David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Intel Wireless WiMAX Connection 2400m |
| 4 | * Generic probe/disconnect, reset and message passing |
| 5 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 6 | * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com> |
| 7 | * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> |
| 8 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | * See i2400m.h for driver documentation. This contains helpers for |
| 10 | * the driver model glue [_setup()/_release()], handling device resets |
| 11 | * [_dev_reset_handle()], and the backends for the WiMAX stack ops |
| 12 | * reset [_op_reset()] and message from user [_op_msg_from_user()]. |
| 13 | * |
| 14 | * ROADMAP: |
| 15 | * |
| 16 | * i2400m_op_msg_from_user() |
| 17 | * i2400m_msg_to_dev() |
| 18 | * wimax_msg_to_user_send() |
| 19 | * |
| 20 | * i2400m_op_reset() |
| 21 | * i240m->bus_reset() |
| 22 | * |
| 23 | * i2400m_dev_reset_handle() |
| 24 | * __i2400m_dev_reset_handle() |
| 25 | * __i2400m_dev_stop() |
| 26 | * __i2400m_dev_start() |
| 27 | * |
| 28 | * i2400m_setup() |
| 29 | * i2400m->bus_setup() |
| 30 | * i2400m_bootrom_init() |
| 31 | * register_netdev() |
| 32 | * wimax_dev_add() |
| 33 | * i2400m_dev_start() |
| 34 | * __i2400m_dev_start() |
| 35 | * i2400m_dev_bootstrap() |
| 36 | * i2400m_tx_setup() |
| 37 | * i2400m->bus_dev_start() |
| 38 | * i2400m_firmware_check() |
| 39 | * i2400m_check_mac_addr() |
| 40 | * |
| 41 | * i2400m_release() |
| 42 | * i2400m_dev_stop() |
| 43 | * __i2400m_dev_stop() |
| 44 | * i2400m_dev_shutdown() |
| 45 | * i2400m->bus_dev_stop() |
| 46 | * i2400m_tx_release() |
| 47 | * i2400m->bus_release() |
| 48 | * wimax_dev_rm() |
| 49 | * unregister_netdev() |
| 50 | */ |
| 51 | #include "i2400m.h" |
| 52 | #include <linux/etherdevice.h> |
| 53 | #include <linux/wimax/i2400m.h> |
| 54 | #include <linux/module.h> |
| 55 | #include <linux/moduleparam.h> |
| 56 | #include <linux/suspend.h> |
| 57 | #include <linux/slab.h> |
| 58 | |
| 59 | #define D_SUBMODULE driver |
| 60 | #include "debug-levels.h" |
| 61 | |
| 62 | |
| 63 | static char i2400m_debug_params[128]; |
| 64 | module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params), |
| 65 | 0644); |
| 66 | MODULE_PARM_DESC(debug, |
| 67 | "String of space-separated NAME:VALUE pairs, where NAMEs " |
| 68 | "are the different debug submodules and VALUE are the " |
| 69 | "initial debug value to set."); |
| 70 | |
| 71 | static char i2400m_barkers_params[128]; |
| 72 | module_param_string(barkers, i2400m_barkers_params, |
| 73 | sizeof(i2400m_barkers_params), 0644); |
| 74 | MODULE_PARM_DESC(barkers, |
| 75 | "String of comma-separated 32-bit values; each is " |
| 76 | "recognized as the value the device sends as a reboot " |
| 77 | "signal; values are appended to a list--setting one value " |
| 78 | "as zero cleans the existing list and starts a new one."); |
| 79 | |
| 80 | /* |
| 81 | * WiMAX stack operation: relay a message from user space |
| 82 | * |
| 83 | * @wimax_dev: device descriptor |
| 84 | * @pipe_name: named pipe the message is for |
| 85 | * @msg_buf: pointer to the message bytes |
| 86 | * @msg_len: length of the buffer |
| 87 | * @genl_info: passed by the generic netlink layer |
| 88 | * |
| 89 | * The WiMAX stack will call this function when a message was received |
| 90 | * from user space. |
| 91 | * |
| 92 | * For the i2400m, this is an L3L4 message, as specified in |
| 93 | * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct |
| 94 | * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be |
| 95 | * coded in Little Endian. |
| 96 | * |
| 97 | * This function just verifies that the header declaration and the |
| 98 | * payload are consistent and then deals with it, either forwarding it |
| 99 | * to the device or procesing it locally. |
| 100 | * |
| 101 | * In the i2400m, messages are basically commands that will carry an |
| 102 | * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to |
| 103 | * user space. The rx.c code might intercept the response and use it |
| 104 | * to update the driver's state, but then it will pass it on so it can |
| 105 | * be relayed back to user space. |
| 106 | * |
| 107 | * Note that asynchronous events from the device are processed and |
| 108 | * sent to user space in rx.c. |
| 109 | */ |
| 110 | static |
| 111 | int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev, |
| 112 | const char *pipe_name, |
| 113 | const void *msg_buf, size_t msg_len, |
| 114 | const struct genl_info *genl_info) |
| 115 | { |
| 116 | int result; |
| 117 | struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); |
| 118 | struct device *dev = i2400m_dev(i2400m); |
| 119 | struct sk_buff *ack_skb; |
| 120 | |
| 121 | d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p " |
| 122 | "msg_len %zu genl_info %p)\n", wimax_dev, i2400m, |
| 123 | msg_buf, msg_len, genl_info); |
| 124 | ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len); |
| 125 | result = PTR_ERR(ack_skb); |
| 126 | if (IS_ERR(ack_skb)) |
| 127 | goto error_msg_to_dev; |
| 128 | result = wimax_msg_send(&i2400m->wimax_dev, ack_skb); |
| 129 | error_msg_to_dev: |
| 130 | d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu " |
| 131 | "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len, |
| 132 | genl_info, result); |
| 133 | return result; |
| 134 | } |
| 135 | |
| 136 | |
| 137 | /* |
| 138 | * Context to wait for a reset to finalize |
| 139 | */ |
| 140 | struct i2400m_reset_ctx { |
| 141 | struct completion completion; |
| 142 | int result; |
| 143 | }; |
| 144 | |
| 145 | |
| 146 | /* |
| 147 | * WiMAX stack operation: reset a device |
| 148 | * |
| 149 | * @wimax_dev: device descriptor |
| 150 | * |
| 151 | * See the documentation for wimax_reset() and wimax_dev->op_reset for |
| 152 | * the requirements of this function. The WiMAX stack guarantees |
| 153 | * serialization on calls to this function. |
| 154 | * |
| 155 | * Do a warm reset on the device; if it fails, resort to a cold reset |
| 156 | * and return -ENODEV. On successful warm reset, we need to block |
| 157 | * until it is complete. |
| 158 | * |
| 159 | * The bus-driver implementation of reset takes care of falling back |
| 160 | * to cold reset if warm fails. |
| 161 | */ |
| 162 | static |
| 163 | int i2400m_op_reset(struct wimax_dev *wimax_dev) |
| 164 | { |
| 165 | int result; |
| 166 | struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); |
| 167 | struct device *dev = i2400m_dev(i2400m); |
| 168 | struct i2400m_reset_ctx ctx = { |
| 169 | .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion), |
| 170 | .result = 0, |
| 171 | }; |
| 172 | |
| 173 | d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev); |
| 174 | mutex_lock(&i2400m->init_mutex); |
| 175 | i2400m->reset_ctx = &ctx; |
| 176 | mutex_unlock(&i2400m->init_mutex); |
| 177 | result = i2400m_reset(i2400m, I2400M_RT_WARM); |
| 178 | if (result < 0) |
| 179 | goto out; |
| 180 | result = wait_for_completion_timeout(&ctx.completion, 4*HZ); |
| 181 | if (result == 0) |
| 182 | result = -ETIMEDOUT; |
| 183 | else if (result > 0) |
| 184 | result = ctx.result; |
| 185 | /* if result < 0, pass it on */ |
| 186 | mutex_lock(&i2400m->init_mutex); |
| 187 | i2400m->reset_ctx = NULL; |
| 188 | mutex_unlock(&i2400m->init_mutex); |
| 189 | out: |
| 190 | d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result); |
| 191 | return result; |
| 192 | } |
| 193 | |
| 194 | |
| 195 | /* |
| 196 | * Check the MAC address we got from boot mode is ok |
| 197 | * |
| 198 | * @i2400m: device descriptor |
| 199 | * |
| 200 | * Returns: 0 if ok, < 0 errno code on error. |
| 201 | */ |
| 202 | static |
| 203 | int i2400m_check_mac_addr(struct i2400m *i2400m) |
| 204 | { |
| 205 | int result; |
| 206 | struct device *dev = i2400m_dev(i2400m); |
| 207 | struct sk_buff *skb; |
| 208 | const struct i2400m_tlv_detailed_device_info *ddi; |
| 209 | struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| 210 | |
| 211 | d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| 212 | skb = i2400m_get_device_info(i2400m); |
| 213 | if (IS_ERR(skb)) { |
| 214 | result = PTR_ERR(skb); |
| 215 | dev_err(dev, "Cannot verify MAC address, error reading: %d\n", |
| 216 | result); |
| 217 | goto error; |
| 218 | } |
| 219 | /* Extract MAC address */ |
| 220 | ddi = (void *) skb->data; |
| 221 | BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address)); |
| 222 | d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n", |
| 223 | ddi->mac_address); |
| 224 | if (!memcmp(net_dev->perm_addr, ddi->mac_address, |
| 225 | sizeof(ddi->mac_address))) |
| 226 | goto ok; |
| 227 | dev_warn(dev, "warning: device reports a different MAC address " |
| 228 | "to that of boot mode's\n"); |
| 229 | dev_warn(dev, "device reports %pM\n", ddi->mac_address); |
| 230 | dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr); |
| 231 | if (is_zero_ether_addr(ddi->mac_address)) |
| 232 | dev_err(dev, "device reports an invalid MAC address, " |
| 233 | "not updating\n"); |
| 234 | else { |
| 235 | dev_warn(dev, "updating MAC address\n"); |
| 236 | net_dev->addr_len = ETH_ALEN; |
| 237 | memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN); |
| 238 | memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN); |
| 239 | } |
| 240 | ok: |
| 241 | result = 0; |
| 242 | kfree_skb(skb); |
| 243 | error: |
| 244 | d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| 245 | return result; |
| 246 | } |
| 247 | |
| 248 | |
| 249 | /** |
| 250 | * __i2400m_dev_start - Bring up driver communication with the device |
| 251 | * |
| 252 | * @i2400m: device descriptor |
| 253 | * @flags: boot mode flags |
| 254 | * |
| 255 | * Returns: 0 if ok, < 0 errno code on error. |
| 256 | * |
| 257 | * Uploads firmware and brings up all the resources needed to be able |
| 258 | * to communicate with the device. |
| 259 | * |
| 260 | * The workqueue has to be setup early, at least before RX handling |
| 261 | * (it's only real user for now) so it can process reports as they |
| 262 | * arrive. We also want to destroy it if we retry, to make sure it is |
| 263 | * flushed...easier like this. |
| 264 | * |
| 265 | * TX needs to be setup before the bus-specific code (otherwise on |
| 266 | * shutdown, the bus-tx code could try to access it). |
| 267 | */ |
| 268 | static |
| 269 | int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags) |
| 270 | { |
| 271 | int result; |
| 272 | struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| 273 | struct net_device *net_dev = wimax_dev->net_dev; |
| 274 | struct device *dev = i2400m_dev(i2400m); |
| 275 | int times = i2400m->bus_bm_retries; |
| 276 | |
| 277 | d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| 278 | retry: |
| 279 | result = i2400m_dev_bootstrap(i2400m, flags); |
| 280 | if (result < 0) { |
| 281 | dev_err(dev, "cannot bootstrap device: %d\n", result); |
| 282 | goto error_bootstrap; |
| 283 | } |
| 284 | result = i2400m_tx_setup(i2400m); |
| 285 | if (result < 0) |
| 286 | goto error_tx_setup; |
| 287 | result = i2400m_rx_setup(i2400m); |
| 288 | if (result < 0) |
| 289 | goto error_rx_setup; |
| 290 | i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name); |
| 291 | if (i2400m->work_queue == NULL) { |
| 292 | result = -ENOMEM; |
| 293 | dev_err(dev, "cannot create workqueue\n"); |
| 294 | goto error_create_workqueue; |
| 295 | } |
| 296 | if (i2400m->bus_dev_start) { |
| 297 | result = i2400m->bus_dev_start(i2400m); |
| 298 | if (result < 0) |
| 299 | goto error_bus_dev_start; |
| 300 | } |
| 301 | i2400m->ready = 1; |
| 302 | wmb(); /* see i2400m->ready's documentation */ |
| 303 | /* process pending reports from the device */ |
| 304 | queue_work(i2400m->work_queue, &i2400m->rx_report_ws); |
| 305 | result = i2400m_firmware_check(i2400m); /* fw versions ok? */ |
| 306 | if (result < 0) |
| 307 | goto error_fw_check; |
| 308 | /* At this point is ok to send commands to the device */ |
| 309 | result = i2400m_check_mac_addr(i2400m); |
| 310 | if (result < 0) |
| 311 | goto error_check_mac_addr; |
| 312 | result = i2400m_dev_initialize(i2400m); |
| 313 | if (result < 0) |
| 314 | goto error_dev_initialize; |
| 315 | |
| 316 | /* We don't want any additional unwanted error recovery triggered |
| 317 | * from any other context so if anything went wrong before we come |
| 318 | * here, let's keep i2400m->error_recovery untouched and leave it to |
| 319 | * dev_reset_handle(). See dev_reset_handle(). */ |
| 320 | |
| 321 | atomic_dec(&i2400m->error_recovery); |
| 322 | /* Every thing works so far, ok, now we are ready to |
| 323 | * take error recovery if it's required. */ |
| 324 | |
| 325 | /* At this point, reports will come for the device and set it |
| 326 | * to the right state if it is different than UNINITIALIZED */ |
| 327 | d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", |
| 328 | net_dev, i2400m, result); |
| 329 | return result; |
| 330 | |
| 331 | error_dev_initialize: |
| 332 | error_check_mac_addr: |
| 333 | error_fw_check: |
| 334 | i2400m->ready = 0; |
| 335 | wmb(); /* see i2400m->ready's documentation */ |
| 336 | flush_workqueue(i2400m->work_queue); |
| 337 | if (i2400m->bus_dev_stop) |
| 338 | i2400m->bus_dev_stop(i2400m); |
| 339 | error_bus_dev_start: |
| 340 | destroy_workqueue(i2400m->work_queue); |
| 341 | error_create_workqueue: |
| 342 | i2400m_rx_release(i2400m); |
| 343 | error_rx_setup: |
| 344 | i2400m_tx_release(i2400m); |
| 345 | error_tx_setup: |
| 346 | error_bootstrap: |
| 347 | if (result == -EL3RST && times-- > 0) { |
| 348 | flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT; |
| 349 | goto retry; |
| 350 | } |
| 351 | d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", |
| 352 | net_dev, i2400m, result); |
| 353 | return result; |
| 354 | } |
| 355 | |
| 356 | |
| 357 | static |
| 358 | int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags) |
| 359 | { |
| 360 | int result = 0; |
| 361 | mutex_lock(&i2400m->init_mutex); /* Well, start the device */ |
| 362 | if (i2400m->updown == 0) { |
| 363 | result = __i2400m_dev_start(i2400m, bm_flags); |
| 364 | if (result >= 0) { |
| 365 | i2400m->updown = 1; |
| 366 | i2400m->alive = 1; |
| 367 | wmb();/* see i2400m->updown and i2400m->alive's doc */ |
| 368 | } |
| 369 | } |
| 370 | mutex_unlock(&i2400m->init_mutex); |
| 371 | return result; |
| 372 | } |
| 373 | |
| 374 | |
| 375 | /** |
| 376 | * i2400m_dev_stop - Tear down driver communication with the device |
| 377 | * |
| 378 | * @i2400m: device descriptor |
| 379 | * |
| 380 | * Returns: 0 if ok, < 0 errno code on error. |
| 381 | * |
| 382 | * Releases all the resources allocated to communicate with the |
| 383 | * device. Note we cannot destroy the workqueue earlier as until RX is |
| 384 | * fully destroyed, it could still try to schedule jobs. |
| 385 | */ |
| 386 | static |
| 387 | void __i2400m_dev_stop(struct i2400m *i2400m) |
| 388 | { |
| 389 | struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| 390 | struct device *dev = i2400m_dev(i2400m); |
| 391 | |
| 392 | d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| 393 | wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING); |
| 394 | i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST); |
| 395 | complete(&i2400m->msg_completion); |
| 396 | i2400m_net_wake_stop(i2400m); |
| 397 | i2400m_dev_shutdown(i2400m); |
| 398 | /* |
| 399 | * Make sure no report hooks are running *before* we stop the |
| 400 | * communication infrastructure with the device. |
| 401 | */ |
| 402 | i2400m->ready = 0; /* nobody can queue work anymore */ |
| 403 | wmb(); /* see i2400m->ready's documentation */ |
| 404 | flush_workqueue(i2400m->work_queue); |
| 405 | |
| 406 | if (i2400m->bus_dev_stop) |
| 407 | i2400m->bus_dev_stop(i2400m); |
| 408 | destroy_workqueue(i2400m->work_queue); |
| 409 | i2400m_rx_release(i2400m); |
| 410 | i2400m_tx_release(i2400m); |
| 411 | wimax_state_change(wimax_dev, WIMAX_ST_DOWN); |
| 412 | d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); |
| 413 | } |
| 414 | |
| 415 | |
| 416 | /* |
| 417 | * Watch out -- we only need to stop if there is a need for it. The |
| 418 | * device could have reset itself and failed to come up again (see |
| 419 | * _i2400m_dev_reset_handle()). |
| 420 | */ |
| 421 | static |
| 422 | void i2400m_dev_stop(struct i2400m *i2400m) |
| 423 | { |
| 424 | mutex_lock(&i2400m->init_mutex); |
| 425 | if (i2400m->updown) { |
| 426 | __i2400m_dev_stop(i2400m); |
| 427 | i2400m->updown = 0; |
| 428 | i2400m->alive = 0; |
| 429 | wmb(); /* see i2400m->updown and i2400m->alive's doc */ |
| 430 | } |
| 431 | mutex_unlock(&i2400m->init_mutex); |
| 432 | } |
| 433 | |
| 434 | |
| 435 | /* |
| 436 | * Listen to PM events to cache the firmware before suspend/hibernation |
| 437 | * |
| 438 | * When the device comes out of suspend, it might go into reset and |
| 439 | * firmware has to be uploaded again. At resume, most of the times, we |
| 440 | * can't load firmware images from disk, so we need to cache it. |
| 441 | * |
| 442 | * i2400m_fw_cache() will allocate a kobject and attach the firmware |
| 443 | * to it; that way we don't have to worry too much about the fw loader |
| 444 | * hitting a race condition. |
| 445 | * |
| 446 | * Note: modus operandi stolen from the Orinoco driver; thx. |
| 447 | */ |
| 448 | static |
| 449 | int i2400m_pm_notifier(struct notifier_block *notifier, |
| 450 | unsigned long pm_event, |
| 451 | void *unused) |
| 452 | { |
| 453 | struct i2400m *i2400m = |
| 454 | container_of(notifier, struct i2400m, pm_notifier); |
| 455 | struct device *dev = i2400m_dev(i2400m); |
| 456 | |
| 457 | d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event); |
| 458 | switch (pm_event) { |
| 459 | case PM_HIBERNATION_PREPARE: |
| 460 | case PM_SUSPEND_PREPARE: |
| 461 | i2400m_fw_cache(i2400m); |
| 462 | break; |
| 463 | case PM_POST_RESTORE: |
| 464 | /* Restore from hibernation failed. We need to clean |
| 465 | * up in exactly the same way, so fall through. */ |
| 466 | case PM_POST_HIBERNATION: |
| 467 | case PM_POST_SUSPEND: |
| 468 | i2400m_fw_uncache(i2400m); |
| 469 | break; |
| 470 | |
| 471 | case PM_RESTORE_PREPARE: |
| 472 | default: |
| 473 | break; |
| 474 | } |
| 475 | d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event); |
| 476 | return NOTIFY_DONE; |
| 477 | } |
| 478 | |
| 479 | |
| 480 | /* |
| 481 | * pre-reset is called before a device is going on reset |
| 482 | * |
| 483 | * This has to be followed by a call to i2400m_post_reset(), otherwise |
| 484 | * bad things might happen. |
| 485 | */ |
| 486 | int i2400m_pre_reset(struct i2400m *i2400m) |
| 487 | { |
| 488 | struct device *dev = i2400m_dev(i2400m); |
| 489 | |
| 490 | d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| 491 | d_printf(1, dev, "pre-reset shut down\n"); |
| 492 | |
| 493 | mutex_lock(&i2400m->init_mutex); |
| 494 | if (i2400m->updown) { |
| 495 | netif_tx_disable(i2400m->wimax_dev.net_dev); |
| 496 | __i2400m_dev_stop(i2400m); |
| 497 | /* down't set updown to zero -- this way |
| 498 | * post_reset can restore properly */ |
| 499 | } |
| 500 | mutex_unlock(&i2400m->init_mutex); |
| 501 | if (i2400m->bus_release) |
| 502 | i2400m->bus_release(i2400m); |
| 503 | d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); |
| 504 | return 0; |
| 505 | } |
| 506 | EXPORT_SYMBOL_GPL(i2400m_pre_reset); |
| 507 | |
| 508 | |
| 509 | /* |
| 510 | * Restore device state after a reset |
| 511 | * |
| 512 | * Do the work needed after a device reset to bring it up to the same |
| 513 | * state as it was before the reset. |
| 514 | * |
| 515 | * NOTE: this requires i2400m->init_mutex taken |
| 516 | */ |
| 517 | int i2400m_post_reset(struct i2400m *i2400m) |
| 518 | { |
| 519 | int result = 0; |
| 520 | struct device *dev = i2400m_dev(i2400m); |
| 521 | |
| 522 | d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| 523 | d_printf(1, dev, "post-reset start\n"); |
| 524 | if (i2400m->bus_setup) { |
| 525 | result = i2400m->bus_setup(i2400m); |
| 526 | if (result < 0) { |
| 527 | dev_err(dev, "bus-specific setup failed: %d\n", |
| 528 | result); |
| 529 | goto error_bus_setup; |
| 530 | } |
| 531 | } |
| 532 | mutex_lock(&i2400m->init_mutex); |
| 533 | if (i2400m->updown) { |
| 534 | result = __i2400m_dev_start( |
| 535 | i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); |
| 536 | if (result < 0) |
| 537 | goto error_dev_start; |
| 538 | } |
| 539 | mutex_unlock(&i2400m->init_mutex); |
| 540 | d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| 541 | return result; |
| 542 | |
| 543 | error_dev_start: |
| 544 | if (i2400m->bus_release) |
| 545 | i2400m->bus_release(i2400m); |
| 546 | /* even if the device was up, it could not be recovered, so we |
| 547 | * mark it as down. */ |
| 548 | i2400m->updown = 0; |
| 549 | wmb(); /* see i2400m->updown's documentation */ |
| 550 | mutex_unlock(&i2400m->init_mutex); |
| 551 | error_bus_setup: |
| 552 | d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| 553 | return result; |
| 554 | } |
| 555 | EXPORT_SYMBOL_GPL(i2400m_post_reset); |
| 556 | |
| 557 | |
| 558 | /* |
| 559 | * The device has rebooted; fix up the device and the driver |
| 560 | * |
| 561 | * Tear down the driver communication with the device, reload the |
| 562 | * firmware and reinitialize the communication with the device. |
| 563 | * |
| 564 | * If someone calls a reset when the device's firmware is down, in |
| 565 | * theory we won't see it because we are not listening. However, just |
| 566 | * in case, leave the code to handle it. |
| 567 | * |
| 568 | * If there is a reset context, use it; this means someone is waiting |
| 569 | * for us to tell him when the reset operation is complete and the |
| 570 | * device is ready to rock again. |
| 571 | * |
| 572 | * NOTE: if we are in the process of bringing up or down the |
| 573 | * communication with the device [running i2400m_dev_start() or |
| 574 | * _stop()], don't do anything, let it fail and handle it. |
| 575 | * |
| 576 | * This function is ran always in a thread context |
| 577 | * |
| 578 | * This function gets passed, as payload to i2400m_work() a 'const |
| 579 | * char *' ptr with a "reason" why the reset happened (for messages). |
| 580 | */ |
| 581 | static |
| 582 | void __i2400m_dev_reset_handle(struct work_struct *ws) |
| 583 | { |
| 584 | struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws); |
| 585 | const char *reason = i2400m->reset_reason; |
| 586 | struct device *dev = i2400m_dev(i2400m); |
| 587 | struct i2400m_reset_ctx *ctx = i2400m->reset_ctx; |
| 588 | int result; |
| 589 | |
| 590 | d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason); |
| 591 | |
| 592 | i2400m->boot_mode = 1; |
| 593 | wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */ |
| 594 | |
| 595 | result = 0; |
| 596 | if (mutex_trylock(&i2400m->init_mutex) == 0) { |
| 597 | /* We are still in i2400m_dev_start() [let it fail] or |
| 598 | * i2400m_dev_stop() [we are shutting down anyway, so |
| 599 | * ignore it] or we are resetting somewhere else. */ |
| 600 | dev_err(dev, "device rebooted somewhere else?\n"); |
| 601 | i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST); |
| 602 | complete(&i2400m->msg_completion); |
| 603 | goto out; |
| 604 | } |
| 605 | |
| 606 | dev_err(dev, "%s: reinitializing driver\n", reason); |
| 607 | rmb(); |
| 608 | if (i2400m->updown) { |
| 609 | __i2400m_dev_stop(i2400m); |
| 610 | i2400m->updown = 0; |
| 611 | wmb(); /* see i2400m->updown's documentation */ |
| 612 | } |
| 613 | |
| 614 | if (i2400m->alive) { |
| 615 | result = __i2400m_dev_start(i2400m, |
| 616 | I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); |
| 617 | if (result < 0) { |
| 618 | dev_err(dev, "%s: cannot start the device: %d\n", |
| 619 | reason, result); |
| 620 | result = -EUCLEAN; |
| 621 | if (atomic_read(&i2400m->bus_reset_retries) |
| 622 | >= I2400M_BUS_RESET_RETRIES) { |
| 623 | result = -ENODEV; |
| 624 | dev_err(dev, "tried too many times to " |
| 625 | "reset the device, giving up\n"); |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | if (i2400m->reset_ctx) { |
| 631 | ctx->result = result; |
| 632 | complete(&ctx->completion); |
| 633 | } |
| 634 | mutex_unlock(&i2400m->init_mutex); |
| 635 | if (result == -EUCLEAN) { |
| 636 | /* |
| 637 | * We come here because the reset during operational mode |
| 638 | * wasn't successfully done and need to proceed to a bus |
| 639 | * reset. For the dev_reset_handle() to be able to handle |
| 640 | * the reset event later properly, we restore boot_mode back |
| 641 | * to the state before previous reset. ie: just like we are |
| 642 | * issuing the bus reset for the first time |
| 643 | */ |
| 644 | i2400m->boot_mode = 0; |
| 645 | wmb(); |
| 646 | |
| 647 | atomic_inc(&i2400m->bus_reset_retries); |
| 648 | /* ops, need to clean up [w/ init_mutex not held] */ |
| 649 | result = i2400m_reset(i2400m, I2400M_RT_BUS); |
| 650 | if (result >= 0) |
| 651 | result = -ENODEV; |
| 652 | } else { |
| 653 | rmb(); |
| 654 | if (i2400m->alive) { |
| 655 | /* great, we expect the device state up and |
| 656 | * dev_start() actually brings the device state up */ |
| 657 | i2400m->updown = 1; |
| 658 | wmb(); |
| 659 | atomic_set(&i2400m->bus_reset_retries, 0); |
| 660 | } |
| 661 | } |
| 662 | out: |
| 663 | d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n", |
| 664 | ws, i2400m, reason); |
| 665 | } |
| 666 | |
| 667 | |
| 668 | /** |
| 669 | * i2400m_dev_reset_handle - Handle a device's reset in a thread context |
| 670 | * |
| 671 | * Schedule a device reset handling out on a thread context, so it |
| 672 | * is safe to call from atomic context. We can't use the i2400m's |
| 673 | * queue as we are going to destroy it and reinitialize it as part of |
| 674 | * the driver bringup/bringup process. |
| 675 | * |
| 676 | * See __i2400m_dev_reset_handle() for details; that takes care of |
| 677 | * reinitializing the driver to handle the reset, calling into the |
| 678 | * bus-specific functions ops as needed. |
| 679 | */ |
| 680 | int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason) |
| 681 | { |
| 682 | i2400m->reset_reason = reason; |
| 683 | return schedule_work(&i2400m->reset_ws); |
| 684 | } |
| 685 | EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle); |
| 686 | |
| 687 | |
| 688 | /* |
| 689 | * The actual work of error recovery. |
| 690 | * |
| 691 | * The current implementation of error recovery is to trigger a bus reset. |
| 692 | */ |
| 693 | static |
| 694 | void __i2400m_error_recovery(struct work_struct *ws) |
| 695 | { |
| 696 | struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws); |
| 697 | |
| 698 | i2400m_reset(i2400m, I2400M_RT_BUS); |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * Schedule a work struct for error recovery. |
| 703 | * |
| 704 | * The intention of error recovery is to bring back the device to some |
| 705 | * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to |
| 706 | * the device. The TX failure could mean a device bus stuck, so the current |
| 707 | * error recovery implementation is to trigger a bus reset to the device |
| 708 | * and hopefully it can bring back the device. |
| 709 | * |
| 710 | * The actual work of error recovery has to be in a thread context because |
| 711 | * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be |
| 712 | * destroyed by the error recovery mechanism (currently a bus reset). |
| 713 | * |
| 714 | * Also, there may be already a queue of TX works that all hit |
| 715 | * the -ETIMEOUT error condition because the device is stuck already. |
| 716 | * Since bus reset is used as the error recovery mechanism and we don't |
| 717 | * want consecutive bus resets simply because the multiple TX works |
| 718 | * in the queue all hit the same device erratum, the flag "error_recovery" |
| 719 | * is introduced for preventing unwanted consecutive bus resets. |
| 720 | * |
| 721 | * Error recovery shall only be invoked again if previous one was completed. |
| 722 | * The flag error_recovery is set when error recovery mechanism is scheduled, |
| 723 | * and is checked when we need to schedule another error recovery. If it is |
| 724 | * in place already, then we shouldn't schedule another one. |
| 725 | */ |
| 726 | void i2400m_error_recovery(struct i2400m *i2400m) |
| 727 | { |
| 728 | if (atomic_add_return(1, &i2400m->error_recovery) == 1) |
| 729 | schedule_work(&i2400m->recovery_ws); |
| 730 | else |
| 731 | atomic_dec(&i2400m->error_recovery); |
| 732 | } |
| 733 | EXPORT_SYMBOL_GPL(i2400m_error_recovery); |
| 734 | |
| 735 | /* |
| 736 | * Alloc the command and ack buffers for boot mode |
| 737 | * |
| 738 | * Get the buffers needed to deal with boot mode messages. |
| 739 | */ |
| 740 | static |
| 741 | int i2400m_bm_buf_alloc(struct i2400m *i2400m) |
| 742 | { |
| 743 | int result; |
| 744 | |
| 745 | result = -ENOMEM; |
| 746 | i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL); |
| 747 | if (i2400m->bm_cmd_buf == NULL) |
| 748 | goto error_bm_cmd_kzalloc; |
| 749 | i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL); |
| 750 | if (i2400m->bm_ack_buf == NULL) |
| 751 | goto error_bm_ack_buf_kzalloc; |
| 752 | return 0; |
| 753 | |
| 754 | error_bm_ack_buf_kzalloc: |
| 755 | kfree(i2400m->bm_cmd_buf); |
| 756 | error_bm_cmd_kzalloc: |
| 757 | return result; |
| 758 | } |
| 759 | |
| 760 | |
| 761 | /* |
| 762 | * Free boot mode command and ack buffers. |
| 763 | */ |
| 764 | static |
| 765 | void i2400m_bm_buf_free(struct i2400m *i2400m) |
| 766 | { |
| 767 | kfree(i2400m->bm_ack_buf); |
| 768 | kfree(i2400m->bm_cmd_buf); |
| 769 | } |
| 770 | |
| 771 | |
| 772 | /** |
| 773 | * i2400m_init - Initialize a 'struct i2400m' from all zeroes |
| 774 | * |
| 775 | * This is a bus-generic API call. |
| 776 | */ |
| 777 | void i2400m_init(struct i2400m *i2400m) |
| 778 | { |
| 779 | wimax_dev_init(&i2400m->wimax_dev); |
| 780 | |
| 781 | i2400m->boot_mode = 1; |
| 782 | i2400m->rx_reorder = 1; |
| 783 | init_waitqueue_head(&i2400m->state_wq); |
| 784 | |
| 785 | spin_lock_init(&i2400m->tx_lock); |
| 786 | i2400m->tx_pl_min = UINT_MAX; |
| 787 | i2400m->tx_size_min = UINT_MAX; |
| 788 | |
| 789 | spin_lock_init(&i2400m->rx_lock); |
| 790 | i2400m->rx_pl_min = UINT_MAX; |
| 791 | i2400m->rx_size_min = UINT_MAX; |
| 792 | INIT_LIST_HEAD(&i2400m->rx_reports); |
| 793 | INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work); |
| 794 | |
| 795 | mutex_init(&i2400m->msg_mutex); |
| 796 | init_completion(&i2400m->msg_completion); |
| 797 | |
| 798 | mutex_init(&i2400m->init_mutex); |
| 799 | /* wake_tx_ws is initialized in i2400m_tx_setup() */ |
| 800 | |
| 801 | INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle); |
| 802 | INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery); |
| 803 | |
| 804 | atomic_set(&i2400m->bus_reset_retries, 0); |
| 805 | |
| 806 | i2400m->alive = 0; |
| 807 | |
| 808 | /* initialize error_recovery to 1 for denoting we |
| 809 | * are not yet ready to take any error recovery */ |
| 810 | atomic_set(&i2400m->error_recovery, 1); |
| 811 | } |
| 812 | EXPORT_SYMBOL_GPL(i2400m_init); |
| 813 | |
| 814 | |
| 815 | int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt) |
| 816 | { |
| 817 | struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| 818 | |
| 819 | /* |
| 820 | * Make sure we stop TXs and down the carrier before |
| 821 | * resetting; this is needed to avoid things like |
| 822 | * i2400m_wake_tx() scheduling stuff in parallel. |
| 823 | */ |
| 824 | if (net_dev->reg_state == NETREG_REGISTERED) { |
| 825 | netif_tx_disable(net_dev); |
| 826 | netif_carrier_off(net_dev); |
| 827 | } |
| 828 | return i2400m->bus_reset(i2400m, rt); |
| 829 | } |
| 830 | EXPORT_SYMBOL_GPL(i2400m_reset); |
| 831 | |
| 832 | |
| 833 | /** |
| 834 | * i2400m_setup - bus-generic setup function for the i2400m device |
| 835 | * |
| 836 | * @i2400m: device descriptor (bus-specific parts have been initialized) |
| 837 | * |
| 838 | * Returns: 0 if ok, < 0 errno code on error. |
| 839 | * |
| 840 | * Sets up basic device comunication infrastructure, boots the ROM to |
| 841 | * read the MAC address, registers with the WiMAX and network stacks |
| 842 | * and then brings up the device. |
| 843 | */ |
| 844 | int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags) |
| 845 | { |
| 846 | int result = -ENODEV; |
| 847 | struct device *dev = i2400m_dev(i2400m); |
| 848 | struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| 849 | struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| 850 | |
| 851 | d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| 852 | |
| 853 | snprintf(wimax_dev->name, sizeof(wimax_dev->name), |
| 854 | "i2400m-%s:%s", dev->bus->name, dev_name(dev)); |
| 855 | |
| 856 | result = i2400m_bm_buf_alloc(i2400m); |
| 857 | if (result < 0) { |
| 858 | dev_err(dev, "cannot allocate bootmode scratch buffers\n"); |
| 859 | goto error_bm_buf_alloc; |
| 860 | } |
| 861 | |
| 862 | if (i2400m->bus_setup) { |
| 863 | result = i2400m->bus_setup(i2400m); |
| 864 | if (result < 0) { |
| 865 | dev_err(dev, "bus-specific setup failed: %d\n", |
| 866 | result); |
| 867 | goto error_bus_setup; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | result = i2400m_bootrom_init(i2400m, bm_flags); |
| 872 | if (result < 0) { |
| 873 | dev_err(dev, "read mac addr: bootrom init " |
| 874 | "failed: %d\n", result); |
| 875 | goto error_bootrom_init; |
| 876 | } |
| 877 | result = i2400m_read_mac_addr(i2400m); |
| 878 | if (result < 0) |
| 879 | goto error_read_mac_addr; |
| 880 | eth_random_addr(i2400m->src_mac_addr); |
| 881 | |
| 882 | i2400m->pm_notifier.notifier_call = i2400m_pm_notifier; |
| 883 | register_pm_notifier(&i2400m->pm_notifier); |
| 884 | |
| 885 | result = register_netdev(net_dev); /* Okey dokey, bring it up */ |
| 886 | if (result < 0) { |
| 887 | dev_err(dev, "cannot register i2400m network device: %d\n", |
| 888 | result); |
| 889 | goto error_register_netdev; |
| 890 | } |
| 891 | netif_carrier_off(net_dev); |
| 892 | |
| 893 | i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user; |
| 894 | i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle; |
| 895 | i2400m->wimax_dev.op_reset = i2400m_op_reset; |
| 896 | |
| 897 | result = wimax_dev_add(&i2400m->wimax_dev, net_dev); |
| 898 | if (result < 0) |
| 899 | goto error_wimax_dev_add; |
| 900 | |
| 901 | /* Now setup all that requires a registered net and wimax device. */ |
| 902 | result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group); |
| 903 | if (result < 0) { |
| 904 | dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result); |
| 905 | goto error_sysfs_setup; |
| 906 | } |
| 907 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 908 | i2400m_debugfs_add(i2400m); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 909 | |
| 910 | result = i2400m_dev_start(i2400m, bm_flags); |
| 911 | if (result < 0) |
| 912 | goto error_dev_start; |
| 913 | d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| 914 | return result; |
| 915 | |
| 916 | error_dev_start: |
| 917 | i2400m_debugfs_rm(i2400m); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 918 | sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj, |
| 919 | &i2400m_dev_attr_group); |
| 920 | error_sysfs_setup: |
| 921 | wimax_dev_rm(&i2400m->wimax_dev); |
| 922 | error_wimax_dev_add: |
| 923 | unregister_netdev(net_dev); |
| 924 | error_register_netdev: |
| 925 | unregister_pm_notifier(&i2400m->pm_notifier); |
| 926 | error_read_mac_addr: |
| 927 | error_bootrom_init: |
| 928 | if (i2400m->bus_release) |
| 929 | i2400m->bus_release(i2400m); |
| 930 | error_bus_setup: |
| 931 | i2400m_bm_buf_free(i2400m); |
| 932 | error_bm_buf_alloc: |
| 933 | d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| 934 | return result; |
| 935 | } |
| 936 | EXPORT_SYMBOL_GPL(i2400m_setup); |
| 937 | |
| 938 | |
| 939 | /** |
| 940 | * i2400m_release - release the bus-generic driver resources |
| 941 | * |
| 942 | * Sends a disconnect message and undoes any setup done by i2400m_setup() |
| 943 | */ |
| 944 | void i2400m_release(struct i2400m *i2400m) |
| 945 | { |
| 946 | struct device *dev = i2400m_dev(i2400m); |
| 947 | |
| 948 | d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| 949 | netif_stop_queue(i2400m->wimax_dev.net_dev); |
| 950 | |
| 951 | i2400m_dev_stop(i2400m); |
| 952 | |
| 953 | cancel_work_sync(&i2400m->reset_ws); |
| 954 | cancel_work_sync(&i2400m->recovery_ws); |
| 955 | |
| 956 | i2400m_debugfs_rm(i2400m); |
| 957 | sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj, |
| 958 | &i2400m_dev_attr_group); |
| 959 | wimax_dev_rm(&i2400m->wimax_dev); |
| 960 | unregister_netdev(i2400m->wimax_dev.net_dev); |
| 961 | unregister_pm_notifier(&i2400m->pm_notifier); |
| 962 | if (i2400m->bus_release) |
| 963 | i2400m->bus_release(i2400m); |
| 964 | i2400m_bm_buf_free(i2400m); |
| 965 | d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); |
| 966 | } |
| 967 | EXPORT_SYMBOL_GPL(i2400m_release); |
| 968 | |
| 969 | |
| 970 | /* |
| 971 | * Debug levels control; see debug.h |
| 972 | */ |
| 973 | struct d_level D_LEVEL[] = { |
| 974 | D_SUBMODULE_DEFINE(control), |
| 975 | D_SUBMODULE_DEFINE(driver), |
| 976 | D_SUBMODULE_DEFINE(debugfs), |
| 977 | D_SUBMODULE_DEFINE(fw), |
| 978 | D_SUBMODULE_DEFINE(netdev), |
| 979 | D_SUBMODULE_DEFINE(rfkill), |
| 980 | D_SUBMODULE_DEFINE(rx), |
| 981 | D_SUBMODULE_DEFINE(sysfs), |
| 982 | D_SUBMODULE_DEFINE(tx), |
| 983 | }; |
| 984 | size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL); |
| 985 | |
| 986 | |
| 987 | static |
| 988 | int __init i2400m_driver_init(void) |
| 989 | { |
| 990 | d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params, |
| 991 | "i2400m.debug"); |
| 992 | return i2400m_barker_db_init(i2400m_barkers_params); |
| 993 | } |
| 994 | module_init(i2400m_driver_init); |
| 995 | |
| 996 | static |
| 997 | void __exit i2400m_driver_exit(void) |
| 998 | { |
| 999 | i2400m_barker_db_exit(); |
| 1000 | } |
| 1001 | module_exit(i2400m_driver_exit); |
| 1002 | |
| 1003 | MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>"); |
| 1004 | MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver"); |
| 1005 | MODULE_LICENSE("GPL"); |