David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /****************************************************************************** |
| 3 | * |
| 4 | * (C)Copyright 1998,1999 SysKonnect, |
| 5 | * a business unit of Schneider & Koch & Co. Datensysteme GmbH. |
| 6 | * |
| 7 | * See the file "skfddi.c" for further information. |
| 8 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | * The information in this file is provided "AS IS" without warranty. |
| 10 | * |
| 11 | ******************************************************************************/ |
| 12 | |
| 13 | /* |
| 14 | * FORMAC+ Driver for tag mode |
| 15 | */ |
| 16 | |
| 17 | #include "h/types.h" |
| 18 | #include "h/fddi.h" |
| 19 | #include "h/smc.h" |
| 20 | #include "h/supern_2.h" |
| 21 | #include <linux/bitrev.h> |
| 22 | #include <linux/etherdevice.h> |
| 23 | |
| 24 | #ifndef lint |
| 25 | static const char ID_sccs[] = "@(#)fplustm.c 1.32 99/02/23 (C) SK " ; |
| 26 | #endif |
| 27 | |
| 28 | #ifndef UNUSED |
| 29 | #ifdef lint |
| 30 | #define UNUSED(x) (x) = (x) |
| 31 | #else |
| 32 | #define UNUSED(x) |
| 33 | #endif |
| 34 | #endif |
| 35 | |
| 36 | #define FM_ADDRX (FM_ADDET|FM_EXGPA0|FM_EXGPA1) |
| 37 | #define MS2BCLK(x) ((x)*12500L) |
| 38 | #define US2BCLK(x) ((x)*1250L) |
| 39 | |
| 40 | /* |
| 41 | * prototypes for static function |
| 42 | */ |
| 43 | static void build_claim_beacon(struct s_smc *smc, u_long t_request); |
| 44 | static int init_mac(struct s_smc *smc, int all); |
| 45 | static void rtm_init(struct s_smc *smc); |
| 46 | static void smt_split_up_fifo(struct s_smc *smc); |
| 47 | |
| 48 | #if (!defined(NO_SMT_PANIC) || defined(DEBUG)) |
| 49 | static char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n"; |
| 50 | static char cam_warning [] = "E_SMT_004: CAM still busy\n"; |
| 51 | #endif |
| 52 | |
| 53 | #define DUMMY_READ() smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP)) |
| 54 | |
| 55 | #define CHECK_NPP() { unsigned int k = 10000 ;\ |
| 56 | while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\ |
| 57 | if (!k) { \ |
| 58 | SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \ |
| 59 | } \ |
| 60 | } |
| 61 | |
| 62 | #define CHECK_CAM() { unsigned int k = 10 ;\ |
| 63 | while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\ |
| 64 | if (!k) { \ |
| 65 | SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \ |
| 66 | } \ |
| 67 | } |
| 68 | |
| 69 | const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}}; |
| 70 | static const struct fddi_addr null_addr = {{0,0,0,0,0,0}}; |
| 71 | static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}}; |
| 72 | |
| 73 | static const u_short my_said = 0xffff ; /* short address (n.u.) */ |
| 74 | static const u_short my_sagp = 0xffff ; /* short group address (n.u.) */ |
| 75 | |
| 76 | /* |
| 77 | * define my address |
| 78 | */ |
| 79 | #ifdef USE_CAN_ADDR |
| 80 | #define MA smc->hw.fddi_canon_addr |
| 81 | #else |
| 82 | #define MA smc->hw.fddi_home_addr |
| 83 | #endif |
| 84 | |
| 85 | |
| 86 | /* |
| 87 | * useful interrupt bits |
| 88 | */ |
| 89 | static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ; |
| 90 | static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0| |
| 91 | FM_STBURS | FM_STBURA0 ; |
| 92 | |
| 93 | /* delete FM_SRBFL after tests */ |
| 94 | static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL | |
| 95 | FM_SMYCLM ; |
| 96 | static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR | |
| 97 | FM_SERRCTR | FM_SLSTCTR | |
| 98 | FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ; |
| 99 | |
| 100 | static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ; |
| 101 | static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ; |
| 102 | |
| 103 | static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC | |
| 104 | FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ; |
| 105 | |
| 106 | |
| 107 | static u_long mac_get_tneg(struct s_smc *smc) |
| 108 | { |
| 109 | u_long tneg ; |
| 110 | |
| 111 | tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ; |
| 112 | return (u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) | |
| 113 | 0xffe00000L) ; |
| 114 | } |
| 115 | |
| 116 | void mac_update_counter(struct s_smc *smc) |
| 117 | { |
| 118 | smc->mib.m[MAC0].fddiMACFrame_Ct = |
| 119 | (smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L) |
| 120 | + (u_short) inpw(FM_A(FM_FCNTR)) ; |
| 121 | smc->mib.m[MAC0].fddiMACLost_Ct = |
| 122 | (smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L) |
| 123 | + (u_short) inpw(FM_A(FM_LCNTR)) ; |
| 124 | smc->mib.m[MAC0].fddiMACError_Ct = |
| 125 | (smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L) |
| 126 | + (u_short) inpw(FM_A(FM_ECNTR)) ; |
| 127 | smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ; |
| 128 | #ifdef SMT_REAL_TOKEN_CT |
| 129 | /* |
| 130 | * If the token counter is emulated it is updated in smt_event. |
| 131 | */ |
| 132 | TBD |
| 133 | #else |
| 134 | smt_emulate_token_ct( smc, MAC0 ); |
| 135 | #endif |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * write long value into buffer memory over memory data register (MDR), |
| 140 | */ |
| 141 | static void write_mdr(struct s_smc *smc, u_long val) |
| 142 | { |
| 143 | CHECK_NPP() ; |
| 144 | MDRW(val) ; |
| 145 | } |
| 146 | |
| 147 | #if 0 |
| 148 | /* |
| 149 | * read long value from buffer memory over memory data register (MDR), |
| 150 | */ |
| 151 | static u_long read_mdr(struct s_smc *smc, unsigned int addr) |
| 152 | { |
| 153 | long p ; |
| 154 | CHECK_NPP() ; |
| 155 | MARR(addr) ; |
| 156 | outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ; |
| 157 | CHECK_NPP() ; /* needed for PCI to prevent from timeing violations */ |
| 158 | /* p = MDRR() ; */ /* bad read values if the workaround */ |
| 159 | /* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/ |
| 160 | /* is used */ |
| 161 | p = (u_long)inpw(FM_A(FM_MDRU))<<16 ; |
| 162 | p += (u_long)inpw(FM_A(FM_MDRL)) ; |
| 163 | return p; |
| 164 | } |
| 165 | #endif |
| 166 | |
| 167 | /* |
| 168 | * clear buffer memory |
| 169 | */ |
| 170 | static void init_ram(struct s_smc *smc) |
| 171 | { |
| 172 | u_short i ; |
| 173 | |
| 174 | smc->hw.fp.fifo.rbc_ram_start = 0 ; |
| 175 | smc->hw.fp.fifo.rbc_ram_end = |
| 176 | smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ; |
| 177 | CHECK_NPP() ; |
| 178 | MARW(smc->hw.fp.fifo.rbc_ram_start) ; |
| 179 | for (i = smc->hw.fp.fifo.rbc_ram_start; |
| 180 | i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++) |
| 181 | write_mdr(smc,0L) ; |
| 182 | /* Erase the last byte too */ |
| 183 | write_mdr(smc,0L) ; |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * set receive FIFO pointer |
| 188 | */ |
| 189 | static void set_recvptr(struct s_smc *smc) |
| 190 | { |
| 191 | /* |
| 192 | * initialize the pointer for receive queue 1 |
| 193 | */ |
| 194 | outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* RPR1 */ |
| 195 | outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* SWPR1 */ |
| 196 | outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* WPR1 */ |
| 197 | outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ; /* EARV1 */ |
| 198 | |
| 199 | /* |
| 200 | * initialize the pointer for receive queue 2 |
| 201 | */ |
| 202 | if (smc->hw.fp.fifo.rx2_fifo_size) { |
| 203 | outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ; |
| 204 | outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ; |
| 205 | outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ; |
| 206 | outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| 207 | } |
| 208 | else { |
| 209 | outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| 210 | outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| 211 | outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| 212 | outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * set transmit FIFO pointer |
| 218 | */ |
| 219 | static void set_txptr(struct s_smc *smc) |
| 220 | { |
| 221 | outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ; /* reset transmit queues */ |
| 222 | |
| 223 | /* |
| 224 | * initialize the pointer for asynchronous transmit queue |
| 225 | */ |
| 226 | outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* RPXA0 */ |
| 227 | outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* SWPXA0 */ |
| 228 | outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* WPXA0 */ |
| 229 | outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ; /* EAA0 */ |
| 230 | |
| 231 | /* |
| 232 | * initialize the pointer for synchronous transmit queue |
| 233 | */ |
| 234 | if (smc->hw.fp.fifo.tx_s_size) { |
| 235 | outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ; |
| 236 | outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ; |
| 237 | outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ; |
| 238 | outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| 239 | } |
| 240 | else { |
| 241 | outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| 242 | outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| 243 | outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| 244 | outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * init memory buffer management registers |
| 250 | */ |
| 251 | static void init_rbc(struct s_smc *smc) |
| 252 | { |
| 253 | u_short rbc_ram_addr ; |
| 254 | |
| 255 | /* |
| 256 | * set unused pointers or permanent pointers |
| 257 | */ |
| 258 | rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ; |
| 259 | |
| 260 | outpw(FM_A(FM_RPXA1),rbc_ram_addr) ; /* a1-send pointer */ |
| 261 | outpw(FM_A(FM_WPXA1),rbc_ram_addr) ; |
| 262 | outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ; |
| 263 | outpw(FM_A(FM_EAA1),rbc_ram_addr) ; |
| 264 | |
| 265 | set_recvptr(smc) ; |
| 266 | set_txptr(smc) ; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * init rx pointer |
| 271 | */ |
| 272 | static void init_rx(struct s_smc *smc) |
| 273 | { |
| 274 | struct s_smt_rx_queue *queue ; |
| 275 | |
| 276 | /* |
| 277 | * init all tx data structures for receive queue 1 |
| 278 | */ |
| 279 | smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ; |
| 280 | queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ; |
| 281 | queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ; |
| 282 | |
| 283 | /* |
| 284 | * init all tx data structures for receive queue 2 |
| 285 | */ |
| 286 | smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ; |
| 287 | queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ; |
| 288 | queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ; |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * set the TSYNC register of the FORMAC to regulate synchronous transmission |
| 293 | */ |
| 294 | void set_formac_tsync(struct s_smc *smc, long sync_bw) |
| 295 | { |
| 296 | outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * init all tx data structures |
| 301 | */ |
| 302 | static void init_tx(struct s_smc *smc) |
| 303 | { |
| 304 | struct s_smt_tx_queue *queue ; |
| 305 | |
| 306 | /* |
| 307 | * init all tx data structures for the synchronous queue |
| 308 | */ |
| 309 | smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ; |
| 310 | queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ; |
| 311 | queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ; |
| 312 | |
| 313 | #ifdef ESS |
| 314 | set_formac_tsync(smc,smc->ess.sync_bw) ; |
| 315 | #endif |
| 316 | |
| 317 | /* |
| 318 | * init all tx data structures for the asynchronous queue 0 |
| 319 | */ |
| 320 | smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ; |
| 321 | queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ; |
| 322 | queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ; |
| 323 | |
| 324 | |
| 325 | llc_recover_tx(smc) ; |
| 326 | } |
| 327 | |
| 328 | static void mac_counter_init(struct s_smc *smc) |
| 329 | { |
| 330 | int i ; |
| 331 | u_long *ec ; |
| 332 | |
| 333 | /* |
| 334 | * clear FORMAC+ frame-, lost- and error counter |
| 335 | */ |
| 336 | outpw(FM_A(FM_FCNTR),0) ; |
| 337 | outpw(FM_A(FM_LCNTR),0) ; |
| 338 | outpw(FM_A(FM_ECNTR),0) ; |
| 339 | /* |
| 340 | * clear internal error counter structure |
| 341 | */ |
| 342 | ec = (u_long *)&smc->hw.fp.err_stats ; |
| 343 | for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--) |
| 344 | *ec++ = 0L ; |
| 345 | smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ; |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * set FORMAC address, and t_request |
| 350 | */ |
| 351 | static void set_formac_addr(struct s_smc *smc) |
| 352 | { |
| 353 | long t_requ = smc->mib.m[MAC0].fddiMACT_Req ; |
| 354 | |
| 355 | outpw(FM_A(FM_SAID),my_said) ; /* set short address */ |
| 356 | outpw(FM_A(FM_LAIL),(unsigned short)((smc->hw.fddi_home_addr.a[4]<<8) + |
| 357 | smc->hw.fddi_home_addr.a[5])) ; |
| 358 | outpw(FM_A(FM_LAIC),(unsigned short)((smc->hw.fddi_home_addr.a[2]<<8) + |
| 359 | smc->hw.fddi_home_addr.a[3])) ; |
| 360 | outpw(FM_A(FM_LAIM),(unsigned short)((smc->hw.fddi_home_addr.a[0]<<8) + |
| 361 | smc->hw.fddi_home_addr.a[1])) ; |
| 362 | |
| 363 | outpw(FM_A(FM_SAGP),my_sagp) ; /* set short group address */ |
| 364 | |
| 365 | outpw(FM_A(FM_LAGL),(unsigned short)((smc->hw.fp.group_addr.a[4]<<8) + |
| 366 | smc->hw.fp.group_addr.a[5])) ; |
| 367 | outpw(FM_A(FM_LAGC),(unsigned short)((smc->hw.fp.group_addr.a[2]<<8) + |
| 368 | smc->hw.fp.group_addr.a[3])) ; |
| 369 | outpw(FM_A(FM_LAGM),(unsigned short)((smc->hw.fp.group_addr.a[0]<<8) + |
| 370 | smc->hw.fp.group_addr.a[1])) ; |
| 371 | |
| 372 | /* set r_request regs. (MSW & LSW of TRT ) */ |
| 373 | outpw(FM_A(FM_TREQ1),(unsigned short)(t_requ>>16)) ; |
| 374 | outpw(FM_A(FM_TREQ0),(unsigned short)t_requ) ; |
| 375 | } |
| 376 | |
| 377 | static void set_int(char *p, int l) |
| 378 | { |
| 379 | p[0] = (char)(l >> 24) ; |
| 380 | p[1] = (char)(l >> 16) ; |
| 381 | p[2] = (char)(l >> 8) ; |
| 382 | p[3] = (char)(l >> 0) ; |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * copy TX descriptor to buffer mem |
| 387 | * append FC field and MAC frame |
| 388 | * if more bit is set in descr |
| 389 | * append pointer to descriptor (endless loop) |
| 390 | * else |
| 391 | * append 'end of chain' pointer |
| 392 | */ |
| 393 | static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac, |
| 394 | unsigned int off, int len) |
| 395 | /* u_long td; transmit descriptor */ |
| 396 | /* struct fddi_mac *mac; mac frame pointer */ |
| 397 | /* unsigned int off; start address within buffer memory */ |
| 398 | /* int len ; length of the frame including the FC */ |
| 399 | { |
| 400 | int i ; |
| 401 | __le32 *p ; |
| 402 | |
| 403 | CHECK_NPP() ; |
| 404 | MARW(off) ; /* set memory address reg for writes */ |
| 405 | |
| 406 | p = (__le32 *) mac ; |
| 407 | for (i = (len + 3)/4 ; i ; i--) { |
| 408 | if (i == 1) { |
| 409 | /* last word, set the tag bit */ |
| 410 | outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; |
| 411 | } |
| 412 | write_mdr(smc,le32_to_cpu(*p)) ; |
| 413 | p++ ; |
| 414 | } |
| 415 | |
| 416 | outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */ |
| 417 | write_mdr(smc,td) ; /* write over memory data reg to buffer */ |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | BEGIN_MANUAL_ENTRY(module;tests;3) |
| 422 | How to test directed beacon frames |
| 423 | ---------------------------------------------------------------- |
| 424 | |
| 425 | o Insert a break point in the function build_claim_beacon() |
| 426 | before calling copy_tx_mac() for building the claim frame. |
| 427 | o Modify the RM3_DETECT case so that the RM6_DETECT state |
| 428 | will always entered from the RM3_DETECT state (function rmt_fsm(), |
| 429 | rmt.c) |
| 430 | o Compile the driver. |
| 431 | o Set the parameter TREQ in the protocol.ini or net.cfg to a |
| 432 | small value to make sure your station will win the claim |
| 433 | process. |
| 434 | o Start the driver. |
| 435 | o When you reach the break point, modify the SA and DA address |
| 436 | of the claim frame (e.g. SA = DA = 10005affffff). |
| 437 | o When you see RM3_DETECT and RM6_DETECT, observe the direct |
| 438 | beacon frames on the UPPSLANA. |
| 439 | |
| 440 | END_MANUAL_ENTRY |
| 441 | */ |
| 442 | static void directed_beacon(struct s_smc *smc) |
| 443 | { |
| 444 | SK_LOC_DECL(__le32,a[2]) ; |
| 445 | |
| 446 | /* |
| 447 | * set UNA in frame |
| 448 | * enable FORMAC to send endless queue of directed beacon |
| 449 | * important: the UNA starts at byte 1 (not at byte 0) |
| 450 | */ |
| 451 | * (char *) a = (char) ((long)DBEACON_INFO<<24L) ; |
| 452 | a[1] = 0 ; |
| 453 | memcpy((char *)a+1, (char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr, ETH_ALEN); |
| 454 | |
| 455 | CHECK_NPP() ; |
| 456 | /* set memory address reg for writes */ |
| 457 | MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ; |
| 458 | write_mdr(smc,le32_to_cpu(a[0])) ; |
| 459 | outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */ |
| 460 | write_mdr(smc,le32_to_cpu(a[1])) ; |
| 461 | |
| 462 | outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | setup claim & beacon pointer |
| 467 | NOTE : |
| 468 | special frame packets end with a pointer to their own |
| 469 | descriptor, and the MORE bit is set in the descriptor |
| 470 | */ |
| 471 | static void build_claim_beacon(struct s_smc *smc, u_long t_request) |
| 472 | { |
| 473 | u_int td ; |
| 474 | int len ; |
| 475 | struct fddi_mac_sf *mac ; |
| 476 | |
| 477 | /* |
| 478 | * build claim packet |
| 479 | */ |
| 480 | len = 17 ; |
| 481 | td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; |
| 482 | mac = &smc->hw.fp.mac_sfb ; |
| 483 | mac->mac_fc = FC_CLAIM ; |
| 484 | /* DA == SA in claim frame */ |
| 485 | mac->mac_source = mac->mac_dest = MA ; |
| 486 | /* 2's complement */ |
| 487 | set_int((char *)mac->mac_info,(int)t_request) ; |
| 488 | |
| 489 | copy_tx_mac(smc,td,(struct fddi_mac *)mac, |
| 490 | smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ; |
| 491 | /* set CLAIM start pointer */ |
| 492 | outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ; |
| 493 | |
| 494 | /* |
| 495 | * build beacon packet |
| 496 | */ |
| 497 | len = 17 ; |
| 498 | td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; |
| 499 | mac->mac_fc = FC_BEACON ; |
| 500 | mac->mac_source = MA ; |
| 501 | mac->mac_dest = null_addr ; /* DA == 0 in beacon frame */ |
| 502 | set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ; |
| 503 | |
| 504 | copy_tx_mac(smc,td,(struct fddi_mac *)mac, |
| 505 | smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ; |
| 506 | /* set beacon start pointer */ |
| 507 | outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ; |
| 508 | |
| 509 | /* |
| 510 | * build directed beacon packet |
| 511 | * contains optional UNA |
| 512 | */ |
| 513 | len = 23 ; |
| 514 | td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; |
| 515 | mac->mac_fc = FC_BEACON ; |
| 516 | mac->mac_source = MA ; |
| 517 | mac->mac_dest = dbeacon_multi ; /* multicast */ |
| 518 | set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ; |
| 519 | set_int((char *) mac->mac_info+4,0) ; |
| 520 | set_int((char *) mac->mac_info+8,0) ; |
| 521 | |
| 522 | copy_tx_mac(smc,td,(struct fddi_mac *)mac, |
| 523 | smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ; |
| 524 | |
| 525 | /* end of claim/beacon queue */ |
| 526 | outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ; |
| 527 | |
| 528 | outpw(FM_A(FM_WPXSF),0) ; |
| 529 | outpw(FM_A(FM_RPXSF),0) ; |
| 530 | } |
| 531 | |
| 532 | static void formac_rcv_restart(struct s_smc *smc) |
| 533 | { |
| 534 | /* enable receive function */ |
| 535 | SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; |
| 536 | |
| 537 | outpw(FM_A(FM_CMDREG1),FM_ICLLR) ; /* clear receive lock */ |
| 538 | } |
| 539 | |
| 540 | void formac_tx_restart(struct s_smc *smc) |
| 541 | { |
| 542 | outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */ |
| 543 | outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */ |
| 544 | } |
| 545 | |
| 546 | static void enable_formac(struct s_smc *smc) |
| 547 | { |
| 548 | /* set formac IMSK : 0 enables irq */ |
| 549 | outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u); |
| 550 | outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l); |
| 551 | outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u); |
| 552 | outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l); |
| 553 | outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u); |
| 554 | outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l); |
| 555 | } |
| 556 | |
| 557 | #if 0 /* Removed because the driver should use the ASICs TX complete IRQ. */ |
| 558 | /* The FORMACs tx complete IRQ should be used any longer */ |
| 559 | |
| 560 | /* |
| 561 | BEGIN_MANUAL_ENTRY(if,func;others;4) |
| 562 | |
| 563 | void enable_tx_irq(smc, queue) |
| 564 | struct s_smc *smc ; |
| 565 | u_short queue ; |
| 566 | |
| 567 | Function DOWNCALL (SMT, fplustm.c) |
| 568 | enable_tx_irq() enables the FORMACs transmit complete |
| 569 | interrupt of the queue. |
| 570 | |
| 571 | Para queue = QUEUE_S: synchronous queue |
| 572 | = QUEUE_A0: asynchronous queue |
| 573 | |
| 574 | Note After any ring operational change the transmit complete |
| 575 | interrupts are disabled. |
| 576 | The operating system dependent module must enable |
| 577 | the transmit complete interrupt of a queue, |
| 578 | - when it queues the first frame, |
| 579 | because of no transmit resources are beeing |
| 580 | available and |
| 581 | - when it escapes from the function llc_restart_tx |
| 582 | while some frames are still queued. |
| 583 | |
| 584 | END_MANUAL_ENTRY |
| 585 | */ |
| 586 | void enable_tx_irq(struct s_smc *smc, u_short queue) |
| 587 | /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ |
| 588 | { |
| 589 | u_short imask ; |
| 590 | |
| 591 | imask = ~(inpw(FM_A(FM_IMSK1U))) ; |
| 592 | |
| 593 | if (queue == 0) { |
| 594 | outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ; |
| 595 | } |
| 596 | if (queue == 1) { |
| 597 | outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ; |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | BEGIN_MANUAL_ENTRY(if,func;others;4) |
| 603 | |
| 604 | void disable_tx_irq(smc, queue) |
| 605 | struct s_smc *smc ; |
| 606 | u_short queue ; |
| 607 | |
| 608 | Function DOWNCALL (SMT, fplustm.c) |
| 609 | disable_tx_irq disables the FORMACs transmit complete |
| 610 | interrupt of the queue |
| 611 | |
| 612 | Para queue = QUEUE_S: synchronous queue |
| 613 | = QUEUE_A0: asynchronous queue |
| 614 | |
| 615 | Note The operating system dependent module should disable |
| 616 | the transmit complete interrupts if it escapes from the |
| 617 | function llc_restart_tx and no frames are queued. |
| 618 | |
| 619 | END_MANUAL_ENTRY |
| 620 | */ |
| 621 | void disable_tx_irq(struct s_smc *smc, u_short queue) |
| 622 | /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ |
| 623 | { |
| 624 | u_short imask ; |
| 625 | |
| 626 | imask = ~(inpw(FM_A(FM_IMSK1U))) ; |
| 627 | |
| 628 | if (queue == 0) { |
| 629 | outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ; |
| 630 | } |
| 631 | if (queue == 1) { |
| 632 | outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ; |
| 633 | } |
| 634 | } |
| 635 | #endif |
| 636 | |
| 637 | static void disable_formac(struct s_smc *smc) |
| 638 | { |
| 639 | /* clear formac IMSK : 1 disables irq */ |
| 640 | outpw(FM_A(FM_IMSK1U),MW) ; |
| 641 | outpw(FM_A(FM_IMSK1L),MW) ; |
| 642 | outpw(FM_A(FM_IMSK2U),MW) ; |
| 643 | outpw(FM_A(FM_IMSK2L),MW) ; |
| 644 | outpw(FM_A(FM_IMSK3U),MW) ; |
| 645 | outpw(FM_A(FM_IMSK3L),MW) ; |
| 646 | } |
| 647 | |
| 648 | |
| 649 | static void mac_ring_up(struct s_smc *smc, int up) |
| 650 | { |
| 651 | if (up) { |
| 652 | formac_rcv_restart(smc) ; /* enable receive function */ |
| 653 | smc->hw.mac_ring_is_up = TRUE ; |
| 654 | llc_restart_tx(smc) ; /* TX queue */ |
| 655 | } |
| 656 | else { |
| 657 | /* disable receive function */ |
| 658 | SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; |
| 659 | |
| 660 | /* abort current transmit activity */ |
| 661 | outpw(FM_A(FM_CMDREG2),FM_IACTR) ; |
| 662 | |
| 663 | smc->hw.mac_ring_is_up = FALSE ; |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | /*--------------------------- ISR handling ----------------------------------*/ |
| 668 | /* |
| 669 | * mac1_irq is in drvfbi.c |
| 670 | */ |
| 671 | |
| 672 | /* |
| 673 | * mac2_irq: status bits for the receive queue 1, and ring status |
| 674 | * ring status indication bits |
| 675 | */ |
| 676 | void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l) |
| 677 | { |
| 678 | u_short change_s2l ; |
| 679 | u_short change_s2u ; |
| 680 | |
| 681 | /* (jd) 22-Feb-1999 |
| 682 | * Restart 2_DMax Timer after end of claiming or beaconing |
| 683 | */ |
| 684 | if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) { |
| 685 | queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; |
| 686 | } |
| 687 | else if (code_s2l & (FM_STKISS)) { |
| 688 | queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; |
| 689 | } |
| 690 | |
| 691 | /* |
| 692 | * XOR current st bits with the last to avoid useless RMT event queuing |
| 693 | */ |
| 694 | change_s2l = smc->hw.fp.s2l ^ code_s2l ; |
| 695 | change_s2u = smc->hw.fp.s2u ^ code_s2u ; |
| 696 | |
| 697 | if ((change_s2l & FM_SRNGOP) || |
| 698 | (!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) { |
| 699 | if (code_s2l & FM_SRNGOP) { |
| 700 | mac_ring_up(smc,1) ; |
| 701 | queue_event(smc,EVENT_RMT,RM_RING_OP) ; |
| 702 | smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; |
| 703 | } |
| 704 | else { |
| 705 | mac_ring_up(smc,0) ; |
| 706 | queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; |
| 707 | } |
| 708 | goto mac2_end ; |
| 709 | } |
| 710 | if (code_s2l & FM_SMISFRM) { /* missed frame */ |
| 711 | smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ; |
| 712 | } |
| 713 | if (code_s2u & (FM_SRCVOVR | /* recv. FIFO overflow */ |
| 714 | FM_SRBFL)) { /* recv. buffer full */ |
| 715 | smc->hw.mac_ct.mac_r_restart_counter++ ; |
| 716 | /* formac_rcv_restart(smc) ; */ |
| 717 | smt_stat_counter(smc,1) ; |
| 718 | /* goto mac2_end ; */ |
| 719 | } |
| 720 | if (code_s2u & FM_SOTRBEC) |
| 721 | queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ; |
| 722 | if (code_s2u & FM_SMYBEC) |
| 723 | queue_event(smc,EVENT_RMT,RM_MY_BEACON) ; |
| 724 | if (change_s2u & code_s2u & FM_SLOCLM) { |
| 725 | DB_RMTN(2, "RMT : lower claim received"); |
| 726 | } |
| 727 | if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) { |
| 728 | /* |
| 729 | * This is my claim and that claim is not detected as a |
| 730 | * duplicate one. |
| 731 | */ |
| 732 | queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ; |
| 733 | } |
| 734 | if (code_s2l & FM_SDUPCLM) { |
| 735 | /* |
| 736 | * If a duplicate claim frame (same SA but T_Bid != T_Req) |
| 737 | * this flag will be set. |
| 738 | * In the RMT state machine we need a RM_VALID_CLAIM event |
| 739 | * to do the appropriate state change. |
| 740 | * RM(34c) |
| 741 | */ |
| 742 | queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ; |
| 743 | } |
| 744 | if (change_s2u & code_s2u & FM_SHICLM) { |
| 745 | DB_RMTN(2, "RMT : higher claim received"); |
| 746 | } |
| 747 | if ( (code_s2l & FM_STRTEXP) || |
| 748 | (code_s2l & FM_STRTEXR) ) |
| 749 | queue_event(smc,EVENT_RMT,RM_TRT_EXP) ; |
| 750 | if (code_s2l & FM_SMULTDA) { |
| 751 | /* |
| 752 | * The MAC has found a 2. MAC with the same address. |
| 753 | * Signal dup_addr_test = failed to RMT state machine. |
| 754 | * RM(25) |
| 755 | */ |
| 756 | smc->r.dup_addr_test = DA_FAILED ; |
| 757 | queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ; |
| 758 | } |
| 759 | if (code_s2u & FM_SBEC) |
| 760 | smc->hw.fp.err_stats.err_bec_stat++ ; |
| 761 | if (code_s2u & FM_SCLM) |
| 762 | smc->hw.fp.err_stats.err_clm_stat++ ; |
| 763 | if (code_s2l & FM_STVXEXP) |
| 764 | smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ; |
| 765 | if ((code_s2u & (FM_SBEC|FM_SCLM))) { |
| 766 | if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) { |
| 767 | mac_ring_up(smc,0) ; |
| 768 | queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; |
| 769 | |
| 770 | mac_ring_up(smc,1) ; |
| 771 | queue_event(smc,EVENT_RMT,RM_RING_OP) ; |
| 772 | smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; |
| 773 | } |
| 774 | } |
| 775 | if (code_s2l & FM_SPHINV) |
| 776 | smc->hw.fp.err_stats.err_phinv++ ; |
| 777 | if (code_s2l & FM_SSIFG) |
| 778 | smc->hw.fp.err_stats.err_sifg_det++ ; |
| 779 | if (code_s2l & FM_STKISS) |
| 780 | smc->hw.fp.err_stats.err_tkiss++ ; |
| 781 | if (code_s2l & FM_STKERR) |
| 782 | smc->hw.fp.err_stats.err_tkerr++ ; |
| 783 | if (code_s2l & FM_SFRMCTR) |
| 784 | smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ; |
| 785 | if (code_s2l & FM_SERRCTR) |
| 786 | smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ; |
| 787 | if (code_s2l & FM_SLSTCTR) |
| 788 | smc->mib.m[MAC0].fddiMACLost_Ct += 0x10000L ; |
| 789 | if (code_s2u & FM_SERRSF) { |
| 790 | SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ; |
| 791 | } |
| 792 | mac2_end: |
| 793 | /* notice old status */ |
| 794 | smc->hw.fp.s2l = code_s2l ; |
| 795 | smc->hw.fp.s2u = code_s2u ; |
| 796 | outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ; |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * mac3_irq: receive queue 2 bits and address detection bits |
| 801 | */ |
| 802 | void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l) |
| 803 | { |
| 804 | UNUSED(code_s3l) ; |
| 805 | |
| 806 | if (code_s3u & (FM_SRCVOVR2 | /* recv. FIFO overflow */ |
| 807 | FM_SRBFL2)) { /* recv. buffer full */ |
| 808 | smc->hw.mac_ct.mac_r_restart_counter++ ; |
| 809 | smt_stat_counter(smc,1); |
| 810 | } |
| 811 | |
| 812 | |
| 813 | if (code_s3u & FM_SRPERRQ2) { /* parity error receive queue 2 */ |
| 814 | SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ; |
| 815 | } |
| 816 | if (code_s3u & FM_SRPERRQ1) { /* parity error receive queue 2 */ |
| 817 | SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | |
| 822 | /* |
| 823 | * take formac offline |
| 824 | */ |
| 825 | static void formac_offline(struct s_smc *smc) |
| 826 | { |
| 827 | outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */ |
| 828 | |
| 829 | /* disable receive function */ |
| 830 | SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; |
| 831 | |
| 832 | /* FORMAC+ 'Initialize Mode' */ |
| 833 | SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ; |
| 834 | |
| 835 | disable_formac(smc) ; |
| 836 | smc->hw.mac_ring_is_up = FALSE ; |
| 837 | smc->hw.hw_state = STOPPED ; |
| 838 | } |
| 839 | |
| 840 | /* |
| 841 | * bring formac online |
| 842 | */ |
| 843 | static void formac_online(struct s_smc *smc) |
| 844 | { |
| 845 | enable_formac(smc) ; |
| 846 | SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT | |
| 847 | smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ; |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon) |
| 852 | */ |
| 853 | int init_fplus(struct s_smc *smc) |
| 854 | { |
| 855 | smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; |
| 856 | smc->hw.fp.rx_mode = FM_MDAMA ; |
| 857 | smc->hw.fp.group_addr = fddi_broadcast ; |
| 858 | smc->hw.fp.func_addr = 0 ; |
| 859 | smc->hw.fp.frselreg_init = 0 ; |
| 860 | |
| 861 | init_driver_fplus(smc) ; |
| 862 | if (smc->s.sas == SMT_DAS) |
| 863 | smc->hw.fp.mdr3init |= FM_MENDAS ; |
| 864 | |
| 865 | smc->hw.mac_ct.mac_nobuf_counter = 0 ; |
| 866 | smc->hw.mac_ct.mac_r_restart_counter = 0 ; |
| 867 | |
| 868 | smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ; |
| 869 | smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ; |
| 870 | smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ; |
| 871 | smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ; |
| 872 | smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ; |
| 873 | smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ; |
| 874 | |
| 875 | smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ; |
| 876 | smc->hw.mac_ring_is_up = 0 ; |
| 877 | |
| 878 | mac_counter_init(smc) ; |
| 879 | |
| 880 | /* convert BCKL units to symbol time */ |
| 881 | smc->hw.mac_pa.t_neg = (u_long)0 ; |
| 882 | smc->hw.mac_pa.t_pri = (u_long)0 ; |
| 883 | |
| 884 | /* make sure all PCI settings are correct */ |
| 885 | mac_do_pci_fix(smc) ; |
| 886 | |
| 887 | return init_mac(smc, 1); |
| 888 | /* enable_formac(smc) ; */ |
| 889 | } |
| 890 | |
| 891 | static int init_mac(struct s_smc *smc, int all) |
| 892 | { |
| 893 | u_short t_max,x ; |
| 894 | u_long time=0 ; |
| 895 | |
| 896 | /* |
| 897 | * clear memory |
| 898 | */ |
| 899 | outpw(FM_A(FM_MDREG1),FM_MINIT) ; /* FORMAC+ init mode */ |
| 900 | set_formac_addr(smc) ; |
| 901 | outpw(FM_A(FM_MDREG1),FM_MMEMACT) ; /* FORMAC+ memory activ mode */ |
| 902 | /* Note: Mode register 2 is set here, incase parity is enabled. */ |
| 903 | outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; |
| 904 | |
| 905 | if (all) { |
| 906 | init_ram(smc) ; |
| 907 | } |
| 908 | else { |
| 909 | /* |
| 910 | * reset the HPI, the Master and the BMUs |
| 911 | */ |
| 912 | outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; |
| 913 | time = hwt_quick_read(smc) ; |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * set all pointers, frames etc |
| 918 | */ |
| 919 | smt_split_up_fifo(smc) ; |
| 920 | |
| 921 | init_tx(smc) ; |
| 922 | init_rx(smc) ; |
| 923 | init_rbc(smc) ; |
| 924 | |
| 925 | build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ; |
| 926 | |
| 927 | /* set RX threshold */ |
| 928 | /* see Errata #SN2 Phantom receive overflow */ |
| 929 | outpw(FM_A(FM_FRMTHR),14<<12) ; /* switch on */ |
| 930 | |
| 931 | /* set formac work mode */ |
| 932 | outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ; |
| 933 | outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; |
| 934 | outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ; |
| 935 | outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ; |
| 936 | |
| 937 | /* set timer */ |
| 938 | /* |
| 939 | * errata #22 fplus: |
| 940 | * T_MAX must not be FFFE |
| 941 | * or one of FFDF, FFB8, FF91 (-0x27 etc..) |
| 942 | */ |
| 943 | t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ; |
| 944 | x = t_max/0x27 ; |
| 945 | x *= 0x27 ; |
| 946 | if ((t_max == 0xfffe) || (t_max - x == 0x16)) |
| 947 | t_max-- ; |
| 948 | outpw(FM_A(FM_TMAX),(u_short)t_max) ; |
| 949 | |
| 950 | /* BugFix for report #10204 */ |
| 951 | if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) { |
| 952 | outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ; |
| 953 | } else { |
| 954 | outpw(FM_A(FM_TVX), |
| 955 | (u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ; |
| 956 | } |
| 957 | |
| 958 | outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */ |
| 959 | outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */ |
| 960 | outpw(FM_A(FM_CMDREG1),FM_ICLLR); /* clear receive lock */ |
| 961 | |
| 962 | /* Auto unlock receice threshold for receive queue 1 and 2 */ |
| 963 | outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ; |
| 964 | |
| 965 | rtm_init(smc) ; /* RT-Monitor */ |
| 966 | |
| 967 | if (!all) { |
| 968 | /* |
| 969 | * after 10ms, reset the BMUs and repair the rings |
| 970 | */ |
| 971 | hwt_wait_time(smc,time,MS2BCLK(10)) ; |
| 972 | outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ; |
| 973 | outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ; |
| 974 | outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ; |
| 975 | outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ; |
| 976 | outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ; |
| 977 | outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ; |
| 978 | outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ; |
| 979 | if (!smc->hw.hw_is_64bit) { |
| 980 | outpd(ADDR(B4_R1_F), RX_WATERMARK) ; |
| 981 | outpd(ADDR(B5_XA_F), TX_WATERMARK) ; |
| 982 | outpd(ADDR(B5_XS_F), TX_WATERMARK) ; |
| 983 | } |
| 984 | smc->hw.hw_state = STOPPED ; |
| 985 | mac_drv_repair_descr(smc) ; |
| 986 | } |
| 987 | smc->hw.hw_state = STARTED ; |
| 988 | |
| 989 | return 0; |
| 990 | } |
| 991 | |
| 992 | |
| 993 | /* |
| 994 | * called by CFM |
| 995 | */ |
| 996 | void config_mux(struct s_smc *smc, int mux) |
| 997 | { |
| 998 | plc_config_mux(smc,mux) ; |
| 999 | |
| 1000 | SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ; |
| 1001 | } |
| 1002 | |
| 1003 | /* |
| 1004 | * called by RMT |
| 1005 | * enable CLAIM/BEACON interrupts |
| 1006 | * (only called if these events are of interest, e.g. in DETECT state |
| 1007 | * the interrupt must not be permanently enabled |
| 1008 | * RMT calls this function periodically (timer driven polling) |
| 1009 | */ |
| 1010 | void sm_mac_check_beacon_claim(struct s_smc *smc) |
| 1011 | { |
| 1012 | /* set formac IMSK : 0 enables irq */ |
| 1013 | outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ; |
| 1014 | /* the driver must receive the directed beacons */ |
| 1015 | formac_rcv_restart(smc) ; |
| 1016 | process_receive(smc) ; |
| 1017 | } |
| 1018 | |
| 1019 | /*-------------------------- interface functions ----------------------------*/ |
| 1020 | /* |
| 1021 | * control MAC layer (called by RMT) |
| 1022 | */ |
| 1023 | void sm_ma_control(struct s_smc *smc, int mode) |
| 1024 | { |
| 1025 | switch(mode) { |
| 1026 | case MA_OFFLINE : |
| 1027 | /* Add to make the MAC offline in RM0_ISOLATED state */ |
| 1028 | formac_offline(smc) ; |
| 1029 | break ; |
| 1030 | case MA_RESET : |
| 1031 | (void)init_mac(smc,0) ; |
| 1032 | break ; |
| 1033 | case MA_BEACON : |
| 1034 | formac_online(smc) ; |
| 1035 | break ; |
| 1036 | case MA_DIRECTED : |
| 1037 | directed_beacon(smc) ; |
| 1038 | break ; |
| 1039 | case MA_TREQ : |
| 1040 | /* |
| 1041 | * no actions necessary, TREQ is already set |
| 1042 | */ |
| 1043 | break ; |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | int sm_mac_get_tx_state(struct s_smc *smc) |
| 1048 | { |
| 1049 | return (inpw(FM_A(FM_STMCHN))>>4) & 7; |
| 1050 | } |
| 1051 | |
| 1052 | /* |
| 1053 | * multicast functions |
| 1054 | */ |
| 1055 | |
| 1056 | static struct s_fpmc* mac_get_mc_table(struct s_smc *smc, |
| 1057 | struct fddi_addr *user, |
| 1058 | struct fddi_addr *own, |
| 1059 | int del, int can) |
| 1060 | { |
| 1061 | struct s_fpmc *tb ; |
| 1062 | struct s_fpmc *slot ; |
| 1063 | u_char *p ; |
| 1064 | int i ; |
| 1065 | |
| 1066 | /* |
| 1067 | * set own = can(user) |
| 1068 | */ |
| 1069 | *own = *user ; |
| 1070 | if (can) { |
| 1071 | p = own->a ; |
| 1072 | for (i = 0 ; i < 6 ; i++, p++) |
| 1073 | *p = bitrev8(*p); |
| 1074 | } |
| 1075 | slot = NULL; |
| 1076 | for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ |
| 1077 | if (!tb->n) { /* not used */ |
| 1078 | if (!del && !slot) /* if !del save first free */ |
| 1079 | slot = tb ; |
| 1080 | continue ; |
| 1081 | } |
| 1082 | if (!ether_addr_equal((char *)&tb->a, (char *)own)) |
| 1083 | continue ; |
| 1084 | return tb; |
| 1085 | } |
| 1086 | return slot; /* return first free or NULL */ |
| 1087 | } |
| 1088 | |
| 1089 | /* |
| 1090 | BEGIN_MANUAL_ENTRY(if,func;others;2) |
| 1091 | |
| 1092 | void mac_clear_multicast(smc) |
| 1093 | struct s_smc *smc ; |
| 1094 | |
| 1095 | Function DOWNCALL (SMT, fplustm.c) |
| 1096 | Clear all multicast entries |
| 1097 | |
| 1098 | END_MANUAL_ENTRY() |
| 1099 | */ |
| 1100 | void mac_clear_multicast(struct s_smc *smc) |
| 1101 | { |
| 1102 | struct s_fpmc *tb ; |
| 1103 | int i ; |
| 1104 | |
| 1105 | smc->hw.fp.os_slots_used = 0 ; /* note the SMT addresses */ |
| 1106 | /* will not be deleted */ |
| 1107 | for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ |
| 1108 | if (!tb->perm) { |
| 1109 | tb->n = 0 ; |
| 1110 | } |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | /* |
| 1115 | BEGIN_MANUAL_ENTRY(if,func;others;2) |
| 1116 | |
| 1117 | int mac_add_multicast(smc,addr,can) |
| 1118 | struct s_smc *smc ; |
| 1119 | struct fddi_addr *addr ; |
| 1120 | int can ; |
| 1121 | |
| 1122 | Function DOWNCALL (SMC, fplustm.c) |
| 1123 | Add an entry to the multicast table |
| 1124 | |
| 1125 | Para addr pointer to a multicast address |
| 1126 | can = 0: the multicast address has the physical format |
| 1127 | = 1: the multicast address has the canonical format |
| 1128 | | 0x80 permanent |
| 1129 | |
| 1130 | Returns 0: success |
| 1131 | 1: address table full |
| 1132 | |
| 1133 | Note After a 'driver reset' or a 'station set address' all |
| 1134 | entries of the multicast table are cleared. |
| 1135 | In this case the driver has to fill the multicast table again. |
| 1136 | After the operating system dependent module filled |
| 1137 | the multicast table it must call mac_update_multicast |
| 1138 | to activate the new multicast addresses! |
| 1139 | |
| 1140 | END_MANUAL_ENTRY() |
| 1141 | */ |
| 1142 | int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can) |
| 1143 | { |
| 1144 | SK_LOC_DECL(struct fddi_addr,own) ; |
| 1145 | struct s_fpmc *tb ; |
| 1146 | |
| 1147 | /* |
| 1148 | * check if there are free table entries |
| 1149 | */ |
| 1150 | if (can & 0x80) { |
| 1151 | if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) { |
| 1152 | return 1; |
| 1153 | } |
| 1154 | } |
| 1155 | else { |
| 1156 | if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) { |
| 1157 | return 1; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | * find empty slot |
| 1163 | */ |
| 1164 | if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80))) |
| 1165 | return 1; |
| 1166 | tb->n++ ; |
| 1167 | tb->a = own ; |
| 1168 | tb->perm = (can & 0x80) ? 1 : 0 ; |
| 1169 | |
| 1170 | if (can & 0x80) |
| 1171 | smc->hw.fp.smt_slots_used++ ; |
| 1172 | else |
| 1173 | smc->hw.fp.os_slots_used++ ; |
| 1174 | |
| 1175 | return 0; |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * mode |
| 1180 | */ |
| 1181 | |
| 1182 | #define RX_MODE_PROM 0x1 |
| 1183 | #define RX_MODE_ALL_MULTI 0x2 |
| 1184 | |
| 1185 | /* |
| 1186 | BEGIN_MANUAL_ENTRY(if,func;others;2) |
| 1187 | |
| 1188 | void mac_update_multicast(smc) |
| 1189 | struct s_smc *smc ; |
| 1190 | |
| 1191 | Function DOWNCALL (SMT, fplustm.c) |
| 1192 | Update FORMAC multicast registers |
| 1193 | |
| 1194 | END_MANUAL_ENTRY() |
| 1195 | */ |
| 1196 | void mac_update_multicast(struct s_smc *smc) |
| 1197 | { |
| 1198 | struct s_fpmc *tb ; |
| 1199 | u_char *fu ; |
| 1200 | int i ; |
| 1201 | |
| 1202 | /* |
| 1203 | * invalidate the CAM |
| 1204 | */ |
| 1205 | outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ; |
| 1206 | |
| 1207 | /* |
| 1208 | * set the functional address |
| 1209 | */ |
| 1210 | if (smc->hw.fp.func_addr) { |
| 1211 | fu = (u_char *) &smc->hw.fp.func_addr ; |
| 1212 | outpw(FM_A(FM_AFMASK2),0xffff) ; |
| 1213 | outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ; |
| 1214 | outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ; |
| 1215 | outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; |
| 1216 | outpw(FM_A(FM_AFCOMP2), 0xc000) ; |
| 1217 | outpw(FM_A(FM_AFCOMP1), 0x0000) ; |
| 1218 | outpw(FM_A(FM_AFCOMP0), 0x0000) ; |
| 1219 | outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; |
| 1220 | } |
| 1221 | |
| 1222 | /* |
| 1223 | * set the mask and the personality register(s) |
| 1224 | */ |
| 1225 | outpw(FM_A(FM_AFMASK0),0xffff) ; |
| 1226 | outpw(FM_A(FM_AFMASK1),0xffff) ; |
| 1227 | outpw(FM_A(FM_AFMASK2),0xffff) ; |
| 1228 | outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; |
| 1229 | |
| 1230 | for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) { |
| 1231 | if (tb->n) { |
| 1232 | CHECK_CAM() ; |
| 1233 | |
| 1234 | /* |
| 1235 | * write the multicast address into the CAM |
| 1236 | */ |
| 1237 | outpw(FM_A(FM_AFCOMP2), |
| 1238 | (u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ; |
| 1239 | outpw(FM_A(FM_AFCOMP1), |
| 1240 | (u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ; |
| 1241 | outpw(FM_A(FM_AFCOMP0), |
| 1242 | (u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ; |
| 1243 | outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; |
| 1244 | } |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | /* |
| 1249 | BEGIN_MANUAL_ENTRY(if,func;others;3) |
| 1250 | |
| 1251 | void mac_set_rx_mode(smc,mode) |
| 1252 | struct s_smc *smc ; |
| 1253 | int mode ; |
| 1254 | |
| 1255 | Function DOWNCALL/INTERN (SMT, fplustm.c) |
| 1256 | This function enables / disables the selected receive. |
| 1257 | Don't call this function if the hardware module is |
| 1258 | used -- use mac_drv_rx_mode() instead of. |
| 1259 | |
| 1260 | Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts |
| 1261 | 2 RX_DISABLE_ALLMULTI disable "enable all multicasts" |
| 1262 | 3 RX_ENABLE_PROMISC enable promiscuous |
| 1263 | 4 RX_DISABLE_PROMISC disable promiscuous |
| 1264 | 5 RX_ENABLE_NSA enable reception of NSA frames |
| 1265 | 6 RX_DISABLE_NSA disable reception of NSA frames |
| 1266 | |
| 1267 | Note The selected receive modes will be lost after 'driver reset' |
| 1268 | or 'set station address' |
| 1269 | |
| 1270 | END_MANUAL_ENTRY |
| 1271 | */ |
| 1272 | void mac_set_rx_mode(struct s_smc *smc, int mode) |
| 1273 | { |
| 1274 | switch (mode) { |
| 1275 | case RX_ENABLE_ALLMULTI : |
| 1276 | smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ; |
| 1277 | break ; |
| 1278 | case RX_DISABLE_ALLMULTI : |
| 1279 | smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ; |
| 1280 | break ; |
| 1281 | case RX_ENABLE_PROMISC : |
| 1282 | smc->hw.fp.rx_prom |= RX_MODE_PROM ; |
| 1283 | break ; |
| 1284 | case RX_DISABLE_PROMISC : |
| 1285 | smc->hw.fp.rx_prom &= ~RX_MODE_PROM ; |
| 1286 | break ; |
| 1287 | case RX_ENABLE_NSA : |
| 1288 | smc->hw.fp.nsa_mode = FM_MDAMA ; |
| 1289 | smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | |
| 1290 | smc->hw.fp.nsa_mode ; |
| 1291 | break ; |
| 1292 | case RX_DISABLE_NSA : |
| 1293 | smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; |
| 1294 | smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | |
| 1295 | smc->hw.fp.nsa_mode ; |
| 1296 | break ; |
| 1297 | } |
| 1298 | if (smc->hw.fp.rx_prom & RX_MODE_PROM) { |
| 1299 | smc->hw.fp.rx_mode = FM_MLIMPROM ; |
| 1300 | } |
| 1301 | else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) { |
| 1302 | smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ; |
| 1303 | } |
| 1304 | else |
| 1305 | smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ; |
| 1306 | SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; |
| 1307 | mac_update_multicast(smc) ; |
| 1308 | } |
| 1309 | |
| 1310 | /* |
| 1311 | BEGIN_MANUAL_ENTRY(module;tests;3) |
| 1312 | How to test the Restricted Token Monitor |
| 1313 | ---------------------------------------------------------------- |
| 1314 | |
| 1315 | o Insert a break point in the function rtm_irq() |
| 1316 | o Remove all stations with a restricted token monitor from the |
| 1317 | network. |
| 1318 | o Connect a UPPS ISA or EISA station to the network. |
| 1319 | o Give the FORMAC of UPPS station the command to send |
| 1320 | restricted tokens until the ring becomes instable. |
| 1321 | o Now connect your test test client. |
| 1322 | o The restricted token monitor should detect the restricted token, |
| 1323 | and your break point will be reached. |
| 1324 | o You can ovserve how the station will clean the ring. |
| 1325 | |
| 1326 | END_MANUAL_ENTRY |
| 1327 | */ |
| 1328 | void rtm_irq(struct s_smc *smc) |
| 1329 | { |
| 1330 | outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ; /* clear IRQ */ |
| 1331 | if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) { |
| 1332 | outpw(FM_A(FM_CMDREG1),FM_ICL) ; /* force claim */ |
| 1333 | DB_RMT("RMT: fddiPATHT_Rmode expired"); |
| 1334 | AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, |
| 1335 | (u_long) FDDI_SMT_EVENT, |
| 1336 | (u_long) FDDI_RTT, smt_get_event_word(smc)); |
| 1337 | } |
| 1338 | outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable RTM monitoring */ |
| 1339 | } |
| 1340 | |
| 1341 | static void rtm_init(struct s_smc *smc) |
| 1342 | { |
| 1343 | outpd(ADDR(B2_RTM_INI),0) ; /* timer = 0 */ |
| 1344 | outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable IRQ */ |
| 1345 | } |
| 1346 | |
| 1347 | void rtm_set_timer(struct s_smc *smc) |
| 1348 | { |
| 1349 | /* |
| 1350 | * MIB timer and hardware timer have the same resolution of 80nS |
| 1351 | */ |
| 1352 | DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns", |
| 1353 | (int)smc->mib.a[PATH0].fddiPATHT_Rmode); |
| 1354 | outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ; |
| 1355 | } |
| 1356 | |
| 1357 | static void smt_split_up_fifo(struct s_smc *smc) |
| 1358 | { |
| 1359 | |
| 1360 | /* |
| 1361 | BEGIN_MANUAL_ENTRY(module;mem;1) |
| 1362 | ------------------------------------------------------------- |
| 1363 | RECEIVE BUFFER MEMORY DIVERSION |
| 1364 | ------------------------------------------------------------- |
| 1365 | |
| 1366 | R1_RxD == SMT_R1_RXD_COUNT |
| 1367 | R2_RxD == SMT_R2_RXD_COUNT |
| 1368 | |
| 1369 | SMT_R1_RXD_COUNT must be unequal zero |
| 1370 | |
| 1371 | | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD |
| 1372 | | x 0 | x 1-3 | x < 3 |
| 1373 | ---------------------------------------------------------------------- |
| 1374 | | 63,75 kB | 54,75 | R1_RxD |
| 1375 | rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB |
| 1376 | | | | R1_RxD+R2_RxD |
| 1377 | ---------------------------------------------------------------------- |
| 1378 | | | 9 kB | R2_RxD |
| 1379 | rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB |
| 1380 | | (not used) | | R1_RxD+R2_RxD |
| 1381 | |
| 1382 | END_MANUAL_ENTRY |
| 1383 | */ |
| 1384 | |
| 1385 | if (SMT_R1_RXD_COUNT == 0) { |
| 1386 | SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ; |
| 1387 | } |
| 1388 | |
| 1389 | switch(SMT_R2_RXD_COUNT) { |
| 1390 | case 0: |
| 1391 | smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ; |
| 1392 | smc->hw.fp.fifo.rx2_fifo_size = 0 ; |
| 1393 | break ; |
| 1394 | case 1: |
| 1395 | case 2: |
| 1396 | case 3: |
| 1397 | smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ; |
| 1398 | smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ; |
| 1399 | break ; |
| 1400 | default: /* this is not the real defaule */ |
| 1401 | smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE * |
| 1402 | SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; |
| 1403 | smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE * |
| 1404 | SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; |
| 1405 | break ; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | BEGIN_MANUAL_ENTRY(module;mem;1) |
| 1410 | ------------------------------------------------------------- |
| 1411 | TRANSMIT BUFFER MEMORY DIVERSION |
| 1412 | ------------------------------------------------------------- |
| 1413 | |
| 1414 | |
| 1415 | | no sync bw | sync bw available and | sync bw available and |
| 1416 | | available | SynchTxMode = SPLIT | SynchTxMode = ALL |
| 1417 | ----------------------------------------------------------------------- |
| 1418 | sync tx | 0 kB | 32 kB | 55 kB |
| 1419 | queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO |
| 1420 | ----------------------------------------------------------------------- |
| 1421 | async tx | 64 kB | 32 kB | 9 k |
| 1422 | queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO |
| 1423 | |
| 1424 | END_MANUAL_ENTRY |
| 1425 | */ |
| 1426 | |
| 1427 | /* |
| 1428 | * set the tx mode bits |
| 1429 | */ |
| 1430 | if (smc->mib.a[PATH0].fddiPATHSbaPayload) { |
| 1431 | #ifdef ESS |
| 1432 | smc->hw.fp.fifo.fifo_config_mode |= |
| 1433 | smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ; |
| 1434 | #endif |
| 1435 | } |
| 1436 | else { |
| 1437 | smc->hw.fp.fifo.fifo_config_mode &= |
| 1438 | ~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ; |
| 1439 | } |
| 1440 | |
| 1441 | /* |
| 1442 | * split up the FIFO |
| 1443 | */ |
| 1444 | if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) { |
| 1445 | if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) { |
| 1446 | smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ; |
| 1447 | smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ; |
| 1448 | } |
| 1449 | else { |
| 1450 | smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ; |
| 1451 | smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ; |
| 1452 | } |
| 1453 | } |
| 1454 | else { |
| 1455 | smc->hw.fp.fifo.tx_s_size = 0 ; |
| 1456 | smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ; |
| 1457 | } |
| 1458 | |
| 1459 | smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start + |
| 1460 | RX_FIFO_OFF ; |
| 1461 | smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start + |
| 1462 | smc->hw.fp.fifo.rx1_fifo_size ; |
| 1463 | smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start + |
| 1464 | smc->hw.fp.fifo.tx_s_size ; |
| 1465 | smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start + |
| 1466 | smc->hw.fp.fifo.tx_a0_size ; |
| 1467 | |
| 1468 | DB_SMT("FIFO split: mode = %x", smc->hw.fp.fifo.fifo_config_mode); |
| 1469 | DB_SMT("rbc_ram_start = %x rbc_ram_end = %x", |
| 1470 | smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end); |
| 1471 | DB_SMT("rx1_fifo_start = %x tx_s_start = %x", |
| 1472 | smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start); |
| 1473 | DB_SMT("tx_a0_start = %x rx2_fifo_start = %x", |
| 1474 | smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start); |
| 1475 | } |
| 1476 | |
| 1477 | void formac_reinit_tx(struct s_smc *smc) |
| 1478 | { |
| 1479 | /* |
| 1480 | * Split up the FIFO and reinitialize the MAC if synchronous |
| 1481 | * bandwidth becomes available but no synchronous queue is |
| 1482 | * configured. |
| 1483 | */ |
| 1484 | if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){ |
| 1485 | (void)init_mac(smc,0) ; |
| 1486 | } |
| 1487 | } |
| 1488 | |