock);
1603
1604 /* Ref-count the new filter user, and assign it. */
1605 get_seccomp_filter(current);
1606 p->seccomp = current->seccomp;
1607
1608 /*
1609 * Explicitly enable no_new_privs here in case it got set
1610 * between the task_struct being duplicated and holding the
1611 * sighand lock. The seccomp state and nnp must be in sync.
1612 */
1613 if (task_no_new_privs(current))
1614 task_set_no_new_privs(p);
1615
1616 /*
1617 * If the parent gained a seccomp mode after copying thread
1618 * flags and between before we held the sighand lock, we have
1619 * to manually enable the seccomp thread flag here.
1620 */
1621 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1622 set_tsk_thread_flag(p, TIF_SECCOMP);
1623#endif
1624}
1625
1626SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1627{
1628 current->clear_child_tid = tidptr;
1629
1630 return task_pid_vnr(current);
1631}
1632
1633static void rt_mutex_init_task(struct task_struct *p)
1634{
1635 raw_spin_lock_init(&p->pi_lock);
1636#ifdef CONFIG_RT_MUTEXES
1637 p->pi_waiters = RB_ROOT_CACHED;
1638 p->pi_top_task = NULL;
1639 p->pi_blocked_on = NULL;
1640#endif
1641}
1642
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001643static inline void init_task_pid_links(struct task_struct *task)
1644{
1645 enum pid_type type;
1646
1647 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1648 INIT_HLIST_NODE(&task->pid_links[type]);
1649 }
1650}
1651
1652static inline void
1653init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1654{
1655 if (type == PIDTYPE_PID)
1656 task->thread_pid = pid;
1657 else
1658 task->signal->pids[type] = pid;
1659}
1660
1661static inline void rcu_copy_process(struct task_struct *p)
1662{
1663#ifdef CONFIG_PREEMPT_RCU
1664 p->rcu_read_lock_nesting = 0;
1665 p->rcu_read_unlock_special.s = 0;
1666 p->rcu_blocked_node = NULL;
1667 INIT_LIST_HEAD(&p->rcu_node_entry);
1668#endif /* #ifdef CONFIG_PREEMPT_RCU */
1669#ifdef CONFIG_TASKS_RCU
1670 p->rcu_tasks_holdout = false;
1671 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1672 p->rcu_tasks_idle_cpu = -1;
1673#endif /* #ifdef CONFIG_TASKS_RCU */
1674}
1675
David Brazdil0f672f62019-12-10 10:32:29 +00001676struct pid *pidfd_pid(const struct file *file)
1677{
1678 if (file->f_op == &pidfd_fops)
1679 return file->private_data;
1680
1681 return ERR_PTR(-EBADF);
1682}
1683
1684static int pidfd_release(struct inode *inode, struct file *file)
1685{
1686 struct pid *pid = file->private_data;
1687
1688 file->private_data = NULL;
1689 put_pid(pid);
1690 return 0;
1691}
1692
1693#ifdef CONFIG_PROC_FS
1694static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1695{
1696 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1697 struct pid *pid = f->private_data;
1698
1699 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1700 seq_putc(m, '\n');
1701}
1702#endif
1703
1704/*
1705 * Poll support for process exit notification.
1706 */
1707static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1708{
1709 struct task_struct *task;
1710 struct pid *pid = file->private_data;
1711 __poll_t poll_flags = 0;
1712
1713 poll_wait(file, &pid->wait_pidfd, pts);
1714
1715 rcu_read_lock();
1716 task = pid_task(pid, PIDTYPE_PID);
1717 /*
1718 * Inform pollers only when the whole thread group exits.
1719 * If the thread group leader exits before all other threads in the
1720 * group, then poll(2) should block, similar to the wait(2) family.
1721 */
1722 if (!task || (task->exit_state && thread_group_empty(task)))
1723 poll_flags = EPOLLIN | EPOLLRDNORM;
1724 rcu_read_unlock();
1725
1726 return poll_flags;
1727}
1728
1729const struct file_operations pidfd_fops = {
1730 .release = pidfd_release,
1731 .poll = pidfd_poll,
1732#ifdef CONFIG_PROC_FS
1733 .show_fdinfo = pidfd_show_fdinfo,
1734#endif
1735};
1736
1737static void __delayed_free_task(struct rcu_head *rhp)
1738{
1739 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1740
1741 free_task(tsk);
1742}
1743
1744static __always_inline void delayed_free_task(struct task_struct *tsk)
1745{
1746 if (IS_ENABLED(CONFIG_MEMCG))
1747 call_rcu(&tsk->rcu, __delayed_free_task);
1748 else
1749 free_task(tsk);
1750}
1751
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001752/*
1753 * This creates a new process as a copy of the old one,
1754 * but does not actually start it yet.
1755 *
1756 * It copies the registers, and all the appropriate
1757 * parts of the process environment (as per the clone
1758 * flags). The actual kick-off is left to the caller.
1759 */
1760static __latent_entropy struct task_struct *copy_process(
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001761 struct pid *pid,
1762 int trace,
David Brazdil0f672f62019-12-10 10:32:29 +00001763 int node,
1764 struct kernel_clone_args *args)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001765{
David Brazdil0f672f62019-12-10 10:32:29 +00001766 int pidfd = -1, retval;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001767 struct task_struct *p;
1768 struct multiprocess_signals delayed;
David Brazdil0f672f62019-12-10 10:32:29 +00001769 struct file *pidfile = NULL;
1770 u64 clone_flags = args->flags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001771
1772 /*
1773 * Don't allow sharing the root directory with processes in a different
1774 * namespace
1775 */
1776 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1777 return ERR_PTR(-EINVAL);
1778
1779 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1780 return ERR_PTR(-EINVAL);
1781
1782 /*
1783 * Thread groups must share signals as well, and detached threads
1784 * can only be started up within the thread group.
1785 */
1786 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1787 return ERR_PTR(-EINVAL);
1788
1789 /*
1790 * Shared signal handlers imply shared VM. By way of the above,
1791 * thread groups also imply shared VM. Blocking this case allows
1792 * for various simplifications in other code.
1793 */
1794 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1795 return ERR_PTR(-EINVAL);
1796
1797 /*
1798 * Siblings of global init remain as zombies on exit since they are
1799 * not reaped by their parent (swapper). To solve this and to avoid
1800 * multi-rooted process trees, prevent global and container-inits
1801 * from creating siblings.
1802 */
1803 if ((clone_flags & CLONE_PARENT) &&
1804 current->signal->flags & SIGNAL_UNKILLABLE)
1805 return ERR_PTR(-EINVAL);
1806
1807 /*
1808 * If the new process will be in a different pid or user namespace
1809 * do not allow it to share a thread group with the forking task.
1810 */
1811 if (clone_flags & CLONE_THREAD) {
1812 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1813 (task_active_pid_ns(current) !=
1814 current->nsproxy->pid_ns_for_children))
1815 return ERR_PTR(-EINVAL);
1816 }
1817
David Brazdil0f672f62019-12-10 10:32:29 +00001818 if (clone_flags & CLONE_PIDFD) {
1819 /*
1820 * - CLONE_DETACHED is blocked so that we can potentially
1821 * reuse it later for CLONE_PIDFD.
1822 * - CLONE_THREAD is blocked until someone really needs it.
1823 */
1824 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1825 return ERR_PTR(-EINVAL);
1826 }
1827
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001828 /*
1829 * Force any signals received before this point to be delivered
1830 * before the fork happens. Collect up signals sent to multiple
1831 * processes that happen during the fork and delay them so that
1832 * they appear to happen after the fork.
1833 */
1834 sigemptyset(&delayed.signal);
1835 INIT_HLIST_NODE(&delayed.node);
1836
1837 spin_lock_irq(&current->sighand->siglock);
1838 if (!(clone_flags & CLONE_THREAD))
1839 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1840 recalc_sigpending();
1841 spin_unlock_irq(&current->sighand->siglock);
1842 retval = -ERESTARTNOINTR;
1843 if (signal_pending(current))
1844 goto fork_out;
1845
1846 retval = -ENOMEM;
1847 p = dup_task_struct(current, node);
1848 if (!p)
1849 goto fork_out;
1850
1851 /*
1852 * This _must_ happen before we call free_task(), i.e. before we jump
1853 * to any of the bad_fork_* labels. This is to avoid freeing
1854 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1855 * kernel threads (PF_KTHREAD).
1856 */
David Brazdil0f672f62019-12-10 10:32:29 +00001857 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001858 /*
1859 * Clear TID on mm_release()?
1860 */
David Brazdil0f672f62019-12-10 10:32:29 +00001861 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001862
1863 ftrace_graph_init_task(p);
1864
1865 rt_mutex_init_task(p);
1866
1867#ifdef CONFIG_PROVE_LOCKING
1868 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1869 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1870#endif
1871 retval = -EAGAIN;
1872 if (atomic_read(&p->real_cred->user->processes) >=
1873 task_rlimit(p, RLIMIT_NPROC)) {
1874 if (p->real_cred->user != INIT_USER &&
1875 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1876 goto bad_fork_free;
1877 }
1878 current->flags &= ~PF_NPROC_EXCEEDED;
1879
1880 retval = copy_creds(p, clone_flags);
1881 if (retval < 0)
1882 goto bad_fork_free;
1883
1884 /*
1885 * If multiple threads are within copy_process(), then this check
1886 * triggers too late. This doesn't hurt, the check is only there
1887 * to stop root fork bombs.
1888 */
1889 retval = -EAGAIN;
1890 if (nr_threads >= max_threads)
1891 goto bad_fork_cleanup_count;
1892
1893 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1894 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1895 p->flags |= PF_FORKNOEXEC;
1896 INIT_LIST_HEAD(&p->children);
1897 INIT_LIST_HEAD(&p->sibling);
1898 rcu_copy_process(p);
1899 p->vfork_done = NULL;
1900 spin_lock_init(&p->alloc_lock);
1901
1902 init_sigpending(&p->pending);
1903
1904 p->utime = p->stime = p->gtime = 0;
1905#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1906 p->utimescaled = p->stimescaled = 0;
1907#endif
1908 prev_cputime_init(&p->prev_cputime);
1909
1910#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1911 seqcount_init(&p->vtime.seqcount);
1912 p->vtime.starttime = 0;
1913 p->vtime.state = VTIME_INACTIVE;
1914#endif
1915
1916#if defined(SPLIT_RSS_COUNTING)
1917 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1918#endif
1919
1920 p->default_timer_slack_ns = current->timer_slack_ns;
1921
David Brazdil0f672f62019-12-10 10:32:29 +00001922#ifdef CONFIG_PSI
1923 p->psi_flags = 0;
1924#endif
1925
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001926 task_io_accounting_init(&p->ioac);
1927 acct_clear_integrals(p);
1928
David Brazdil0f672f62019-12-10 10:32:29 +00001929 posix_cputimers_init(&p->posix_cputimers);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001930
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001931 p->io_context = NULL;
1932 audit_set_context(p, NULL);
1933 cgroup_fork(p);
1934#ifdef CONFIG_NUMA
1935 p->mempolicy = mpol_dup(p->mempolicy);
1936 if (IS_ERR(p->mempolicy)) {
1937 retval = PTR_ERR(p->mempolicy);
1938 p->mempolicy = NULL;
1939 goto bad_fork_cleanup_threadgroup_lock;
1940 }
1941#endif
1942#ifdef CONFIG_CPUSETS
1943 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1944 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1945 seqcount_init(&p->mems_allowed_seq);
1946#endif
1947#ifdef CONFIG_TRACE_IRQFLAGS
1948 p->irq_events = 0;
1949 p->hardirqs_enabled = 0;
1950 p->hardirq_enable_ip = 0;
1951 p->hardirq_enable_event = 0;
1952 p->hardirq_disable_ip = _THIS_IP_;
1953 p->hardirq_disable_event = 0;
1954 p->softirqs_enabled = 1;
1955 p->softirq_enable_ip = _THIS_IP_;
1956 p->softirq_enable_event = 0;
1957 p->softirq_disable_ip = 0;
1958 p->softirq_disable_event = 0;
1959 p->hardirq_context = 0;
1960 p->softirq_context = 0;
1961#endif
1962
1963 p->pagefault_disabled = 0;
1964
1965#ifdef CONFIG_LOCKDEP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001966 lockdep_init_task(p);
1967#endif
1968
1969#ifdef CONFIG_DEBUG_MUTEXES
1970 p->blocked_on = NULL; /* not blocked yet */
1971#endif
1972#ifdef CONFIG_BCACHE
1973 p->sequential_io = 0;
1974 p->sequential_io_avg = 0;
1975#endif
1976
1977 /* Perform scheduler related setup. Assign this task to a CPU. */
1978 retval = sched_fork(clone_flags, p);
1979 if (retval)
1980 goto bad_fork_cleanup_policy;
1981
1982 retval = perf_event_init_task(p);
1983 if (retval)
1984 goto bad_fork_cleanup_policy;
1985 retval = audit_alloc(p);
1986 if (retval)
1987 goto bad_fork_cleanup_perf;
1988 /* copy all the process information */
1989 shm_init_task(p);
1990 retval = security_task_alloc(p, clone_flags);
1991 if (retval)
1992 goto bad_fork_cleanup_audit;
1993 retval = copy_semundo(clone_flags, p);
1994 if (retval)
1995 goto bad_fork_cleanup_security;
1996 retval = copy_files(clone_flags, p);
1997 if (retval)
1998 goto bad_fork_cleanup_semundo;
1999 retval = copy_fs(clone_flags, p);
2000 if (retval)
2001 goto bad_fork_cleanup_files;
2002 retval = copy_sighand(clone_flags, p);
2003 if (retval)
2004 goto bad_fork_cleanup_fs;
2005 retval = copy_signal(clone_flags, p);
2006 if (retval)
2007 goto bad_fork_cleanup_sighand;
2008 retval = copy_mm(clone_flags, p);
2009 if (retval)
2010 goto bad_fork_cleanup_signal;
2011 retval = copy_namespaces(clone_flags, p);
2012 if (retval)
2013 goto bad_fork_cleanup_mm;
2014 retval = copy_io(clone_flags, p);
2015 if (retval)
2016 goto bad_fork_cleanup_namespaces;
David Brazdil0f672f62019-12-10 10:32:29 +00002017 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2018 args->tls);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002019 if (retval)
2020 goto bad_fork_cleanup_io;
2021
David Brazdil0f672f62019-12-10 10:32:29 +00002022 stackleak_task_init(p);
2023
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002024 if (pid != &init_struct_pid) {
2025 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2026 if (IS_ERR(pid)) {
2027 retval = PTR_ERR(pid);
2028 goto bad_fork_cleanup_thread;
2029 }
2030 }
2031
David Brazdil0f672f62019-12-10 10:32:29 +00002032 /*
2033 * This has to happen after we've potentially unshared the file
2034 * descriptor table (so that the pidfd doesn't leak into the child
2035 * if the fd table isn't shared).
2036 */
2037 if (clone_flags & CLONE_PIDFD) {
2038 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2039 if (retval < 0)
2040 goto bad_fork_free_pid;
2041
2042 pidfd = retval;
2043
2044 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2045 O_RDWR | O_CLOEXEC);
2046 if (IS_ERR(pidfile)) {
2047 put_unused_fd(pidfd);
2048 retval = PTR_ERR(pidfile);
2049 goto bad_fork_free_pid;
2050 }
2051 get_pid(pid); /* held by pidfile now */
2052
2053 retval = put_user(pidfd, args->pidfd);
2054 if (retval)
2055 goto bad_fork_put_pidfd;
2056 }
2057
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002058#ifdef CONFIG_BLOCK
2059 p->plug = NULL;
2060#endif
David Brazdil0f672f62019-12-10 10:32:29 +00002061 futex_init_task(p);
2062
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002063 /*
2064 * sigaltstack should be cleared when sharing the same VM
2065 */
2066 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2067 sas_ss_reset(p);
2068
2069 /*
2070 * Syscall tracing and stepping should be turned off in the
2071 * child regardless of CLONE_PTRACE.
2072 */
2073 user_disable_single_step(p);
2074 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2075#ifdef TIF_SYSCALL_EMU
2076 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2077#endif
David Brazdil0f672f62019-12-10 10:32:29 +00002078 clear_tsk_latency_tracing(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002079
2080 /* ok, now we should be set up.. */
2081 p->pid = pid_nr(pid);
2082 if (clone_flags & CLONE_THREAD) {
2083 p->exit_signal = -1;
2084 p->group_leader = current->group_leader;
2085 p->tgid = current->tgid;
2086 } else {
2087 if (clone_flags & CLONE_PARENT)
2088 p->exit_signal = current->group_leader->exit_signal;
2089 else
David Brazdil0f672f62019-12-10 10:32:29 +00002090 p->exit_signal = args->exit_signal;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002091 p->group_leader = p;
2092 p->tgid = p->pid;
2093 }
2094
2095 p->nr_dirtied = 0;
2096 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2097 p->dirty_paused_when = 0;
2098
2099 p->pdeath_signal = 0;
2100 INIT_LIST_HEAD(&p->thread_group);
2101 p->task_works = NULL;
2102
2103 cgroup_threadgroup_change_begin(current);
2104 /*
2105 * Ensure that the cgroup subsystem policies allow the new process to be
2106 * forked. It should be noted the the new process's css_set can be changed
2107 * between here and cgroup_post_fork() if an organisation operation is in
2108 * progress.
2109 */
2110 retval = cgroup_can_fork(p);
2111 if (retval)
David Brazdil0f672f62019-12-10 10:32:29 +00002112 goto bad_fork_cgroup_threadgroup_change_end;
2113
2114 /*
2115 * From this point on we must avoid any synchronous user-space
2116 * communication until we take the tasklist-lock. In particular, we do
2117 * not want user-space to be able to predict the process start-time by
2118 * stalling fork(2) after we recorded the start_time but before it is
2119 * visible to the system.
2120 */
2121
2122 p->start_time = ktime_get_ns();
2123 p->real_start_time = ktime_get_boottime_ns();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002124
2125 /*
2126 * Make it visible to the rest of the system, but dont wake it up yet.
2127 * Need tasklist lock for parent etc handling!
2128 */
2129 write_lock_irq(&tasklist_lock);
2130
2131 /* CLONE_PARENT re-uses the old parent */
2132 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2133 p->real_parent = current->real_parent;
2134 p->parent_exec_id = current->parent_exec_id;
2135 } else {
2136 p->real_parent = current;
2137 p->parent_exec_id = current->self_exec_id;
2138 }
2139
2140 klp_copy_process(p);
2141
2142 spin_lock(&current->sighand->siglock);
2143
2144 /*
2145 * Copy seccomp details explicitly here, in case they were changed
2146 * before holding sighand lock.
2147 */
2148 copy_seccomp(p);
2149
2150 rseq_fork(p, clone_flags);
2151
2152 /* Don't start children in a dying pid namespace */
2153 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2154 retval = -ENOMEM;
2155 goto bad_fork_cancel_cgroup;
2156 }
2157
2158 /* Let kill terminate clone/fork in the middle */
2159 if (fatal_signal_pending(current)) {
2160 retval = -EINTR;
2161 goto bad_fork_cancel_cgroup;
2162 }
2163
David Brazdil0f672f62019-12-10 10:32:29 +00002164 /* past the last point of failure */
2165 if (pidfile)
2166 fd_install(pidfd, pidfile);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002167
2168 init_task_pid_links(p);
2169 if (likely(p->pid)) {
2170 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2171
2172 init_task_pid(p, PIDTYPE_PID, pid);
2173 if (thread_group_leader(p)) {
2174 init_task_pid(p, PIDTYPE_TGID, pid);
2175 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2176 init_task_pid(p, PIDTYPE_SID, task_session(current));
2177
2178 if (is_child_reaper(pid)) {
2179 ns_of_pid(pid)->child_reaper = p;
2180 p->signal->flags |= SIGNAL_UNKILLABLE;
2181 }
2182 p->signal->shared_pending.signal = delayed.signal;
2183 p->signal->tty = tty_kref_get(current->signal->tty);
2184 /*
2185 * Inherit has_child_subreaper flag under the same
2186 * tasklist_lock with adding child to the process tree
2187 * for propagate_has_child_subreaper optimization.
2188 */
2189 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2190 p->real_parent->signal->is_child_subreaper;
2191 list_add_tail(&p->sibling, &p->real_parent->children);
2192 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2193 attach_pid(p, PIDTYPE_TGID);
2194 attach_pid(p, PIDTYPE_PGID);
2195 attach_pid(p, PIDTYPE_SID);
2196 __this_cpu_inc(process_counts);
2197 } else {
2198 current->signal->nr_threads++;
2199 atomic_inc(&current->signal->live);
David Brazdil0f672f62019-12-10 10:32:29 +00002200 refcount_inc(&current->signal->sigcnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002201 task_join_group_stop(p);
2202 list_add_tail_rcu(&p->thread_group,
2203 &p->group_leader->thread_group);
2204 list_add_tail_rcu(&p->thread_node,
2205 &p->signal->thread_head);
2206 }
2207 attach_pid(p, PIDTYPE_PID);
2208 nr_threads++;
2209 }
2210 total_forks++;
2211 hlist_del_init(&delayed.node);
2212 spin_unlock(&current->sighand->siglock);
2213 syscall_tracepoint_update(p);
2214 write_unlock_irq(&tasklist_lock);
2215
2216 proc_fork_connector(p);
2217 cgroup_post_fork(p);
2218 cgroup_threadgroup_change_end(current);
2219 perf_event_fork(p);
2220
2221 trace_task_newtask(p, clone_flags);
2222 uprobe_copy_process(p, clone_flags);
2223
2224 return p;
2225
2226bad_fork_cancel_cgroup:
2227 spin_unlock(&current->sighand->siglock);
2228 write_unlock_irq(&tasklist_lock);
2229 cgroup_cancel_fork(p);
David Brazdil0f672f62019-12-10 10:32:29 +00002230bad_fork_cgroup_threadgroup_change_end:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002231 cgroup_threadgroup_change_end(current);
David Brazdil0f672f62019-12-10 10:32:29 +00002232bad_fork_put_pidfd:
2233 if (clone_flags & CLONE_PIDFD) {
2234 fput(pidfile);
2235 put_unused_fd(pidfd);
2236 }
2237bad_fork_free_pid:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002238 if (pid != &init_struct_pid)
2239 free_pid(pid);
2240bad_fork_cleanup_thread:
2241 exit_thread(p);
2242bad_fork_cleanup_io:
2243 if (p->io_context)
2244 exit_io_context(p);
2245bad_fork_cleanup_namespaces:
2246 exit_task_namespaces(p);
2247bad_fork_cleanup_mm:
David Brazdil0f672f62019-12-10 10:32:29 +00002248 if (p->mm) {
2249 mm_clear_owner(p->mm, p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002250 mmput(p->mm);
David Brazdil0f672f62019-12-10 10:32:29 +00002251 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002252bad_fork_cleanup_signal:
2253 if (!(clone_flags & CLONE_THREAD))
2254 free_signal_struct(p->signal);
2255bad_fork_cleanup_sighand:
2256 __cleanup_sighand(p->sighand);
2257bad_fork_cleanup_fs:
2258 exit_fs(p); /* blocking */
2259bad_fork_cleanup_files:
2260 exit_files(p); /* blocking */
2261bad_fork_cleanup_semundo:
2262 exit_sem(p);
2263bad_fork_cleanup_security:
2264 security_task_free(p);
2265bad_fork_cleanup_audit:
2266 audit_free(p);
2267bad_fork_cleanup_perf:
2268 perf_event_free_task(p);
2269bad_fork_cleanup_policy:
2270 lockdep_free_task(p);
2271#ifdef CONFIG_NUMA
2272 mpol_put(p->mempolicy);
2273bad_fork_cleanup_threadgroup_lock:
2274#endif
2275 delayacct_tsk_free(p);
2276bad_fork_cleanup_count:
2277 atomic_dec(&p->cred->user->processes);
2278 exit_creds(p);
2279bad_fork_free:
2280 p->state = TASK_DEAD;
2281 put_task_stack(p);
David Brazdil0f672f62019-12-10 10:32:29 +00002282 delayed_free_task(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002283fork_out:
2284 spin_lock_irq(&current->sighand->siglock);
2285 hlist_del_init(&delayed.node);
2286 spin_unlock_irq(&current->sighand->siglock);
2287 return ERR_PTR(retval);
2288}
2289
2290static inline void init_idle_pids(struct task_struct *idle)
2291{
2292 enum pid_type type;
2293
2294 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2295 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2296 init_task_pid(idle, type, &init_struct_pid);
2297 }
2298}
2299
2300struct task_struct *fork_idle(int cpu)
2301{
2302 struct task_struct *task;
David Brazdil0f672f62019-12-10 10:32:29 +00002303 struct kernel_clone_args args = {
2304 .flags = CLONE_VM,
2305 };
2306
2307 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002308 if (!IS_ERR(task)) {
2309 init_idle_pids(task);
2310 init_idle(task, cpu);
2311 }
2312
2313 return task;
2314}
2315
David Brazdil0f672f62019-12-10 10:32:29 +00002316struct mm_struct *copy_init_mm(void)
2317{
2318 return dup_mm(NULL, &init_mm);
2319}
2320
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002321/*
2322 * Ok, this is the main fork-routine.
2323 *
2324 * It copies the process, and if successful kick-starts
2325 * it and waits for it to finish using the VM if required.
David Brazdil0f672f62019-12-10 10:32:29 +00002326 *
2327 * args->exit_signal is expected to be checked for sanity by the caller.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002328 */
David Brazdil0f672f62019-12-10 10:32:29 +00002329long _do_fork(struct kernel_clone_args *args)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002330{
David Brazdil0f672f62019-12-10 10:32:29 +00002331 u64 clone_flags = args->flags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002332 struct completion vfork;
2333 struct pid *pid;
2334 struct task_struct *p;
2335 int trace = 0;
2336 long nr;
2337
2338 /*
2339 * Determine whether and which event to report to ptracer. When
2340 * called from kernel_thread or CLONE_UNTRACED is explicitly
2341 * requested, no event is reported; otherwise, report if the event
2342 * for the type of forking is enabled.
2343 */
2344 if (!(clone_flags & CLONE_UNTRACED)) {
2345 if (clone_flags & CLONE_VFORK)
2346 trace = PTRACE_EVENT_VFORK;
David Brazdil0f672f62019-12-10 10:32:29 +00002347 else if (args->exit_signal != SIGCHLD)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002348 trace = PTRACE_EVENT_CLONE;
2349 else
2350 trace = PTRACE_EVENT_FORK;
2351
2352 if (likely(!ptrace_event_enabled(current, trace)))
2353 trace = 0;
2354 }
2355
David Brazdil0f672f62019-12-10 10:32:29 +00002356 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002357 add_latent_entropy();
2358
2359 if (IS_ERR(p))
2360 return PTR_ERR(p);
2361
2362 /*
2363 * Do this prior waking up the new thread - the thread pointer
2364 * might get invalid after that point, if the thread exits quickly.
2365 */
2366 trace_sched_process_fork(current, p);
2367
2368 pid = get_task_pid(p, PIDTYPE_PID);
2369 nr = pid_vnr(pid);
2370
2371 if (clone_flags & CLONE_PARENT_SETTID)
David Brazdil0f672f62019-12-10 10:32:29 +00002372 put_user(nr, args->parent_tid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002373
2374 if (clone_flags & CLONE_VFORK) {
2375 p->vfork_done = &vfork;
2376 init_completion(&vfork);
2377 get_task_struct(p);
2378 }
2379
2380 wake_up_new_task(p);
2381
2382 /* forking complete and child started to run, tell ptracer */
2383 if (unlikely(trace))
2384 ptrace_event_pid(trace, pid);
2385
2386 if (clone_flags & CLONE_VFORK) {
2387 if (!wait_for_vfork_done(p, &vfork))
2388 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2389 }
2390
2391 put_pid(pid);
2392 return nr;
2393}
2394
David Brazdil0f672f62019-12-10 10:32:29 +00002395bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2396{
2397 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2398 if ((kargs->flags & CLONE_PIDFD) &&
2399 (kargs->flags & CLONE_PARENT_SETTID))
2400 return false;
2401
2402 return true;
2403}
2404
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002405#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2406/* For compatibility with architectures that call do_fork directly rather than
2407 * using the syscall entry points below. */
2408long do_fork(unsigned long clone_flags,
2409 unsigned long stack_start,
2410 unsigned long stack_size,
2411 int __user *parent_tidptr,
2412 int __user *child_tidptr)
2413{
David Brazdil0f672f62019-12-10 10:32:29 +00002414 struct kernel_clone_args args = {
2415 .flags = (clone_flags & ~CSIGNAL),
2416 .pidfd = parent_tidptr,
2417 .child_tid = child_tidptr,
2418 .parent_tid = parent_tidptr,
2419 .exit_signal = (clone_flags & CSIGNAL),
2420 .stack = stack_start,
2421 .stack_size = stack_size,
2422 };
2423
2424 if (!legacy_clone_args_valid(&args))
2425 return -EINVAL;
2426
2427 return _do_fork(&args);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002428}
2429#endif
2430
2431/*
2432 * Create a kernel thread.
2433 */
2434pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2435{
David Brazdil0f672f62019-12-10 10:32:29 +00002436 struct kernel_clone_args args = {
2437 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2438 .exit_signal = (flags & CSIGNAL),
2439 .stack = (unsigned long)fn,
2440 .stack_size = (unsigned long)arg,
2441 };
2442
2443 return _do_fork(&args);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002444}
2445
2446#ifdef __ARCH_WANT_SYS_FORK
2447SYSCALL_DEFINE0(fork)
2448{
2449#ifdef CONFIG_MMU
David Brazdil0f672f62019-12-10 10:32:29 +00002450 struct kernel_clone_args args = {
2451 .exit_signal = SIGCHLD,
2452 };
2453
2454 return _do_fork(&args);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002455#else
2456 /* can not support in nommu mode */
2457 return -EINVAL;
2458#endif
2459}
2460#endif
2461
2462#ifdef __ARCH_WANT_SYS_VFORK
2463SYSCALL_DEFINE0(vfork)
2464{
David Brazdil0f672f62019-12-10 10:32:29 +00002465 struct kernel_clone_args args = {
2466 .flags = CLONE_VFORK | CLONE_VM,
2467 .exit_signal = SIGCHLD,
2468 };
2469
2470 return _do_fork(&args);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002471}
2472#endif
2473
2474#ifdef __ARCH_WANT_SYS_CLONE
2475#ifdef CONFIG_CLONE_BACKWARDS
2476SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2477 int __user *, parent_tidptr,
2478 unsigned long, tls,
2479 int __user *, child_tidptr)
2480#elif defined(CONFIG_CLONE_BACKWARDS2)
2481SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2482 int __user *, parent_tidptr,
2483 int __user *, child_tidptr,
2484 unsigned long, tls)
2485#elif defined(CONFIG_CLONE_BACKWARDS3)
2486SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2487 int, stack_size,
2488 int __user *, parent_tidptr,
2489 int __user *, child_tidptr,
2490 unsigned long, tls)
2491#else
2492SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2493 int __user *, parent_tidptr,
2494 int __user *, child_tidptr,
2495 unsigned long, tls)
2496#endif
2497{
David Brazdil0f672f62019-12-10 10:32:29 +00002498 struct kernel_clone_args args = {
2499 .flags = (clone_flags & ~CSIGNAL),
2500 .pidfd = parent_tidptr,
2501 .child_tid = child_tidptr,
2502 .parent_tid = parent_tidptr,
2503 .exit_signal = (clone_flags & CSIGNAL),
2504 .stack = newsp,
2505 .tls = tls,
2506 };
2507
2508 if (!legacy_clone_args_valid(&args))
2509 return -EINVAL;
2510
2511 return _do_fork(&args);
2512}
2513#endif
2514
2515#ifdef __ARCH_WANT_SYS_CLONE3
2516noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2517 struct clone_args __user *uargs,
2518 size_t usize)
2519{
2520 int err;
2521 struct clone_args args;
2522
2523 if (unlikely(usize > PAGE_SIZE))
2524 return -E2BIG;
2525 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2526 return -EINVAL;
2527
2528 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2529 if (err)
2530 return err;
2531
2532 /*
2533 * Verify that higher 32bits of exit_signal are unset and that
2534 * it is a valid signal
2535 */
2536 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2537 !valid_signal(args.exit_signal)))
2538 return -EINVAL;
2539
2540 *kargs = (struct kernel_clone_args){
2541 .flags = args.flags,
2542 .pidfd = u64_to_user_ptr(args.pidfd),
2543 .child_tid = u64_to_user_ptr(args.child_tid),
2544 .parent_tid = u64_to_user_ptr(args.parent_tid),
2545 .exit_signal = args.exit_signal,
2546 .stack = args.stack,
2547 .stack_size = args.stack_size,
2548 .tls = args.tls,
2549 };
2550
2551 return 0;
2552}
2553
2554/**
2555 * clone3_stack_valid - check and prepare stack
2556 * @kargs: kernel clone args
2557 *
2558 * Verify that the stack arguments userspace gave us are sane.
2559 * In addition, set the stack direction for userspace since it's easy for us to
2560 * determine.
2561 */
2562static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2563{
2564 if (kargs->stack == 0) {
2565 if (kargs->stack_size > 0)
2566 return false;
2567 } else {
2568 if (kargs->stack_size == 0)
2569 return false;
2570
2571 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2572 return false;
2573
2574#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2575 kargs->stack += kargs->stack_size;
2576#endif
2577 }
2578
2579 return true;
2580}
2581
2582static bool clone3_args_valid(struct kernel_clone_args *kargs)
2583{
2584 /*
2585 * All lower bits of the flag word are taken.
2586 * Verify that no other unknown flags are passed along.
2587 */
2588 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2589 return false;
2590
2591 /*
2592 * - make the CLONE_DETACHED bit reuseable for clone3
2593 * - make the CSIGNAL bits reuseable for clone3
2594 */
2595 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2596 return false;
2597
2598 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2599 kargs->exit_signal)
2600 return false;
2601
2602 if (!clone3_stack_valid(kargs))
2603 return false;
2604
2605 return true;
2606}
2607
2608/**
2609 * clone3 - create a new process with specific properties
2610 * @uargs: argument structure
2611 * @size: size of @uargs
2612 *
2613 * clone3() is the extensible successor to clone()/clone2().
2614 * It takes a struct as argument that is versioned by its size.
2615 *
2616 * Return: On success, a positive PID for the child process.
2617 * On error, a negative errno number.
2618 */
2619SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2620{
2621 int err;
2622
2623 struct kernel_clone_args kargs;
2624
2625 err = copy_clone_args_from_user(&kargs, uargs, size);
2626 if (err)
2627 return err;
2628
2629 if (!clone3_args_valid(&kargs))
2630 return -EINVAL;
2631
2632 return _do_fork(&kargs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002633}
2634#endif
2635
2636void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2637{
2638 struct task_struct *leader, *parent, *child;
2639 int res;
2640
2641 read_lock(&tasklist_lock);
2642 leader = top = top->group_leader;
2643down:
2644 for_each_thread(leader, parent) {
2645 list_for_each_entry(child, &parent->children, sibling) {
2646 res = visitor(child, data);
2647 if (res) {
2648 if (res < 0)
2649 goto out;
2650 leader = child;
2651 goto down;
2652 }
2653up:
2654 ;
2655 }
2656 }
2657
2658 if (leader != top) {
2659 child = leader;
2660 parent = child->real_parent;
2661 leader = parent->group_leader;
2662 goto up;
2663 }
2664out:
2665 read_unlock(&tasklist_lock);
2666}
2667
2668#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2669#define ARCH_MIN_MMSTRUCT_ALIGN 0
2670#endif
2671
2672static void sighand_ctor(void *data)
2673{
2674 struct sighand_struct *sighand = data;
2675
2676 spin_lock_init(&sighand->siglock);
2677 init_waitqueue_head(&sighand->signalfd_wqh);
2678}
2679
2680void __init proc_caches_init(void)
2681{
2682 unsigned int mm_size;
2683
2684 sighand_cachep = kmem_cache_create("sighand_cache",
2685 sizeof(struct sighand_struct), 0,
2686 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2687 SLAB_ACCOUNT, sighand_ctor);
2688 signal_cachep = kmem_cache_create("signal_cache",
2689 sizeof(struct signal_struct), 0,
2690 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2691 NULL);
2692 files_cachep = kmem_cache_create("files_cache",
2693 sizeof(struct files_struct), 0,
2694 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2695 NULL);
2696 fs_cachep = kmem_cache_create("fs_cache",
2697 sizeof(struct fs_struct), 0,
2698 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2699 NULL);
2700
2701 /*
2702 * The mm_cpumask is located at the end of mm_struct, and is
2703 * dynamically sized based on the maximum CPU number this system
2704 * can have, taking hotplug into account (nr_cpu_ids).
2705 */
2706 mm_size = sizeof(struct mm_struct) + cpumask_size();
2707
2708 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2709 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2710 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2711 offsetof(struct mm_struct, saved_auxv),
2712 sizeof_field(struct mm_struct, saved_auxv),
2713 NULL);
2714 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2715 mmap_init();
2716 nsproxy_cache_init();
2717}
2718
2719/*
2720 * Check constraints on flags passed to the unshare system call.
2721 */
2722static int check_unshare_flags(unsigned long unshare_flags)
2723{
2724 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2725 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2726 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2727 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2728 return -EINVAL;
2729 /*
2730 * Not implemented, but pretend it works if there is nothing
2731 * to unshare. Note that unsharing the address space or the
2732 * signal handlers also need to unshare the signal queues (aka
2733 * CLONE_THREAD).
2734 */
2735 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2736 if (!thread_group_empty(current))
2737 return -EINVAL;
2738 }
2739 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002740 if (refcount_read(&current->sighand->count) > 1)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002741 return -EINVAL;
2742 }
2743 if (unshare_flags & CLONE_VM) {
2744 if (!current_is_single_threaded())
2745 return -EINVAL;
2746 }
2747
2748 return 0;
2749}
2750
2751/*
2752 * Unshare the filesystem structure if it is being shared
2753 */
2754static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2755{
2756 struct fs_struct *fs = current->fs;
2757
2758 if (!(unshare_flags & CLONE_FS) || !fs)
2759 return 0;
2760
2761 /* don't need lock here; in the worst case we'll do useless copy */
2762 if (fs->users == 1)
2763 return 0;
2764
2765 *new_fsp = copy_fs_struct(fs);
2766 if (!*new_fsp)
2767 return -ENOMEM;
2768
2769 return 0;
2770}
2771
2772/*
2773 * Unshare file descriptor table if it is being shared
2774 */
2775static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2776{
2777 struct files_struct *fd = current->files;
2778 int error = 0;
2779
2780 if ((unshare_flags & CLONE_FILES) &&
2781 (fd && atomic_read(&fd->count) > 1)) {
2782 *new_fdp = dup_fd(fd, &error);
2783 if (!*new_fdp)
2784 return error;
2785 }
2786
2787 return 0;
2788}
2789
2790/*
2791 * unshare allows a process to 'unshare' part of the process
2792 * context which was originally shared using clone. copy_*
2793 * functions used by do_fork() cannot be used here directly
2794 * because they modify an inactive task_struct that is being
2795 * constructed. Here we are modifying the current, active,
2796 * task_struct.
2797 */
2798int ksys_unshare(unsigned long unshare_flags)
2799{
2800 struct fs_struct *fs, *new_fs = NULL;
2801 struct files_struct *fd, *new_fd = NULL;
2802 struct cred *new_cred = NULL;
2803 struct nsproxy *new_nsproxy = NULL;
2804 int do_sysvsem = 0;
2805 int err;
2806
2807 /*
2808 * If unsharing a user namespace must also unshare the thread group
2809 * and unshare the filesystem root and working directories.
2810 */
2811 if (unshare_flags & CLONE_NEWUSER)
2812 unshare_flags |= CLONE_THREAD | CLONE_FS;
2813 /*
2814 * If unsharing vm, must also unshare signal handlers.
2815 */
2816 if (unshare_flags & CLONE_VM)
2817 unshare_flags |= CLONE_SIGHAND;
2818 /*
2819 * If unsharing a signal handlers, must also unshare the signal queues.
2820 */
2821 if (unshare_flags & CLONE_SIGHAND)
2822 unshare_flags |= CLONE_THREAD;
2823 /*
2824 * If unsharing namespace, must also unshare filesystem information.
2825 */
2826 if (unshare_flags & CLONE_NEWNS)
2827 unshare_flags |= CLONE_FS;
2828
2829 err = check_unshare_flags(unshare_flags);
2830 if (err)
2831 goto bad_unshare_out;
2832 /*
2833 * CLONE_NEWIPC must also detach from the undolist: after switching
2834 * to a new ipc namespace, the semaphore arrays from the old
2835 * namespace are unreachable.
2836 */
2837 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2838 do_sysvsem = 1;
2839 err = unshare_fs(unshare_flags, &new_fs);
2840 if (err)
2841 goto bad_unshare_out;
2842 err = unshare_fd(unshare_flags, &new_fd);
2843 if (err)
2844 goto bad_unshare_cleanup_fs;
2845 err = unshare_userns(unshare_flags, &new_cred);
2846 if (err)
2847 goto bad_unshare_cleanup_fd;
2848 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2849 new_cred, new_fs);
2850 if (err)
2851 goto bad_unshare_cleanup_cred;
2852
2853 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2854 if (do_sysvsem) {
2855 /*
2856 * CLONE_SYSVSEM is equivalent to sys_exit().
2857 */
2858 exit_sem(current);
2859 }
2860 if (unshare_flags & CLONE_NEWIPC) {
2861 /* Orphan segments in old ns (see sem above). */
2862 exit_shm(current);
2863 shm_init_task(current);
2864 }
2865
2866 if (new_nsproxy)
2867 switch_task_namespaces(current, new_nsproxy);
2868
2869 task_lock(current);
2870
2871 if (new_fs) {
2872 fs = current->fs;
2873 spin_lock(&fs->lock);
2874 current->fs = new_fs;
2875 if (--fs->users)
2876 new_fs = NULL;
2877 else
2878 new_fs = fs;
2879 spin_unlock(&fs->lock);
2880 }
2881
2882 if (new_fd) {
2883 fd = current->files;
2884 current->files = new_fd;
2885 new_fd = fd;
2886 }
2887
2888 task_unlock(current);
2889
2890 if (new_cred) {
2891 /* Install the new user namespace */
2892 commit_creds(new_cred);
2893 new_cred = NULL;
2894 }
2895 }
2896
2897 perf_event_namespaces(current);
2898
2899bad_unshare_cleanup_cred:
2900 if (new_cred)
2901 put_cred(new_cred);
2902bad_unshare_cleanup_fd:
2903 if (new_fd)
2904 put_files_struct(new_fd);
2905
2906bad_unshare_cleanup_fs:
2907 if (new_fs)
2908 free_fs_struct(new_fs);
2909
2910bad_unshare_out:
2911 return err;
2912}
2913
2914SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2915{
2916 return ksys_unshare(unshare_flags);
2917}
2918
2919/*
2920 * Helper to unshare the files of the current task.
2921 * We don't want to expose copy_files internals to
2922 * the exec layer of the kernel.
2923 */
2924
2925int unshare_files(struct files_struct **displaced)
2926{
2927 struct task_struct *task = current;
2928 struct files_struct *copy = NULL;
2929 int error;
2930
2931 error = unshare_fd(CLONE_FILES, &copy);
2932 if (error || !copy) {
2933 *displaced = NULL;
2934 return error;
2935 }
2936 *displaced = task->files;
2937 task_lock(task);
2938 task->files = copy;
2939 task_unlock(task);
2940 return 0;
2941}
2942
2943int sysctl_max_threads(struct ctl_table *table, int write,
2944 void __user *buffer, size_t *lenp, loff_t *ppos)
2945{
2946 struct ctl_table t;
2947 int ret;
2948 int threads = max_threads;
David Brazdil0f672f62019-12-10 10:32:29 +00002949 int min = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002950 int max = MAX_THREADS;
2951
2952 t = *table;
2953 t.data = &threads;
2954 t.extra1 = &min;
2955 t.extra2 = &max;
2956
2957 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2958 if (ret || !write)
2959 return ret;
2960
David Brazdil0f672f62019-12-10 10:32:29 +00002961 max_threads = threads;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002962
2963 return 0;
2964}