David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Remote Processor Framework Elf loader |
| 4 | * |
| 5 | * Copyright (C) 2011 Texas Instruments, Inc. |
| 6 | * Copyright (C) 2011 Google, Inc. |
| 7 | * |
| 8 | * Ohad Ben-Cohen <ohad@wizery.com> |
| 9 | * Brian Swetland <swetland@google.com> |
| 10 | * Mark Grosen <mgrosen@ti.com> |
| 11 | * Fernando Guzman Lugo <fernando.lugo@ti.com> |
| 12 | * Suman Anna <s-anna@ti.com> |
| 13 | * Robert Tivy <rtivy@ti.com> |
| 14 | * Armando Uribe De Leon <x0095078@ti.com> |
| 15 | * Sjur Brændeland <sjur.brandeland@stericsson.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 16 | */ |
| 17 | |
| 18 | #define pr_fmt(fmt) "%s: " fmt, __func__ |
| 19 | |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/firmware.h> |
| 22 | #include <linux/remoteproc.h> |
| 23 | #include <linux/elf.h> |
| 24 | |
| 25 | #include "remoteproc_internal.h" |
| 26 | |
| 27 | /** |
| 28 | * rproc_elf_sanity_check() - Sanity Check ELF firmware image |
| 29 | * @rproc: the remote processor handle |
| 30 | * @fw: the ELF firmware image |
| 31 | * |
| 32 | * Make sure this fw image is sane. |
| 33 | */ |
| 34 | int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw) |
| 35 | { |
| 36 | const char *name = rproc->firmware; |
| 37 | struct device *dev = &rproc->dev; |
| 38 | struct elf32_hdr *ehdr; |
| 39 | char class; |
| 40 | |
| 41 | if (!fw) { |
| 42 | dev_err(dev, "failed to load %s\n", name); |
| 43 | return -EINVAL; |
| 44 | } |
| 45 | |
| 46 | if (fw->size < sizeof(struct elf32_hdr)) { |
| 47 | dev_err(dev, "Image is too small\n"); |
| 48 | return -EINVAL; |
| 49 | } |
| 50 | |
| 51 | ehdr = (struct elf32_hdr *)fw->data; |
| 52 | |
| 53 | /* We only support ELF32 at this point */ |
| 54 | class = ehdr->e_ident[EI_CLASS]; |
| 55 | if (class != ELFCLASS32) { |
| 56 | dev_err(dev, "Unsupported class: %d\n", class); |
| 57 | return -EINVAL; |
| 58 | } |
| 59 | |
| 60 | /* We assume the firmware has the same endianness as the host */ |
| 61 | # ifdef __LITTLE_ENDIAN |
| 62 | if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) { |
| 63 | # else /* BIG ENDIAN */ |
| 64 | if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { |
| 65 | # endif |
| 66 | dev_err(dev, "Unsupported firmware endianness\n"); |
| 67 | return -EINVAL; |
| 68 | } |
| 69 | |
| 70 | if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) { |
| 71 | dev_err(dev, "Image is too small\n"); |
| 72 | return -EINVAL; |
| 73 | } |
| 74 | |
| 75 | if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) { |
| 76 | dev_err(dev, "Image is corrupted (bad magic)\n"); |
| 77 | return -EINVAL; |
| 78 | } |
| 79 | |
| 80 | if (ehdr->e_phnum == 0) { |
| 81 | dev_err(dev, "No loadable segments\n"); |
| 82 | return -EINVAL; |
| 83 | } |
| 84 | |
| 85 | if (ehdr->e_phoff > fw->size) { |
| 86 | dev_err(dev, "Firmware size is too small\n"); |
| 87 | return -EINVAL; |
| 88 | } |
| 89 | |
| 90 | return 0; |
| 91 | } |
| 92 | EXPORT_SYMBOL(rproc_elf_sanity_check); |
| 93 | |
| 94 | /** |
| 95 | * rproc_elf_get_boot_addr() - Get rproc's boot address. |
| 96 | * @rproc: the remote processor handle |
| 97 | * @fw: the ELF firmware image |
| 98 | * |
| 99 | * This function returns the entry point address of the ELF |
| 100 | * image. |
| 101 | * |
| 102 | * Note that the boot address is not a configurable property of all remote |
| 103 | * processors. Some will always boot at a specific hard-coded address. |
| 104 | */ |
| 105 | u32 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw) |
| 106 | { |
| 107 | struct elf32_hdr *ehdr = (struct elf32_hdr *)fw->data; |
| 108 | |
| 109 | return ehdr->e_entry; |
| 110 | } |
| 111 | EXPORT_SYMBOL(rproc_elf_get_boot_addr); |
| 112 | |
| 113 | /** |
| 114 | * rproc_elf_load_segments() - load firmware segments to memory |
| 115 | * @rproc: remote processor which will be booted using these fw segments |
| 116 | * @fw: the ELF firmware image |
| 117 | * |
| 118 | * This function loads the firmware segments to memory, where the remote |
| 119 | * processor expects them. |
| 120 | * |
| 121 | * Some remote processors will expect their code and data to be placed |
| 122 | * in specific device addresses, and can't have them dynamically assigned. |
| 123 | * |
| 124 | * We currently support only those kind of remote processors, and expect |
| 125 | * the program header's paddr member to contain those addresses. We then go |
| 126 | * through the physically contiguous "carveout" memory regions which we |
| 127 | * allocated (and mapped) earlier on behalf of the remote processor, |
| 128 | * and "translate" device address to kernel addresses, so we can copy the |
| 129 | * segments where they are expected. |
| 130 | * |
| 131 | * Currently we only support remote processors that required carveout |
| 132 | * allocations and got them mapped onto their iommus. Some processors |
| 133 | * might be different: they might not have iommus, and would prefer to |
| 134 | * directly allocate memory for every segment/resource. This is not yet |
| 135 | * supported, though. |
| 136 | */ |
| 137 | int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw) |
| 138 | { |
| 139 | struct device *dev = &rproc->dev; |
| 140 | struct elf32_hdr *ehdr; |
| 141 | struct elf32_phdr *phdr; |
| 142 | int i, ret = 0; |
| 143 | const u8 *elf_data = fw->data; |
| 144 | |
| 145 | ehdr = (struct elf32_hdr *)elf_data; |
| 146 | phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); |
| 147 | |
| 148 | /* go through the available ELF segments */ |
| 149 | for (i = 0; i < ehdr->e_phnum; i++, phdr++) { |
| 150 | u32 da = phdr->p_paddr; |
| 151 | u32 memsz = phdr->p_memsz; |
| 152 | u32 filesz = phdr->p_filesz; |
| 153 | u32 offset = phdr->p_offset; |
| 154 | void *ptr; |
| 155 | |
| 156 | if (phdr->p_type != PT_LOAD) |
| 157 | continue; |
| 158 | |
| 159 | dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", |
| 160 | phdr->p_type, da, memsz, filesz); |
| 161 | |
| 162 | if (filesz > memsz) { |
| 163 | dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", |
| 164 | filesz, memsz); |
| 165 | ret = -EINVAL; |
| 166 | break; |
| 167 | } |
| 168 | |
| 169 | if (offset + filesz > fw->size) { |
| 170 | dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", |
| 171 | offset + filesz, fw->size); |
| 172 | ret = -EINVAL; |
| 173 | break; |
| 174 | } |
| 175 | |
| 176 | /* grab the kernel address for this device address */ |
| 177 | ptr = rproc_da_to_va(rproc, da, memsz); |
| 178 | if (!ptr) { |
| 179 | dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); |
| 180 | ret = -EINVAL; |
| 181 | break; |
| 182 | } |
| 183 | |
| 184 | /* put the segment where the remote processor expects it */ |
| 185 | if (phdr->p_filesz) |
| 186 | memcpy(ptr, elf_data + phdr->p_offset, filesz); |
| 187 | |
| 188 | /* |
| 189 | * Zero out remaining memory for this segment. |
| 190 | * |
| 191 | * This isn't strictly required since dma_alloc_coherent already |
| 192 | * did this for us. albeit harmless, we may consider removing |
| 193 | * this. |
| 194 | */ |
| 195 | if (memsz > filesz) |
| 196 | memset(ptr + filesz, 0, memsz - filesz); |
| 197 | } |
| 198 | |
| 199 | return ret; |
| 200 | } |
| 201 | EXPORT_SYMBOL(rproc_elf_load_segments); |
| 202 | |
| 203 | static struct elf32_shdr * |
| 204 | find_table(struct device *dev, struct elf32_hdr *ehdr, size_t fw_size) |
| 205 | { |
| 206 | struct elf32_shdr *shdr; |
| 207 | int i; |
| 208 | const char *name_table; |
| 209 | struct resource_table *table = NULL; |
| 210 | const u8 *elf_data = (void *)ehdr; |
| 211 | |
| 212 | /* look for the resource table and handle it */ |
| 213 | shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); |
| 214 | name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset; |
| 215 | |
| 216 | for (i = 0; i < ehdr->e_shnum; i++, shdr++) { |
| 217 | u32 size = shdr->sh_size; |
| 218 | u32 offset = shdr->sh_offset; |
| 219 | |
| 220 | if (strcmp(name_table + shdr->sh_name, ".resource_table")) |
| 221 | continue; |
| 222 | |
| 223 | table = (struct resource_table *)(elf_data + offset); |
| 224 | |
| 225 | /* make sure we have the entire table */ |
| 226 | if (offset + size > fw_size || offset + size < size) { |
| 227 | dev_err(dev, "resource table truncated\n"); |
| 228 | return NULL; |
| 229 | } |
| 230 | |
| 231 | /* make sure table has at least the header */ |
| 232 | if (sizeof(struct resource_table) > size) { |
| 233 | dev_err(dev, "header-less resource table\n"); |
| 234 | return NULL; |
| 235 | } |
| 236 | |
| 237 | /* we don't support any version beyond the first */ |
| 238 | if (table->ver != 1) { |
| 239 | dev_err(dev, "unsupported fw ver: %d\n", table->ver); |
| 240 | return NULL; |
| 241 | } |
| 242 | |
| 243 | /* make sure reserved bytes are zeroes */ |
| 244 | if (table->reserved[0] || table->reserved[1]) { |
| 245 | dev_err(dev, "non zero reserved bytes\n"); |
| 246 | return NULL; |
| 247 | } |
| 248 | |
| 249 | /* make sure the offsets array isn't truncated */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 250 | if (struct_size(table, offset, table->num) > size) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 251 | dev_err(dev, "resource table incomplete\n"); |
| 252 | return NULL; |
| 253 | } |
| 254 | |
| 255 | return shdr; |
| 256 | } |
| 257 | |
| 258 | return NULL; |
| 259 | } |
| 260 | |
| 261 | /** |
| 262 | * rproc_elf_load_rsc_table() - load the resource table |
| 263 | * @rproc: the rproc handle |
| 264 | * @fw: the ELF firmware image |
| 265 | * |
| 266 | * This function finds the resource table inside the remote processor's |
| 267 | * firmware, load it into the @cached_table and update @table_ptr. |
| 268 | * |
| 269 | * Return: 0 on success, negative errno on failure. |
| 270 | */ |
| 271 | int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw) |
| 272 | { |
| 273 | struct elf32_hdr *ehdr; |
| 274 | struct elf32_shdr *shdr; |
| 275 | struct device *dev = &rproc->dev; |
| 276 | struct resource_table *table = NULL; |
| 277 | const u8 *elf_data = fw->data; |
| 278 | size_t tablesz; |
| 279 | |
| 280 | ehdr = (struct elf32_hdr *)elf_data; |
| 281 | |
| 282 | shdr = find_table(dev, ehdr, fw->size); |
| 283 | if (!shdr) |
| 284 | return -EINVAL; |
| 285 | |
| 286 | table = (struct resource_table *)(elf_data + shdr->sh_offset); |
| 287 | tablesz = shdr->sh_size; |
| 288 | |
| 289 | /* |
| 290 | * Create a copy of the resource table. When a virtio device starts |
| 291 | * and calls vring_new_virtqueue() the address of the allocated vring |
| 292 | * will be stored in the cached_table. Before the device is started, |
| 293 | * cached_table will be copied into device memory. |
| 294 | */ |
| 295 | rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); |
| 296 | if (!rproc->cached_table) |
| 297 | return -ENOMEM; |
| 298 | |
| 299 | rproc->table_ptr = rproc->cached_table; |
| 300 | rproc->table_sz = tablesz; |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | EXPORT_SYMBOL(rproc_elf_load_rsc_table); |
| 305 | |
| 306 | /** |
| 307 | * rproc_elf_find_loaded_rsc_table() - find the loaded resource table |
| 308 | * @rproc: the rproc handle |
| 309 | * @fw: the ELF firmware image |
| 310 | * |
| 311 | * This function finds the location of the loaded resource table. Don't |
| 312 | * call this function if the table wasn't loaded yet - it's a bug if you do. |
| 313 | * |
| 314 | * Returns the pointer to the resource table if it is found or NULL otherwise. |
| 315 | * If the table wasn't loaded yet the result is unspecified. |
| 316 | */ |
| 317 | struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc, |
| 318 | const struct firmware *fw) |
| 319 | { |
| 320 | struct elf32_hdr *ehdr = (struct elf32_hdr *)fw->data; |
| 321 | struct elf32_shdr *shdr; |
| 322 | |
| 323 | shdr = find_table(&rproc->dev, ehdr, fw->size); |
| 324 | if (!shdr) |
| 325 | return NULL; |
| 326 | |
| 327 | return rproc_da_to_va(rproc, shdr->sh_addr, shdr->sh_size); |
| 328 | } |
| 329 | EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table); |