Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README |
| 3 | */ |
| 4 | |
| 5 | /* |
| 6 | * Written by Anatoly P. Pinchuk pap@namesys.botik.ru |
| 7 | * Programm System Institute |
| 8 | * Pereslavl-Zalessky Russia |
| 9 | */ |
| 10 | |
| 11 | #include <linux/time.h> |
| 12 | #include <linux/string.h> |
| 13 | #include <linux/pagemap.h> |
| 14 | #include <linux/bio.h> |
| 15 | #include "reiserfs.h" |
| 16 | #include <linux/buffer_head.h> |
| 17 | #include <linux/quotaops.h> |
| 18 | |
| 19 | /* Does the buffer contain a disk block which is in the tree. */ |
| 20 | inline int B_IS_IN_TREE(const struct buffer_head *bh) |
| 21 | { |
| 22 | |
| 23 | RFALSE(B_LEVEL(bh) > MAX_HEIGHT, |
| 24 | "PAP-1010: block (%b) has too big level (%z)", bh, bh); |
| 25 | |
| 26 | return (B_LEVEL(bh) != FREE_LEVEL); |
| 27 | } |
| 28 | |
| 29 | /* to get item head in le form */ |
| 30 | inline void copy_item_head(struct item_head *to, |
| 31 | const struct item_head *from) |
| 32 | { |
| 33 | memcpy(to, from, IH_SIZE); |
| 34 | } |
| 35 | |
| 36 | /* |
| 37 | * k1 is pointer to on-disk structure which is stored in little-endian |
| 38 | * form. k2 is pointer to cpu variable. For key of items of the same |
| 39 | * object this returns 0. |
| 40 | * Returns: -1 if key1 < key2 |
| 41 | * 0 if key1 == key2 |
| 42 | * 1 if key1 > key2 |
| 43 | */ |
| 44 | inline int comp_short_keys(const struct reiserfs_key *le_key, |
| 45 | const struct cpu_key *cpu_key) |
| 46 | { |
| 47 | __u32 n; |
| 48 | n = le32_to_cpu(le_key->k_dir_id); |
| 49 | if (n < cpu_key->on_disk_key.k_dir_id) |
| 50 | return -1; |
| 51 | if (n > cpu_key->on_disk_key.k_dir_id) |
| 52 | return 1; |
| 53 | n = le32_to_cpu(le_key->k_objectid); |
| 54 | if (n < cpu_key->on_disk_key.k_objectid) |
| 55 | return -1; |
| 56 | if (n > cpu_key->on_disk_key.k_objectid) |
| 57 | return 1; |
| 58 | return 0; |
| 59 | } |
| 60 | |
| 61 | /* |
| 62 | * k1 is pointer to on-disk structure which is stored in little-endian |
| 63 | * form. k2 is pointer to cpu variable. |
| 64 | * Compare keys using all 4 key fields. |
| 65 | * Returns: -1 if key1 < key2 0 |
| 66 | * if key1 = key2 1 if key1 > key2 |
| 67 | */ |
| 68 | static inline int comp_keys(const struct reiserfs_key *le_key, |
| 69 | const struct cpu_key *cpu_key) |
| 70 | { |
| 71 | int retval; |
| 72 | |
| 73 | retval = comp_short_keys(le_key, cpu_key); |
| 74 | if (retval) |
| 75 | return retval; |
| 76 | if (le_key_k_offset(le_key_version(le_key), le_key) < |
| 77 | cpu_key_k_offset(cpu_key)) |
| 78 | return -1; |
| 79 | if (le_key_k_offset(le_key_version(le_key), le_key) > |
| 80 | cpu_key_k_offset(cpu_key)) |
| 81 | return 1; |
| 82 | |
| 83 | if (cpu_key->key_length == 3) |
| 84 | return 0; |
| 85 | |
| 86 | /* this part is needed only when tail conversion is in progress */ |
| 87 | if (le_key_k_type(le_key_version(le_key), le_key) < |
| 88 | cpu_key_k_type(cpu_key)) |
| 89 | return -1; |
| 90 | |
| 91 | if (le_key_k_type(le_key_version(le_key), le_key) > |
| 92 | cpu_key_k_type(cpu_key)) |
| 93 | return 1; |
| 94 | |
| 95 | return 0; |
| 96 | } |
| 97 | |
| 98 | inline int comp_short_le_keys(const struct reiserfs_key *key1, |
| 99 | const struct reiserfs_key *key2) |
| 100 | { |
| 101 | __u32 *k1_u32, *k2_u32; |
| 102 | int key_length = REISERFS_SHORT_KEY_LEN; |
| 103 | |
| 104 | k1_u32 = (__u32 *) key1; |
| 105 | k2_u32 = (__u32 *) key2; |
| 106 | for (; key_length--; ++k1_u32, ++k2_u32) { |
| 107 | if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) |
| 108 | return -1; |
| 109 | if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) |
| 110 | return 1; |
| 111 | } |
| 112 | return 0; |
| 113 | } |
| 114 | |
| 115 | inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) |
| 116 | { |
| 117 | int version; |
| 118 | to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); |
| 119 | to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); |
| 120 | |
| 121 | /* find out version of the key */ |
| 122 | version = le_key_version(from); |
| 123 | to->version = version; |
| 124 | to->on_disk_key.k_offset = le_key_k_offset(version, from); |
| 125 | to->on_disk_key.k_type = le_key_k_type(version, from); |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * this does not say which one is bigger, it only returns 1 if keys |
| 130 | * are not equal, 0 otherwise |
| 131 | */ |
| 132 | inline int comp_le_keys(const struct reiserfs_key *k1, |
| 133 | const struct reiserfs_key *k2) |
| 134 | { |
| 135 | return memcmp(k1, k2, sizeof(struct reiserfs_key)); |
| 136 | } |
| 137 | |
| 138 | /************************************************************************** |
| 139 | * Binary search toolkit function * |
| 140 | * Search for an item in the array by the item key * |
| 141 | * Returns: 1 if found, 0 if not found; * |
| 142 | * *pos = number of the searched element if found, else the * |
| 143 | * number of the first element that is larger than key. * |
| 144 | **************************************************************************/ |
| 145 | /* |
| 146 | * For those not familiar with binary search: lbound is the leftmost item |
| 147 | * that it could be, rbound the rightmost item that it could be. We examine |
| 148 | * the item halfway between lbound and rbound, and that tells us either |
| 149 | * that we can increase lbound, or decrease rbound, or that we have found it, |
| 150 | * or if lbound <= rbound that there are no possible items, and we have not |
| 151 | * found it. With each examination we cut the number of possible items it |
| 152 | * could be by one more than half rounded down, or we find it. |
| 153 | */ |
| 154 | static inline int bin_search(const void *key, /* Key to search for. */ |
| 155 | const void *base, /* First item in the array. */ |
| 156 | int num, /* Number of items in the array. */ |
| 157 | /* |
| 158 | * Item size in the array. searched. Lest the |
| 159 | * reader be confused, note that this is crafted |
| 160 | * as a general function, and when it is applied |
| 161 | * specifically to the array of item headers in a |
| 162 | * node, width is actually the item header size |
| 163 | * not the item size. |
| 164 | */ |
| 165 | int width, |
| 166 | int *pos /* Number of the searched for element. */ |
| 167 | ) |
| 168 | { |
| 169 | int rbound, lbound, j; |
| 170 | |
| 171 | for (j = ((rbound = num - 1) + (lbound = 0)) / 2; |
| 172 | lbound <= rbound; j = (rbound + lbound) / 2) |
| 173 | switch (comp_keys |
| 174 | ((struct reiserfs_key *)((char *)base + j * width), |
| 175 | (struct cpu_key *)key)) { |
| 176 | case -1: |
| 177 | lbound = j + 1; |
| 178 | continue; |
| 179 | case 1: |
| 180 | rbound = j - 1; |
| 181 | continue; |
| 182 | case 0: |
| 183 | *pos = j; |
| 184 | return ITEM_FOUND; /* Key found in the array. */ |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * bin_search did not find given key, it returns position of key, |
| 189 | * that is minimal and greater than the given one. |
| 190 | */ |
| 191 | *pos = lbound; |
| 192 | return ITEM_NOT_FOUND; |
| 193 | } |
| 194 | |
| 195 | |
| 196 | /* Minimal possible key. It is never in the tree. */ |
| 197 | const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; |
| 198 | |
| 199 | /* Maximal possible key. It is never in the tree. */ |
| 200 | static const struct reiserfs_key MAX_KEY = { |
| 201 | cpu_to_le32(0xffffffff), |
| 202 | cpu_to_le32(0xffffffff), |
| 203 | {{cpu_to_le32(0xffffffff), |
| 204 | cpu_to_le32(0xffffffff)},} |
| 205 | }; |
| 206 | |
| 207 | /* |
| 208 | * Get delimiting key of the buffer by looking for it in the buffers in the |
| 209 | * path, starting from the bottom of the path, and going upwards. We must |
| 210 | * check the path's validity at each step. If the key is not in the path, |
| 211 | * there is no delimiting key in the tree (buffer is first or last buffer |
| 212 | * in tree), and in this case we return a special key, either MIN_KEY or |
| 213 | * MAX_KEY. |
| 214 | */ |
| 215 | static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, |
| 216 | const struct super_block *sb) |
| 217 | { |
| 218 | int position, path_offset = chk_path->path_length; |
| 219 | struct buffer_head *parent; |
| 220 | |
| 221 | RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, |
| 222 | "PAP-5010: invalid offset in the path"); |
| 223 | |
| 224 | /* While not higher in path than first element. */ |
| 225 | while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { |
| 226 | |
| 227 | RFALSE(!buffer_uptodate |
| 228 | (PATH_OFFSET_PBUFFER(chk_path, path_offset)), |
| 229 | "PAP-5020: parent is not uptodate"); |
| 230 | |
| 231 | /* Parent at the path is not in the tree now. */ |
| 232 | if (!B_IS_IN_TREE |
| 233 | (parent = |
| 234 | PATH_OFFSET_PBUFFER(chk_path, path_offset))) |
| 235 | return &MAX_KEY; |
| 236 | /* Check whether position in the parent is correct. */ |
| 237 | if ((position = |
| 238 | PATH_OFFSET_POSITION(chk_path, |
| 239 | path_offset)) > |
| 240 | B_NR_ITEMS(parent)) |
| 241 | return &MAX_KEY; |
| 242 | /* Check whether parent at the path really points to the child. */ |
| 243 | if (B_N_CHILD_NUM(parent, position) != |
| 244 | PATH_OFFSET_PBUFFER(chk_path, |
| 245 | path_offset + 1)->b_blocknr) |
| 246 | return &MAX_KEY; |
| 247 | /* |
| 248 | * Return delimiting key if position in the parent |
| 249 | * is not equal to zero. |
| 250 | */ |
| 251 | if (position) |
| 252 | return internal_key(parent, position - 1); |
| 253 | } |
| 254 | /* Return MIN_KEY if we are in the root of the buffer tree. */ |
| 255 | if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> |
| 256 | b_blocknr == SB_ROOT_BLOCK(sb)) |
| 257 | return &MIN_KEY; |
| 258 | return &MAX_KEY; |
| 259 | } |
| 260 | |
| 261 | /* Get delimiting key of the buffer at the path and its right neighbor. */ |
| 262 | inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, |
| 263 | const struct super_block *sb) |
| 264 | { |
| 265 | int position, path_offset = chk_path->path_length; |
| 266 | struct buffer_head *parent; |
| 267 | |
| 268 | RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, |
| 269 | "PAP-5030: invalid offset in the path"); |
| 270 | |
| 271 | while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { |
| 272 | |
| 273 | RFALSE(!buffer_uptodate |
| 274 | (PATH_OFFSET_PBUFFER(chk_path, path_offset)), |
| 275 | "PAP-5040: parent is not uptodate"); |
| 276 | |
| 277 | /* Parent at the path is not in the tree now. */ |
| 278 | if (!B_IS_IN_TREE |
| 279 | (parent = |
| 280 | PATH_OFFSET_PBUFFER(chk_path, path_offset))) |
| 281 | return &MIN_KEY; |
| 282 | /* Check whether position in the parent is correct. */ |
| 283 | if ((position = |
| 284 | PATH_OFFSET_POSITION(chk_path, |
| 285 | path_offset)) > |
| 286 | B_NR_ITEMS(parent)) |
| 287 | return &MIN_KEY; |
| 288 | /* |
| 289 | * Check whether parent at the path really points |
| 290 | * to the child. |
| 291 | */ |
| 292 | if (B_N_CHILD_NUM(parent, position) != |
| 293 | PATH_OFFSET_PBUFFER(chk_path, |
| 294 | path_offset + 1)->b_blocknr) |
| 295 | return &MIN_KEY; |
| 296 | |
| 297 | /* |
| 298 | * Return delimiting key if position in the parent |
| 299 | * is not the last one. |
| 300 | */ |
| 301 | if (position != B_NR_ITEMS(parent)) |
| 302 | return internal_key(parent, position); |
| 303 | } |
| 304 | |
| 305 | /* Return MAX_KEY if we are in the root of the buffer tree. */ |
| 306 | if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> |
| 307 | b_blocknr == SB_ROOT_BLOCK(sb)) |
| 308 | return &MAX_KEY; |
| 309 | return &MIN_KEY; |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * Check whether a key is contained in the tree rooted from a buffer at a path. |
| 314 | * This works by looking at the left and right delimiting keys for the buffer |
| 315 | * in the last path_element in the path. These delimiting keys are stored |
| 316 | * at least one level above that buffer in the tree. If the buffer is the |
| 317 | * first or last node in the tree order then one of the delimiting keys may |
| 318 | * be absent, and in this case get_lkey and get_rkey return a special key |
| 319 | * which is MIN_KEY or MAX_KEY. |
| 320 | */ |
| 321 | static inline int key_in_buffer( |
| 322 | /* Path which should be checked. */ |
| 323 | struct treepath *chk_path, |
| 324 | /* Key which should be checked. */ |
| 325 | const struct cpu_key *key, |
| 326 | struct super_block *sb |
| 327 | ) |
| 328 | { |
| 329 | |
| 330 | RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET |
| 331 | || chk_path->path_length > MAX_HEIGHT, |
| 332 | "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", |
| 333 | key, chk_path->path_length); |
| 334 | RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, |
| 335 | "PAP-5060: device must not be NODEV"); |
| 336 | |
| 337 | if (comp_keys(get_lkey(chk_path, sb), key) == 1) |
| 338 | /* left delimiting key is bigger, that the key we look for */ |
| 339 | return 0; |
| 340 | /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ |
| 341 | if (comp_keys(get_rkey(chk_path, sb), key) != 1) |
| 342 | /* key must be less than right delimitiing key */ |
| 343 | return 0; |
| 344 | return 1; |
| 345 | } |
| 346 | |
| 347 | int reiserfs_check_path(struct treepath *p) |
| 348 | { |
| 349 | RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, |
| 350 | "path not properly relsed"); |
| 351 | return 0; |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * Drop the reference to each buffer in a path and restore |
| 356 | * dirty bits clean when preparing the buffer for the log. |
| 357 | * This version should only be called from fix_nodes() |
| 358 | */ |
| 359 | void pathrelse_and_restore(struct super_block *sb, |
| 360 | struct treepath *search_path) |
| 361 | { |
| 362 | int path_offset = search_path->path_length; |
| 363 | |
| 364 | RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, |
| 365 | "clm-4000: invalid path offset"); |
| 366 | |
| 367 | while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { |
| 368 | struct buffer_head *bh; |
| 369 | bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); |
| 370 | reiserfs_restore_prepared_buffer(sb, bh); |
| 371 | brelse(bh); |
| 372 | } |
| 373 | search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; |
| 374 | } |
| 375 | |
| 376 | /* Drop the reference to each buffer in a path */ |
| 377 | void pathrelse(struct treepath *search_path) |
| 378 | { |
| 379 | int path_offset = search_path->path_length; |
| 380 | |
| 381 | RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, |
| 382 | "PAP-5090: invalid path offset"); |
| 383 | |
| 384 | while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) |
| 385 | brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); |
| 386 | |
| 387 | search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; |
| 388 | } |
| 389 | |
| 390 | static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) |
| 391 | { |
| 392 | struct block_head *blkh; |
| 393 | struct item_head *ih; |
| 394 | int used_space; |
| 395 | int prev_location; |
| 396 | int i; |
| 397 | int nr; |
| 398 | |
| 399 | blkh = (struct block_head *)buf; |
| 400 | if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { |
| 401 | reiserfs_warning(NULL, "reiserfs-5080", |
| 402 | "this should be caught earlier"); |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | nr = blkh_nr_item(blkh); |
| 407 | if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { |
| 408 | /* item number is too big or too small */ |
| 409 | reiserfs_warning(NULL, "reiserfs-5081", |
| 410 | "nr_item seems wrong: %z", bh); |
| 411 | return 0; |
| 412 | } |
| 413 | ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; |
| 414 | used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); |
| 415 | |
| 416 | /* free space does not match to calculated amount of use space */ |
| 417 | if (used_space != blocksize - blkh_free_space(blkh)) { |
| 418 | reiserfs_warning(NULL, "reiserfs-5082", |
| 419 | "free space seems wrong: %z", bh); |
| 420 | return 0; |
| 421 | } |
| 422 | /* |
| 423 | * FIXME: it is_leaf will hit performance too much - we may have |
| 424 | * return 1 here |
| 425 | */ |
| 426 | |
| 427 | /* check tables of item heads */ |
| 428 | ih = (struct item_head *)(buf + BLKH_SIZE); |
| 429 | prev_location = blocksize; |
| 430 | for (i = 0; i < nr; i++, ih++) { |
| 431 | if (le_ih_k_type(ih) == TYPE_ANY) { |
| 432 | reiserfs_warning(NULL, "reiserfs-5083", |
| 433 | "wrong item type for item %h", |
| 434 | ih); |
| 435 | return 0; |
| 436 | } |
| 437 | if (ih_location(ih) >= blocksize |
| 438 | || ih_location(ih) < IH_SIZE * nr) { |
| 439 | reiserfs_warning(NULL, "reiserfs-5084", |
| 440 | "item location seems wrong: %h", |
| 441 | ih); |
| 442 | return 0; |
| 443 | } |
| 444 | if (ih_item_len(ih) < 1 |
| 445 | || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { |
| 446 | reiserfs_warning(NULL, "reiserfs-5085", |
| 447 | "item length seems wrong: %h", |
| 448 | ih); |
| 449 | return 0; |
| 450 | } |
| 451 | if (prev_location - ih_location(ih) != ih_item_len(ih)) { |
| 452 | reiserfs_warning(NULL, "reiserfs-5086", |
| 453 | "item location seems wrong " |
| 454 | "(second one): %h", ih); |
| 455 | return 0; |
| 456 | } |
| 457 | prev_location = ih_location(ih); |
| 458 | } |
| 459 | |
| 460 | /* one may imagine many more checks */ |
| 461 | return 1; |
| 462 | } |
| 463 | |
| 464 | /* returns 1 if buf looks like an internal node, 0 otherwise */ |
| 465 | static int is_internal(char *buf, int blocksize, struct buffer_head *bh) |
| 466 | { |
| 467 | struct block_head *blkh; |
| 468 | int nr; |
| 469 | int used_space; |
| 470 | |
| 471 | blkh = (struct block_head *)buf; |
| 472 | nr = blkh_level(blkh); |
| 473 | if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { |
| 474 | /* this level is not possible for internal nodes */ |
| 475 | reiserfs_warning(NULL, "reiserfs-5087", |
| 476 | "this should be caught earlier"); |
| 477 | return 0; |
| 478 | } |
| 479 | |
| 480 | nr = blkh_nr_item(blkh); |
| 481 | /* for internal which is not root we might check min number of keys */ |
| 482 | if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { |
| 483 | reiserfs_warning(NULL, "reiserfs-5088", |
| 484 | "number of key seems wrong: %z", bh); |
| 485 | return 0; |
| 486 | } |
| 487 | |
| 488 | used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); |
| 489 | if (used_space != blocksize - blkh_free_space(blkh)) { |
| 490 | reiserfs_warning(NULL, "reiserfs-5089", |
| 491 | "free space seems wrong: %z", bh); |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | /* one may imagine many more checks */ |
| 496 | return 1; |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * make sure that bh contains formatted node of reiserfs tree of |
| 501 | * 'level'-th level |
| 502 | */ |
| 503 | static int is_tree_node(struct buffer_head *bh, int level) |
| 504 | { |
| 505 | if (B_LEVEL(bh) != level) { |
| 506 | reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " |
| 507 | "not match to the expected one %d", |
| 508 | B_LEVEL(bh), level); |
| 509 | return 0; |
| 510 | } |
| 511 | if (level == DISK_LEAF_NODE_LEVEL) |
| 512 | return is_leaf(bh->b_data, bh->b_size, bh); |
| 513 | |
| 514 | return is_internal(bh->b_data, bh->b_size, bh); |
| 515 | } |
| 516 | |
| 517 | #define SEARCH_BY_KEY_READA 16 |
| 518 | |
| 519 | /* |
| 520 | * The function is NOT SCHEDULE-SAFE! |
| 521 | * It might unlock the write lock if we needed to wait for a block |
| 522 | * to be read. Note that in this case it won't recover the lock to avoid |
| 523 | * high contention resulting from too much lock requests, especially |
| 524 | * the caller (search_by_key) will perform other schedule-unsafe |
| 525 | * operations just after calling this function. |
| 526 | * |
| 527 | * @return depth of lock to be restored after read completes |
| 528 | */ |
| 529 | static int search_by_key_reada(struct super_block *s, |
| 530 | struct buffer_head **bh, |
| 531 | b_blocknr_t *b, int num) |
| 532 | { |
| 533 | int i, j; |
| 534 | int depth = -1; |
| 535 | |
| 536 | for (i = 0; i < num; i++) { |
| 537 | bh[i] = sb_getblk(s, b[i]); |
| 538 | } |
| 539 | /* |
| 540 | * We are going to read some blocks on which we |
| 541 | * have a reference. It's safe, though we might be |
| 542 | * reading blocks concurrently changed if we release |
| 543 | * the lock. But it's still fine because we check later |
| 544 | * if the tree changed |
| 545 | */ |
| 546 | for (j = 0; j < i; j++) { |
| 547 | /* |
| 548 | * note, this needs attention if we are getting rid of the BKL |
| 549 | * you have to make sure the prepared bit isn't set on this |
| 550 | * buffer |
| 551 | */ |
| 552 | if (!buffer_uptodate(bh[j])) { |
| 553 | if (depth == -1) |
| 554 | depth = reiserfs_write_unlock_nested(s); |
| 555 | ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j); |
| 556 | } |
| 557 | brelse(bh[j]); |
| 558 | } |
| 559 | return depth; |
| 560 | } |
| 561 | |
| 562 | /* |
| 563 | * This function fills up the path from the root to the leaf as it |
| 564 | * descends the tree looking for the key. It uses reiserfs_bread to |
| 565 | * try to find buffers in the cache given their block number. If it |
| 566 | * does not find them in the cache it reads them from disk. For each |
| 567 | * node search_by_key finds using reiserfs_bread it then uses |
| 568 | * bin_search to look through that node. bin_search will find the |
| 569 | * position of the block_number of the next node if it is looking |
| 570 | * through an internal node. If it is looking through a leaf node |
| 571 | * bin_search will find the position of the item which has key either |
| 572 | * equal to given key, or which is the maximal key less than the given |
| 573 | * key. search_by_key returns a path that must be checked for the |
| 574 | * correctness of the top of the path but need not be checked for the |
| 575 | * correctness of the bottom of the path |
| 576 | */ |
| 577 | /* |
| 578 | * search_by_key - search for key (and item) in stree |
| 579 | * @sb: superblock |
| 580 | * @key: pointer to key to search for |
| 581 | * @search_path: Allocated and initialized struct treepath; Returned filled |
| 582 | * on success. |
| 583 | * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to |
| 584 | * stop at leaf level. |
| 585 | * |
| 586 | * The function is NOT SCHEDULE-SAFE! |
| 587 | */ |
| 588 | int search_by_key(struct super_block *sb, const struct cpu_key *key, |
| 589 | struct treepath *search_path, int stop_level) |
| 590 | { |
| 591 | b_blocknr_t block_number; |
| 592 | int expected_level; |
| 593 | struct buffer_head *bh; |
| 594 | struct path_element *last_element; |
| 595 | int node_level, retval; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 596 | int fs_gen; |
| 597 | struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; |
| 598 | b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; |
| 599 | int reada_count = 0; |
| 600 | |
| 601 | #ifdef CONFIG_REISERFS_CHECK |
| 602 | int repeat_counter = 0; |
| 603 | #endif |
| 604 | |
| 605 | PROC_INFO_INC(sb, search_by_key); |
| 606 | |
| 607 | /* |
| 608 | * As we add each node to a path we increase its count. This means |
| 609 | * that we must be careful to release all nodes in a path before we |
| 610 | * either discard the path struct or re-use the path struct, as we |
| 611 | * do here. |
| 612 | */ |
| 613 | |
| 614 | pathrelse(search_path); |
| 615 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 616 | /* |
| 617 | * With each iteration of this loop we search through the items in the |
| 618 | * current node, and calculate the next current node(next path element) |
| 619 | * for the next iteration of this loop.. |
| 620 | */ |
| 621 | block_number = SB_ROOT_BLOCK(sb); |
| 622 | expected_level = -1; |
| 623 | while (1) { |
| 624 | |
| 625 | #ifdef CONFIG_REISERFS_CHECK |
| 626 | if (!(++repeat_counter % 50000)) |
| 627 | reiserfs_warning(sb, "PAP-5100", |
| 628 | "%s: there were %d iterations of " |
| 629 | "while loop looking for key %K", |
| 630 | current->comm, repeat_counter, |
| 631 | key); |
| 632 | #endif |
| 633 | |
| 634 | /* prep path to have another element added to it. */ |
| 635 | last_element = |
| 636 | PATH_OFFSET_PELEMENT(search_path, |
| 637 | ++search_path->path_length); |
| 638 | fs_gen = get_generation(sb); |
| 639 | |
| 640 | /* |
| 641 | * Read the next tree node, and set the last element |
| 642 | * in the path to have a pointer to it. |
| 643 | */ |
| 644 | if ((bh = last_element->pe_buffer = |
| 645 | sb_getblk(sb, block_number))) { |
| 646 | |
| 647 | /* |
| 648 | * We'll need to drop the lock if we encounter any |
| 649 | * buffers that need to be read. If all of them are |
| 650 | * already up to date, we don't need to drop the lock. |
| 651 | */ |
| 652 | int depth = -1; |
| 653 | |
| 654 | if (!buffer_uptodate(bh) && reada_count > 1) |
| 655 | depth = search_by_key_reada(sb, reada_bh, |
| 656 | reada_blocks, reada_count); |
| 657 | |
| 658 | if (!buffer_uptodate(bh) && depth == -1) |
| 659 | depth = reiserfs_write_unlock_nested(sb); |
| 660 | |
| 661 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
| 662 | wait_on_buffer(bh); |
| 663 | |
| 664 | if (depth != -1) |
| 665 | reiserfs_write_lock_nested(sb, depth); |
| 666 | if (!buffer_uptodate(bh)) |
| 667 | goto io_error; |
| 668 | } else { |
| 669 | io_error: |
| 670 | search_path->path_length--; |
| 671 | pathrelse(search_path); |
| 672 | return IO_ERROR; |
| 673 | } |
| 674 | reada_count = 0; |
| 675 | if (expected_level == -1) |
| 676 | expected_level = SB_TREE_HEIGHT(sb); |
| 677 | expected_level--; |
| 678 | |
| 679 | /* |
| 680 | * It is possible that schedule occurred. We must check |
| 681 | * whether the key to search is still in the tree rooted |
| 682 | * from the current buffer. If not then repeat search |
| 683 | * from the root. |
| 684 | */ |
| 685 | if (fs_changed(fs_gen, sb) && |
| 686 | (!B_IS_IN_TREE(bh) || |
| 687 | B_LEVEL(bh) != expected_level || |
| 688 | !key_in_buffer(search_path, key, sb))) { |
| 689 | PROC_INFO_INC(sb, search_by_key_fs_changed); |
| 690 | PROC_INFO_INC(sb, search_by_key_restarted); |
| 691 | PROC_INFO_INC(sb, |
| 692 | sbk_restarted[expected_level - 1]); |
| 693 | pathrelse(search_path); |
| 694 | |
| 695 | /* |
| 696 | * Get the root block number so that we can |
| 697 | * repeat the search starting from the root. |
| 698 | */ |
| 699 | block_number = SB_ROOT_BLOCK(sb); |
| 700 | expected_level = -1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 701 | |
| 702 | /* repeat search from the root */ |
| 703 | continue; |
| 704 | } |
| 705 | |
| 706 | /* |
| 707 | * only check that the key is in the buffer if key is not |
| 708 | * equal to the MAX_KEY. Latter case is only possible in |
| 709 | * "finish_unfinished()" processing during mount. |
| 710 | */ |
| 711 | RFALSE(comp_keys(&MAX_KEY, key) && |
| 712 | !key_in_buffer(search_path, key, sb), |
| 713 | "PAP-5130: key is not in the buffer"); |
| 714 | #ifdef CONFIG_REISERFS_CHECK |
| 715 | if (REISERFS_SB(sb)->cur_tb) { |
| 716 | print_cur_tb("5140"); |
| 717 | reiserfs_panic(sb, "PAP-5140", |
| 718 | "schedule occurred in do_balance!"); |
| 719 | } |
| 720 | #endif |
| 721 | |
| 722 | /* |
| 723 | * make sure, that the node contents look like a node of |
| 724 | * certain level |
| 725 | */ |
| 726 | if (!is_tree_node(bh, expected_level)) { |
| 727 | reiserfs_error(sb, "vs-5150", |
| 728 | "invalid format found in block %ld. " |
| 729 | "Fsck?", bh->b_blocknr); |
| 730 | pathrelse(search_path); |
| 731 | return IO_ERROR; |
| 732 | } |
| 733 | |
| 734 | /* ok, we have acquired next formatted node in the tree */ |
| 735 | node_level = B_LEVEL(bh); |
| 736 | |
| 737 | PROC_INFO_BH_STAT(sb, bh, node_level - 1); |
| 738 | |
| 739 | RFALSE(node_level < stop_level, |
| 740 | "vs-5152: tree level (%d) is less than stop level (%d)", |
| 741 | node_level, stop_level); |
| 742 | |
| 743 | retval = bin_search(key, item_head(bh, 0), |
| 744 | B_NR_ITEMS(bh), |
| 745 | (node_level == |
| 746 | DISK_LEAF_NODE_LEVEL) ? IH_SIZE : |
| 747 | KEY_SIZE, |
| 748 | &last_element->pe_position); |
| 749 | if (node_level == stop_level) { |
| 750 | return retval; |
| 751 | } |
| 752 | |
| 753 | /* we are not in the stop level */ |
| 754 | /* |
| 755 | * item has been found, so we choose the pointer which |
| 756 | * is to the right of the found one |
| 757 | */ |
| 758 | if (retval == ITEM_FOUND) |
| 759 | last_element->pe_position++; |
| 760 | |
| 761 | /* |
| 762 | * if item was not found we choose the position which is to |
| 763 | * the left of the found item. This requires no code, |
| 764 | * bin_search did it already. |
| 765 | */ |
| 766 | |
| 767 | /* |
| 768 | * So we have chosen a position in the current node which is |
| 769 | * an internal node. Now we calculate child block number by |
| 770 | * position in the node. |
| 771 | */ |
| 772 | block_number = |
| 773 | B_N_CHILD_NUM(bh, last_element->pe_position); |
| 774 | |
| 775 | /* |
| 776 | * if we are going to read leaf nodes, try for read |
| 777 | * ahead as well |
| 778 | */ |
| 779 | if ((search_path->reada & PATH_READA) && |
| 780 | node_level == DISK_LEAF_NODE_LEVEL + 1) { |
| 781 | int pos = last_element->pe_position; |
| 782 | int limit = B_NR_ITEMS(bh); |
| 783 | struct reiserfs_key *le_key; |
| 784 | |
| 785 | if (search_path->reada & PATH_READA_BACK) |
| 786 | limit = 0; |
| 787 | while (reada_count < SEARCH_BY_KEY_READA) { |
| 788 | if (pos == limit) |
| 789 | break; |
| 790 | reada_blocks[reada_count++] = |
| 791 | B_N_CHILD_NUM(bh, pos); |
| 792 | if (search_path->reada & PATH_READA_BACK) |
| 793 | pos--; |
| 794 | else |
| 795 | pos++; |
| 796 | |
| 797 | /* |
| 798 | * check to make sure we're in the same object |
| 799 | */ |
| 800 | le_key = internal_key(bh, pos); |
| 801 | if (le32_to_cpu(le_key->k_objectid) != |
| 802 | key->on_disk_key.k_objectid) { |
| 803 | break; |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | /* |
| 811 | * Form the path to an item and position in this item which contains |
| 812 | * file byte defined by key. If there is no such item |
| 813 | * corresponding to the key, we point the path to the item with |
| 814 | * maximal key less than key, and *pos_in_item is set to one |
| 815 | * past the last entry/byte in the item. If searching for entry in a |
| 816 | * directory item, and it is not found, *pos_in_item is set to one |
| 817 | * entry more than the entry with maximal key which is less than the |
| 818 | * sought key. |
| 819 | * |
| 820 | * Note that if there is no entry in this same node which is one more, |
| 821 | * then we point to an imaginary entry. for direct items, the |
| 822 | * position is in units of bytes, for indirect items the position is |
| 823 | * in units of blocknr entries, for directory items the position is in |
| 824 | * units of directory entries. |
| 825 | */ |
| 826 | /* The function is NOT SCHEDULE-SAFE! */ |
| 827 | int search_for_position_by_key(struct super_block *sb, |
| 828 | /* Key to search (cpu variable) */ |
| 829 | const struct cpu_key *p_cpu_key, |
| 830 | /* Filled up by this function. */ |
| 831 | struct treepath *search_path) |
| 832 | { |
| 833 | struct item_head *p_le_ih; /* pointer to on-disk structure */ |
| 834 | int blk_size; |
| 835 | loff_t item_offset, offset; |
| 836 | struct reiserfs_dir_entry de; |
| 837 | int retval; |
| 838 | |
| 839 | /* If searching for directory entry. */ |
| 840 | if (is_direntry_cpu_key(p_cpu_key)) |
| 841 | return search_by_entry_key(sb, p_cpu_key, search_path, |
| 842 | &de); |
| 843 | |
| 844 | /* If not searching for directory entry. */ |
| 845 | |
| 846 | /* If item is found. */ |
| 847 | retval = search_item(sb, p_cpu_key, search_path); |
| 848 | if (retval == IO_ERROR) |
| 849 | return retval; |
| 850 | if (retval == ITEM_FOUND) { |
| 851 | |
| 852 | RFALSE(!ih_item_len |
| 853 | (item_head |
| 854 | (PATH_PLAST_BUFFER(search_path), |
| 855 | PATH_LAST_POSITION(search_path))), |
| 856 | "PAP-5165: item length equals zero"); |
| 857 | |
| 858 | pos_in_item(search_path) = 0; |
| 859 | return POSITION_FOUND; |
| 860 | } |
| 861 | |
| 862 | RFALSE(!PATH_LAST_POSITION(search_path), |
| 863 | "PAP-5170: position equals zero"); |
| 864 | |
| 865 | /* Item is not found. Set path to the previous item. */ |
| 866 | p_le_ih = |
| 867 | item_head(PATH_PLAST_BUFFER(search_path), |
| 868 | --PATH_LAST_POSITION(search_path)); |
| 869 | blk_size = sb->s_blocksize; |
| 870 | |
| 871 | if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key)) |
| 872 | return FILE_NOT_FOUND; |
| 873 | |
| 874 | /* FIXME: quite ugly this far */ |
| 875 | |
| 876 | item_offset = le_ih_k_offset(p_le_ih); |
| 877 | offset = cpu_key_k_offset(p_cpu_key); |
| 878 | |
| 879 | /* Needed byte is contained in the item pointed to by the path. */ |
| 880 | if (item_offset <= offset && |
| 881 | item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { |
| 882 | pos_in_item(search_path) = offset - item_offset; |
| 883 | if (is_indirect_le_ih(p_le_ih)) { |
| 884 | pos_in_item(search_path) /= blk_size; |
| 885 | } |
| 886 | return POSITION_FOUND; |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Needed byte is not contained in the item pointed to by the |
| 891 | * path. Set pos_in_item out of the item. |
| 892 | */ |
| 893 | if (is_indirect_le_ih(p_le_ih)) |
| 894 | pos_in_item(search_path) = |
| 895 | ih_item_len(p_le_ih) / UNFM_P_SIZE; |
| 896 | else |
| 897 | pos_in_item(search_path) = ih_item_len(p_le_ih); |
| 898 | |
| 899 | return POSITION_NOT_FOUND; |
| 900 | } |
| 901 | |
| 902 | /* Compare given item and item pointed to by the path. */ |
| 903 | int comp_items(const struct item_head *stored_ih, const struct treepath *path) |
| 904 | { |
| 905 | struct buffer_head *bh = PATH_PLAST_BUFFER(path); |
| 906 | struct item_head *ih; |
| 907 | |
| 908 | /* Last buffer at the path is not in the tree. */ |
| 909 | if (!B_IS_IN_TREE(bh)) |
| 910 | return 1; |
| 911 | |
| 912 | /* Last path position is invalid. */ |
| 913 | if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) |
| 914 | return 1; |
| 915 | |
| 916 | /* we need only to know, whether it is the same item */ |
| 917 | ih = tp_item_head(path); |
| 918 | return memcmp(stored_ih, ih, IH_SIZE); |
| 919 | } |
| 920 | |
| 921 | /* unformatted nodes are not logged anymore, ever. This is safe now */ |
| 922 | #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) |
| 923 | |
| 924 | /* block can not be forgotten as it is in I/O or held by someone */ |
| 925 | #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) |
| 926 | |
| 927 | /* prepare for delete or cut of direct item */ |
| 928 | static inline int prepare_for_direct_item(struct treepath *path, |
| 929 | struct item_head *le_ih, |
| 930 | struct inode *inode, |
| 931 | loff_t new_file_length, int *cut_size) |
| 932 | { |
| 933 | loff_t round_len; |
| 934 | |
| 935 | if (new_file_length == max_reiserfs_offset(inode)) { |
| 936 | /* item has to be deleted */ |
| 937 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| 938 | return M_DELETE; |
| 939 | } |
| 940 | /* new file gets truncated */ |
| 941 | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { |
| 942 | round_len = ROUND_UP(new_file_length); |
| 943 | /* this was new_file_length < le_ih ... */ |
| 944 | if (round_len < le_ih_k_offset(le_ih)) { |
| 945 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| 946 | return M_DELETE; /* Delete this item. */ |
| 947 | } |
| 948 | /* Calculate first position and size for cutting from item. */ |
| 949 | pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); |
| 950 | *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); |
| 951 | |
| 952 | return M_CUT; /* Cut from this item. */ |
| 953 | } |
| 954 | |
| 955 | /* old file: items may have any length */ |
| 956 | |
| 957 | if (new_file_length < le_ih_k_offset(le_ih)) { |
| 958 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| 959 | return M_DELETE; /* Delete this item. */ |
| 960 | } |
| 961 | |
| 962 | /* Calculate first position and size for cutting from item. */ |
| 963 | *cut_size = -(ih_item_len(le_ih) - |
| 964 | (pos_in_item(path) = |
| 965 | new_file_length + 1 - le_ih_k_offset(le_ih))); |
| 966 | return M_CUT; /* Cut from this item. */ |
| 967 | } |
| 968 | |
| 969 | static inline int prepare_for_direntry_item(struct treepath *path, |
| 970 | struct item_head *le_ih, |
| 971 | struct inode *inode, |
| 972 | loff_t new_file_length, |
| 973 | int *cut_size) |
| 974 | { |
| 975 | if (le_ih_k_offset(le_ih) == DOT_OFFSET && |
| 976 | new_file_length == max_reiserfs_offset(inode)) { |
| 977 | RFALSE(ih_entry_count(le_ih) != 2, |
| 978 | "PAP-5220: incorrect empty directory item (%h)", le_ih); |
| 979 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| 980 | /* Delete the directory item containing "." and ".." entry. */ |
| 981 | return M_DELETE; |
| 982 | } |
| 983 | |
| 984 | if (ih_entry_count(le_ih) == 1) { |
| 985 | /* |
| 986 | * Delete the directory item such as there is one record only |
| 987 | * in this item |
| 988 | */ |
| 989 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| 990 | return M_DELETE; |
| 991 | } |
| 992 | |
| 993 | /* Cut one record from the directory item. */ |
| 994 | *cut_size = |
| 995 | -(DEH_SIZE + |
| 996 | entry_length(get_last_bh(path), le_ih, pos_in_item(path))); |
| 997 | return M_CUT; |
| 998 | } |
| 999 | |
| 1000 | #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) |
| 1001 | |
| 1002 | /* |
| 1003 | * If the path points to a directory or direct item, calculate mode |
| 1004 | * and the size cut, for balance. |
| 1005 | * If the path points to an indirect item, remove some number of its |
| 1006 | * unformatted nodes. |
| 1007 | * In case of file truncate calculate whether this item must be |
| 1008 | * deleted/truncated or last unformatted node of this item will be |
| 1009 | * converted to a direct item. |
| 1010 | * This function returns a determination of what balance mode the |
| 1011 | * calling function should employ. |
| 1012 | */ |
| 1013 | static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, |
| 1014 | struct inode *inode, |
| 1015 | struct treepath *path, |
| 1016 | const struct cpu_key *item_key, |
| 1017 | /* |
| 1018 | * Number of unformatted nodes |
| 1019 | * which were removed from end |
| 1020 | * of the file. |
| 1021 | */ |
| 1022 | int *removed, |
| 1023 | int *cut_size, |
| 1024 | /* MAX_KEY_OFFSET in case of delete. */ |
| 1025 | unsigned long long new_file_length |
| 1026 | ) |
| 1027 | { |
| 1028 | struct super_block *sb = inode->i_sb; |
| 1029 | struct item_head *p_le_ih = tp_item_head(path); |
| 1030 | struct buffer_head *bh = PATH_PLAST_BUFFER(path); |
| 1031 | |
| 1032 | BUG_ON(!th->t_trans_id); |
| 1033 | |
| 1034 | /* Stat_data item. */ |
| 1035 | if (is_statdata_le_ih(p_le_ih)) { |
| 1036 | |
| 1037 | RFALSE(new_file_length != max_reiserfs_offset(inode), |
| 1038 | "PAP-5210: mode must be M_DELETE"); |
| 1039 | |
| 1040 | *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); |
| 1041 | return M_DELETE; |
| 1042 | } |
| 1043 | |
| 1044 | /* Directory item. */ |
| 1045 | if (is_direntry_le_ih(p_le_ih)) |
| 1046 | return prepare_for_direntry_item(path, p_le_ih, inode, |
| 1047 | new_file_length, |
| 1048 | cut_size); |
| 1049 | |
| 1050 | /* Direct item. */ |
| 1051 | if (is_direct_le_ih(p_le_ih)) |
| 1052 | return prepare_for_direct_item(path, p_le_ih, inode, |
| 1053 | new_file_length, cut_size); |
| 1054 | |
| 1055 | /* Case of an indirect item. */ |
| 1056 | { |
| 1057 | int blk_size = sb->s_blocksize; |
| 1058 | struct item_head s_ih; |
| 1059 | int need_re_search; |
| 1060 | int delete = 0; |
| 1061 | int result = M_CUT; |
| 1062 | int pos = 0; |
| 1063 | |
| 1064 | if ( new_file_length == max_reiserfs_offset (inode) ) { |
| 1065 | /* |
| 1066 | * prepare_for_delete_or_cut() is called by |
| 1067 | * reiserfs_delete_item() |
| 1068 | */ |
| 1069 | new_file_length = 0; |
| 1070 | delete = 1; |
| 1071 | } |
| 1072 | |
| 1073 | do { |
| 1074 | need_re_search = 0; |
| 1075 | *cut_size = 0; |
| 1076 | bh = PATH_PLAST_BUFFER(path); |
| 1077 | copy_item_head(&s_ih, tp_item_head(path)); |
| 1078 | pos = I_UNFM_NUM(&s_ih); |
| 1079 | |
| 1080 | while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { |
| 1081 | __le32 *unfm; |
| 1082 | __u32 block; |
| 1083 | |
| 1084 | /* |
| 1085 | * Each unformatted block deletion may involve |
| 1086 | * one additional bitmap block into the transaction, |
| 1087 | * thereby the initial journal space reservation |
| 1088 | * might not be enough. |
| 1089 | */ |
| 1090 | if (!delete && (*cut_size) != 0 && |
| 1091 | reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) |
| 1092 | break; |
| 1093 | |
| 1094 | unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1; |
| 1095 | block = get_block_num(unfm, 0); |
| 1096 | |
| 1097 | if (block != 0) { |
| 1098 | reiserfs_prepare_for_journal(sb, bh, 1); |
| 1099 | put_block_num(unfm, 0, 0); |
| 1100 | journal_mark_dirty(th, bh); |
| 1101 | reiserfs_free_block(th, inode, block, 1); |
| 1102 | } |
| 1103 | |
| 1104 | reiserfs_cond_resched(sb); |
| 1105 | |
| 1106 | if (item_moved (&s_ih, path)) { |
| 1107 | need_re_search = 1; |
| 1108 | break; |
| 1109 | } |
| 1110 | |
| 1111 | pos --; |
| 1112 | (*removed)++; |
| 1113 | (*cut_size) -= UNFM_P_SIZE; |
| 1114 | |
| 1115 | if (pos == 0) { |
| 1116 | (*cut_size) -= IH_SIZE; |
| 1117 | result = M_DELETE; |
| 1118 | break; |
| 1119 | } |
| 1120 | } |
| 1121 | /* |
| 1122 | * a trick. If the buffer has been logged, this will |
| 1123 | * do nothing. If we've broken the loop without logging |
| 1124 | * it, it will restore the buffer |
| 1125 | */ |
| 1126 | reiserfs_restore_prepared_buffer(sb, bh); |
| 1127 | } while (need_re_search && |
| 1128 | search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); |
| 1129 | pos_in_item(path) = pos * UNFM_P_SIZE; |
| 1130 | |
| 1131 | if (*cut_size == 0) { |
| 1132 | /* |
| 1133 | * Nothing was cut. maybe convert last unformatted node to the |
| 1134 | * direct item? |
| 1135 | */ |
| 1136 | result = M_CONVERT; |
| 1137 | } |
| 1138 | return result; |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | /* Calculate number of bytes which will be deleted or cut during balance */ |
| 1143 | static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) |
| 1144 | { |
| 1145 | int del_size; |
| 1146 | struct item_head *p_le_ih = tp_item_head(tb->tb_path); |
| 1147 | |
| 1148 | if (is_statdata_le_ih(p_le_ih)) |
| 1149 | return 0; |
| 1150 | |
| 1151 | del_size = |
| 1152 | (mode == |
| 1153 | M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; |
| 1154 | if (is_direntry_le_ih(p_le_ih)) { |
| 1155 | /* |
| 1156 | * return EMPTY_DIR_SIZE; We delete emty directories only. |
| 1157 | * we can't use EMPTY_DIR_SIZE, as old format dirs have a |
| 1158 | * different empty size. ick. FIXME, is this right? |
| 1159 | */ |
| 1160 | return del_size; |
| 1161 | } |
| 1162 | |
| 1163 | if (is_indirect_le_ih(p_le_ih)) |
| 1164 | del_size = (del_size / UNFM_P_SIZE) * |
| 1165 | (PATH_PLAST_BUFFER(tb->tb_path)->b_size); |
| 1166 | return del_size; |
| 1167 | } |
| 1168 | |
| 1169 | static void init_tb_struct(struct reiserfs_transaction_handle *th, |
| 1170 | struct tree_balance *tb, |
| 1171 | struct super_block *sb, |
| 1172 | struct treepath *path, int size) |
| 1173 | { |
| 1174 | |
| 1175 | BUG_ON(!th->t_trans_id); |
| 1176 | |
| 1177 | memset(tb, '\0', sizeof(struct tree_balance)); |
| 1178 | tb->transaction_handle = th; |
| 1179 | tb->tb_sb = sb; |
| 1180 | tb->tb_path = path; |
| 1181 | PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; |
| 1182 | PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; |
| 1183 | tb->insert_size[0] = size; |
| 1184 | } |
| 1185 | |
| 1186 | void padd_item(char *item, int total_length, int length) |
| 1187 | { |
| 1188 | int i; |
| 1189 | |
| 1190 | for (i = total_length; i > length;) |
| 1191 | item[--i] = 0; |
| 1192 | } |
| 1193 | |
| 1194 | #ifdef REISERQUOTA_DEBUG |
| 1195 | char key2type(struct reiserfs_key *ih) |
| 1196 | { |
| 1197 | if (is_direntry_le_key(2, ih)) |
| 1198 | return 'd'; |
| 1199 | if (is_direct_le_key(2, ih)) |
| 1200 | return 'D'; |
| 1201 | if (is_indirect_le_key(2, ih)) |
| 1202 | return 'i'; |
| 1203 | if (is_statdata_le_key(2, ih)) |
| 1204 | return 's'; |
| 1205 | return 'u'; |
| 1206 | } |
| 1207 | |
| 1208 | char head2type(struct item_head *ih) |
| 1209 | { |
| 1210 | if (is_direntry_le_ih(ih)) |
| 1211 | return 'd'; |
| 1212 | if (is_direct_le_ih(ih)) |
| 1213 | return 'D'; |
| 1214 | if (is_indirect_le_ih(ih)) |
| 1215 | return 'i'; |
| 1216 | if (is_statdata_le_ih(ih)) |
| 1217 | return 's'; |
| 1218 | return 'u'; |
| 1219 | } |
| 1220 | #endif |
| 1221 | |
| 1222 | /* |
| 1223 | * Delete object item. |
| 1224 | * th - active transaction handle |
| 1225 | * path - path to the deleted item |
| 1226 | * item_key - key to search for the deleted item |
| 1227 | * indode - used for updating i_blocks and quotas |
| 1228 | * un_bh - NULL or unformatted node pointer |
| 1229 | */ |
| 1230 | int reiserfs_delete_item(struct reiserfs_transaction_handle *th, |
| 1231 | struct treepath *path, const struct cpu_key *item_key, |
| 1232 | struct inode *inode, struct buffer_head *un_bh) |
| 1233 | { |
| 1234 | struct super_block *sb = inode->i_sb; |
| 1235 | struct tree_balance s_del_balance; |
| 1236 | struct item_head s_ih; |
| 1237 | struct item_head *q_ih; |
| 1238 | int quota_cut_bytes; |
| 1239 | int ret_value, del_size, removed; |
| 1240 | int depth; |
| 1241 | |
| 1242 | #ifdef CONFIG_REISERFS_CHECK |
| 1243 | char mode; |
| 1244 | int iter = 0; |
| 1245 | #endif |
| 1246 | |
| 1247 | BUG_ON(!th->t_trans_id); |
| 1248 | |
| 1249 | init_tb_struct(th, &s_del_balance, sb, path, |
| 1250 | 0 /*size is unknown */ ); |
| 1251 | |
| 1252 | while (1) { |
| 1253 | removed = 0; |
| 1254 | |
| 1255 | #ifdef CONFIG_REISERFS_CHECK |
| 1256 | iter++; |
| 1257 | mode = |
| 1258 | #endif |
| 1259 | prepare_for_delete_or_cut(th, inode, path, |
| 1260 | item_key, &removed, |
| 1261 | &del_size, |
| 1262 | max_reiserfs_offset(inode)); |
| 1263 | |
| 1264 | RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); |
| 1265 | |
| 1266 | copy_item_head(&s_ih, tp_item_head(path)); |
| 1267 | s_del_balance.insert_size[0] = del_size; |
| 1268 | |
| 1269 | ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); |
| 1270 | if (ret_value != REPEAT_SEARCH) |
| 1271 | break; |
| 1272 | |
| 1273 | PROC_INFO_INC(sb, delete_item_restarted); |
| 1274 | |
| 1275 | /* file system changed, repeat search */ |
| 1276 | ret_value = |
| 1277 | search_for_position_by_key(sb, item_key, path); |
| 1278 | if (ret_value == IO_ERROR) |
| 1279 | break; |
| 1280 | if (ret_value == FILE_NOT_FOUND) { |
| 1281 | reiserfs_warning(sb, "vs-5340", |
| 1282 | "no items of the file %K found", |
| 1283 | item_key); |
| 1284 | break; |
| 1285 | } |
| 1286 | } /* while (1) */ |
| 1287 | |
| 1288 | if (ret_value != CARRY_ON) { |
| 1289 | unfix_nodes(&s_del_balance); |
| 1290 | return 0; |
| 1291 | } |
| 1292 | |
| 1293 | /* reiserfs_delete_item returns item length when success */ |
| 1294 | ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); |
| 1295 | q_ih = tp_item_head(path); |
| 1296 | quota_cut_bytes = ih_item_len(q_ih); |
| 1297 | |
| 1298 | /* |
| 1299 | * hack so the quota code doesn't have to guess if the file has a |
| 1300 | * tail. On tail insert, we allocate quota for 1 unformatted node. |
| 1301 | * We test the offset because the tail might have been |
| 1302 | * split into multiple items, and we only want to decrement for |
| 1303 | * the unfm node once |
| 1304 | */ |
| 1305 | if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { |
| 1306 | if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { |
| 1307 | quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; |
| 1308 | } else { |
| 1309 | quota_cut_bytes = 0; |
| 1310 | } |
| 1311 | } |
| 1312 | |
| 1313 | if (un_bh) { |
| 1314 | int off; |
| 1315 | char *data; |
| 1316 | |
| 1317 | /* |
| 1318 | * We are in direct2indirect conversion, so move tail contents |
| 1319 | * to the unformatted node |
| 1320 | */ |
| 1321 | /* |
| 1322 | * note, we do the copy before preparing the buffer because we |
| 1323 | * don't care about the contents of the unformatted node yet. |
| 1324 | * the only thing we really care about is the direct item's |
| 1325 | * data is in the unformatted node. |
| 1326 | * |
| 1327 | * Otherwise, we would have to call |
| 1328 | * reiserfs_prepare_for_journal on the unformatted node, |
| 1329 | * which might schedule, meaning we'd have to loop all the |
| 1330 | * way back up to the start of the while loop. |
| 1331 | * |
| 1332 | * The unformatted node must be dirtied later on. We can't be |
| 1333 | * sure here if the entire tail has been deleted yet. |
| 1334 | * |
| 1335 | * un_bh is from the page cache (all unformatted nodes are |
| 1336 | * from the page cache) and might be a highmem page. So, we |
| 1337 | * can't use un_bh->b_data. |
| 1338 | * -clm |
| 1339 | */ |
| 1340 | |
| 1341 | data = kmap_atomic(un_bh->b_page); |
| 1342 | off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1)); |
| 1343 | memcpy(data + off, |
| 1344 | ih_item_body(PATH_PLAST_BUFFER(path), &s_ih), |
| 1345 | ret_value); |
| 1346 | kunmap_atomic(data); |
| 1347 | } |
| 1348 | |
| 1349 | /* Perform balancing after all resources have been collected at once. */ |
| 1350 | do_balance(&s_del_balance, NULL, NULL, M_DELETE); |
| 1351 | |
| 1352 | #ifdef REISERQUOTA_DEBUG |
| 1353 | reiserfs_debug(sb, REISERFS_DEBUG_CODE, |
| 1354 | "reiserquota delete_item(): freeing %u, id=%u type=%c", |
| 1355 | quota_cut_bytes, inode->i_uid, head2type(&s_ih)); |
| 1356 | #endif |
| 1357 | depth = reiserfs_write_unlock_nested(inode->i_sb); |
| 1358 | dquot_free_space_nodirty(inode, quota_cut_bytes); |
| 1359 | reiserfs_write_lock_nested(inode->i_sb, depth); |
| 1360 | |
| 1361 | /* Return deleted body length */ |
| 1362 | return ret_value; |
| 1363 | } |
| 1364 | |
| 1365 | /* |
| 1366 | * Summary Of Mechanisms For Handling Collisions Between Processes: |
| 1367 | * |
| 1368 | * deletion of the body of the object is performed by iput(), with the |
| 1369 | * result that if multiple processes are operating on a file, the |
| 1370 | * deletion of the body of the file is deferred until the last process |
| 1371 | * that has an open inode performs its iput(). |
| 1372 | * |
| 1373 | * writes and truncates are protected from collisions by use of |
| 1374 | * semaphores. |
| 1375 | * |
| 1376 | * creates, linking, and mknod are protected from collisions with other |
| 1377 | * processes by making the reiserfs_add_entry() the last step in the |
| 1378 | * creation, and then rolling back all changes if there was a collision. |
| 1379 | * - Hans |
| 1380 | */ |
| 1381 | |
| 1382 | /* this deletes item which never gets split */ |
| 1383 | void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, |
| 1384 | struct inode *inode, struct reiserfs_key *key) |
| 1385 | { |
| 1386 | struct super_block *sb = th->t_super; |
| 1387 | struct tree_balance tb; |
| 1388 | INITIALIZE_PATH(path); |
| 1389 | int item_len = 0; |
| 1390 | int tb_init = 0; |
| 1391 | struct cpu_key cpu_key; |
| 1392 | int retval; |
| 1393 | int quota_cut_bytes = 0; |
| 1394 | |
| 1395 | BUG_ON(!th->t_trans_id); |
| 1396 | |
| 1397 | le_key2cpu_key(&cpu_key, key); |
| 1398 | |
| 1399 | while (1) { |
| 1400 | retval = search_item(th->t_super, &cpu_key, &path); |
| 1401 | if (retval == IO_ERROR) { |
| 1402 | reiserfs_error(th->t_super, "vs-5350", |
| 1403 | "i/o failure occurred trying " |
| 1404 | "to delete %K", &cpu_key); |
| 1405 | break; |
| 1406 | } |
| 1407 | if (retval != ITEM_FOUND) { |
| 1408 | pathrelse(&path); |
| 1409 | /* |
| 1410 | * No need for a warning, if there is just no free |
| 1411 | * space to insert '..' item into the |
| 1412 | * newly-created subdir |
| 1413 | */ |
| 1414 | if (! |
| 1415 | ((unsigned long long) |
| 1416 | GET_HASH_VALUE(le_key_k_offset |
| 1417 | (le_key_version(key), key)) == 0 |
| 1418 | && (unsigned long long) |
| 1419 | GET_GENERATION_NUMBER(le_key_k_offset |
| 1420 | (le_key_version(key), |
| 1421 | key)) == 1)) |
| 1422 | reiserfs_warning(th->t_super, "vs-5355", |
| 1423 | "%k not found", key); |
| 1424 | break; |
| 1425 | } |
| 1426 | if (!tb_init) { |
| 1427 | tb_init = 1; |
| 1428 | item_len = ih_item_len(tp_item_head(&path)); |
| 1429 | init_tb_struct(th, &tb, th->t_super, &path, |
| 1430 | -(IH_SIZE + item_len)); |
| 1431 | } |
| 1432 | quota_cut_bytes = ih_item_len(tp_item_head(&path)); |
| 1433 | |
| 1434 | retval = fix_nodes(M_DELETE, &tb, NULL, NULL); |
| 1435 | if (retval == REPEAT_SEARCH) { |
| 1436 | PROC_INFO_INC(th->t_super, delete_solid_item_restarted); |
| 1437 | continue; |
| 1438 | } |
| 1439 | |
| 1440 | if (retval == CARRY_ON) { |
| 1441 | do_balance(&tb, NULL, NULL, M_DELETE); |
| 1442 | /* |
| 1443 | * Should we count quota for item? (we don't |
| 1444 | * count quotas for save-links) |
| 1445 | */ |
| 1446 | if (inode) { |
| 1447 | int depth; |
| 1448 | #ifdef REISERQUOTA_DEBUG |
| 1449 | reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, |
| 1450 | "reiserquota delete_solid_item(): freeing %u id=%u type=%c", |
| 1451 | quota_cut_bytes, inode->i_uid, |
| 1452 | key2type(key)); |
| 1453 | #endif |
| 1454 | depth = reiserfs_write_unlock_nested(sb); |
| 1455 | dquot_free_space_nodirty(inode, |
| 1456 | quota_cut_bytes); |
| 1457 | reiserfs_write_lock_nested(sb, depth); |
| 1458 | } |
| 1459 | break; |
| 1460 | } |
| 1461 | |
| 1462 | /* IO_ERROR, NO_DISK_SPACE, etc */ |
| 1463 | reiserfs_warning(th->t_super, "vs-5360", |
| 1464 | "could not delete %K due to fix_nodes failure", |
| 1465 | &cpu_key); |
| 1466 | unfix_nodes(&tb); |
| 1467 | break; |
| 1468 | } |
| 1469 | |
| 1470 | reiserfs_check_path(&path); |
| 1471 | } |
| 1472 | |
| 1473 | int reiserfs_delete_object(struct reiserfs_transaction_handle *th, |
| 1474 | struct inode *inode) |
| 1475 | { |
| 1476 | int err; |
| 1477 | inode->i_size = 0; |
| 1478 | BUG_ON(!th->t_trans_id); |
| 1479 | |
| 1480 | /* for directory this deletes item containing "." and ".." */ |
| 1481 | err = |
| 1482 | reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); |
| 1483 | if (err) |
| 1484 | return err; |
| 1485 | |
| 1486 | #if defined( USE_INODE_GENERATION_COUNTER ) |
| 1487 | if (!old_format_only(th->t_super)) { |
| 1488 | __le32 *inode_generation; |
| 1489 | |
| 1490 | inode_generation = |
| 1491 | &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; |
| 1492 | le32_add_cpu(inode_generation, 1); |
| 1493 | } |
| 1494 | /* USE_INODE_GENERATION_COUNTER */ |
| 1495 | #endif |
| 1496 | reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); |
| 1497 | |
| 1498 | return err; |
| 1499 | } |
| 1500 | |
| 1501 | static void unmap_buffers(struct page *page, loff_t pos) |
| 1502 | { |
| 1503 | struct buffer_head *bh; |
| 1504 | struct buffer_head *head; |
| 1505 | struct buffer_head *next; |
| 1506 | unsigned long tail_index; |
| 1507 | unsigned long cur_index; |
| 1508 | |
| 1509 | if (page) { |
| 1510 | if (page_has_buffers(page)) { |
| 1511 | tail_index = pos & (PAGE_SIZE - 1); |
| 1512 | cur_index = 0; |
| 1513 | head = page_buffers(page); |
| 1514 | bh = head; |
| 1515 | do { |
| 1516 | next = bh->b_this_page; |
| 1517 | |
| 1518 | /* |
| 1519 | * we want to unmap the buffers that contain |
| 1520 | * the tail, and all the buffers after it |
| 1521 | * (since the tail must be at the end of the |
| 1522 | * file). We don't want to unmap file data |
| 1523 | * before the tail, since it might be dirty |
| 1524 | * and waiting to reach disk |
| 1525 | */ |
| 1526 | cur_index += bh->b_size; |
| 1527 | if (cur_index > tail_index) { |
| 1528 | reiserfs_unmap_buffer(bh); |
| 1529 | } |
| 1530 | bh = next; |
| 1531 | } while (bh != head); |
| 1532 | } |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, |
| 1537 | struct inode *inode, |
| 1538 | struct page *page, |
| 1539 | struct treepath *path, |
| 1540 | const struct cpu_key *item_key, |
| 1541 | loff_t new_file_size, char *mode) |
| 1542 | { |
| 1543 | struct super_block *sb = inode->i_sb; |
| 1544 | int block_size = sb->s_blocksize; |
| 1545 | int cut_bytes; |
| 1546 | BUG_ON(!th->t_trans_id); |
| 1547 | BUG_ON(new_file_size != inode->i_size); |
| 1548 | |
| 1549 | /* |
| 1550 | * the page being sent in could be NULL if there was an i/o error |
| 1551 | * reading in the last block. The user will hit problems trying to |
| 1552 | * read the file, but for now we just skip the indirect2direct |
| 1553 | */ |
| 1554 | if (atomic_read(&inode->i_count) > 1 || |
| 1555 | !tail_has_to_be_packed(inode) || |
| 1556 | !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { |
| 1557 | /* leave tail in an unformatted node */ |
| 1558 | *mode = M_SKIP_BALANCING; |
| 1559 | cut_bytes = |
| 1560 | block_size - (new_file_size & (block_size - 1)); |
| 1561 | pathrelse(path); |
| 1562 | return cut_bytes; |
| 1563 | } |
| 1564 | |
| 1565 | /* Perform the conversion to a direct_item. */ |
| 1566 | return indirect2direct(th, inode, page, path, item_key, |
| 1567 | new_file_size, mode); |
| 1568 | } |
| 1569 | |
| 1570 | /* |
| 1571 | * we did indirect_to_direct conversion. And we have inserted direct |
| 1572 | * item successesfully, but there were no disk space to cut unfm |
| 1573 | * pointer being converted. Therefore we have to delete inserted |
| 1574 | * direct item(s) |
| 1575 | */ |
| 1576 | static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, |
| 1577 | struct inode *inode, struct treepath *path) |
| 1578 | { |
| 1579 | struct cpu_key tail_key; |
| 1580 | int tail_len; |
| 1581 | int removed; |
| 1582 | BUG_ON(!th->t_trans_id); |
| 1583 | |
| 1584 | make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); |
| 1585 | tail_key.key_length = 4; |
| 1586 | |
| 1587 | tail_len = |
| 1588 | (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; |
| 1589 | while (tail_len) { |
| 1590 | /* look for the last byte of the tail */ |
| 1591 | if (search_for_position_by_key(inode->i_sb, &tail_key, path) == |
| 1592 | POSITION_NOT_FOUND) |
| 1593 | reiserfs_panic(inode->i_sb, "vs-5615", |
| 1594 | "found invalid item"); |
| 1595 | RFALSE(path->pos_in_item != |
| 1596 | ih_item_len(tp_item_head(path)) - 1, |
| 1597 | "vs-5616: appended bytes found"); |
| 1598 | PATH_LAST_POSITION(path)--; |
| 1599 | |
| 1600 | removed = |
| 1601 | reiserfs_delete_item(th, path, &tail_key, inode, |
| 1602 | NULL /*unbh not needed */ ); |
| 1603 | RFALSE(removed <= 0 |
| 1604 | || removed > tail_len, |
| 1605 | "vs-5617: there was tail %d bytes, removed item length %d bytes", |
| 1606 | tail_len, removed); |
| 1607 | tail_len -= removed; |
| 1608 | set_cpu_key_k_offset(&tail_key, |
| 1609 | cpu_key_k_offset(&tail_key) - removed); |
| 1610 | } |
| 1611 | reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " |
| 1612 | "conversion has been rolled back due to " |
| 1613 | "lack of disk space"); |
| 1614 | mark_inode_dirty(inode); |
| 1615 | } |
| 1616 | |
| 1617 | /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ |
| 1618 | int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, |
| 1619 | struct treepath *path, |
| 1620 | struct cpu_key *item_key, |
| 1621 | struct inode *inode, |
| 1622 | struct page *page, loff_t new_file_size) |
| 1623 | { |
| 1624 | struct super_block *sb = inode->i_sb; |
| 1625 | /* |
| 1626 | * Every function which is going to call do_balance must first |
| 1627 | * create a tree_balance structure. Then it must fill up this |
| 1628 | * structure by using the init_tb_struct and fix_nodes functions. |
| 1629 | * After that we can make tree balancing. |
| 1630 | */ |
| 1631 | struct tree_balance s_cut_balance; |
| 1632 | struct item_head *p_le_ih; |
| 1633 | int cut_size = 0; /* Amount to be cut. */ |
| 1634 | int ret_value = CARRY_ON; |
| 1635 | int removed = 0; /* Number of the removed unformatted nodes. */ |
| 1636 | int is_inode_locked = 0; |
| 1637 | char mode; /* Mode of the balance. */ |
| 1638 | int retval2 = -1; |
| 1639 | int quota_cut_bytes; |
| 1640 | loff_t tail_pos = 0; |
| 1641 | int depth; |
| 1642 | |
| 1643 | BUG_ON(!th->t_trans_id); |
| 1644 | |
| 1645 | init_tb_struct(th, &s_cut_balance, inode->i_sb, path, |
| 1646 | cut_size); |
| 1647 | |
| 1648 | /* |
| 1649 | * Repeat this loop until we either cut the item without needing |
| 1650 | * to balance, or we fix_nodes without schedule occurring |
| 1651 | */ |
| 1652 | while (1) { |
| 1653 | /* |
| 1654 | * Determine the balance mode, position of the first byte to |
| 1655 | * be cut, and size to be cut. In case of the indirect item |
| 1656 | * free unformatted nodes which are pointed to by the cut |
| 1657 | * pointers. |
| 1658 | */ |
| 1659 | |
| 1660 | mode = |
| 1661 | prepare_for_delete_or_cut(th, inode, path, |
| 1662 | item_key, &removed, |
| 1663 | &cut_size, new_file_size); |
| 1664 | if (mode == M_CONVERT) { |
| 1665 | /* |
| 1666 | * convert last unformatted node to direct item or |
| 1667 | * leave tail in the unformatted node |
| 1668 | */ |
| 1669 | RFALSE(ret_value != CARRY_ON, |
| 1670 | "PAP-5570: can not convert twice"); |
| 1671 | |
| 1672 | ret_value = |
| 1673 | maybe_indirect_to_direct(th, inode, page, |
| 1674 | path, item_key, |
| 1675 | new_file_size, &mode); |
| 1676 | if (mode == M_SKIP_BALANCING) |
| 1677 | /* tail has been left in the unformatted node */ |
| 1678 | return ret_value; |
| 1679 | |
| 1680 | is_inode_locked = 1; |
| 1681 | |
| 1682 | /* |
| 1683 | * removing of last unformatted node will |
| 1684 | * change value we have to return to truncate. |
| 1685 | * Save it |
| 1686 | */ |
| 1687 | retval2 = ret_value; |
| 1688 | |
| 1689 | /* |
| 1690 | * So, we have performed the first part of the |
| 1691 | * conversion: |
| 1692 | * inserting the new direct item. Now we are |
| 1693 | * removing the last unformatted node pointer. |
| 1694 | * Set key to search for it. |
| 1695 | */ |
| 1696 | set_cpu_key_k_type(item_key, TYPE_INDIRECT); |
| 1697 | item_key->key_length = 4; |
| 1698 | new_file_size -= |
| 1699 | (new_file_size & (sb->s_blocksize - 1)); |
| 1700 | tail_pos = new_file_size; |
| 1701 | set_cpu_key_k_offset(item_key, new_file_size + 1); |
| 1702 | if (search_for_position_by_key |
| 1703 | (sb, item_key, |
| 1704 | path) == POSITION_NOT_FOUND) { |
| 1705 | print_block(PATH_PLAST_BUFFER(path), 3, |
| 1706 | PATH_LAST_POSITION(path) - 1, |
| 1707 | PATH_LAST_POSITION(path) + 1); |
| 1708 | reiserfs_panic(sb, "PAP-5580", "item to " |
| 1709 | "convert does not exist (%K)", |
| 1710 | item_key); |
| 1711 | } |
| 1712 | continue; |
| 1713 | } |
| 1714 | if (cut_size == 0) { |
| 1715 | pathrelse(path); |
| 1716 | return 0; |
| 1717 | } |
| 1718 | |
| 1719 | s_cut_balance.insert_size[0] = cut_size; |
| 1720 | |
| 1721 | ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); |
| 1722 | if (ret_value != REPEAT_SEARCH) |
| 1723 | break; |
| 1724 | |
| 1725 | PROC_INFO_INC(sb, cut_from_item_restarted); |
| 1726 | |
| 1727 | ret_value = |
| 1728 | search_for_position_by_key(sb, item_key, path); |
| 1729 | if (ret_value == POSITION_FOUND) |
| 1730 | continue; |
| 1731 | |
| 1732 | reiserfs_warning(sb, "PAP-5610", "item %K not found", |
| 1733 | item_key); |
| 1734 | unfix_nodes(&s_cut_balance); |
| 1735 | return (ret_value == IO_ERROR) ? -EIO : -ENOENT; |
| 1736 | } /* while */ |
| 1737 | |
| 1738 | /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */ |
| 1739 | if (ret_value != CARRY_ON) { |
| 1740 | if (is_inode_locked) { |
| 1741 | /* |
| 1742 | * FIXME: this seems to be not needed: we are always |
| 1743 | * able to cut item |
| 1744 | */ |
| 1745 | indirect_to_direct_roll_back(th, inode, path); |
| 1746 | } |
| 1747 | if (ret_value == NO_DISK_SPACE) |
| 1748 | reiserfs_warning(sb, "reiserfs-5092", |
| 1749 | "NO_DISK_SPACE"); |
| 1750 | unfix_nodes(&s_cut_balance); |
| 1751 | return -EIO; |
| 1752 | } |
| 1753 | |
| 1754 | /* go ahead and perform balancing */ |
| 1755 | |
| 1756 | RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); |
| 1757 | |
| 1758 | /* Calculate number of bytes that need to be cut from the item. */ |
| 1759 | quota_cut_bytes = |
| 1760 | (mode == |
| 1761 | M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance. |
| 1762 | insert_size[0]; |
| 1763 | if (retval2 == -1) |
| 1764 | ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); |
| 1765 | else |
| 1766 | ret_value = retval2; |
| 1767 | |
| 1768 | /* |
| 1769 | * For direct items, we only change the quota when deleting the last |
| 1770 | * item. |
| 1771 | */ |
| 1772 | p_le_ih = tp_item_head(s_cut_balance.tb_path); |
| 1773 | if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { |
| 1774 | if (mode == M_DELETE && |
| 1775 | (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == |
| 1776 | 1) { |
| 1777 | /* FIXME: this is to keep 3.5 happy */ |
| 1778 | REISERFS_I(inode)->i_first_direct_byte = U32_MAX; |
| 1779 | quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; |
| 1780 | } else { |
| 1781 | quota_cut_bytes = 0; |
| 1782 | } |
| 1783 | } |
| 1784 | #ifdef CONFIG_REISERFS_CHECK |
| 1785 | if (is_inode_locked) { |
| 1786 | struct item_head *le_ih = |
| 1787 | tp_item_head(s_cut_balance.tb_path); |
| 1788 | /* |
| 1789 | * we are going to complete indirect2direct conversion. Make |
| 1790 | * sure, that we exactly remove last unformatted node pointer |
| 1791 | * of the item |
| 1792 | */ |
| 1793 | if (!is_indirect_le_ih(le_ih)) |
| 1794 | reiserfs_panic(sb, "vs-5652", |
| 1795 | "item must be indirect %h", le_ih); |
| 1796 | |
| 1797 | if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) |
| 1798 | reiserfs_panic(sb, "vs-5653", "completing " |
| 1799 | "indirect2direct conversion indirect " |
| 1800 | "item %h being deleted must be of " |
| 1801 | "4 byte long", le_ih); |
| 1802 | |
| 1803 | if (mode == M_CUT |
| 1804 | && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { |
| 1805 | reiserfs_panic(sb, "vs-5654", "can not complete " |
| 1806 | "indirect2direct conversion of %h " |
| 1807 | "(CUT, insert_size==%d)", |
| 1808 | le_ih, s_cut_balance.insert_size[0]); |
| 1809 | } |
| 1810 | /* |
| 1811 | * it would be useful to make sure, that right neighboring |
| 1812 | * item is direct item of this file |
| 1813 | */ |
| 1814 | } |
| 1815 | #endif |
| 1816 | |
| 1817 | do_balance(&s_cut_balance, NULL, NULL, mode); |
| 1818 | if (is_inode_locked) { |
| 1819 | /* |
| 1820 | * we've done an indirect->direct conversion. when the |
| 1821 | * data block was freed, it was removed from the list of |
| 1822 | * blocks that must be flushed before the transaction |
| 1823 | * commits, make sure to unmap and invalidate it |
| 1824 | */ |
| 1825 | unmap_buffers(page, tail_pos); |
| 1826 | REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; |
| 1827 | } |
| 1828 | #ifdef REISERQUOTA_DEBUG |
| 1829 | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| 1830 | "reiserquota cut_from_item(): freeing %u id=%u type=%c", |
| 1831 | quota_cut_bytes, inode->i_uid, '?'); |
| 1832 | #endif |
| 1833 | depth = reiserfs_write_unlock_nested(sb); |
| 1834 | dquot_free_space_nodirty(inode, quota_cut_bytes); |
| 1835 | reiserfs_write_lock_nested(sb, depth); |
| 1836 | return ret_value; |
| 1837 | } |
| 1838 | |
| 1839 | static void truncate_directory(struct reiserfs_transaction_handle *th, |
| 1840 | struct inode *inode) |
| 1841 | { |
| 1842 | BUG_ON(!th->t_trans_id); |
| 1843 | if (inode->i_nlink) |
| 1844 | reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); |
| 1845 | |
| 1846 | set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); |
| 1847 | set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); |
| 1848 | reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); |
| 1849 | reiserfs_update_sd(th, inode); |
| 1850 | set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); |
| 1851 | set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); |
| 1852 | } |
| 1853 | |
| 1854 | /* |
| 1855 | * Truncate file to the new size. Note, this must be called with a |
| 1856 | * transaction already started |
| 1857 | */ |
| 1858 | int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, |
| 1859 | struct inode *inode, /* ->i_size contains new size */ |
| 1860 | struct page *page, /* up to date for last block */ |
| 1861 | /* |
| 1862 | * when it is called by file_release to convert |
| 1863 | * the tail - no timestamps should be updated |
| 1864 | */ |
| 1865 | int update_timestamps |
| 1866 | ) |
| 1867 | { |
| 1868 | INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ |
| 1869 | struct item_head *p_le_ih; /* Pointer to an item header. */ |
| 1870 | |
| 1871 | /* Key to search for a previous file item. */ |
| 1872 | struct cpu_key s_item_key; |
| 1873 | loff_t file_size, /* Old file size. */ |
| 1874 | new_file_size; /* New file size. */ |
| 1875 | int deleted; /* Number of deleted or truncated bytes. */ |
| 1876 | int retval; |
| 1877 | int err = 0; |
| 1878 | |
| 1879 | BUG_ON(!th->t_trans_id); |
| 1880 | if (! |
| 1881 | (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) |
| 1882 | || S_ISLNK(inode->i_mode))) |
| 1883 | return 0; |
| 1884 | |
| 1885 | /* deletion of directory - no need to update timestamps */ |
| 1886 | if (S_ISDIR(inode->i_mode)) { |
| 1887 | truncate_directory(th, inode); |
| 1888 | return 0; |
| 1889 | } |
| 1890 | |
| 1891 | /* Get new file size. */ |
| 1892 | new_file_size = inode->i_size; |
| 1893 | |
| 1894 | /* FIXME: note, that key type is unimportant here */ |
| 1895 | make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), |
| 1896 | TYPE_DIRECT, 3); |
| 1897 | |
| 1898 | retval = |
| 1899 | search_for_position_by_key(inode->i_sb, &s_item_key, |
| 1900 | &s_search_path); |
| 1901 | if (retval == IO_ERROR) { |
| 1902 | reiserfs_error(inode->i_sb, "vs-5657", |
| 1903 | "i/o failure occurred trying to truncate %K", |
| 1904 | &s_item_key); |
| 1905 | err = -EIO; |
| 1906 | goto out; |
| 1907 | } |
| 1908 | if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { |
| 1909 | reiserfs_error(inode->i_sb, "PAP-5660", |
| 1910 | "wrong result %d of search for %K", retval, |
| 1911 | &s_item_key); |
| 1912 | |
| 1913 | err = -EIO; |
| 1914 | goto out; |
| 1915 | } |
| 1916 | |
| 1917 | s_search_path.pos_in_item--; |
| 1918 | |
| 1919 | /* Get real file size (total length of all file items) */ |
| 1920 | p_le_ih = tp_item_head(&s_search_path); |
| 1921 | if (is_statdata_le_ih(p_le_ih)) |
| 1922 | file_size = 0; |
| 1923 | else { |
| 1924 | loff_t offset = le_ih_k_offset(p_le_ih); |
| 1925 | int bytes = |
| 1926 | op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); |
| 1927 | |
| 1928 | /* |
| 1929 | * this may mismatch with real file size: if last direct item |
| 1930 | * had no padding zeros and last unformatted node had no free |
| 1931 | * space, this file would have this file size |
| 1932 | */ |
| 1933 | file_size = offset + bytes - 1; |
| 1934 | } |
| 1935 | /* |
| 1936 | * are we doing a full truncate or delete, if so |
| 1937 | * kick in the reada code |
| 1938 | */ |
| 1939 | if (new_file_size == 0) |
| 1940 | s_search_path.reada = PATH_READA | PATH_READA_BACK; |
| 1941 | |
| 1942 | if (file_size == 0 || file_size < new_file_size) { |
| 1943 | goto update_and_out; |
| 1944 | } |
| 1945 | |
| 1946 | /* Update key to search for the last file item. */ |
| 1947 | set_cpu_key_k_offset(&s_item_key, file_size); |
| 1948 | |
| 1949 | do { |
| 1950 | /* Cut or delete file item. */ |
| 1951 | deleted = |
| 1952 | reiserfs_cut_from_item(th, &s_search_path, &s_item_key, |
| 1953 | inode, page, new_file_size); |
| 1954 | if (deleted < 0) { |
| 1955 | reiserfs_warning(inode->i_sb, "vs-5665", |
| 1956 | "reiserfs_cut_from_item failed"); |
| 1957 | reiserfs_check_path(&s_search_path); |
| 1958 | return 0; |
| 1959 | } |
| 1960 | |
| 1961 | RFALSE(deleted > file_size, |
| 1962 | "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", |
| 1963 | deleted, file_size, &s_item_key); |
| 1964 | |
| 1965 | /* Change key to search the last file item. */ |
| 1966 | file_size -= deleted; |
| 1967 | |
| 1968 | set_cpu_key_k_offset(&s_item_key, file_size); |
| 1969 | |
| 1970 | /* |
| 1971 | * While there are bytes to truncate and previous |
| 1972 | * file item is presented in the tree. |
| 1973 | */ |
| 1974 | |
| 1975 | /* |
| 1976 | * This loop could take a really long time, and could log |
| 1977 | * many more blocks than a transaction can hold. So, we do |
| 1978 | * a polite journal end here, and if the transaction needs |
| 1979 | * ending, we make sure the file is consistent before ending |
| 1980 | * the current trans and starting a new one |
| 1981 | */ |
| 1982 | if (journal_transaction_should_end(th, 0) || |
| 1983 | reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { |
| 1984 | pathrelse(&s_search_path); |
| 1985 | |
| 1986 | if (update_timestamps) { |
| 1987 | inode->i_mtime = current_time(inode); |
| 1988 | inode->i_ctime = current_time(inode); |
| 1989 | } |
| 1990 | reiserfs_update_sd(th, inode); |
| 1991 | |
| 1992 | err = journal_end(th); |
| 1993 | if (err) |
| 1994 | goto out; |
| 1995 | err = journal_begin(th, inode->i_sb, |
| 1996 | JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; |
| 1997 | if (err) |
| 1998 | goto out; |
| 1999 | reiserfs_update_inode_transaction(inode); |
| 2000 | } |
| 2001 | } while (file_size > ROUND_UP(new_file_size) && |
| 2002 | search_for_position_by_key(inode->i_sb, &s_item_key, |
| 2003 | &s_search_path) == POSITION_FOUND); |
| 2004 | |
| 2005 | RFALSE(file_size > ROUND_UP(new_file_size), |
| 2006 | "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d", |
| 2007 | new_file_size, file_size, s_item_key.on_disk_key.k_objectid); |
| 2008 | |
| 2009 | update_and_out: |
| 2010 | if (update_timestamps) { |
| 2011 | /* this is truncate, not file closing */ |
| 2012 | inode->i_mtime = current_time(inode); |
| 2013 | inode->i_ctime = current_time(inode); |
| 2014 | } |
| 2015 | reiserfs_update_sd(th, inode); |
| 2016 | |
| 2017 | out: |
| 2018 | pathrelse(&s_search_path); |
| 2019 | return err; |
| 2020 | } |
| 2021 | |
| 2022 | #ifdef CONFIG_REISERFS_CHECK |
| 2023 | /* this makes sure, that we __append__, not overwrite or add holes */ |
| 2024 | static void check_research_for_paste(struct treepath *path, |
| 2025 | const struct cpu_key *key) |
| 2026 | { |
| 2027 | struct item_head *found_ih = tp_item_head(path); |
| 2028 | |
| 2029 | if (is_direct_le_ih(found_ih)) { |
| 2030 | if (le_ih_k_offset(found_ih) + |
| 2031 | op_bytes_number(found_ih, |
| 2032 | get_last_bh(path)->b_size) != |
| 2033 | cpu_key_k_offset(key) |
| 2034 | || op_bytes_number(found_ih, |
| 2035 | get_last_bh(path)->b_size) != |
| 2036 | pos_in_item(path)) |
| 2037 | reiserfs_panic(NULL, "PAP-5720", "found direct item " |
| 2038 | "%h or position (%d) does not match " |
| 2039 | "to key %K", found_ih, |
| 2040 | pos_in_item(path), key); |
| 2041 | } |
| 2042 | if (is_indirect_le_ih(found_ih)) { |
| 2043 | if (le_ih_k_offset(found_ih) + |
| 2044 | op_bytes_number(found_ih, |
| 2045 | get_last_bh(path)->b_size) != |
| 2046 | cpu_key_k_offset(key) |
| 2047 | || I_UNFM_NUM(found_ih) != pos_in_item(path) |
| 2048 | || get_ih_free_space(found_ih) != 0) |
| 2049 | reiserfs_panic(NULL, "PAP-5730", "found indirect " |
| 2050 | "item (%h) or position (%d) does not " |
| 2051 | "match to key (%K)", |
| 2052 | found_ih, pos_in_item(path), key); |
| 2053 | } |
| 2054 | } |
| 2055 | #endif /* config reiserfs check */ |
| 2056 | |
| 2057 | /* |
| 2058 | * Paste bytes to the existing item. |
| 2059 | * Returns bytes number pasted into the item. |
| 2060 | */ |
| 2061 | int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, |
| 2062 | /* Path to the pasted item. */ |
| 2063 | struct treepath *search_path, |
| 2064 | /* Key to search for the needed item. */ |
| 2065 | const struct cpu_key *key, |
| 2066 | /* Inode item belongs to */ |
| 2067 | struct inode *inode, |
| 2068 | /* Pointer to the bytes to paste. */ |
| 2069 | const char *body, |
| 2070 | /* Size of pasted bytes. */ |
| 2071 | int pasted_size) |
| 2072 | { |
| 2073 | struct super_block *sb = inode->i_sb; |
| 2074 | struct tree_balance s_paste_balance; |
| 2075 | int retval; |
| 2076 | int fs_gen; |
| 2077 | int depth; |
| 2078 | |
| 2079 | BUG_ON(!th->t_trans_id); |
| 2080 | |
| 2081 | fs_gen = get_generation(inode->i_sb); |
| 2082 | |
| 2083 | #ifdef REISERQUOTA_DEBUG |
| 2084 | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| 2085 | "reiserquota paste_into_item(): allocating %u id=%u type=%c", |
| 2086 | pasted_size, inode->i_uid, |
| 2087 | key2type(&key->on_disk_key)); |
| 2088 | #endif |
| 2089 | |
| 2090 | depth = reiserfs_write_unlock_nested(sb); |
| 2091 | retval = dquot_alloc_space_nodirty(inode, pasted_size); |
| 2092 | reiserfs_write_lock_nested(sb, depth); |
| 2093 | if (retval) { |
| 2094 | pathrelse(search_path); |
| 2095 | return retval; |
| 2096 | } |
| 2097 | init_tb_struct(th, &s_paste_balance, th->t_super, search_path, |
| 2098 | pasted_size); |
| 2099 | #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| 2100 | s_paste_balance.key = key->on_disk_key; |
| 2101 | #endif |
| 2102 | |
| 2103 | /* DQUOT_* can schedule, must check before the fix_nodes */ |
| 2104 | if (fs_changed(fs_gen, inode->i_sb)) { |
| 2105 | goto search_again; |
| 2106 | } |
| 2107 | |
| 2108 | while ((retval = |
| 2109 | fix_nodes(M_PASTE, &s_paste_balance, NULL, |
| 2110 | body)) == REPEAT_SEARCH) { |
| 2111 | search_again: |
| 2112 | /* file system changed while we were in the fix_nodes */ |
| 2113 | PROC_INFO_INC(th->t_super, paste_into_item_restarted); |
| 2114 | retval = |
| 2115 | search_for_position_by_key(th->t_super, key, |
| 2116 | search_path); |
| 2117 | if (retval == IO_ERROR) { |
| 2118 | retval = -EIO; |
| 2119 | goto error_out; |
| 2120 | } |
| 2121 | if (retval == POSITION_FOUND) { |
| 2122 | reiserfs_warning(inode->i_sb, "PAP-5710", |
| 2123 | "entry or pasted byte (%K) exists", |
| 2124 | key); |
| 2125 | retval = -EEXIST; |
| 2126 | goto error_out; |
| 2127 | } |
| 2128 | #ifdef CONFIG_REISERFS_CHECK |
| 2129 | check_research_for_paste(search_path, key); |
| 2130 | #endif |
| 2131 | } |
| 2132 | |
| 2133 | /* |
| 2134 | * Perform balancing after all resources are collected by fix_nodes, |
| 2135 | * and accessing them will not risk triggering schedule. |
| 2136 | */ |
| 2137 | if (retval == CARRY_ON) { |
| 2138 | do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); |
| 2139 | return 0; |
| 2140 | } |
| 2141 | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; |
| 2142 | error_out: |
| 2143 | /* this also releases the path */ |
| 2144 | unfix_nodes(&s_paste_balance); |
| 2145 | #ifdef REISERQUOTA_DEBUG |
| 2146 | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| 2147 | "reiserquota paste_into_item(): freeing %u id=%u type=%c", |
| 2148 | pasted_size, inode->i_uid, |
| 2149 | key2type(&key->on_disk_key)); |
| 2150 | #endif |
| 2151 | depth = reiserfs_write_unlock_nested(sb); |
| 2152 | dquot_free_space_nodirty(inode, pasted_size); |
| 2153 | reiserfs_write_lock_nested(sb, depth); |
| 2154 | return retval; |
| 2155 | } |
| 2156 | |
| 2157 | /* |
| 2158 | * Insert new item into the buffer at the path. |
| 2159 | * th - active transaction handle |
| 2160 | * path - path to the inserted item |
| 2161 | * ih - pointer to the item header to insert |
| 2162 | * body - pointer to the bytes to insert |
| 2163 | */ |
| 2164 | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, |
| 2165 | struct treepath *path, const struct cpu_key *key, |
| 2166 | struct item_head *ih, struct inode *inode, |
| 2167 | const char *body) |
| 2168 | { |
| 2169 | struct tree_balance s_ins_balance; |
| 2170 | int retval; |
| 2171 | int fs_gen = 0; |
| 2172 | int quota_bytes = 0; |
| 2173 | |
| 2174 | BUG_ON(!th->t_trans_id); |
| 2175 | |
| 2176 | if (inode) { /* Do we count quotas for item? */ |
| 2177 | int depth; |
| 2178 | fs_gen = get_generation(inode->i_sb); |
| 2179 | quota_bytes = ih_item_len(ih); |
| 2180 | |
| 2181 | /* |
| 2182 | * hack so the quota code doesn't have to guess |
| 2183 | * if the file has a tail, links are always tails, |
| 2184 | * so there's no guessing needed |
| 2185 | */ |
| 2186 | if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) |
| 2187 | quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; |
| 2188 | #ifdef REISERQUOTA_DEBUG |
| 2189 | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| 2190 | "reiserquota insert_item(): allocating %u id=%u type=%c", |
| 2191 | quota_bytes, inode->i_uid, head2type(ih)); |
| 2192 | #endif |
| 2193 | /* |
| 2194 | * We can't dirty inode here. It would be immediately |
| 2195 | * written but appropriate stat item isn't inserted yet... |
| 2196 | */ |
| 2197 | depth = reiserfs_write_unlock_nested(inode->i_sb); |
| 2198 | retval = dquot_alloc_space_nodirty(inode, quota_bytes); |
| 2199 | reiserfs_write_lock_nested(inode->i_sb, depth); |
| 2200 | if (retval) { |
| 2201 | pathrelse(path); |
| 2202 | return retval; |
| 2203 | } |
| 2204 | } |
| 2205 | init_tb_struct(th, &s_ins_balance, th->t_super, path, |
| 2206 | IH_SIZE + ih_item_len(ih)); |
| 2207 | #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| 2208 | s_ins_balance.key = key->on_disk_key; |
| 2209 | #endif |
| 2210 | /* |
| 2211 | * DQUOT_* can schedule, must check to be sure calling |
| 2212 | * fix_nodes is safe |
| 2213 | */ |
| 2214 | if (inode && fs_changed(fs_gen, inode->i_sb)) { |
| 2215 | goto search_again; |
| 2216 | } |
| 2217 | |
| 2218 | while ((retval = |
| 2219 | fix_nodes(M_INSERT, &s_ins_balance, ih, |
| 2220 | body)) == REPEAT_SEARCH) { |
| 2221 | search_again: |
| 2222 | /* file system changed while we were in the fix_nodes */ |
| 2223 | PROC_INFO_INC(th->t_super, insert_item_restarted); |
| 2224 | retval = search_item(th->t_super, key, path); |
| 2225 | if (retval == IO_ERROR) { |
| 2226 | retval = -EIO; |
| 2227 | goto error_out; |
| 2228 | } |
| 2229 | if (retval == ITEM_FOUND) { |
| 2230 | reiserfs_warning(th->t_super, "PAP-5760", |
| 2231 | "key %K already exists in the tree", |
| 2232 | key); |
| 2233 | retval = -EEXIST; |
| 2234 | goto error_out; |
| 2235 | } |
| 2236 | } |
| 2237 | |
| 2238 | /* make balancing after all resources will be collected at a time */ |
| 2239 | if (retval == CARRY_ON) { |
| 2240 | do_balance(&s_ins_balance, ih, body, M_INSERT); |
| 2241 | return 0; |
| 2242 | } |
| 2243 | |
| 2244 | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; |
| 2245 | error_out: |
| 2246 | /* also releases the path */ |
| 2247 | unfix_nodes(&s_ins_balance); |
| 2248 | #ifdef REISERQUOTA_DEBUG |
| 2249 | reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, |
| 2250 | "reiserquota insert_item(): freeing %u id=%u type=%c", |
| 2251 | quota_bytes, inode->i_uid, head2type(ih)); |
| 2252 | #endif |
| 2253 | if (inode) { |
| 2254 | int depth = reiserfs_write_unlock_nested(inode->i_sb); |
| 2255 | dquot_free_space_nodirty(inode, quota_bytes); |
| 2256 | reiserfs_write_lock_nested(inode->i_sb, depth); |
| 2257 | } |
| 2258 | return retval; |
| 2259 | } |