David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /**************************************************************************** |
| 3 | * Driver for Solarflare network controllers and boards |
| 4 | * Copyright 2005-2006 Fen Systems Ltd. |
| 5 | * Copyright 2005-2013 Solarflare Communications Inc. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #include <linux/module.h> |
| 9 | #include <linux/pci.h> |
| 10 | #include <linux/netdevice.h> |
| 11 | #include <linux/etherdevice.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/notifier.h> |
| 14 | #include <linux/ip.h> |
| 15 | #include <linux/tcp.h> |
| 16 | #include <linux/in.h> |
| 17 | #include <linux/ethtool.h> |
| 18 | #include <linux/topology.h> |
| 19 | #include <linux/gfp.h> |
| 20 | #include <linux/aer.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include "net_driver.h" |
| 23 | #include <net/gre.h> |
| 24 | #include <net/udp_tunnel.h> |
| 25 | #include "efx.h" |
| 26 | #include "nic.h" |
| 27 | #include "io.h" |
| 28 | #include "selftest.h" |
| 29 | #include "sriov.h" |
| 30 | |
| 31 | #include "mcdi.h" |
| 32 | #include "mcdi_pcol.h" |
| 33 | #include "workarounds.h" |
| 34 | |
| 35 | /************************************************************************** |
| 36 | * |
| 37 | * Type name strings |
| 38 | * |
| 39 | ************************************************************************** |
| 40 | */ |
| 41 | |
| 42 | /* Loopback mode names (see LOOPBACK_MODE()) */ |
| 43 | const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; |
| 44 | const char *const efx_loopback_mode_names[] = { |
| 45 | [LOOPBACK_NONE] = "NONE", |
| 46 | [LOOPBACK_DATA] = "DATAPATH", |
| 47 | [LOOPBACK_GMAC] = "GMAC", |
| 48 | [LOOPBACK_XGMII] = "XGMII", |
| 49 | [LOOPBACK_XGXS] = "XGXS", |
| 50 | [LOOPBACK_XAUI] = "XAUI", |
| 51 | [LOOPBACK_GMII] = "GMII", |
| 52 | [LOOPBACK_SGMII] = "SGMII", |
| 53 | [LOOPBACK_XGBR] = "XGBR", |
| 54 | [LOOPBACK_XFI] = "XFI", |
| 55 | [LOOPBACK_XAUI_FAR] = "XAUI_FAR", |
| 56 | [LOOPBACK_GMII_FAR] = "GMII_FAR", |
| 57 | [LOOPBACK_SGMII_FAR] = "SGMII_FAR", |
| 58 | [LOOPBACK_XFI_FAR] = "XFI_FAR", |
| 59 | [LOOPBACK_GPHY] = "GPHY", |
| 60 | [LOOPBACK_PHYXS] = "PHYXS", |
| 61 | [LOOPBACK_PCS] = "PCS", |
| 62 | [LOOPBACK_PMAPMD] = "PMA/PMD", |
| 63 | [LOOPBACK_XPORT] = "XPORT", |
| 64 | [LOOPBACK_XGMII_WS] = "XGMII_WS", |
| 65 | [LOOPBACK_XAUI_WS] = "XAUI_WS", |
| 66 | [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", |
| 67 | [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", |
| 68 | [LOOPBACK_GMII_WS] = "GMII_WS", |
| 69 | [LOOPBACK_XFI_WS] = "XFI_WS", |
| 70 | [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", |
| 71 | [LOOPBACK_PHYXS_WS] = "PHYXS_WS", |
| 72 | }; |
| 73 | |
| 74 | const unsigned int efx_reset_type_max = RESET_TYPE_MAX; |
| 75 | const char *const efx_reset_type_names[] = { |
| 76 | [RESET_TYPE_INVISIBLE] = "INVISIBLE", |
| 77 | [RESET_TYPE_ALL] = "ALL", |
| 78 | [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", |
| 79 | [RESET_TYPE_WORLD] = "WORLD", |
| 80 | [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", |
| 81 | [RESET_TYPE_DATAPATH] = "DATAPATH", |
| 82 | [RESET_TYPE_MC_BIST] = "MC_BIST", |
| 83 | [RESET_TYPE_DISABLE] = "DISABLE", |
| 84 | [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", |
| 85 | [RESET_TYPE_INT_ERROR] = "INT_ERROR", |
| 86 | [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", |
| 87 | [RESET_TYPE_TX_SKIP] = "TX_SKIP", |
| 88 | [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", |
| 89 | [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", |
| 90 | }; |
| 91 | |
| 92 | /* UDP tunnel type names */ |
| 93 | static const char *const efx_udp_tunnel_type_names[] = { |
| 94 | [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan", |
| 95 | [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve", |
| 96 | }; |
| 97 | |
| 98 | void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen) |
| 99 | { |
| 100 | if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) && |
| 101 | efx_udp_tunnel_type_names[type] != NULL) |
| 102 | snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]); |
| 103 | else |
| 104 | snprintf(buf, buflen, "type %d", type); |
| 105 | } |
| 106 | |
| 107 | /* Reset workqueue. If any NIC has a hardware failure then a reset will be |
| 108 | * queued onto this work queue. This is not a per-nic work queue, because |
| 109 | * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. |
| 110 | */ |
| 111 | static struct workqueue_struct *reset_workqueue; |
| 112 | |
| 113 | /* How often and how many times to poll for a reset while waiting for a |
| 114 | * BIST that another function started to complete. |
| 115 | */ |
| 116 | #define BIST_WAIT_DELAY_MS 100 |
| 117 | #define BIST_WAIT_DELAY_COUNT 100 |
| 118 | |
| 119 | /************************************************************************** |
| 120 | * |
| 121 | * Configurable values |
| 122 | * |
| 123 | *************************************************************************/ |
| 124 | |
| 125 | /* |
| 126 | * Use separate channels for TX and RX events |
| 127 | * |
| 128 | * Set this to 1 to use separate channels for TX and RX. It allows us |
| 129 | * to control interrupt affinity separately for TX and RX. |
| 130 | * |
| 131 | * This is only used in MSI-X interrupt mode |
| 132 | */ |
| 133 | bool efx_separate_tx_channels; |
| 134 | module_param(efx_separate_tx_channels, bool, 0444); |
| 135 | MODULE_PARM_DESC(efx_separate_tx_channels, |
| 136 | "Use separate channels for TX and RX"); |
| 137 | |
| 138 | /* This is the weight assigned to each of the (per-channel) virtual |
| 139 | * NAPI devices. |
| 140 | */ |
| 141 | static int napi_weight = 64; |
| 142 | |
| 143 | /* This is the time (in jiffies) between invocations of the hardware |
| 144 | * monitor. |
| 145 | * On Falcon-based NICs, this will: |
| 146 | * - Check the on-board hardware monitor; |
| 147 | * - Poll the link state and reconfigure the hardware as necessary. |
| 148 | * On Siena-based NICs for power systems with EEH support, this will give EEH a |
| 149 | * chance to start. |
| 150 | */ |
| 151 | static unsigned int efx_monitor_interval = 1 * HZ; |
| 152 | |
| 153 | /* Initial interrupt moderation settings. They can be modified after |
| 154 | * module load with ethtool. |
| 155 | * |
| 156 | * The default for RX should strike a balance between increasing the |
| 157 | * round-trip latency and reducing overhead. |
| 158 | */ |
| 159 | static unsigned int rx_irq_mod_usec = 60; |
| 160 | |
| 161 | /* Initial interrupt moderation settings. They can be modified after |
| 162 | * module load with ethtool. |
| 163 | * |
| 164 | * This default is chosen to ensure that a 10G link does not go idle |
| 165 | * while a TX queue is stopped after it has become full. A queue is |
| 166 | * restarted when it drops below half full. The time this takes (assuming |
| 167 | * worst case 3 descriptors per packet and 1024 descriptors) is |
| 168 | * 512 / 3 * 1.2 = 205 usec. |
| 169 | */ |
| 170 | static unsigned int tx_irq_mod_usec = 150; |
| 171 | |
| 172 | /* This is the first interrupt mode to try out of: |
| 173 | * 0 => MSI-X |
| 174 | * 1 => MSI |
| 175 | * 2 => legacy |
| 176 | */ |
| 177 | static unsigned int interrupt_mode; |
| 178 | |
| 179 | /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), |
| 180 | * i.e. the number of CPUs among which we may distribute simultaneous |
| 181 | * interrupt handling. |
| 182 | * |
| 183 | * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. |
| 184 | * The default (0) means to assign an interrupt to each core. |
| 185 | */ |
| 186 | static unsigned int rss_cpus; |
| 187 | module_param(rss_cpus, uint, 0444); |
| 188 | MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); |
| 189 | |
| 190 | static bool phy_flash_cfg; |
| 191 | module_param(phy_flash_cfg, bool, 0644); |
| 192 | MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); |
| 193 | |
| 194 | static unsigned irq_adapt_low_thresh = 8000; |
| 195 | module_param(irq_adapt_low_thresh, uint, 0644); |
| 196 | MODULE_PARM_DESC(irq_adapt_low_thresh, |
| 197 | "Threshold score for reducing IRQ moderation"); |
| 198 | |
| 199 | static unsigned irq_adapt_high_thresh = 16000; |
| 200 | module_param(irq_adapt_high_thresh, uint, 0644); |
| 201 | MODULE_PARM_DESC(irq_adapt_high_thresh, |
| 202 | "Threshold score for increasing IRQ moderation"); |
| 203 | |
| 204 | static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | |
| 205 | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | |
| 206 | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | |
| 207 | NETIF_MSG_TX_ERR | NETIF_MSG_HW); |
| 208 | module_param(debug, uint, 0); |
| 209 | MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); |
| 210 | |
| 211 | /************************************************************************** |
| 212 | * |
| 213 | * Utility functions and prototypes |
| 214 | * |
| 215 | *************************************************************************/ |
| 216 | |
| 217 | static int efx_soft_enable_interrupts(struct efx_nic *efx); |
| 218 | static void efx_soft_disable_interrupts(struct efx_nic *efx); |
| 219 | static void efx_remove_channel(struct efx_channel *channel); |
| 220 | static void efx_remove_channels(struct efx_nic *efx); |
| 221 | static const struct efx_channel_type efx_default_channel_type; |
| 222 | static void efx_remove_port(struct efx_nic *efx); |
| 223 | static void efx_init_napi_channel(struct efx_channel *channel); |
| 224 | static void efx_fini_napi(struct efx_nic *efx); |
| 225 | static void efx_fini_napi_channel(struct efx_channel *channel); |
| 226 | static void efx_fini_struct(struct efx_nic *efx); |
| 227 | static void efx_start_all(struct efx_nic *efx); |
| 228 | static void efx_stop_all(struct efx_nic *efx); |
| 229 | |
| 230 | #define EFX_ASSERT_RESET_SERIALISED(efx) \ |
| 231 | do { \ |
| 232 | if ((efx->state == STATE_READY) || \ |
| 233 | (efx->state == STATE_RECOVERY) || \ |
| 234 | (efx->state == STATE_DISABLED)) \ |
| 235 | ASSERT_RTNL(); \ |
| 236 | } while (0) |
| 237 | |
| 238 | static int efx_check_disabled(struct efx_nic *efx) |
| 239 | { |
| 240 | if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { |
| 241 | netif_err(efx, drv, efx->net_dev, |
| 242 | "device is disabled due to earlier errors\n"); |
| 243 | return -EIO; |
| 244 | } |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | /************************************************************************** |
| 249 | * |
| 250 | * Event queue processing |
| 251 | * |
| 252 | *************************************************************************/ |
| 253 | |
| 254 | /* Process channel's event queue |
| 255 | * |
| 256 | * This function is responsible for processing the event queue of a |
| 257 | * single channel. The caller must guarantee that this function will |
| 258 | * never be concurrently called more than once on the same channel, |
| 259 | * though different channels may be being processed concurrently. |
| 260 | */ |
| 261 | static int efx_process_channel(struct efx_channel *channel, int budget) |
| 262 | { |
| 263 | struct efx_tx_queue *tx_queue; |
| 264 | struct list_head rx_list; |
| 265 | int spent; |
| 266 | |
| 267 | if (unlikely(!channel->enabled)) |
| 268 | return 0; |
| 269 | |
| 270 | /* Prepare the batch receive list */ |
| 271 | EFX_WARN_ON_PARANOID(channel->rx_list != NULL); |
| 272 | INIT_LIST_HEAD(&rx_list); |
| 273 | channel->rx_list = &rx_list; |
| 274 | |
| 275 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 276 | tx_queue->pkts_compl = 0; |
| 277 | tx_queue->bytes_compl = 0; |
| 278 | } |
| 279 | |
| 280 | spent = efx_nic_process_eventq(channel, budget); |
| 281 | if (spent && efx_channel_has_rx_queue(channel)) { |
| 282 | struct efx_rx_queue *rx_queue = |
| 283 | efx_channel_get_rx_queue(channel); |
| 284 | |
| 285 | efx_rx_flush_packet(channel); |
| 286 | efx_fast_push_rx_descriptors(rx_queue, true); |
| 287 | } |
| 288 | |
| 289 | /* Update BQL */ |
| 290 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 291 | if (tx_queue->bytes_compl) { |
| 292 | netdev_tx_completed_queue(tx_queue->core_txq, |
| 293 | tx_queue->pkts_compl, tx_queue->bytes_compl); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | /* Receive any packets we queued up */ |
| 298 | netif_receive_skb_list(channel->rx_list); |
| 299 | channel->rx_list = NULL; |
| 300 | |
| 301 | return spent; |
| 302 | } |
| 303 | |
| 304 | /* NAPI poll handler |
| 305 | * |
| 306 | * NAPI guarantees serialisation of polls of the same device, which |
| 307 | * provides the guarantee required by efx_process_channel(). |
| 308 | */ |
| 309 | static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel) |
| 310 | { |
| 311 | int step = efx->irq_mod_step_us; |
| 312 | |
| 313 | if (channel->irq_mod_score < irq_adapt_low_thresh) { |
| 314 | if (channel->irq_moderation_us > step) { |
| 315 | channel->irq_moderation_us -= step; |
| 316 | efx->type->push_irq_moderation(channel); |
| 317 | } |
| 318 | } else if (channel->irq_mod_score > irq_adapt_high_thresh) { |
| 319 | if (channel->irq_moderation_us < |
| 320 | efx->irq_rx_moderation_us) { |
| 321 | channel->irq_moderation_us += step; |
| 322 | efx->type->push_irq_moderation(channel); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | channel->irq_count = 0; |
| 327 | channel->irq_mod_score = 0; |
| 328 | } |
| 329 | |
| 330 | static int efx_poll(struct napi_struct *napi, int budget) |
| 331 | { |
| 332 | struct efx_channel *channel = |
| 333 | container_of(napi, struct efx_channel, napi_str); |
| 334 | struct efx_nic *efx = channel->efx; |
| 335 | int spent; |
| 336 | |
| 337 | netif_vdbg(efx, intr, efx->net_dev, |
| 338 | "channel %d NAPI poll executing on CPU %d\n", |
| 339 | channel->channel, raw_smp_processor_id()); |
| 340 | |
| 341 | spent = efx_process_channel(channel, budget); |
| 342 | |
| 343 | if (spent < budget) { |
| 344 | if (efx_channel_has_rx_queue(channel) && |
| 345 | efx->irq_rx_adaptive && |
| 346 | unlikely(++channel->irq_count == 1000)) { |
| 347 | efx_update_irq_mod(efx, channel); |
| 348 | } |
| 349 | |
| 350 | #ifdef CONFIG_RFS_ACCEL |
| 351 | /* Perhaps expire some ARFS filters */ |
| 352 | schedule_work(&channel->filter_work); |
| 353 | #endif |
| 354 | |
| 355 | /* There is no race here; although napi_disable() will |
| 356 | * only wait for napi_complete(), this isn't a problem |
| 357 | * since efx_nic_eventq_read_ack() will have no effect if |
| 358 | * interrupts have already been disabled. |
| 359 | */ |
| 360 | if (napi_complete_done(napi, spent)) |
| 361 | efx_nic_eventq_read_ack(channel); |
| 362 | } |
| 363 | |
| 364 | return spent; |
| 365 | } |
| 366 | |
| 367 | /* Create event queue |
| 368 | * Event queue memory allocations are done only once. If the channel |
| 369 | * is reset, the memory buffer will be reused; this guards against |
| 370 | * errors during channel reset and also simplifies interrupt handling. |
| 371 | */ |
| 372 | static int efx_probe_eventq(struct efx_channel *channel) |
| 373 | { |
| 374 | struct efx_nic *efx = channel->efx; |
| 375 | unsigned long entries; |
| 376 | |
| 377 | netif_dbg(efx, probe, efx->net_dev, |
| 378 | "chan %d create event queue\n", channel->channel); |
| 379 | |
| 380 | /* Build an event queue with room for one event per tx and rx buffer, |
| 381 | * plus some extra for link state events and MCDI completions. */ |
| 382 | entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); |
| 383 | EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); |
| 384 | channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; |
| 385 | |
| 386 | return efx_nic_probe_eventq(channel); |
| 387 | } |
| 388 | |
| 389 | /* Prepare channel's event queue */ |
| 390 | static int efx_init_eventq(struct efx_channel *channel) |
| 391 | { |
| 392 | struct efx_nic *efx = channel->efx; |
| 393 | int rc; |
| 394 | |
| 395 | EFX_WARN_ON_PARANOID(channel->eventq_init); |
| 396 | |
| 397 | netif_dbg(efx, drv, efx->net_dev, |
| 398 | "chan %d init event queue\n", channel->channel); |
| 399 | |
| 400 | rc = efx_nic_init_eventq(channel); |
| 401 | if (rc == 0) { |
| 402 | efx->type->push_irq_moderation(channel); |
| 403 | channel->eventq_read_ptr = 0; |
| 404 | channel->eventq_init = true; |
| 405 | } |
| 406 | return rc; |
| 407 | } |
| 408 | |
| 409 | /* Enable event queue processing and NAPI */ |
| 410 | void efx_start_eventq(struct efx_channel *channel) |
| 411 | { |
| 412 | netif_dbg(channel->efx, ifup, channel->efx->net_dev, |
| 413 | "chan %d start event queue\n", channel->channel); |
| 414 | |
| 415 | /* Make sure the NAPI handler sees the enabled flag set */ |
| 416 | channel->enabled = true; |
| 417 | smp_wmb(); |
| 418 | |
| 419 | napi_enable(&channel->napi_str); |
| 420 | efx_nic_eventq_read_ack(channel); |
| 421 | } |
| 422 | |
| 423 | /* Disable event queue processing and NAPI */ |
| 424 | void efx_stop_eventq(struct efx_channel *channel) |
| 425 | { |
| 426 | if (!channel->enabled) |
| 427 | return; |
| 428 | |
| 429 | napi_disable(&channel->napi_str); |
| 430 | channel->enabled = false; |
| 431 | } |
| 432 | |
| 433 | static void efx_fini_eventq(struct efx_channel *channel) |
| 434 | { |
| 435 | if (!channel->eventq_init) |
| 436 | return; |
| 437 | |
| 438 | netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| 439 | "chan %d fini event queue\n", channel->channel); |
| 440 | |
| 441 | efx_nic_fini_eventq(channel); |
| 442 | channel->eventq_init = false; |
| 443 | } |
| 444 | |
| 445 | static void efx_remove_eventq(struct efx_channel *channel) |
| 446 | { |
| 447 | netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| 448 | "chan %d remove event queue\n", channel->channel); |
| 449 | |
| 450 | efx_nic_remove_eventq(channel); |
| 451 | } |
| 452 | |
| 453 | /************************************************************************** |
| 454 | * |
| 455 | * Channel handling |
| 456 | * |
| 457 | *************************************************************************/ |
| 458 | |
| 459 | /* Allocate and initialise a channel structure. */ |
| 460 | static struct efx_channel * |
| 461 | efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) |
| 462 | { |
| 463 | struct efx_channel *channel; |
| 464 | struct efx_rx_queue *rx_queue; |
| 465 | struct efx_tx_queue *tx_queue; |
| 466 | int j; |
| 467 | |
| 468 | channel = kzalloc(sizeof(*channel), GFP_KERNEL); |
| 469 | if (!channel) |
| 470 | return NULL; |
| 471 | |
| 472 | channel->efx = efx; |
| 473 | channel->channel = i; |
| 474 | channel->type = &efx_default_channel_type; |
| 475 | |
| 476 | for (j = 0; j < EFX_TXQ_TYPES; j++) { |
| 477 | tx_queue = &channel->tx_queue[j]; |
| 478 | tx_queue->efx = efx; |
| 479 | tx_queue->queue = i * EFX_TXQ_TYPES + j; |
| 480 | tx_queue->channel = channel; |
| 481 | } |
| 482 | |
| 483 | #ifdef CONFIG_RFS_ACCEL |
| 484 | INIT_WORK(&channel->filter_work, efx_filter_rfs_expire); |
| 485 | #endif |
| 486 | |
| 487 | rx_queue = &channel->rx_queue; |
| 488 | rx_queue->efx = efx; |
| 489 | timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); |
| 490 | |
| 491 | return channel; |
| 492 | } |
| 493 | |
| 494 | /* Allocate and initialise a channel structure, copying parameters |
| 495 | * (but not resources) from an old channel structure. |
| 496 | */ |
| 497 | static struct efx_channel * |
| 498 | efx_copy_channel(const struct efx_channel *old_channel) |
| 499 | { |
| 500 | struct efx_channel *channel; |
| 501 | struct efx_rx_queue *rx_queue; |
| 502 | struct efx_tx_queue *tx_queue; |
| 503 | int j; |
| 504 | |
| 505 | channel = kmalloc(sizeof(*channel), GFP_KERNEL); |
| 506 | if (!channel) |
| 507 | return NULL; |
| 508 | |
| 509 | *channel = *old_channel; |
| 510 | |
| 511 | channel->napi_dev = NULL; |
| 512 | INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); |
| 513 | channel->napi_str.napi_id = 0; |
| 514 | channel->napi_str.state = 0; |
| 515 | memset(&channel->eventq, 0, sizeof(channel->eventq)); |
| 516 | |
| 517 | for (j = 0; j < EFX_TXQ_TYPES; j++) { |
| 518 | tx_queue = &channel->tx_queue[j]; |
| 519 | if (tx_queue->channel) |
| 520 | tx_queue->channel = channel; |
| 521 | tx_queue->buffer = NULL; |
| 522 | memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); |
| 523 | } |
| 524 | |
| 525 | rx_queue = &channel->rx_queue; |
| 526 | rx_queue->buffer = NULL; |
| 527 | memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); |
| 528 | timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); |
| 529 | #ifdef CONFIG_RFS_ACCEL |
| 530 | INIT_WORK(&channel->filter_work, efx_filter_rfs_expire); |
| 531 | #endif |
| 532 | |
| 533 | return channel; |
| 534 | } |
| 535 | |
| 536 | static int efx_probe_channel(struct efx_channel *channel) |
| 537 | { |
| 538 | struct efx_tx_queue *tx_queue; |
| 539 | struct efx_rx_queue *rx_queue; |
| 540 | int rc; |
| 541 | |
| 542 | netif_dbg(channel->efx, probe, channel->efx->net_dev, |
| 543 | "creating channel %d\n", channel->channel); |
| 544 | |
| 545 | rc = channel->type->pre_probe(channel); |
| 546 | if (rc) |
| 547 | goto fail; |
| 548 | |
| 549 | rc = efx_probe_eventq(channel); |
| 550 | if (rc) |
| 551 | goto fail; |
| 552 | |
| 553 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 554 | rc = efx_probe_tx_queue(tx_queue); |
| 555 | if (rc) |
| 556 | goto fail; |
| 557 | } |
| 558 | |
| 559 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 560 | rc = efx_probe_rx_queue(rx_queue); |
| 561 | if (rc) |
| 562 | goto fail; |
| 563 | } |
| 564 | |
| 565 | channel->rx_list = NULL; |
| 566 | |
| 567 | return 0; |
| 568 | |
| 569 | fail: |
| 570 | efx_remove_channel(channel); |
| 571 | return rc; |
| 572 | } |
| 573 | |
| 574 | static void |
| 575 | efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) |
| 576 | { |
| 577 | struct efx_nic *efx = channel->efx; |
| 578 | const char *type; |
| 579 | int number; |
| 580 | |
| 581 | number = channel->channel; |
| 582 | if (efx->tx_channel_offset == 0) { |
| 583 | type = ""; |
| 584 | } else if (channel->channel < efx->tx_channel_offset) { |
| 585 | type = "-rx"; |
| 586 | } else { |
| 587 | type = "-tx"; |
| 588 | number -= efx->tx_channel_offset; |
| 589 | } |
| 590 | snprintf(buf, len, "%s%s-%d", efx->name, type, number); |
| 591 | } |
| 592 | |
| 593 | static void efx_set_channel_names(struct efx_nic *efx) |
| 594 | { |
| 595 | struct efx_channel *channel; |
| 596 | |
| 597 | efx_for_each_channel(channel, efx) |
| 598 | channel->type->get_name(channel, |
| 599 | efx->msi_context[channel->channel].name, |
| 600 | sizeof(efx->msi_context[0].name)); |
| 601 | } |
| 602 | |
| 603 | static int efx_probe_channels(struct efx_nic *efx) |
| 604 | { |
| 605 | struct efx_channel *channel; |
| 606 | int rc; |
| 607 | |
| 608 | /* Restart special buffer allocation */ |
| 609 | efx->next_buffer_table = 0; |
| 610 | |
| 611 | /* Probe channels in reverse, so that any 'extra' channels |
| 612 | * use the start of the buffer table. This allows the traffic |
| 613 | * channels to be resized without moving them or wasting the |
| 614 | * entries before them. |
| 615 | */ |
| 616 | efx_for_each_channel_rev(channel, efx) { |
| 617 | rc = efx_probe_channel(channel); |
| 618 | if (rc) { |
| 619 | netif_err(efx, probe, efx->net_dev, |
| 620 | "failed to create channel %d\n", |
| 621 | channel->channel); |
| 622 | goto fail; |
| 623 | } |
| 624 | } |
| 625 | efx_set_channel_names(efx); |
| 626 | |
| 627 | return 0; |
| 628 | |
| 629 | fail: |
| 630 | efx_remove_channels(efx); |
| 631 | return rc; |
| 632 | } |
| 633 | |
| 634 | /* Channels are shutdown and reinitialised whilst the NIC is running |
| 635 | * to propagate configuration changes (mtu, checksum offload), or |
| 636 | * to clear hardware error conditions |
| 637 | */ |
| 638 | static void efx_start_datapath(struct efx_nic *efx) |
| 639 | { |
| 640 | netdev_features_t old_features = efx->net_dev->features; |
| 641 | bool old_rx_scatter = efx->rx_scatter; |
| 642 | struct efx_tx_queue *tx_queue; |
| 643 | struct efx_rx_queue *rx_queue; |
| 644 | struct efx_channel *channel; |
| 645 | size_t rx_buf_len; |
| 646 | |
| 647 | /* Calculate the rx buffer allocation parameters required to |
| 648 | * support the current MTU, including padding for header |
| 649 | * alignment and overruns. |
| 650 | */ |
| 651 | efx->rx_dma_len = (efx->rx_prefix_size + |
| 652 | EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + |
| 653 | efx->type->rx_buffer_padding); |
| 654 | rx_buf_len = (sizeof(struct efx_rx_page_state) + |
| 655 | efx->rx_ip_align + efx->rx_dma_len); |
| 656 | if (rx_buf_len <= PAGE_SIZE) { |
| 657 | efx->rx_scatter = efx->type->always_rx_scatter; |
| 658 | efx->rx_buffer_order = 0; |
| 659 | } else if (efx->type->can_rx_scatter) { |
| 660 | BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); |
| 661 | BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + |
| 662 | 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, |
| 663 | EFX_RX_BUF_ALIGNMENT) > |
| 664 | PAGE_SIZE); |
| 665 | efx->rx_scatter = true; |
| 666 | efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; |
| 667 | efx->rx_buffer_order = 0; |
| 668 | } else { |
| 669 | efx->rx_scatter = false; |
| 670 | efx->rx_buffer_order = get_order(rx_buf_len); |
| 671 | } |
| 672 | |
| 673 | efx_rx_config_page_split(efx); |
| 674 | if (efx->rx_buffer_order) |
| 675 | netif_dbg(efx, drv, efx->net_dev, |
| 676 | "RX buf len=%u; page order=%u batch=%u\n", |
| 677 | efx->rx_dma_len, efx->rx_buffer_order, |
| 678 | efx->rx_pages_per_batch); |
| 679 | else |
| 680 | netif_dbg(efx, drv, efx->net_dev, |
| 681 | "RX buf len=%u step=%u bpp=%u; page batch=%u\n", |
| 682 | efx->rx_dma_len, efx->rx_page_buf_step, |
| 683 | efx->rx_bufs_per_page, efx->rx_pages_per_batch); |
| 684 | |
| 685 | /* Restore previously fixed features in hw_features and remove |
| 686 | * features which are fixed now |
| 687 | */ |
| 688 | efx->net_dev->hw_features |= efx->net_dev->features; |
| 689 | efx->net_dev->hw_features &= ~efx->fixed_features; |
| 690 | efx->net_dev->features |= efx->fixed_features; |
| 691 | if (efx->net_dev->features != old_features) |
| 692 | netdev_features_change(efx->net_dev); |
| 693 | |
| 694 | /* RX filters may also have scatter-enabled flags */ |
| 695 | if (efx->rx_scatter != old_rx_scatter) |
| 696 | efx->type->filter_update_rx_scatter(efx); |
| 697 | |
| 698 | /* We must keep at least one descriptor in a TX ring empty. |
| 699 | * We could avoid this when the queue size does not exactly |
| 700 | * match the hardware ring size, but it's not that important. |
| 701 | * Therefore we stop the queue when one more skb might fill |
| 702 | * the ring completely. We wake it when half way back to |
| 703 | * empty. |
| 704 | */ |
| 705 | efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); |
| 706 | efx->txq_wake_thresh = efx->txq_stop_thresh / 2; |
| 707 | |
| 708 | /* Initialise the channels */ |
| 709 | efx_for_each_channel(channel, efx) { |
| 710 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 711 | efx_init_tx_queue(tx_queue); |
| 712 | atomic_inc(&efx->active_queues); |
| 713 | } |
| 714 | |
| 715 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 716 | efx_init_rx_queue(rx_queue); |
| 717 | atomic_inc(&efx->active_queues); |
| 718 | efx_stop_eventq(channel); |
| 719 | efx_fast_push_rx_descriptors(rx_queue, false); |
| 720 | efx_start_eventq(channel); |
| 721 | } |
| 722 | |
| 723 | WARN_ON(channel->rx_pkt_n_frags); |
| 724 | } |
| 725 | |
| 726 | efx_ptp_start_datapath(efx); |
| 727 | |
| 728 | if (netif_device_present(efx->net_dev)) |
| 729 | netif_tx_wake_all_queues(efx->net_dev); |
| 730 | } |
| 731 | |
| 732 | static void efx_stop_datapath(struct efx_nic *efx) |
| 733 | { |
| 734 | struct efx_channel *channel; |
| 735 | struct efx_tx_queue *tx_queue; |
| 736 | struct efx_rx_queue *rx_queue; |
| 737 | int rc; |
| 738 | |
| 739 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 740 | BUG_ON(efx->port_enabled); |
| 741 | |
| 742 | efx_ptp_stop_datapath(efx); |
| 743 | |
| 744 | /* Stop RX refill */ |
| 745 | efx_for_each_channel(channel, efx) { |
| 746 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 747 | rx_queue->refill_enabled = false; |
| 748 | } |
| 749 | |
| 750 | efx_for_each_channel(channel, efx) { |
| 751 | /* RX packet processing is pipelined, so wait for the |
| 752 | * NAPI handler to complete. At least event queue 0 |
| 753 | * might be kept active by non-data events, so don't |
| 754 | * use napi_synchronize() but actually disable NAPI |
| 755 | * temporarily. |
| 756 | */ |
| 757 | if (efx_channel_has_rx_queue(channel)) { |
| 758 | efx_stop_eventq(channel); |
| 759 | efx_start_eventq(channel); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | rc = efx->type->fini_dmaq(efx); |
| 764 | if (rc) { |
| 765 | netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); |
| 766 | } else { |
| 767 | netif_dbg(efx, drv, efx->net_dev, |
| 768 | "successfully flushed all queues\n"); |
| 769 | } |
| 770 | |
| 771 | efx_for_each_channel(channel, efx) { |
| 772 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 773 | efx_fini_rx_queue(rx_queue); |
| 774 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) |
| 775 | efx_fini_tx_queue(tx_queue); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | static void efx_remove_channel(struct efx_channel *channel) |
| 780 | { |
| 781 | struct efx_tx_queue *tx_queue; |
| 782 | struct efx_rx_queue *rx_queue; |
| 783 | |
| 784 | netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| 785 | "destroy chan %d\n", channel->channel); |
| 786 | |
| 787 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 788 | efx_remove_rx_queue(rx_queue); |
| 789 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) |
| 790 | efx_remove_tx_queue(tx_queue); |
| 791 | efx_remove_eventq(channel); |
| 792 | channel->type->post_remove(channel); |
| 793 | } |
| 794 | |
| 795 | static void efx_remove_channels(struct efx_nic *efx) |
| 796 | { |
| 797 | struct efx_channel *channel; |
| 798 | |
| 799 | efx_for_each_channel(channel, efx) |
| 800 | efx_remove_channel(channel); |
| 801 | } |
| 802 | |
| 803 | int |
| 804 | efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) |
| 805 | { |
| 806 | struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; |
| 807 | u32 old_rxq_entries, old_txq_entries; |
| 808 | unsigned i, next_buffer_table = 0; |
| 809 | int rc, rc2; |
| 810 | |
| 811 | rc = efx_check_disabled(efx); |
| 812 | if (rc) |
| 813 | return rc; |
| 814 | |
| 815 | /* Not all channels should be reallocated. We must avoid |
| 816 | * reallocating their buffer table entries. |
| 817 | */ |
| 818 | efx_for_each_channel(channel, efx) { |
| 819 | struct efx_rx_queue *rx_queue; |
| 820 | struct efx_tx_queue *tx_queue; |
| 821 | |
| 822 | if (channel->type->copy) |
| 823 | continue; |
| 824 | next_buffer_table = max(next_buffer_table, |
| 825 | channel->eventq.index + |
| 826 | channel->eventq.entries); |
| 827 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 828 | next_buffer_table = max(next_buffer_table, |
| 829 | rx_queue->rxd.index + |
| 830 | rx_queue->rxd.entries); |
| 831 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 832 | next_buffer_table = max(next_buffer_table, |
| 833 | tx_queue->txd.index + |
| 834 | tx_queue->txd.entries); |
| 835 | } |
| 836 | |
| 837 | efx_device_detach_sync(efx); |
| 838 | efx_stop_all(efx); |
| 839 | efx_soft_disable_interrupts(efx); |
| 840 | |
| 841 | /* Clone channels (where possible) */ |
| 842 | memset(other_channel, 0, sizeof(other_channel)); |
| 843 | for (i = 0; i < efx->n_channels; i++) { |
| 844 | channel = efx->channel[i]; |
| 845 | if (channel->type->copy) |
| 846 | channel = channel->type->copy(channel); |
| 847 | if (!channel) { |
| 848 | rc = -ENOMEM; |
| 849 | goto out; |
| 850 | } |
| 851 | other_channel[i] = channel; |
| 852 | } |
| 853 | |
| 854 | /* Swap entry counts and channel pointers */ |
| 855 | old_rxq_entries = efx->rxq_entries; |
| 856 | old_txq_entries = efx->txq_entries; |
| 857 | efx->rxq_entries = rxq_entries; |
| 858 | efx->txq_entries = txq_entries; |
| 859 | for (i = 0; i < efx->n_channels; i++) { |
| 860 | channel = efx->channel[i]; |
| 861 | efx->channel[i] = other_channel[i]; |
| 862 | other_channel[i] = channel; |
| 863 | } |
| 864 | |
| 865 | /* Restart buffer table allocation */ |
| 866 | efx->next_buffer_table = next_buffer_table; |
| 867 | |
| 868 | for (i = 0; i < efx->n_channels; i++) { |
| 869 | channel = efx->channel[i]; |
| 870 | if (!channel->type->copy) |
| 871 | continue; |
| 872 | rc = efx_probe_channel(channel); |
| 873 | if (rc) |
| 874 | goto rollback; |
| 875 | efx_init_napi_channel(efx->channel[i]); |
| 876 | } |
| 877 | |
| 878 | out: |
| 879 | /* Destroy unused channel structures */ |
| 880 | for (i = 0; i < efx->n_channels; i++) { |
| 881 | channel = other_channel[i]; |
| 882 | if (channel && channel->type->copy) { |
| 883 | efx_fini_napi_channel(channel); |
| 884 | efx_remove_channel(channel); |
| 885 | kfree(channel); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | rc2 = efx_soft_enable_interrupts(efx); |
| 890 | if (rc2) { |
| 891 | rc = rc ? rc : rc2; |
| 892 | netif_err(efx, drv, efx->net_dev, |
| 893 | "unable to restart interrupts on channel reallocation\n"); |
| 894 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 895 | } else { |
| 896 | efx_start_all(efx); |
| 897 | efx_device_attach_if_not_resetting(efx); |
| 898 | } |
| 899 | return rc; |
| 900 | |
| 901 | rollback: |
| 902 | /* Swap back */ |
| 903 | efx->rxq_entries = old_rxq_entries; |
| 904 | efx->txq_entries = old_txq_entries; |
| 905 | for (i = 0; i < efx->n_channels; i++) { |
| 906 | channel = efx->channel[i]; |
| 907 | efx->channel[i] = other_channel[i]; |
| 908 | other_channel[i] = channel; |
| 909 | } |
| 910 | goto out; |
| 911 | } |
| 912 | |
| 913 | void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) |
| 914 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 915 | mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 916 | } |
| 917 | |
| 918 | static bool efx_default_channel_want_txqs(struct efx_channel *channel) |
| 919 | { |
| 920 | return channel->channel - channel->efx->tx_channel_offset < |
| 921 | channel->efx->n_tx_channels; |
| 922 | } |
| 923 | |
| 924 | static const struct efx_channel_type efx_default_channel_type = { |
| 925 | .pre_probe = efx_channel_dummy_op_int, |
| 926 | .post_remove = efx_channel_dummy_op_void, |
| 927 | .get_name = efx_get_channel_name, |
| 928 | .copy = efx_copy_channel, |
| 929 | .want_txqs = efx_default_channel_want_txqs, |
| 930 | .keep_eventq = false, |
| 931 | .want_pio = true, |
| 932 | }; |
| 933 | |
| 934 | int efx_channel_dummy_op_int(struct efx_channel *channel) |
| 935 | { |
| 936 | return 0; |
| 937 | } |
| 938 | |
| 939 | void efx_channel_dummy_op_void(struct efx_channel *channel) |
| 940 | { |
| 941 | } |
| 942 | |
| 943 | /************************************************************************** |
| 944 | * |
| 945 | * Port handling |
| 946 | * |
| 947 | **************************************************************************/ |
| 948 | |
| 949 | /* This ensures that the kernel is kept informed (via |
| 950 | * netif_carrier_on/off) of the link status, and also maintains the |
| 951 | * link status's stop on the port's TX queue. |
| 952 | */ |
| 953 | void efx_link_status_changed(struct efx_nic *efx) |
| 954 | { |
| 955 | struct efx_link_state *link_state = &efx->link_state; |
| 956 | |
| 957 | /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure |
| 958 | * that no events are triggered between unregister_netdev() and the |
| 959 | * driver unloading. A more general condition is that NETDEV_CHANGE |
| 960 | * can only be generated between NETDEV_UP and NETDEV_DOWN */ |
| 961 | if (!netif_running(efx->net_dev)) |
| 962 | return; |
| 963 | |
| 964 | if (link_state->up != netif_carrier_ok(efx->net_dev)) { |
| 965 | efx->n_link_state_changes++; |
| 966 | |
| 967 | if (link_state->up) |
| 968 | netif_carrier_on(efx->net_dev); |
| 969 | else |
| 970 | netif_carrier_off(efx->net_dev); |
| 971 | } |
| 972 | |
| 973 | /* Status message for kernel log */ |
| 974 | if (link_state->up) |
| 975 | netif_info(efx, link, efx->net_dev, |
| 976 | "link up at %uMbps %s-duplex (MTU %d)\n", |
| 977 | link_state->speed, link_state->fd ? "full" : "half", |
| 978 | efx->net_dev->mtu); |
| 979 | else |
| 980 | netif_info(efx, link, efx->net_dev, "link down\n"); |
| 981 | } |
| 982 | |
| 983 | void efx_link_set_advertising(struct efx_nic *efx, |
| 984 | const unsigned long *advertising) |
| 985 | { |
| 986 | memcpy(efx->link_advertising, advertising, |
| 987 | sizeof(__ETHTOOL_DECLARE_LINK_MODE_MASK())); |
| 988 | |
| 989 | efx->link_advertising[0] |= ADVERTISED_Autoneg; |
| 990 | if (advertising[0] & ADVERTISED_Pause) |
| 991 | efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); |
| 992 | else |
| 993 | efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); |
| 994 | if (advertising[0] & ADVERTISED_Asym_Pause) |
| 995 | efx->wanted_fc ^= EFX_FC_TX; |
| 996 | } |
| 997 | |
| 998 | /* Equivalent to efx_link_set_advertising with all-zeroes, except does not |
| 999 | * force the Autoneg bit on. |
| 1000 | */ |
| 1001 | void efx_link_clear_advertising(struct efx_nic *efx) |
| 1002 | { |
| 1003 | bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); |
| 1004 | efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); |
| 1005 | } |
| 1006 | |
| 1007 | void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) |
| 1008 | { |
| 1009 | efx->wanted_fc = wanted_fc; |
| 1010 | if (efx->link_advertising[0]) { |
| 1011 | if (wanted_fc & EFX_FC_RX) |
| 1012 | efx->link_advertising[0] |= (ADVERTISED_Pause | |
| 1013 | ADVERTISED_Asym_Pause); |
| 1014 | else |
| 1015 | efx->link_advertising[0] &= ~(ADVERTISED_Pause | |
| 1016 | ADVERTISED_Asym_Pause); |
| 1017 | if (wanted_fc & EFX_FC_TX) |
| 1018 | efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | static void efx_fini_port(struct efx_nic *efx); |
| 1023 | |
| 1024 | /* We assume that efx->type->reconfigure_mac will always try to sync RX |
| 1025 | * filters and therefore needs to read-lock the filter table against freeing |
| 1026 | */ |
| 1027 | void efx_mac_reconfigure(struct efx_nic *efx) |
| 1028 | { |
| 1029 | down_read(&efx->filter_sem); |
| 1030 | efx->type->reconfigure_mac(efx); |
| 1031 | up_read(&efx->filter_sem); |
| 1032 | } |
| 1033 | |
| 1034 | /* Push loopback/power/transmit disable settings to the PHY, and reconfigure |
| 1035 | * the MAC appropriately. All other PHY configuration changes are pushed |
| 1036 | * through phy_op->set_settings(), and pushed asynchronously to the MAC |
| 1037 | * through efx_monitor(). |
| 1038 | * |
| 1039 | * Callers must hold the mac_lock |
| 1040 | */ |
| 1041 | int __efx_reconfigure_port(struct efx_nic *efx) |
| 1042 | { |
| 1043 | enum efx_phy_mode phy_mode; |
| 1044 | int rc; |
| 1045 | |
| 1046 | WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| 1047 | |
| 1048 | /* Disable PHY transmit in mac level loopbacks */ |
| 1049 | phy_mode = efx->phy_mode; |
| 1050 | if (LOOPBACK_INTERNAL(efx)) |
| 1051 | efx->phy_mode |= PHY_MODE_TX_DISABLED; |
| 1052 | else |
| 1053 | efx->phy_mode &= ~PHY_MODE_TX_DISABLED; |
| 1054 | |
| 1055 | rc = efx->type->reconfigure_port(efx); |
| 1056 | |
| 1057 | if (rc) |
| 1058 | efx->phy_mode = phy_mode; |
| 1059 | |
| 1060 | return rc; |
| 1061 | } |
| 1062 | |
| 1063 | /* Reinitialise the MAC to pick up new PHY settings, even if the port is |
| 1064 | * disabled. */ |
| 1065 | int efx_reconfigure_port(struct efx_nic *efx) |
| 1066 | { |
| 1067 | int rc; |
| 1068 | |
| 1069 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1070 | |
| 1071 | mutex_lock(&efx->mac_lock); |
| 1072 | rc = __efx_reconfigure_port(efx); |
| 1073 | mutex_unlock(&efx->mac_lock); |
| 1074 | |
| 1075 | return rc; |
| 1076 | } |
| 1077 | |
| 1078 | /* Asynchronous work item for changing MAC promiscuity and multicast |
| 1079 | * hash. Avoid a drain/rx_ingress enable by reconfiguring the current |
| 1080 | * MAC directly. */ |
| 1081 | static void efx_mac_work(struct work_struct *data) |
| 1082 | { |
| 1083 | struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); |
| 1084 | |
| 1085 | mutex_lock(&efx->mac_lock); |
| 1086 | if (efx->port_enabled) |
| 1087 | efx_mac_reconfigure(efx); |
| 1088 | mutex_unlock(&efx->mac_lock); |
| 1089 | } |
| 1090 | |
| 1091 | static int efx_probe_port(struct efx_nic *efx) |
| 1092 | { |
| 1093 | int rc; |
| 1094 | |
| 1095 | netif_dbg(efx, probe, efx->net_dev, "create port\n"); |
| 1096 | |
| 1097 | if (phy_flash_cfg) |
| 1098 | efx->phy_mode = PHY_MODE_SPECIAL; |
| 1099 | |
| 1100 | /* Connect up MAC/PHY operations table */ |
| 1101 | rc = efx->type->probe_port(efx); |
| 1102 | if (rc) |
| 1103 | return rc; |
| 1104 | |
| 1105 | /* Initialise MAC address to permanent address */ |
| 1106 | ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); |
| 1107 | |
| 1108 | return 0; |
| 1109 | } |
| 1110 | |
| 1111 | static int efx_init_port(struct efx_nic *efx) |
| 1112 | { |
| 1113 | int rc; |
| 1114 | |
| 1115 | netif_dbg(efx, drv, efx->net_dev, "init port\n"); |
| 1116 | |
| 1117 | mutex_lock(&efx->mac_lock); |
| 1118 | |
| 1119 | rc = efx->phy_op->init(efx); |
| 1120 | if (rc) |
| 1121 | goto fail1; |
| 1122 | |
| 1123 | efx->port_initialized = true; |
| 1124 | |
| 1125 | /* Reconfigure the MAC before creating dma queues (required for |
| 1126 | * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ |
| 1127 | efx_mac_reconfigure(efx); |
| 1128 | |
| 1129 | /* Ensure the PHY advertises the correct flow control settings */ |
| 1130 | rc = efx->phy_op->reconfigure(efx); |
| 1131 | if (rc && rc != -EPERM) |
| 1132 | goto fail2; |
| 1133 | |
| 1134 | mutex_unlock(&efx->mac_lock); |
| 1135 | return 0; |
| 1136 | |
| 1137 | fail2: |
| 1138 | efx->phy_op->fini(efx); |
| 1139 | fail1: |
| 1140 | mutex_unlock(&efx->mac_lock); |
| 1141 | return rc; |
| 1142 | } |
| 1143 | |
| 1144 | static void efx_start_port(struct efx_nic *efx) |
| 1145 | { |
| 1146 | netif_dbg(efx, ifup, efx->net_dev, "start port\n"); |
| 1147 | BUG_ON(efx->port_enabled); |
| 1148 | |
| 1149 | mutex_lock(&efx->mac_lock); |
| 1150 | efx->port_enabled = true; |
| 1151 | |
| 1152 | /* Ensure MAC ingress/egress is enabled */ |
| 1153 | efx_mac_reconfigure(efx); |
| 1154 | |
| 1155 | mutex_unlock(&efx->mac_lock); |
| 1156 | } |
| 1157 | |
| 1158 | /* Cancel work for MAC reconfiguration, periodic hardware monitoring |
| 1159 | * and the async self-test, wait for them to finish and prevent them |
| 1160 | * being scheduled again. This doesn't cover online resets, which |
| 1161 | * should only be cancelled when removing the device. |
| 1162 | */ |
| 1163 | static void efx_stop_port(struct efx_nic *efx) |
| 1164 | { |
| 1165 | netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); |
| 1166 | |
| 1167 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1168 | |
| 1169 | mutex_lock(&efx->mac_lock); |
| 1170 | efx->port_enabled = false; |
| 1171 | mutex_unlock(&efx->mac_lock); |
| 1172 | |
| 1173 | /* Serialise against efx_set_multicast_list() */ |
| 1174 | netif_addr_lock_bh(efx->net_dev); |
| 1175 | netif_addr_unlock_bh(efx->net_dev); |
| 1176 | |
| 1177 | cancel_delayed_work_sync(&efx->monitor_work); |
| 1178 | efx_selftest_async_cancel(efx); |
| 1179 | cancel_work_sync(&efx->mac_work); |
| 1180 | } |
| 1181 | |
| 1182 | static void efx_fini_port(struct efx_nic *efx) |
| 1183 | { |
| 1184 | netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); |
| 1185 | |
| 1186 | if (!efx->port_initialized) |
| 1187 | return; |
| 1188 | |
| 1189 | efx->phy_op->fini(efx); |
| 1190 | efx->port_initialized = false; |
| 1191 | |
| 1192 | efx->link_state.up = false; |
| 1193 | efx_link_status_changed(efx); |
| 1194 | } |
| 1195 | |
| 1196 | static void efx_remove_port(struct efx_nic *efx) |
| 1197 | { |
| 1198 | netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); |
| 1199 | |
| 1200 | efx->type->remove_port(efx); |
| 1201 | } |
| 1202 | |
| 1203 | /************************************************************************** |
| 1204 | * |
| 1205 | * NIC handling |
| 1206 | * |
| 1207 | **************************************************************************/ |
| 1208 | |
| 1209 | static LIST_HEAD(efx_primary_list); |
| 1210 | static LIST_HEAD(efx_unassociated_list); |
| 1211 | |
| 1212 | static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) |
| 1213 | { |
| 1214 | return left->type == right->type && |
| 1215 | left->vpd_sn && right->vpd_sn && |
| 1216 | !strcmp(left->vpd_sn, right->vpd_sn); |
| 1217 | } |
| 1218 | |
| 1219 | static void efx_associate(struct efx_nic *efx) |
| 1220 | { |
| 1221 | struct efx_nic *other, *next; |
| 1222 | |
| 1223 | if (efx->primary == efx) { |
| 1224 | /* Adding primary function; look for secondaries */ |
| 1225 | |
| 1226 | netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); |
| 1227 | list_add_tail(&efx->node, &efx_primary_list); |
| 1228 | |
| 1229 | list_for_each_entry_safe(other, next, &efx_unassociated_list, |
| 1230 | node) { |
| 1231 | if (efx_same_controller(efx, other)) { |
| 1232 | list_del(&other->node); |
| 1233 | netif_dbg(other, probe, other->net_dev, |
| 1234 | "moving to secondary list of %s %s\n", |
| 1235 | pci_name(efx->pci_dev), |
| 1236 | efx->net_dev->name); |
| 1237 | list_add_tail(&other->node, |
| 1238 | &efx->secondary_list); |
| 1239 | other->primary = efx; |
| 1240 | } |
| 1241 | } |
| 1242 | } else { |
| 1243 | /* Adding secondary function; look for primary */ |
| 1244 | |
| 1245 | list_for_each_entry(other, &efx_primary_list, node) { |
| 1246 | if (efx_same_controller(efx, other)) { |
| 1247 | netif_dbg(efx, probe, efx->net_dev, |
| 1248 | "adding to secondary list of %s %s\n", |
| 1249 | pci_name(other->pci_dev), |
| 1250 | other->net_dev->name); |
| 1251 | list_add_tail(&efx->node, |
| 1252 | &other->secondary_list); |
| 1253 | efx->primary = other; |
| 1254 | return; |
| 1255 | } |
| 1256 | } |
| 1257 | |
| 1258 | netif_dbg(efx, probe, efx->net_dev, |
| 1259 | "adding to unassociated list\n"); |
| 1260 | list_add_tail(&efx->node, &efx_unassociated_list); |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | static void efx_dissociate(struct efx_nic *efx) |
| 1265 | { |
| 1266 | struct efx_nic *other, *next; |
| 1267 | |
| 1268 | list_del(&efx->node); |
| 1269 | efx->primary = NULL; |
| 1270 | |
| 1271 | list_for_each_entry_safe(other, next, &efx->secondary_list, node) { |
| 1272 | list_del(&other->node); |
| 1273 | netif_dbg(other, probe, other->net_dev, |
| 1274 | "moving to unassociated list\n"); |
| 1275 | list_add_tail(&other->node, &efx_unassociated_list); |
| 1276 | other->primary = NULL; |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | /* This configures the PCI device to enable I/O and DMA. */ |
| 1281 | static int efx_init_io(struct efx_nic *efx) |
| 1282 | { |
| 1283 | struct pci_dev *pci_dev = efx->pci_dev; |
| 1284 | dma_addr_t dma_mask = efx->type->max_dma_mask; |
| 1285 | unsigned int mem_map_size = efx->type->mem_map_size(efx); |
| 1286 | int rc, bar; |
| 1287 | |
| 1288 | netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); |
| 1289 | |
| 1290 | bar = efx->type->mem_bar(efx); |
| 1291 | |
| 1292 | rc = pci_enable_device(pci_dev); |
| 1293 | if (rc) { |
| 1294 | netif_err(efx, probe, efx->net_dev, |
| 1295 | "failed to enable PCI device\n"); |
| 1296 | goto fail1; |
| 1297 | } |
| 1298 | |
| 1299 | pci_set_master(pci_dev); |
| 1300 | |
| 1301 | /* Set the PCI DMA mask. Try all possibilities from our genuine mask |
| 1302 | * down to 32 bits, because some architectures will allow 40 bit |
| 1303 | * masks event though they reject 46 bit masks. |
| 1304 | */ |
| 1305 | while (dma_mask > 0x7fffffffUL) { |
| 1306 | rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); |
| 1307 | if (rc == 0) |
| 1308 | break; |
| 1309 | dma_mask >>= 1; |
| 1310 | } |
| 1311 | if (rc) { |
| 1312 | netif_err(efx, probe, efx->net_dev, |
| 1313 | "could not find a suitable DMA mask\n"); |
| 1314 | goto fail2; |
| 1315 | } |
| 1316 | netif_dbg(efx, probe, efx->net_dev, |
| 1317 | "using DMA mask %llx\n", (unsigned long long) dma_mask); |
| 1318 | |
| 1319 | efx->membase_phys = pci_resource_start(efx->pci_dev, bar); |
| 1320 | rc = pci_request_region(pci_dev, bar, "sfc"); |
| 1321 | if (rc) { |
| 1322 | netif_err(efx, probe, efx->net_dev, |
| 1323 | "request for memory BAR failed\n"); |
| 1324 | rc = -EIO; |
| 1325 | goto fail3; |
| 1326 | } |
| 1327 | efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); |
| 1328 | if (!efx->membase) { |
| 1329 | netif_err(efx, probe, efx->net_dev, |
| 1330 | "could not map memory BAR at %llx+%x\n", |
| 1331 | (unsigned long long)efx->membase_phys, mem_map_size); |
| 1332 | rc = -ENOMEM; |
| 1333 | goto fail4; |
| 1334 | } |
| 1335 | netif_dbg(efx, probe, efx->net_dev, |
| 1336 | "memory BAR at %llx+%x (virtual %p)\n", |
| 1337 | (unsigned long long)efx->membase_phys, mem_map_size, |
| 1338 | efx->membase); |
| 1339 | |
| 1340 | return 0; |
| 1341 | |
| 1342 | fail4: |
| 1343 | pci_release_region(efx->pci_dev, bar); |
| 1344 | fail3: |
| 1345 | efx->membase_phys = 0; |
| 1346 | fail2: |
| 1347 | pci_disable_device(efx->pci_dev); |
| 1348 | fail1: |
| 1349 | return rc; |
| 1350 | } |
| 1351 | |
| 1352 | static void efx_fini_io(struct efx_nic *efx) |
| 1353 | { |
| 1354 | int bar; |
| 1355 | |
| 1356 | netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); |
| 1357 | |
| 1358 | if (efx->membase) { |
| 1359 | iounmap(efx->membase); |
| 1360 | efx->membase = NULL; |
| 1361 | } |
| 1362 | |
| 1363 | if (efx->membase_phys) { |
| 1364 | bar = efx->type->mem_bar(efx); |
| 1365 | pci_release_region(efx->pci_dev, bar); |
| 1366 | efx->membase_phys = 0; |
| 1367 | } |
| 1368 | |
| 1369 | /* Don't disable bus-mastering if VFs are assigned */ |
| 1370 | if (!pci_vfs_assigned(efx->pci_dev)) |
| 1371 | pci_disable_device(efx->pci_dev); |
| 1372 | } |
| 1373 | |
| 1374 | void efx_set_default_rx_indir_table(struct efx_nic *efx, |
| 1375 | struct efx_rss_context *ctx) |
| 1376 | { |
| 1377 | size_t i; |
| 1378 | |
| 1379 | for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) |
| 1380 | ctx->rx_indir_table[i] = |
| 1381 | ethtool_rxfh_indir_default(i, efx->rss_spread); |
| 1382 | } |
| 1383 | |
| 1384 | static unsigned int efx_wanted_parallelism(struct efx_nic *efx) |
| 1385 | { |
| 1386 | cpumask_var_t thread_mask; |
| 1387 | unsigned int count; |
| 1388 | int cpu; |
| 1389 | |
| 1390 | if (rss_cpus) { |
| 1391 | count = rss_cpus; |
| 1392 | } else { |
| 1393 | if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { |
| 1394 | netif_warn(efx, probe, efx->net_dev, |
| 1395 | "RSS disabled due to allocation failure\n"); |
| 1396 | return 1; |
| 1397 | } |
| 1398 | |
| 1399 | count = 0; |
| 1400 | for_each_online_cpu(cpu) { |
| 1401 | if (!cpumask_test_cpu(cpu, thread_mask)) { |
| 1402 | ++count; |
| 1403 | cpumask_or(thread_mask, thread_mask, |
| 1404 | topology_sibling_cpumask(cpu)); |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | free_cpumask_var(thread_mask); |
| 1409 | } |
| 1410 | |
| 1411 | if (count > EFX_MAX_RX_QUEUES) { |
| 1412 | netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, |
| 1413 | "Reducing number of rx queues from %u to %u.\n", |
| 1414 | count, EFX_MAX_RX_QUEUES); |
| 1415 | count = EFX_MAX_RX_QUEUES; |
| 1416 | } |
| 1417 | |
| 1418 | /* If RSS is requested for the PF *and* VFs then we can't write RSS |
| 1419 | * table entries that are inaccessible to VFs |
| 1420 | */ |
| 1421 | #ifdef CONFIG_SFC_SRIOV |
| 1422 | if (efx->type->sriov_wanted) { |
| 1423 | if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && |
| 1424 | count > efx_vf_size(efx)) { |
| 1425 | netif_warn(efx, probe, efx->net_dev, |
| 1426 | "Reducing number of RSS channels from %u to %u for " |
| 1427 | "VF support. Increase vf-msix-limit to use more " |
| 1428 | "channels on the PF.\n", |
| 1429 | count, efx_vf_size(efx)); |
| 1430 | count = efx_vf_size(efx); |
| 1431 | } |
| 1432 | } |
| 1433 | #endif |
| 1434 | |
| 1435 | return count; |
| 1436 | } |
| 1437 | |
| 1438 | /* Probe the number and type of interrupts we are able to obtain, and |
| 1439 | * the resulting numbers of channels and RX queues. |
| 1440 | */ |
| 1441 | static int efx_probe_interrupts(struct efx_nic *efx) |
| 1442 | { |
| 1443 | unsigned int extra_channels = 0; |
| 1444 | unsigned int i, j; |
| 1445 | int rc; |
| 1446 | |
| 1447 | for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) |
| 1448 | if (efx->extra_channel_type[i]) |
| 1449 | ++extra_channels; |
| 1450 | |
| 1451 | if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { |
| 1452 | struct msix_entry xentries[EFX_MAX_CHANNELS]; |
| 1453 | unsigned int n_channels; |
| 1454 | |
| 1455 | n_channels = efx_wanted_parallelism(efx); |
| 1456 | if (efx_separate_tx_channels) |
| 1457 | n_channels *= 2; |
| 1458 | n_channels += extra_channels; |
| 1459 | n_channels = min(n_channels, efx->max_channels); |
| 1460 | |
| 1461 | for (i = 0; i < n_channels; i++) |
| 1462 | xentries[i].entry = i; |
| 1463 | rc = pci_enable_msix_range(efx->pci_dev, |
| 1464 | xentries, 1, n_channels); |
| 1465 | if (rc < 0) { |
| 1466 | /* Fall back to single channel MSI */ |
| 1467 | netif_err(efx, drv, efx->net_dev, |
| 1468 | "could not enable MSI-X\n"); |
| 1469 | if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI) |
| 1470 | efx->interrupt_mode = EFX_INT_MODE_MSI; |
| 1471 | else |
| 1472 | return rc; |
| 1473 | } else if (rc < n_channels) { |
| 1474 | netif_err(efx, drv, efx->net_dev, |
| 1475 | "WARNING: Insufficient MSI-X vectors" |
| 1476 | " available (%d < %u).\n", rc, n_channels); |
| 1477 | netif_err(efx, drv, efx->net_dev, |
| 1478 | "WARNING: Performance may be reduced.\n"); |
| 1479 | n_channels = rc; |
| 1480 | } |
| 1481 | |
| 1482 | if (rc > 0) { |
| 1483 | efx->n_channels = n_channels; |
| 1484 | if (n_channels > extra_channels) |
| 1485 | n_channels -= extra_channels; |
| 1486 | if (efx_separate_tx_channels) { |
| 1487 | efx->n_tx_channels = min(max(n_channels / 2, |
| 1488 | 1U), |
| 1489 | efx->max_tx_channels); |
| 1490 | efx->n_rx_channels = max(n_channels - |
| 1491 | efx->n_tx_channels, |
| 1492 | 1U); |
| 1493 | } else { |
| 1494 | efx->n_tx_channels = min(n_channels, |
| 1495 | efx->max_tx_channels); |
| 1496 | efx->n_rx_channels = n_channels; |
| 1497 | } |
| 1498 | for (i = 0; i < efx->n_channels; i++) |
| 1499 | efx_get_channel(efx, i)->irq = |
| 1500 | xentries[i].vector; |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | /* Try single interrupt MSI */ |
| 1505 | if (efx->interrupt_mode == EFX_INT_MODE_MSI) { |
| 1506 | efx->n_channels = 1; |
| 1507 | efx->n_rx_channels = 1; |
| 1508 | efx->n_tx_channels = 1; |
| 1509 | rc = pci_enable_msi(efx->pci_dev); |
| 1510 | if (rc == 0) { |
| 1511 | efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; |
| 1512 | } else { |
| 1513 | netif_err(efx, drv, efx->net_dev, |
| 1514 | "could not enable MSI\n"); |
| 1515 | if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY) |
| 1516 | efx->interrupt_mode = EFX_INT_MODE_LEGACY; |
| 1517 | else |
| 1518 | return rc; |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | /* Assume legacy interrupts */ |
| 1523 | if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { |
| 1524 | efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0); |
| 1525 | efx->n_rx_channels = 1; |
| 1526 | efx->n_tx_channels = 1; |
| 1527 | efx->legacy_irq = efx->pci_dev->irq; |
| 1528 | } |
| 1529 | |
| 1530 | /* Assign extra channels if possible */ |
| 1531 | efx->n_extra_tx_channels = 0; |
| 1532 | j = efx->n_channels; |
| 1533 | for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { |
| 1534 | if (!efx->extra_channel_type[i]) |
| 1535 | continue; |
| 1536 | if (efx->interrupt_mode != EFX_INT_MODE_MSIX || |
| 1537 | efx->n_channels <= extra_channels) { |
| 1538 | efx->extra_channel_type[i]->handle_no_channel(efx); |
| 1539 | } else { |
| 1540 | --j; |
| 1541 | efx_get_channel(efx, j)->type = |
| 1542 | efx->extra_channel_type[i]; |
| 1543 | if (efx_channel_has_tx_queues(efx_get_channel(efx, j))) |
| 1544 | efx->n_extra_tx_channels++; |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | /* RSS might be usable on VFs even if it is disabled on the PF */ |
| 1549 | #ifdef CONFIG_SFC_SRIOV |
| 1550 | if (efx->type->sriov_wanted) { |
| 1551 | efx->rss_spread = ((efx->n_rx_channels > 1 || |
| 1552 | !efx->type->sriov_wanted(efx)) ? |
| 1553 | efx->n_rx_channels : efx_vf_size(efx)); |
| 1554 | return 0; |
| 1555 | } |
| 1556 | #endif |
| 1557 | efx->rss_spread = efx->n_rx_channels; |
| 1558 | |
| 1559 | return 0; |
| 1560 | } |
| 1561 | |
| 1562 | #if defined(CONFIG_SMP) |
| 1563 | static void efx_set_interrupt_affinity(struct efx_nic *efx) |
| 1564 | { |
| 1565 | struct efx_channel *channel; |
| 1566 | unsigned int cpu; |
| 1567 | |
| 1568 | efx_for_each_channel(channel, efx) { |
| 1569 | cpu = cpumask_local_spread(channel->channel, |
| 1570 | pcibus_to_node(efx->pci_dev->bus)); |
| 1571 | irq_set_affinity_hint(channel->irq, cpumask_of(cpu)); |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | static void efx_clear_interrupt_affinity(struct efx_nic *efx) |
| 1576 | { |
| 1577 | struct efx_channel *channel; |
| 1578 | |
| 1579 | efx_for_each_channel(channel, efx) |
| 1580 | irq_set_affinity_hint(channel->irq, NULL); |
| 1581 | } |
| 1582 | #else |
| 1583 | static void |
| 1584 | efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) |
| 1585 | { |
| 1586 | } |
| 1587 | |
| 1588 | static void |
| 1589 | efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) |
| 1590 | { |
| 1591 | } |
| 1592 | #endif /* CONFIG_SMP */ |
| 1593 | |
| 1594 | static int efx_soft_enable_interrupts(struct efx_nic *efx) |
| 1595 | { |
| 1596 | struct efx_channel *channel, *end_channel; |
| 1597 | int rc; |
| 1598 | |
| 1599 | BUG_ON(efx->state == STATE_DISABLED); |
| 1600 | |
| 1601 | efx->irq_soft_enabled = true; |
| 1602 | smp_wmb(); |
| 1603 | |
| 1604 | efx_for_each_channel(channel, efx) { |
| 1605 | if (!channel->type->keep_eventq) { |
| 1606 | rc = efx_init_eventq(channel); |
| 1607 | if (rc) |
| 1608 | goto fail; |
| 1609 | } |
| 1610 | efx_start_eventq(channel); |
| 1611 | } |
| 1612 | |
| 1613 | efx_mcdi_mode_event(efx); |
| 1614 | |
| 1615 | return 0; |
| 1616 | fail: |
| 1617 | end_channel = channel; |
| 1618 | efx_for_each_channel(channel, efx) { |
| 1619 | if (channel == end_channel) |
| 1620 | break; |
| 1621 | efx_stop_eventq(channel); |
| 1622 | if (!channel->type->keep_eventq) |
| 1623 | efx_fini_eventq(channel); |
| 1624 | } |
| 1625 | |
| 1626 | return rc; |
| 1627 | } |
| 1628 | |
| 1629 | static void efx_soft_disable_interrupts(struct efx_nic *efx) |
| 1630 | { |
| 1631 | struct efx_channel *channel; |
| 1632 | |
| 1633 | if (efx->state == STATE_DISABLED) |
| 1634 | return; |
| 1635 | |
| 1636 | efx_mcdi_mode_poll(efx); |
| 1637 | |
| 1638 | efx->irq_soft_enabled = false; |
| 1639 | smp_wmb(); |
| 1640 | |
| 1641 | if (efx->legacy_irq) |
| 1642 | synchronize_irq(efx->legacy_irq); |
| 1643 | |
| 1644 | efx_for_each_channel(channel, efx) { |
| 1645 | if (channel->irq) |
| 1646 | synchronize_irq(channel->irq); |
| 1647 | |
| 1648 | efx_stop_eventq(channel); |
| 1649 | if (!channel->type->keep_eventq) |
| 1650 | efx_fini_eventq(channel); |
| 1651 | } |
| 1652 | |
| 1653 | /* Flush the asynchronous MCDI request queue */ |
| 1654 | efx_mcdi_flush_async(efx); |
| 1655 | } |
| 1656 | |
| 1657 | static int efx_enable_interrupts(struct efx_nic *efx) |
| 1658 | { |
| 1659 | struct efx_channel *channel, *end_channel; |
| 1660 | int rc; |
| 1661 | |
| 1662 | BUG_ON(efx->state == STATE_DISABLED); |
| 1663 | |
| 1664 | if (efx->eeh_disabled_legacy_irq) { |
| 1665 | enable_irq(efx->legacy_irq); |
| 1666 | efx->eeh_disabled_legacy_irq = false; |
| 1667 | } |
| 1668 | |
| 1669 | efx->type->irq_enable_master(efx); |
| 1670 | |
| 1671 | efx_for_each_channel(channel, efx) { |
| 1672 | if (channel->type->keep_eventq) { |
| 1673 | rc = efx_init_eventq(channel); |
| 1674 | if (rc) |
| 1675 | goto fail; |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | rc = efx_soft_enable_interrupts(efx); |
| 1680 | if (rc) |
| 1681 | goto fail; |
| 1682 | |
| 1683 | return 0; |
| 1684 | |
| 1685 | fail: |
| 1686 | end_channel = channel; |
| 1687 | efx_for_each_channel(channel, efx) { |
| 1688 | if (channel == end_channel) |
| 1689 | break; |
| 1690 | if (channel->type->keep_eventq) |
| 1691 | efx_fini_eventq(channel); |
| 1692 | } |
| 1693 | |
| 1694 | efx->type->irq_disable_non_ev(efx); |
| 1695 | |
| 1696 | return rc; |
| 1697 | } |
| 1698 | |
| 1699 | static void efx_disable_interrupts(struct efx_nic *efx) |
| 1700 | { |
| 1701 | struct efx_channel *channel; |
| 1702 | |
| 1703 | efx_soft_disable_interrupts(efx); |
| 1704 | |
| 1705 | efx_for_each_channel(channel, efx) { |
| 1706 | if (channel->type->keep_eventq) |
| 1707 | efx_fini_eventq(channel); |
| 1708 | } |
| 1709 | |
| 1710 | efx->type->irq_disable_non_ev(efx); |
| 1711 | } |
| 1712 | |
| 1713 | static void efx_remove_interrupts(struct efx_nic *efx) |
| 1714 | { |
| 1715 | struct efx_channel *channel; |
| 1716 | |
| 1717 | /* Remove MSI/MSI-X interrupts */ |
| 1718 | efx_for_each_channel(channel, efx) |
| 1719 | channel->irq = 0; |
| 1720 | pci_disable_msi(efx->pci_dev); |
| 1721 | pci_disable_msix(efx->pci_dev); |
| 1722 | |
| 1723 | /* Remove legacy interrupt */ |
| 1724 | efx->legacy_irq = 0; |
| 1725 | } |
| 1726 | |
| 1727 | static void efx_set_channels(struct efx_nic *efx) |
| 1728 | { |
| 1729 | struct efx_channel *channel; |
| 1730 | struct efx_tx_queue *tx_queue; |
| 1731 | |
| 1732 | efx->tx_channel_offset = |
| 1733 | efx_separate_tx_channels ? |
| 1734 | efx->n_channels - efx->n_tx_channels : 0; |
| 1735 | |
| 1736 | /* We need to mark which channels really have RX and TX |
| 1737 | * queues, and adjust the TX queue numbers if we have separate |
| 1738 | * RX-only and TX-only channels. |
| 1739 | */ |
| 1740 | efx_for_each_channel(channel, efx) { |
| 1741 | if (channel->channel < efx->n_rx_channels) |
| 1742 | channel->rx_queue.core_index = channel->channel; |
| 1743 | else |
| 1744 | channel->rx_queue.core_index = -1; |
| 1745 | |
| 1746 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 1747 | tx_queue->queue -= (efx->tx_channel_offset * |
| 1748 | EFX_TXQ_TYPES); |
| 1749 | } |
| 1750 | } |
| 1751 | |
| 1752 | static int efx_probe_nic(struct efx_nic *efx) |
| 1753 | { |
| 1754 | int rc; |
| 1755 | |
| 1756 | netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); |
| 1757 | |
| 1758 | /* Carry out hardware-type specific initialisation */ |
| 1759 | rc = efx->type->probe(efx); |
| 1760 | if (rc) |
| 1761 | return rc; |
| 1762 | |
| 1763 | do { |
| 1764 | if (!efx->max_channels || !efx->max_tx_channels) { |
| 1765 | netif_err(efx, drv, efx->net_dev, |
| 1766 | "Insufficient resources to allocate" |
| 1767 | " any channels\n"); |
| 1768 | rc = -ENOSPC; |
| 1769 | goto fail1; |
| 1770 | } |
| 1771 | |
| 1772 | /* Determine the number of channels and queues by trying |
| 1773 | * to hook in MSI-X interrupts. |
| 1774 | */ |
| 1775 | rc = efx_probe_interrupts(efx); |
| 1776 | if (rc) |
| 1777 | goto fail1; |
| 1778 | |
| 1779 | efx_set_channels(efx); |
| 1780 | |
| 1781 | /* dimension_resources can fail with EAGAIN */ |
| 1782 | rc = efx->type->dimension_resources(efx); |
| 1783 | if (rc != 0 && rc != -EAGAIN) |
| 1784 | goto fail2; |
| 1785 | |
| 1786 | if (rc == -EAGAIN) |
| 1787 | /* try again with new max_channels */ |
| 1788 | efx_remove_interrupts(efx); |
| 1789 | |
| 1790 | } while (rc == -EAGAIN); |
| 1791 | |
| 1792 | if (efx->n_channels > 1) |
| 1793 | netdev_rss_key_fill(efx->rss_context.rx_hash_key, |
| 1794 | sizeof(efx->rss_context.rx_hash_key)); |
| 1795 | efx_set_default_rx_indir_table(efx, &efx->rss_context); |
| 1796 | |
| 1797 | netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); |
| 1798 | netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); |
| 1799 | |
| 1800 | /* Initialise the interrupt moderation settings */ |
| 1801 | efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); |
| 1802 | efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, |
| 1803 | true); |
| 1804 | |
| 1805 | return 0; |
| 1806 | |
| 1807 | fail2: |
| 1808 | efx_remove_interrupts(efx); |
| 1809 | fail1: |
| 1810 | efx->type->remove(efx); |
| 1811 | return rc; |
| 1812 | } |
| 1813 | |
| 1814 | static void efx_remove_nic(struct efx_nic *efx) |
| 1815 | { |
| 1816 | netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); |
| 1817 | |
| 1818 | efx_remove_interrupts(efx); |
| 1819 | efx->type->remove(efx); |
| 1820 | } |
| 1821 | |
| 1822 | static int efx_probe_filters(struct efx_nic *efx) |
| 1823 | { |
| 1824 | int rc; |
| 1825 | |
| 1826 | init_rwsem(&efx->filter_sem); |
| 1827 | mutex_lock(&efx->mac_lock); |
| 1828 | down_write(&efx->filter_sem); |
| 1829 | rc = efx->type->filter_table_probe(efx); |
| 1830 | if (rc) |
| 1831 | goto out_unlock; |
| 1832 | |
| 1833 | #ifdef CONFIG_RFS_ACCEL |
| 1834 | if (efx->type->offload_features & NETIF_F_NTUPLE) { |
| 1835 | struct efx_channel *channel; |
| 1836 | int i, success = 1; |
| 1837 | |
| 1838 | efx_for_each_channel(channel, efx) { |
| 1839 | channel->rps_flow_id = |
| 1840 | kcalloc(efx->type->max_rx_ip_filters, |
| 1841 | sizeof(*channel->rps_flow_id), |
| 1842 | GFP_KERNEL); |
| 1843 | if (!channel->rps_flow_id) |
| 1844 | success = 0; |
| 1845 | else |
| 1846 | for (i = 0; |
| 1847 | i < efx->type->max_rx_ip_filters; |
| 1848 | ++i) |
| 1849 | channel->rps_flow_id[i] = |
| 1850 | RPS_FLOW_ID_INVALID; |
| 1851 | } |
| 1852 | |
| 1853 | if (!success) { |
| 1854 | efx_for_each_channel(channel, efx) |
| 1855 | kfree(channel->rps_flow_id); |
| 1856 | efx->type->filter_table_remove(efx); |
| 1857 | rc = -ENOMEM; |
| 1858 | goto out_unlock; |
| 1859 | } |
| 1860 | |
| 1861 | efx->rps_expire_index = efx->rps_expire_channel = 0; |
| 1862 | } |
| 1863 | #endif |
| 1864 | out_unlock: |
| 1865 | up_write(&efx->filter_sem); |
| 1866 | mutex_unlock(&efx->mac_lock); |
| 1867 | return rc; |
| 1868 | } |
| 1869 | |
| 1870 | static void efx_remove_filters(struct efx_nic *efx) |
| 1871 | { |
| 1872 | #ifdef CONFIG_RFS_ACCEL |
| 1873 | struct efx_channel *channel; |
| 1874 | |
| 1875 | efx_for_each_channel(channel, efx) |
| 1876 | kfree(channel->rps_flow_id); |
| 1877 | #endif |
| 1878 | down_write(&efx->filter_sem); |
| 1879 | efx->type->filter_table_remove(efx); |
| 1880 | up_write(&efx->filter_sem); |
| 1881 | } |
| 1882 | |
| 1883 | |
| 1884 | /************************************************************************** |
| 1885 | * |
| 1886 | * NIC startup/shutdown |
| 1887 | * |
| 1888 | *************************************************************************/ |
| 1889 | |
| 1890 | static int efx_probe_all(struct efx_nic *efx) |
| 1891 | { |
| 1892 | int rc; |
| 1893 | |
| 1894 | rc = efx_probe_nic(efx); |
| 1895 | if (rc) { |
| 1896 | netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); |
| 1897 | goto fail1; |
| 1898 | } |
| 1899 | |
| 1900 | rc = efx_probe_port(efx); |
| 1901 | if (rc) { |
| 1902 | netif_err(efx, probe, efx->net_dev, "failed to create port\n"); |
| 1903 | goto fail2; |
| 1904 | } |
| 1905 | |
| 1906 | BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); |
| 1907 | if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { |
| 1908 | rc = -EINVAL; |
| 1909 | goto fail3; |
| 1910 | } |
| 1911 | efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; |
| 1912 | |
| 1913 | #ifdef CONFIG_SFC_SRIOV |
| 1914 | rc = efx->type->vswitching_probe(efx); |
| 1915 | if (rc) /* not fatal; the PF will still work fine */ |
| 1916 | netif_warn(efx, probe, efx->net_dev, |
| 1917 | "failed to setup vswitching rc=%d;" |
| 1918 | " VFs may not function\n", rc); |
| 1919 | #endif |
| 1920 | |
| 1921 | rc = efx_probe_filters(efx); |
| 1922 | if (rc) { |
| 1923 | netif_err(efx, probe, efx->net_dev, |
| 1924 | "failed to create filter tables\n"); |
| 1925 | goto fail4; |
| 1926 | } |
| 1927 | |
| 1928 | rc = efx_probe_channels(efx); |
| 1929 | if (rc) |
| 1930 | goto fail5; |
| 1931 | |
| 1932 | return 0; |
| 1933 | |
| 1934 | fail5: |
| 1935 | efx_remove_filters(efx); |
| 1936 | fail4: |
| 1937 | #ifdef CONFIG_SFC_SRIOV |
| 1938 | efx->type->vswitching_remove(efx); |
| 1939 | #endif |
| 1940 | fail3: |
| 1941 | efx_remove_port(efx); |
| 1942 | fail2: |
| 1943 | efx_remove_nic(efx); |
| 1944 | fail1: |
| 1945 | return rc; |
| 1946 | } |
| 1947 | |
| 1948 | /* If the interface is supposed to be running but is not, start |
| 1949 | * the hardware and software data path, regular activity for the port |
| 1950 | * (MAC statistics, link polling, etc.) and schedule the port to be |
| 1951 | * reconfigured. Interrupts must already be enabled. This function |
| 1952 | * is safe to call multiple times, so long as the NIC is not disabled. |
| 1953 | * Requires the RTNL lock. |
| 1954 | */ |
| 1955 | static void efx_start_all(struct efx_nic *efx) |
| 1956 | { |
| 1957 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1958 | BUG_ON(efx->state == STATE_DISABLED); |
| 1959 | |
| 1960 | /* Check that it is appropriate to restart the interface. All |
| 1961 | * of these flags are safe to read under just the rtnl lock */ |
| 1962 | if (efx->port_enabled || !netif_running(efx->net_dev) || |
| 1963 | efx->reset_pending) |
| 1964 | return; |
| 1965 | |
| 1966 | efx_start_port(efx); |
| 1967 | efx_start_datapath(efx); |
| 1968 | |
| 1969 | /* Start the hardware monitor if there is one */ |
| 1970 | if (efx->type->monitor != NULL) |
| 1971 | queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| 1972 | efx_monitor_interval); |
| 1973 | |
| 1974 | /* Link state detection is normally event-driven; we have |
| 1975 | * to poll now because we could have missed a change |
| 1976 | */ |
| 1977 | mutex_lock(&efx->mac_lock); |
| 1978 | if (efx->phy_op->poll(efx)) |
| 1979 | efx_link_status_changed(efx); |
| 1980 | mutex_unlock(&efx->mac_lock); |
| 1981 | |
| 1982 | efx->type->start_stats(efx); |
| 1983 | efx->type->pull_stats(efx); |
| 1984 | spin_lock_bh(&efx->stats_lock); |
| 1985 | efx->type->update_stats(efx, NULL, NULL); |
| 1986 | spin_unlock_bh(&efx->stats_lock); |
| 1987 | } |
| 1988 | |
| 1989 | /* Quiesce the hardware and software data path, and regular activity |
| 1990 | * for the port without bringing the link down. Safe to call multiple |
| 1991 | * times with the NIC in almost any state, but interrupts should be |
| 1992 | * enabled. Requires the RTNL lock. |
| 1993 | */ |
| 1994 | static void efx_stop_all(struct efx_nic *efx) |
| 1995 | { |
| 1996 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1997 | |
| 1998 | /* port_enabled can be read safely under the rtnl lock */ |
| 1999 | if (!efx->port_enabled) |
| 2000 | return; |
| 2001 | |
| 2002 | /* update stats before we go down so we can accurately count |
| 2003 | * rx_nodesc_drops |
| 2004 | */ |
| 2005 | efx->type->pull_stats(efx); |
| 2006 | spin_lock_bh(&efx->stats_lock); |
| 2007 | efx->type->update_stats(efx, NULL, NULL); |
| 2008 | spin_unlock_bh(&efx->stats_lock); |
| 2009 | efx->type->stop_stats(efx); |
| 2010 | efx_stop_port(efx); |
| 2011 | |
| 2012 | /* Stop the kernel transmit interface. This is only valid if |
| 2013 | * the device is stopped or detached; otherwise the watchdog |
| 2014 | * may fire immediately. |
| 2015 | */ |
| 2016 | WARN_ON(netif_running(efx->net_dev) && |
| 2017 | netif_device_present(efx->net_dev)); |
| 2018 | netif_tx_disable(efx->net_dev); |
| 2019 | |
| 2020 | efx_stop_datapath(efx); |
| 2021 | } |
| 2022 | |
| 2023 | static void efx_remove_all(struct efx_nic *efx) |
| 2024 | { |
| 2025 | efx_remove_channels(efx); |
| 2026 | efx_remove_filters(efx); |
| 2027 | #ifdef CONFIG_SFC_SRIOV |
| 2028 | efx->type->vswitching_remove(efx); |
| 2029 | #endif |
| 2030 | efx_remove_port(efx); |
| 2031 | efx_remove_nic(efx); |
| 2032 | } |
| 2033 | |
| 2034 | /************************************************************************** |
| 2035 | * |
| 2036 | * Interrupt moderation |
| 2037 | * |
| 2038 | **************************************************************************/ |
| 2039 | unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) |
| 2040 | { |
| 2041 | if (usecs == 0) |
| 2042 | return 0; |
| 2043 | if (usecs * 1000 < efx->timer_quantum_ns) |
| 2044 | return 1; /* never round down to 0 */ |
| 2045 | return usecs * 1000 / efx->timer_quantum_ns; |
| 2046 | } |
| 2047 | |
| 2048 | unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) |
| 2049 | { |
| 2050 | /* We must round up when converting ticks to microseconds |
| 2051 | * because we round down when converting the other way. |
| 2052 | */ |
| 2053 | return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); |
| 2054 | } |
| 2055 | |
| 2056 | /* Set interrupt moderation parameters */ |
| 2057 | int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, |
| 2058 | unsigned int rx_usecs, bool rx_adaptive, |
| 2059 | bool rx_may_override_tx) |
| 2060 | { |
| 2061 | struct efx_channel *channel; |
| 2062 | unsigned int timer_max_us; |
| 2063 | |
| 2064 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 2065 | |
| 2066 | timer_max_us = efx->timer_max_ns / 1000; |
| 2067 | |
| 2068 | if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) |
| 2069 | return -EINVAL; |
| 2070 | |
| 2071 | if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && |
| 2072 | !rx_may_override_tx) { |
| 2073 | netif_err(efx, drv, efx->net_dev, "Channels are shared. " |
| 2074 | "RX and TX IRQ moderation must be equal\n"); |
| 2075 | return -EINVAL; |
| 2076 | } |
| 2077 | |
| 2078 | efx->irq_rx_adaptive = rx_adaptive; |
| 2079 | efx->irq_rx_moderation_us = rx_usecs; |
| 2080 | efx_for_each_channel(channel, efx) { |
| 2081 | if (efx_channel_has_rx_queue(channel)) |
| 2082 | channel->irq_moderation_us = rx_usecs; |
| 2083 | else if (efx_channel_has_tx_queues(channel)) |
| 2084 | channel->irq_moderation_us = tx_usecs; |
| 2085 | } |
| 2086 | |
| 2087 | return 0; |
| 2088 | } |
| 2089 | |
| 2090 | void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, |
| 2091 | unsigned int *rx_usecs, bool *rx_adaptive) |
| 2092 | { |
| 2093 | *rx_adaptive = efx->irq_rx_adaptive; |
| 2094 | *rx_usecs = efx->irq_rx_moderation_us; |
| 2095 | |
| 2096 | /* If channels are shared between RX and TX, so is IRQ |
| 2097 | * moderation. Otherwise, IRQ moderation is the same for all |
| 2098 | * TX channels and is not adaptive. |
| 2099 | */ |
| 2100 | if (efx->tx_channel_offset == 0) { |
| 2101 | *tx_usecs = *rx_usecs; |
| 2102 | } else { |
| 2103 | struct efx_channel *tx_channel; |
| 2104 | |
| 2105 | tx_channel = efx->channel[efx->tx_channel_offset]; |
| 2106 | *tx_usecs = tx_channel->irq_moderation_us; |
| 2107 | } |
| 2108 | } |
| 2109 | |
| 2110 | /************************************************************************** |
| 2111 | * |
| 2112 | * Hardware monitor |
| 2113 | * |
| 2114 | **************************************************************************/ |
| 2115 | |
| 2116 | /* Run periodically off the general workqueue */ |
| 2117 | static void efx_monitor(struct work_struct *data) |
| 2118 | { |
| 2119 | struct efx_nic *efx = container_of(data, struct efx_nic, |
| 2120 | monitor_work.work); |
| 2121 | |
| 2122 | netif_vdbg(efx, timer, efx->net_dev, |
| 2123 | "hardware monitor executing on CPU %d\n", |
| 2124 | raw_smp_processor_id()); |
| 2125 | BUG_ON(efx->type->monitor == NULL); |
| 2126 | |
| 2127 | /* If the mac_lock is already held then it is likely a port |
| 2128 | * reconfiguration is already in place, which will likely do |
| 2129 | * most of the work of monitor() anyway. */ |
| 2130 | if (mutex_trylock(&efx->mac_lock)) { |
| 2131 | if (efx->port_enabled) |
| 2132 | efx->type->monitor(efx); |
| 2133 | mutex_unlock(&efx->mac_lock); |
| 2134 | } |
| 2135 | |
| 2136 | queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| 2137 | efx_monitor_interval); |
| 2138 | } |
| 2139 | |
| 2140 | /************************************************************************** |
| 2141 | * |
| 2142 | * ioctls |
| 2143 | * |
| 2144 | *************************************************************************/ |
| 2145 | |
| 2146 | /* Net device ioctl |
| 2147 | * Context: process, rtnl_lock() held. |
| 2148 | */ |
| 2149 | static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) |
| 2150 | { |
| 2151 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2152 | struct mii_ioctl_data *data = if_mii(ifr); |
| 2153 | |
| 2154 | if (cmd == SIOCSHWTSTAMP) |
| 2155 | return efx_ptp_set_ts_config(efx, ifr); |
| 2156 | if (cmd == SIOCGHWTSTAMP) |
| 2157 | return efx_ptp_get_ts_config(efx, ifr); |
| 2158 | |
| 2159 | /* Convert phy_id from older PRTAD/DEVAD format */ |
| 2160 | if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && |
| 2161 | (data->phy_id & 0xfc00) == 0x0400) |
| 2162 | data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; |
| 2163 | |
| 2164 | return mdio_mii_ioctl(&efx->mdio, data, cmd); |
| 2165 | } |
| 2166 | |
| 2167 | /************************************************************************** |
| 2168 | * |
| 2169 | * NAPI interface |
| 2170 | * |
| 2171 | **************************************************************************/ |
| 2172 | |
| 2173 | static void efx_init_napi_channel(struct efx_channel *channel) |
| 2174 | { |
| 2175 | struct efx_nic *efx = channel->efx; |
| 2176 | |
| 2177 | channel->napi_dev = efx->net_dev; |
| 2178 | netif_napi_add(channel->napi_dev, &channel->napi_str, |
| 2179 | efx_poll, napi_weight); |
| 2180 | } |
| 2181 | |
| 2182 | static void efx_init_napi(struct efx_nic *efx) |
| 2183 | { |
| 2184 | struct efx_channel *channel; |
| 2185 | |
| 2186 | efx_for_each_channel(channel, efx) |
| 2187 | efx_init_napi_channel(channel); |
| 2188 | } |
| 2189 | |
| 2190 | static void efx_fini_napi_channel(struct efx_channel *channel) |
| 2191 | { |
| 2192 | if (channel->napi_dev) |
| 2193 | netif_napi_del(&channel->napi_str); |
| 2194 | |
| 2195 | channel->napi_dev = NULL; |
| 2196 | } |
| 2197 | |
| 2198 | static void efx_fini_napi(struct efx_nic *efx) |
| 2199 | { |
| 2200 | struct efx_channel *channel; |
| 2201 | |
| 2202 | efx_for_each_channel(channel, efx) |
| 2203 | efx_fini_napi_channel(channel); |
| 2204 | } |
| 2205 | |
| 2206 | /************************************************************************** |
| 2207 | * |
| 2208 | * Kernel net device interface |
| 2209 | * |
| 2210 | *************************************************************************/ |
| 2211 | |
| 2212 | /* Context: process, rtnl_lock() held. */ |
| 2213 | int efx_net_open(struct net_device *net_dev) |
| 2214 | { |
| 2215 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2216 | int rc; |
| 2217 | |
| 2218 | netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", |
| 2219 | raw_smp_processor_id()); |
| 2220 | |
| 2221 | rc = efx_check_disabled(efx); |
| 2222 | if (rc) |
| 2223 | return rc; |
| 2224 | if (efx->phy_mode & PHY_MODE_SPECIAL) |
| 2225 | return -EBUSY; |
| 2226 | if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) |
| 2227 | return -EIO; |
| 2228 | |
| 2229 | /* Notify the kernel of the link state polled during driver load, |
| 2230 | * before the monitor starts running */ |
| 2231 | efx_link_status_changed(efx); |
| 2232 | |
| 2233 | efx_start_all(efx); |
| 2234 | if (efx->state == STATE_DISABLED || efx->reset_pending) |
| 2235 | netif_device_detach(efx->net_dev); |
| 2236 | efx_selftest_async_start(efx); |
| 2237 | return 0; |
| 2238 | } |
| 2239 | |
| 2240 | /* Context: process, rtnl_lock() held. |
| 2241 | * Note that the kernel will ignore our return code; this method |
| 2242 | * should really be a void. |
| 2243 | */ |
| 2244 | int efx_net_stop(struct net_device *net_dev) |
| 2245 | { |
| 2246 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2247 | |
| 2248 | netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", |
| 2249 | raw_smp_processor_id()); |
| 2250 | |
| 2251 | /* Stop the device and flush all the channels */ |
| 2252 | efx_stop_all(efx); |
| 2253 | |
| 2254 | return 0; |
| 2255 | } |
| 2256 | |
| 2257 | /* Context: process, dev_base_lock or RTNL held, non-blocking. */ |
| 2258 | static void efx_net_stats(struct net_device *net_dev, |
| 2259 | struct rtnl_link_stats64 *stats) |
| 2260 | { |
| 2261 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2262 | |
| 2263 | spin_lock_bh(&efx->stats_lock); |
| 2264 | efx->type->update_stats(efx, NULL, stats); |
| 2265 | spin_unlock_bh(&efx->stats_lock); |
| 2266 | } |
| 2267 | |
| 2268 | /* Context: netif_tx_lock held, BHs disabled. */ |
| 2269 | static void efx_watchdog(struct net_device *net_dev) |
| 2270 | { |
| 2271 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2272 | |
| 2273 | netif_err(efx, tx_err, efx->net_dev, |
| 2274 | "TX stuck with port_enabled=%d: resetting channels\n", |
| 2275 | efx->port_enabled); |
| 2276 | |
| 2277 | efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); |
| 2278 | } |
| 2279 | |
| 2280 | |
| 2281 | /* Context: process, rtnl_lock() held. */ |
| 2282 | static int efx_change_mtu(struct net_device *net_dev, int new_mtu) |
| 2283 | { |
| 2284 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2285 | int rc; |
| 2286 | |
| 2287 | rc = efx_check_disabled(efx); |
| 2288 | if (rc) |
| 2289 | return rc; |
| 2290 | |
| 2291 | netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); |
| 2292 | |
| 2293 | efx_device_detach_sync(efx); |
| 2294 | efx_stop_all(efx); |
| 2295 | |
| 2296 | mutex_lock(&efx->mac_lock); |
| 2297 | net_dev->mtu = new_mtu; |
| 2298 | efx_mac_reconfigure(efx); |
| 2299 | mutex_unlock(&efx->mac_lock); |
| 2300 | |
| 2301 | efx_start_all(efx); |
| 2302 | efx_device_attach_if_not_resetting(efx); |
| 2303 | return 0; |
| 2304 | } |
| 2305 | |
| 2306 | static int efx_set_mac_address(struct net_device *net_dev, void *data) |
| 2307 | { |
| 2308 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2309 | struct sockaddr *addr = data; |
| 2310 | u8 *new_addr = addr->sa_data; |
| 2311 | u8 old_addr[6]; |
| 2312 | int rc; |
| 2313 | |
| 2314 | if (!is_valid_ether_addr(new_addr)) { |
| 2315 | netif_err(efx, drv, efx->net_dev, |
| 2316 | "invalid ethernet MAC address requested: %pM\n", |
| 2317 | new_addr); |
| 2318 | return -EADDRNOTAVAIL; |
| 2319 | } |
| 2320 | |
| 2321 | /* save old address */ |
| 2322 | ether_addr_copy(old_addr, net_dev->dev_addr); |
| 2323 | ether_addr_copy(net_dev->dev_addr, new_addr); |
| 2324 | if (efx->type->set_mac_address) { |
| 2325 | rc = efx->type->set_mac_address(efx); |
| 2326 | if (rc) { |
| 2327 | ether_addr_copy(net_dev->dev_addr, old_addr); |
| 2328 | return rc; |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | /* Reconfigure the MAC */ |
| 2333 | mutex_lock(&efx->mac_lock); |
| 2334 | efx_mac_reconfigure(efx); |
| 2335 | mutex_unlock(&efx->mac_lock); |
| 2336 | |
| 2337 | return 0; |
| 2338 | } |
| 2339 | |
| 2340 | /* Context: netif_addr_lock held, BHs disabled. */ |
| 2341 | static void efx_set_rx_mode(struct net_device *net_dev) |
| 2342 | { |
| 2343 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2344 | |
| 2345 | if (efx->port_enabled) |
| 2346 | queue_work(efx->workqueue, &efx->mac_work); |
| 2347 | /* Otherwise efx_start_port() will do this */ |
| 2348 | } |
| 2349 | |
| 2350 | static int efx_set_features(struct net_device *net_dev, netdev_features_t data) |
| 2351 | { |
| 2352 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2353 | int rc; |
| 2354 | |
| 2355 | /* If disabling RX n-tuple filtering, clear existing filters */ |
| 2356 | if (net_dev->features & ~data & NETIF_F_NTUPLE) { |
| 2357 | rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); |
| 2358 | if (rc) |
| 2359 | return rc; |
| 2360 | } |
| 2361 | |
| 2362 | /* If Rx VLAN filter is changed, update filters via mac_reconfigure. |
| 2363 | * If rx-fcs is changed, mac_reconfigure updates that too. |
| 2364 | */ |
| 2365 | if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | |
| 2366 | NETIF_F_RXFCS)) { |
| 2367 | /* efx_set_rx_mode() will schedule MAC work to update filters |
| 2368 | * when a new features are finally set in net_dev. |
| 2369 | */ |
| 2370 | efx_set_rx_mode(net_dev); |
| 2371 | } |
| 2372 | |
| 2373 | return 0; |
| 2374 | } |
| 2375 | |
| 2376 | static int efx_get_phys_port_id(struct net_device *net_dev, |
| 2377 | struct netdev_phys_item_id *ppid) |
| 2378 | { |
| 2379 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2380 | |
| 2381 | if (efx->type->get_phys_port_id) |
| 2382 | return efx->type->get_phys_port_id(efx, ppid); |
| 2383 | else |
| 2384 | return -EOPNOTSUPP; |
| 2385 | } |
| 2386 | |
| 2387 | static int efx_get_phys_port_name(struct net_device *net_dev, |
| 2388 | char *name, size_t len) |
| 2389 | { |
| 2390 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2391 | |
| 2392 | if (snprintf(name, len, "p%u", efx->port_num) >= len) |
| 2393 | return -EINVAL; |
| 2394 | return 0; |
| 2395 | } |
| 2396 | |
| 2397 | static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) |
| 2398 | { |
| 2399 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2400 | |
| 2401 | if (efx->type->vlan_rx_add_vid) |
| 2402 | return efx->type->vlan_rx_add_vid(efx, proto, vid); |
| 2403 | else |
| 2404 | return -EOPNOTSUPP; |
| 2405 | } |
| 2406 | |
| 2407 | static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) |
| 2408 | { |
| 2409 | struct efx_nic *efx = netdev_priv(net_dev); |
| 2410 | |
| 2411 | if (efx->type->vlan_rx_kill_vid) |
| 2412 | return efx->type->vlan_rx_kill_vid(efx, proto, vid); |
| 2413 | else |
| 2414 | return -EOPNOTSUPP; |
| 2415 | } |
| 2416 | |
| 2417 | static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in) |
| 2418 | { |
| 2419 | switch (in) { |
| 2420 | case UDP_TUNNEL_TYPE_VXLAN: |
| 2421 | return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; |
| 2422 | case UDP_TUNNEL_TYPE_GENEVE: |
| 2423 | return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; |
| 2424 | default: |
| 2425 | return -1; |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti) |
| 2430 | { |
| 2431 | struct efx_nic *efx = netdev_priv(dev); |
| 2432 | struct efx_udp_tunnel tnl; |
| 2433 | int efx_tunnel_type; |
| 2434 | |
| 2435 | efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); |
| 2436 | if (efx_tunnel_type < 0) |
| 2437 | return; |
| 2438 | |
| 2439 | tnl.type = (u16)efx_tunnel_type; |
| 2440 | tnl.port = ti->port; |
| 2441 | |
| 2442 | if (efx->type->udp_tnl_add_port) |
| 2443 | (void)efx->type->udp_tnl_add_port(efx, tnl); |
| 2444 | } |
| 2445 | |
| 2446 | static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti) |
| 2447 | { |
| 2448 | struct efx_nic *efx = netdev_priv(dev); |
| 2449 | struct efx_udp_tunnel tnl; |
| 2450 | int efx_tunnel_type; |
| 2451 | |
| 2452 | efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); |
| 2453 | if (efx_tunnel_type < 0) |
| 2454 | return; |
| 2455 | |
| 2456 | tnl.type = (u16)efx_tunnel_type; |
| 2457 | tnl.port = ti->port; |
| 2458 | |
| 2459 | if (efx->type->udp_tnl_del_port) |
| 2460 | (void)efx->type->udp_tnl_del_port(efx, tnl); |
| 2461 | } |
| 2462 | |
| 2463 | static const struct net_device_ops efx_netdev_ops = { |
| 2464 | .ndo_open = efx_net_open, |
| 2465 | .ndo_stop = efx_net_stop, |
| 2466 | .ndo_get_stats64 = efx_net_stats, |
| 2467 | .ndo_tx_timeout = efx_watchdog, |
| 2468 | .ndo_start_xmit = efx_hard_start_xmit, |
| 2469 | .ndo_validate_addr = eth_validate_addr, |
| 2470 | .ndo_do_ioctl = efx_ioctl, |
| 2471 | .ndo_change_mtu = efx_change_mtu, |
| 2472 | .ndo_set_mac_address = efx_set_mac_address, |
| 2473 | .ndo_set_rx_mode = efx_set_rx_mode, |
| 2474 | .ndo_set_features = efx_set_features, |
| 2475 | .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, |
| 2476 | .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, |
| 2477 | #ifdef CONFIG_SFC_SRIOV |
| 2478 | .ndo_set_vf_mac = efx_sriov_set_vf_mac, |
| 2479 | .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, |
| 2480 | .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, |
| 2481 | .ndo_get_vf_config = efx_sriov_get_vf_config, |
| 2482 | .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, |
| 2483 | #endif |
| 2484 | .ndo_get_phys_port_id = efx_get_phys_port_id, |
| 2485 | .ndo_get_phys_port_name = efx_get_phys_port_name, |
| 2486 | .ndo_setup_tc = efx_setup_tc, |
| 2487 | #ifdef CONFIG_RFS_ACCEL |
| 2488 | .ndo_rx_flow_steer = efx_filter_rfs, |
| 2489 | #endif |
| 2490 | .ndo_udp_tunnel_add = efx_udp_tunnel_add, |
| 2491 | .ndo_udp_tunnel_del = efx_udp_tunnel_del, |
| 2492 | }; |
| 2493 | |
| 2494 | static void efx_update_name(struct efx_nic *efx) |
| 2495 | { |
| 2496 | strcpy(efx->name, efx->net_dev->name); |
| 2497 | efx_mtd_rename(efx); |
| 2498 | efx_set_channel_names(efx); |
| 2499 | } |
| 2500 | |
| 2501 | static int efx_netdev_event(struct notifier_block *this, |
| 2502 | unsigned long event, void *ptr) |
| 2503 | { |
| 2504 | struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); |
| 2505 | |
| 2506 | if ((net_dev->netdev_ops == &efx_netdev_ops) && |
| 2507 | event == NETDEV_CHANGENAME) |
| 2508 | efx_update_name(netdev_priv(net_dev)); |
| 2509 | |
| 2510 | return NOTIFY_DONE; |
| 2511 | } |
| 2512 | |
| 2513 | static struct notifier_block efx_netdev_notifier = { |
| 2514 | .notifier_call = efx_netdev_event, |
| 2515 | }; |
| 2516 | |
| 2517 | static ssize_t |
| 2518 | show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) |
| 2519 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2520 | struct efx_nic *efx = dev_get_drvdata(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2521 | return sprintf(buf, "%d\n", efx->phy_type); |
| 2522 | } |
| 2523 | static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); |
| 2524 | |
| 2525 | #ifdef CONFIG_SFC_MCDI_LOGGING |
| 2526 | static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr, |
| 2527 | char *buf) |
| 2528 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2529 | struct efx_nic *efx = dev_get_drvdata(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2530 | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| 2531 | |
| 2532 | return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled); |
| 2533 | } |
| 2534 | static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr, |
| 2535 | const char *buf, size_t count) |
| 2536 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2537 | struct efx_nic *efx = dev_get_drvdata(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2538 | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| 2539 | bool enable = count > 0 && *buf != '0'; |
| 2540 | |
| 2541 | mcdi->logging_enabled = enable; |
| 2542 | return count; |
| 2543 | } |
| 2544 | static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log); |
| 2545 | #endif |
| 2546 | |
| 2547 | static int efx_register_netdev(struct efx_nic *efx) |
| 2548 | { |
| 2549 | struct net_device *net_dev = efx->net_dev; |
| 2550 | struct efx_channel *channel; |
| 2551 | int rc; |
| 2552 | |
| 2553 | net_dev->watchdog_timeo = 5 * HZ; |
| 2554 | net_dev->irq = efx->pci_dev->irq; |
| 2555 | net_dev->netdev_ops = &efx_netdev_ops; |
| 2556 | if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) |
| 2557 | net_dev->priv_flags |= IFF_UNICAST_FLT; |
| 2558 | net_dev->ethtool_ops = &efx_ethtool_ops; |
| 2559 | net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; |
| 2560 | net_dev->min_mtu = EFX_MIN_MTU; |
| 2561 | net_dev->max_mtu = EFX_MAX_MTU; |
| 2562 | |
| 2563 | rtnl_lock(); |
| 2564 | |
| 2565 | /* Enable resets to be scheduled and check whether any were |
| 2566 | * already requested. If so, the NIC is probably hosed so we |
| 2567 | * abort. |
| 2568 | */ |
| 2569 | efx->state = STATE_READY; |
| 2570 | smp_mb(); /* ensure we change state before checking reset_pending */ |
| 2571 | if (efx->reset_pending) { |
| 2572 | netif_err(efx, probe, efx->net_dev, |
| 2573 | "aborting probe due to scheduled reset\n"); |
| 2574 | rc = -EIO; |
| 2575 | goto fail_locked; |
| 2576 | } |
| 2577 | |
| 2578 | rc = dev_alloc_name(net_dev, net_dev->name); |
| 2579 | if (rc < 0) |
| 2580 | goto fail_locked; |
| 2581 | efx_update_name(efx); |
| 2582 | |
| 2583 | /* Always start with carrier off; PHY events will detect the link */ |
| 2584 | netif_carrier_off(net_dev); |
| 2585 | |
| 2586 | rc = register_netdevice(net_dev); |
| 2587 | if (rc) |
| 2588 | goto fail_locked; |
| 2589 | |
| 2590 | efx_for_each_channel(channel, efx) { |
| 2591 | struct efx_tx_queue *tx_queue; |
| 2592 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 2593 | efx_init_tx_queue_core_txq(tx_queue); |
| 2594 | } |
| 2595 | |
| 2596 | efx_associate(efx); |
| 2597 | |
| 2598 | rtnl_unlock(); |
| 2599 | |
| 2600 | rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| 2601 | if (rc) { |
| 2602 | netif_err(efx, drv, efx->net_dev, |
| 2603 | "failed to init net dev attributes\n"); |
| 2604 | goto fail_registered; |
| 2605 | } |
| 2606 | #ifdef CONFIG_SFC_MCDI_LOGGING |
| 2607 | rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); |
| 2608 | if (rc) { |
| 2609 | netif_err(efx, drv, efx->net_dev, |
| 2610 | "failed to init net dev attributes\n"); |
| 2611 | goto fail_attr_mcdi_logging; |
| 2612 | } |
| 2613 | #endif |
| 2614 | |
| 2615 | return 0; |
| 2616 | |
| 2617 | #ifdef CONFIG_SFC_MCDI_LOGGING |
| 2618 | fail_attr_mcdi_logging: |
| 2619 | device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| 2620 | #endif |
| 2621 | fail_registered: |
| 2622 | rtnl_lock(); |
| 2623 | efx_dissociate(efx); |
| 2624 | unregister_netdevice(net_dev); |
| 2625 | fail_locked: |
| 2626 | efx->state = STATE_UNINIT; |
| 2627 | rtnl_unlock(); |
| 2628 | netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); |
| 2629 | return rc; |
| 2630 | } |
| 2631 | |
| 2632 | static void efx_unregister_netdev(struct efx_nic *efx) |
| 2633 | { |
| 2634 | if (!efx->net_dev) |
| 2635 | return; |
| 2636 | |
| 2637 | BUG_ON(netdev_priv(efx->net_dev) != efx); |
| 2638 | |
| 2639 | if (efx_dev_registered(efx)) { |
| 2640 | strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); |
| 2641 | #ifdef CONFIG_SFC_MCDI_LOGGING |
| 2642 | device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); |
| 2643 | #endif |
| 2644 | device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| 2645 | unregister_netdev(efx->net_dev); |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | /************************************************************************** |
| 2650 | * |
| 2651 | * Device reset and suspend |
| 2652 | * |
| 2653 | **************************************************************************/ |
| 2654 | |
| 2655 | /* Tears down the entire software state and most of the hardware state |
| 2656 | * before reset. */ |
| 2657 | void efx_reset_down(struct efx_nic *efx, enum reset_type method) |
| 2658 | { |
| 2659 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 2660 | |
| 2661 | if (method == RESET_TYPE_MCDI_TIMEOUT) |
| 2662 | efx->type->prepare_flr(efx); |
| 2663 | |
| 2664 | efx_stop_all(efx); |
| 2665 | efx_disable_interrupts(efx); |
| 2666 | |
| 2667 | mutex_lock(&efx->mac_lock); |
| 2668 | down_write(&efx->filter_sem); |
| 2669 | mutex_lock(&efx->rss_lock); |
| 2670 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && |
| 2671 | method != RESET_TYPE_DATAPATH) |
| 2672 | efx->phy_op->fini(efx); |
| 2673 | efx->type->fini(efx); |
| 2674 | } |
| 2675 | |
| 2676 | /* This function will always ensure that the locks acquired in |
| 2677 | * efx_reset_down() are released. A failure return code indicates |
| 2678 | * that we were unable to reinitialise the hardware, and the |
| 2679 | * driver should be disabled. If ok is false, then the rx and tx |
| 2680 | * engines are not restarted, pending a RESET_DISABLE. */ |
| 2681 | int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) |
| 2682 | { |
| 2683 | int rc; |
| 2684 | |
| 2685 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 2686 | |
| 2687 | if (method == RESET_TYPE_MCDI_TIMEOUT) |
| 2688 | efx->type->finish_flr(efx); |
| 2689 | |
| 2690 | /* Ensure that SRAM is initialised even if we're disabling the device */ |
| 2691 | rc = efx->type->init(efx); |
| 2692 | if (rc) { |
| 2693 | netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); |
| 2694 | goto fail; |
| 2695 | } |
| 2696 | |
| 2697 | if (!ok) |
| 2698 | goto fail; |
| 2699 | |
| 2700 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && |
| 2701 | method != RESET_TYPE_DATAPATH) { |
| 2702 | rc = efx->phy_op->init(efx); |
| 2703 | if (rc) |
| 2704 | goto fail; |
| 2705 | rc = efx->phy_op->reconfigure(efx); |
| 2706 | if (rc && rc != -EPERM) |
| 2707 | netif_err(efx, drv, efx->net_dev, |
| 2708 | "could not restore PHY settings\n"); |
| 2709 | } |
| 2710 | |
| 2711 | rc = efx_enable_interrupts(efx); |
| 2712 | if (rc) |
| 2713 | goto fail; |
| 2714 | |
| 2715 | #ifdef CONFIG_SFC_SRIOV |
| 2716 | rc = efx->type->vswitching_restore(efx); |
| 2717 | if (rc) /* not fatal; the PF will still work fine */ |
| 2718 | netif_warn(efx, probe, efx->net_dev, |
| 2719 | "failed to restore vswitching rc=%d;" |
| 2720 | " VFs may not function\n", rc); |
| 2721 | #endif |
| 2722 | |
| 2723 | if (efx->type->rx_restore_rss_contexts) |
| 2724 | efx->type->rx_restore_rss_contexts(efx); |
| 2725 | mutex_unlock(&efx->rss_lock); |
| 2726 | efx->type->filter_table_restore(efx); |
| 2727 | up_write(&efx->filter_sem); |
| 2728 | if (efx->type->sriov_reset) |
| 2729 | efx->type->sriov_reset(efx); |
| 2730 | |
| 2731 | mutex_unlock(&efx->mac_lock); |
| 2732 | |
| 2733 | efx_start_all(efx); |
| 2734 | |
| 2735 | if (efx->type->udp_tnl_push_ports) |
| 2736 | efx->type->udp_tnl_push_ports(efx); |
| 2737 | |
| 2738 | return 0; |
| 2739 | |
| 2740 | fail: |
| 2741 | efx->port_initialized = false; |
| 2742 | |
| 2743 | mutex_unlock(&efx->rss_lock); |
| 2744 | up_write(&efx->filter_sem); |
| 2745 | mutex_unlock(&efx->mac_lock); |
| 2746 | |
| 2747 | return rc; |
| 2748 | } |
| 2749 | |
| 2750 | /* Reset the NIC using the specified method. Note that the reset may |
| 2751 | * fail, in which case the card will be left in an unusable state. |
| 2752 | * |
| 2753 | * Caller must hold the rtnl_lock. |
| 2754 | */ |
| 2755 | int efx_reset(struct efx_nic *efx, enum reset_type method) |
| 2756 | { |
| 2757 | int rc, rc2; |
| 2758 | bool disabled; |
| 2759 | |
| 2760 | netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", |
| 2761 | RESET_TYPE(method)); |
| 2762 | |
| 2763 | efx_device_detach_sync(efx); |
| 2764 | efx_reset_down(efx, method); |
| 2765 | |
| 2766 | rc = efx->type->reset(efx, method); |
| 2767 | if (rc) { |
| 2768 | netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); |
| 2769 | goto out; |
| 2770 | } |
| 2771 | |
| 2772 | /* Clear flags for the scopes we covered. We assume the NIC and |
| 2773 | * driver are now quiescent so that there is no race here. |
| 2774 | */ |
| 2775 | if (method < RESET_TYPE_MAX_METHOD) |
| 2776 | efx->reset_pending &= -(1 << (method + 1)); |
| 2777 | else /* it doesn't fit into the well-ordered scope hierarchy */ |
| 2778 | __clear_bit(method, &efx->reset_pending); |
| 2779 | |
| 2780 | /* Reinitialise bus-mastering, which may have been turned off before |
| 2781 | * the reset was scheduled. This is still appropriate, even in the |
| 2782 | * RESET_TYPE_DISABLE since this driver generally assumes the hardware |
| 2783 | * can respond to requests. */ |
| 2784 | pci_set_master(efx->pci_dev); |
| 2785 | |
| 2786 | out: |
| 2787 | /* Leave device stopped if necessary */ |
| 2788 | disabled = rc || |
| 2789 | method == RESET_TYPE_DISABLE || |
| 2790 | method == RESET_TYPE_RECOVER_OR_DISABLE; |
| 2791 | rc2 = efx_reset_up(efx, method, !disabled); |
| 2792 | if (rc2) { |
| 2793 | disabled = true; |
| 2794 | if (!rc) |
| 2795 | rc = rc2; |
| 2796 | } |
| 2797 | |
| 2798 | if (disabled) { |
| 2799 | dev_close(efx->net_dev); |
| 2800 | netif_err(efx, drv, efx->net_dev, "has been disabled\n"); |
| 2801 | efx->state = STATE_DISABLED; |
| 2802 | } else { |
| 2803 | netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); |
| 2804 | efx_device_attach_if_not_resetting(efx); |
| 2805 | } |
| 2806 | return rc; |
| 2807 | } |
| 2808 | |
| 2809 | /* Try recovery mechanisms. |
| 2810 | * For now only EEH is supported. |
| 2811 | * Returns 0 if the recovery mechanisms are unsuccessful. |
| 2812 | * Returns a non-zero value otherwise. |
| 2813 | */ |
| 2814 | int efx_try_recovery(struct efx_nic *efx) |
| 2815 | { |
| 2816 | #ifdef CONFIG_EEH |
| 2817 | /* A PCI error can occur and not be seen by EEH because nothing |
| 2818 | * happens on the PCI bus. In this case the driver may fail and |
| 2819 | * schedule a 'recover or reset', leading to this recovery handler. |
| 2820 | * Manually call the eeh failure check function. |
| 2821 | */ |
| 2822 | struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); |
| 2823 | if (eeh_dev_check_failure(eehdev)) { |
| 2824 | /* The EEH mechanisms will handle the error and reset the |
| 2825 | * device if necessary. |
| 2826 | */ |
| 2827 | return 1; |
| 2828 | } |
| 2829 | #endif |
| 2830 | return 0; |
| 2831 | } |
| 2832 | |
| 2833 | static void efx_wait_for_bist_end(struct efx_nic *efx) |
| 2834 | { |
| 2835 | int i; |
| 2836 | |
| 2837 | for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { |
| 2838 | if (efx_mcdi_poll_reboot(efx)) |
| 2839 | goto out; |
| 2840 | msleep(BIST_WAIT_DELAY_MS); |
| 2841 | } |
| 2842 | |
| 2843 | netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); |
| 2844 | out: |
| 2845 | /* Either way unset the BIST flag. If we found no reboot we probably |
| 2846 | * won't recover, but we should try. |
| 2847 | */ |
| 2848 | efx->mc_bist_for_other_fn = false; |
| 2849 | } |
| 2850 | |
| 2851 | /* The worker thread exists so that code that cannot sleep can |
| 2852 | * schedule a reset for later. |
| 2853 | */ |
| 2854 | static void efx_reset_work(struct work_struct *data) |
| 2855 | { |
| 2856 | struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); |
| 2857 | unsigned long pending; |
| 2858 | enum reset_type method; |
| 2859 | |
| 2860 | pending = READ_ONCE(efx->reset_pending); |
| 2861 | method = fls(pending) - 1; |
| 2862 | |
| 2863 | if (method == RESET_TYPE_MC_BIST) |
| 2864 | efx_wait_for_bist_end(efx); |
| 2865 | |
| 2866 | if ((method == RESET_TYPE_RECOVER_OR_DISABLE || |
| 2867 | method == RESET_TYPE_RECOVER_OR_ALL) && |
| 2868 | efx_try_recovery(efx)) |
| 2869 | return; |
| 2870 | |
| 2871 | if (!pending) |
| 2872 | return; |
| 2873 | |
| 2874 | rtnl_lock(); |
| 2875 | |
| 2876 | /* We checked the state in efx_schedule_reset() but it may |
| 2877 | * have changed by now. Now that we have the RTNL lock, |
| 2878 | * it cannot change again. |
| 2879 | */ |
| 2880 | if (efx->state == STATE_READY) |
| 2881 | (void)efx_reset(efx, method); |
| 2882 | |
| 2883 | rtnl_unlock(); |
| 2884 | } |
| 2885 | |
| 2886 | void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) |
| 2887 | { |
| 2888 | enum reset_type method; |
| 2889 | |
| 2890 | if (efx->state == STATE_RECOVERY) { |
| 2891 | netif_dbg(efx, drv, efx->net_dev, |
| 2892 | "recovering: skip scheduling %s reset\n", |
| 2893 | RESET_TYPE(type)); |
| 2894 | return; |
| 2895 | } |
| 2896 | |
| 2897 | switch (type) { |
| 2898 | case RESET_TYPE_INVISIBLE: |
| 2899 | case RESET_TYPE_ALL: |
| 2900 | case RESET_TYPE_RECOVER_OR_ALL: |
| 2901 | case RESET_TYPE_WORLD: |
| 2902 | case RESET_TYPE_DISABLE: |
| 2903 | case RESET_TYPE_RECOVER_OR_DISABLE: |
| 2904 | case RESET_TYPE_DATAPATH: |
| 2905 | case RESET_TYPE_MC_BIST: |
| 2906 | case RESET_TYPE_MCDI_TIMEOUT: |
| 2907 | method = type; |
| 2908 | netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", |
| 2909 | RESET_TYPE(method)); |
| 2910 | break; |
| 2911 | default: |
| 2912 | method = efx->type->map_reset_reason(type); |
| 2913 | netif_dbg(efx, drv, efx->net_dev, |
| 2914 | "scheduling %s reset for %s\n", |
| 2915 | RESET_TYPE(method), RESET_TYPE(type)); |
| 2916 | break; |
| 2917 | } |
| 2918 | |
| 2919 | set_bit(method, &efx->reset_pending); |
| 2920 | smp_mb(); /* ensure we change reset_pending before checking state */ |
| 2921 | |
| 2922 | /* If we're not READY then just leave the flags set as the cue |
| 2923 | * to abort probing or reschedule the reset later. |
| 2924 | */ |
| 2925 | if (READ_ONCE(efx->state) != STATE_READY) |
| 2926 | return; |
| 2927 | |
| 2928 | /* efx_process_channel() will no longer read events once a |
| 2929 | * reset is scheduled. So switch back to poll'd MCDI completions. */ |
| 2930 | efx_mcdi_mode_poll(efx); |
| 2931 | |
| 2932 | queue_work(reset_workqueue, &efx->reset_work); |
| 2933 | } |
| 2934 | |
| 2935 | /************************************************************************** |
| 2936 | * |
| 2937 | * List of NICs we support |
| 2938 | * |
| 2939 | **************************************************************************/ |
| 2940 | |
| 2941 | /* PCI device ID table */ |
| 2942 | static const struct pci_device_id efx_pci_table[] = { |
| 2943 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ |
| 2944 | .driver_data = (unsigned long) &siena_a0_nic_type}, |
| 2945 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ |
| 2946 | .driver_data = (unsigned long) &siena_a0_nic_type}, |
| 2947 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ |
| 2948 | .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, |
| 2949 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ |
| 2950 | .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, |
| 2951 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ |
| 2952 | .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, |
| 2953 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ |
| 2954 | .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, |
| 2955 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ |
| 2956 | .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, |
| 2957 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ |
| 2958 | .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, |
| 2959 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ |
| 2960 | .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, |
| 2961 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ |
| 2962 | .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, |
| 2963 | {0} /* end of list */ |
| 2964 | }; |
| 2965 | |
| 2966 | /************************************************************************** |
| 2967 | * |
| 2968 | * Dummy PHY/MAC operations |
| 2969 | * |
| 2970 | * Can be used for some unimplemented operations |
| 2971 | * Needed so all function pointers are valid and do not have to be tested |
| 2972 | * before use |
| 2973 | * |
| 2974 | **************************************************************************/ |
| 2975 | int efx_port_dummy_op_int(struct efx_nic *efx) |
| 2976 | { |
| 2977 | return 0; |
| 2978 | } |
| 2979 | void efx_port_dummy_op_void(struct efx_nic *efx) {} |
| 2980 | |
| 2981 | static bool efx_port_dummy_op_poll(struct efx_nic *efx) |
| 2982 | { |
| 2983 | return false; |
| 2984 | } |
| 2985 | |
| 2986 | static const struct efx_phy_operations efx_dummy_phy_operations = { |
| 2987 | .init = efx_port_dummy_op_int, |
| 2988 | .reconfigure = efx_port_dummy_op_int, |
| 2989 | .poll = efx_port_dummy_op_poll, |
| 2990 | .fini = efx_port_dummy_op_void, |
| 2991 | }; |
| 2992 | |
| 2993 | /************************************************************************** |
| 2994 | * |
| 2995 | * Data housekeeping |
| 2996 | * |
| 2997 | **************************************************************************/ |
| 2998 | |
| 2999 | /* This zeroes out and then fills in the invariants in a struct |
| 3000 | * efx_nic (including all sub-structures). |
| 3001 | */ |
| 3002 | static int efx_init_struct(struct efx_nic *efx, |
| 3003 | struct pci_dev *pci_dev, struct net_device *net_dev) |
| 3004 | { |
| 3005 | int rc = -ENOMEM, i; |
| 3006 | |
| 3007 | /* Initialise common structures */ |
| 3008 | INIT_LIST_HEAD(&efx->node); |
| 3009 | INIT_LIST_HEAD(&efx->secondary_list); |
| 3010 | spin_lock_init(&efx->biu_lock); |
| 3011 | #ifdef CONFIG_SFC_MTD |
| 3012 | INIT_LIST_HEAD(&efx->mtd_list); |
| 3013 | #endif |
| 3014 | INIT_WORK(&efx->reset_work, efx_reset_work); |
| 3015 | INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); |
| 3016 | INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); |
| 3017 | efx->pci_dev = pci_dev; |
| 3018 | efx->msg_enable = debug; |
| 3019 | efx->state = STATE_UNINIT; |
| 3020 | strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); |
| 3021 | |
| 3022 | efx->net_dev = net_dev; |
| 3023 | efx->rx_prefix_size = efx->type->rx_prefix_size; |
| 3024 | efx->rx_ip_align = |
| 3025 | NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; |
| 3026 | efx->rx_packet_hash_offset = |
| 3027 | efx->type->rx_hash_offset - efx->type->rx_prefix_size; |
| 3028 | efx->rx_packet_ts_offset = |
| 3029 | efx->type->rx_ts_offset - efx->type->rx_prefix_size; |
| 3030 | INIT_LIST_HEAD(&efx->rss_context.list); |
| 3031 | mutex_init(&efx->rss_lock); |
| 3032 | spin_lock_init(&efx->stats_lock); |
| 3033 | efx->vi_stride = EFX_DEFAULT_VI_STRIDE; |
| 3034 | efx->num_mac_stats = MC_CMD_MAC_NSTATS; |
| 3035 | BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END); |
| 3036 | mutex_init(&efx->mac_lock); |
| 3037 | #ifdef CONFIG_RFS_ACCEL |
| 3038 | mutex_init(&efx->rps_mutex); |
| 3039 | spin_lock_init(&efx->rps_hash_lock); |
| 3040 | /* Failure to allocate is not fatal, but may degrade ARFS performance */ |
| 3041 | efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE, |
| 3042 | sizeof(*efx->rps_hash_table), GFP_KERNEL); |
| 3043 | #endif |
| 3044 | efx->phy_op = &efx_dummy_phy_operations; |
| 3045 | efx->mdio.dev = net_dev; |
| 3046 | INIT_WORK(&efx->mac_work, efx_mac_work); |
| 3047 | init_waitqueue_head(&efx->flush_wq); |
| 3048 | |
| 3049 | for (i = 0; i < EFX_MAX_CHANNELS; i++) { |
| 3050 | efx->channel[i] = efx_alloc_channel(efx, i, NULL); |
| 3051 | if (!efx->channel[i]) |
| 3052 | goto fail; |
| 3053 | efx->msi_context[i].efx = efx; |
| 3054 | efx->msi_context[i].index = i; |
| 3055 | } |
| 3056 | |
| 3057 | /* Higher numbered interrupt modes are less capable! */ |
| 3058 | if (WARN_ON_ONCE(efx->type->max_interrupt_mode > |
| 3059 | efx->type->min_interrupt_mode)) { |
| 3060 | rc = -EIO; |
| 3061 | goto fail; |
| 3062 | } |
| 3063 | efx->interrupt_mode = max(efx->type->max_interrupt_mode, |
| 3064 | interrupt_mode); |
| 3065 | efx->interrupt_mode = min(efx->type->min_interrupt_mode, |
| 3066 | interrupt_mode); |
| 3067 | |
| 3068 | /* Would be good to use the net_dev name, but we're too early */ |
| 3069 | snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", |
| 3070 | pci_name(pci_dev)); |
| 3071 | efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); |
| 3072 | if (!efx->workqueue) |
| 3073 | goto fail; |
| 3074 | |
| 3075 | return 0; |
| 3076 | |
| 3077 | fail: |
| 3078 | efx_fini_struct(efx); |
| 3079 | return rc; |
| 3080 | } |
| 3081 | |
| 3082 | static void efx_fini_struct(struct efx_nic *efx) |
| 3083 | { |
| 3084 | int i; |
| 3085 | |
| 3086 | #ifdef CONFIG_RFS_ACCEL |
| 3087 | kfree(efx->rps_hash_table); |
| 3088 | #endif |
| 3089 | |
| 3090 | for (i = 0; i < EFX_MAX_CHANNELS; i++) |
| 3091 | kfree(efx->channel[i]); |
| 3092 | |
| 3093 | kfree(efx->vpd_sn); |
| 3094 | |
| 3095 | if (efx->workqueue) { |
| 3096 | destroy_workqueue(efx->workqueue); |
| 3097 | efx->workqueue = NULL; |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) |
| 3102 | { |
| 3103 | u64 n_rx_nodesc_trunc = 0; |
| 3104 | struct efx_channel *channel; |
| 3105 | |
| 3106 | efx_for_each_channel(channel, efx) |
| 3107 | n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; |
| 3108 | stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; |
| 3109 | stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); |
| 3110 | } |
| 3111 | |
| 3112 | bool efx_filter_spec_equal(const struct efx_filter_spec *left, |
| 3113 | const struct efx_filter_spec *right) |
| 3114 | { |
| 3115 | if ((left->match_flags ^ right->match_flags) | |
| 3116 | ((left->flags ^ right->flags) & |
| 3117 | (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) |
| 3118 | return false; |
| 3119 | |
| 3120 | return memcmp(&left->outer_vid, &right->outer_vid, |
| 3121 | sizeof(struct efx_filter_spec) - |
| 3122 | offsetof(struct efx_filter_spec, outer_vid)) == 0; |
| 3123 | } |
| 3124 | |
| 3125 | u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) |
| 3126 | { |
| 3127 | BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); |
| 3128 | return jhash2((const u32 *)&spec->outer_vid, |
| 3129 | (sizeof(struct efx_filter_spec) - |
| 3130 | offsetof(struct efx_filter_spec, outer_vid)) / 4, |
| 3131 | 0); |
| 3132 | } |
| 3133 | |
| 3134 | #ifdef CONFIG_RFS_ACCEL |
| 3135 | bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, |
| 3136 | bool *force) |
| 3137 | { |
| 3138 | if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { |
| 3139 | /* ARFS is currently updating this entry, leave it */ |
| 3140 | return false; |
| 3141 | } |
| 3142 | if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { |
| 3143 | /* ARFS tried and failed to update this, so it's probably out |
| 3144 | * of date. Remove the filter and the ARFS rule entry. |
| 3145 | */ |
| 3146 | rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; |
| 3147 | *force = true; |
| 3148 | return true; |
| 3149 | } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ |
| 3150 | /* ARFS has moved on, so old filter is not needed. Since we did |
| 3151 | * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will |
| 3152 | * not be removed by efx_rps_hash_del() subsequently. |
| 3153 | */ |
| 3154 | *force = true; |
| 3155 | return true; |
| 3156 | } |
| 3157 | /* Remove it iff ARFS wants to. */ |
| 3158 | return true; |
| 3159 | } |
| 3160 | |
| 3161 | static |
| 3162 | struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, |
| 3163 | const struct efx_filter_spec *spec) |
| 3164 | { |
| 3165 | u32 hash = efx_filter_spec_hash(spec); |
| 3166 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3167 | lockdep_assert_held(&efx->rps_hash_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3168 | if (!efx->rps_hash_table) |
| 3169 | return NULL; |
| 3170 | return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; |
| 3171 | } |
| 3172 | |
| 3173 | struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, |
| 3174 | const struct efx_filter_spec *spec) |
| 3175 | { |
| 3176 | struct efx_arfs_rule *rule; |
| 3177 | struct hlist_head *head; |
| 3178 | struct hlist_node *node; |
| 3179 | |
| 3180 | head = efx_rps_hash_bucket(efx, spec); |
| 3181 | if (!head) |
| 3182 | return NULL; |
| 3183 | hlist_for_each(node, head) { |
| 3184 | rule = container_of(node, struct efx_arfs_rule, node); |
| 3185 | if (efx_filter_spec_equal(spec, &rule->spec)) |
| 3186 | return rule; |
| 3187 | } |
| 3188 | return NULL; |
| 3189 | } |
| 3190 | |
| 3191 | struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, |
| 3192 | const struct efx_filter_spec *spec, |
| 3193 | bool *new) |
| 3194 | { |
| 3195 | struct efx_arfs_rule *rule; |
| 3196 | struct hlist_head *head; |
| 3197 | struct hlist_node *node; |
| 3198 | |
| 3199 | head = efx_rps_hash_bucket(efx, spec); |
| 3200 | if (!head) |
| 3201 | return NULL; |
| 3202 | hlist_for_each(node, head) { |
| 3203 | rule = container_of(node, struct efx_arfs_rule, node); |
| 3204 | if (efx_filter_spec_equal(spec, &rule->spec)) { |
| 3205 | *new = false; |
| 3206 | return rule; |
| 3207 | } |
| 3208 | } |
| 3209 | rule = kmalloc(sizeof(*rule), GFP_ATOMIC); |
| 3210 | *new = true; |
| 3211 | if (rule) { |
| 3212 | memcpy(&rule->spec, spec, sizeof(rule->spec)); |
| 3213 | hlist_add_head(&rule->node, head); |
| 3214 | } |
| 3215 | return rule; |
| 3216 | } |
| 3217 | |
| 3218 | void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) |
| 3219 | { |
| 3220 | struct efx_arfs_rule *rule; |
| 3221 | struct hlist_head *head; |
| 3222 | struct hlist_node *node; |
| 3223 | |
| 3224 | head = efx_rps_hash_bucket(efx, spec); |
| 3225 | if (WARN_ON(!head)) |
| 3226 | return; |
| 3227 | hlist_for_each(node, head) { |
| 3228 | rule = container_of(node, struct efx_arfs_rule, node); |
| 3229 | if (efx_filter_spec_equal(spec, &rule->spec)) { |
| 3230 | /* Someone already reused the entry. We know that if |
| 3231 | * this check doesn't fire (i.e. filter_id == REMOVING) |
| 3232 | * then the REMOVING mark was put there by our caller, |
| 3233 | * because caller is holding a lock on filter table and |
| 3234 | * only holders of that lock set REMOVING. |
| 3235 | */ |
| 3236 | if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) |
| 3237 | return; |
| 3238 | hlist_del(node); |
| 3239 | kfree(rule); |
| 3240 | return; |
| 3241 | } |
| 3242 | } |
| 3243 | /* We didn't find it. */ |
| 3244 | WARN_ON(1); |
| 3245 | } |
| 3246 | #endif |
| 3247 | |
| 3248 | /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because |
| 3249 | * (a) this is an infrequent control-plane operation and (b) n is small (max 64) |
| 3250 | */ |
| 3251 | struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) |
| 3252 | { |
| 3253 | struct list_head *head = &efx->rss_context.list; |
| 3254 | struct efx_rss_context *ctx, *new; |
| 3255 | u32 id = 1; /* Don't use zero, that refers to the master RSS context */ |
| 3256 | |
| 3257 | WARN_ON(!mutex_is_locked(&efx->rss_lock)); |
| 3258 | |
| 3259 | /* Search for first gap in the numbering */ |
| 3260 | list_for_each_entry(ctx, head, list) { |
| 3261 | if (ctx->user_id != id) |
| 3262 | break; |
| 3263 | id++; |
| 3264 | /* Check for wrap. If this happens, we have nearly 2^32 |
| 3265 | * allocated RSS contexts, which seems unlikely. |
| 3266 | */ |
| 3267 | if (WARN_ON_ONCE(!id)) |
| 3268 | return NULL; |
| 3269 | } |
| 3270 | |
| 3271 | /* Create the new entry */ |
| 3272 | new = kmalloc(sizeof(struct efx_rss_context), GFP_KERNEL); |
| 3273 | if (!new) |
| 3274 | return NULL; |
| 3275 | new->context_id = EFX_EF10_RSS_CONTEXT_INVALID; |
| 3276 | new->rx_hash_udp_4tuple = false; |
| 3277 | |
| 3278 | /* Insert the new entry into the gap */ |
| 3279 | new->user_id = id; |
| 3280 | list_add_tail(&new->list, &ctx->list); |
| 3281 | return new; |
| 3282 | } |
| 3283 | |
| 3284 | struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) |
| 3285 | { |
| 3286 | struct list_head *head = &efx->rss_context.list; |
| 3287 | struct efx_rss_context *ctx; |
| 3288 | |
| 3289 | WARN_ON(!mutex_is_locked(&efx->rss_lock)); |
| 3290 | |
| 3291 | list_for_each_entry(ctx, head, list) |
| 3292 | if (ctx->user_id == id) |
| 3293 | return ctx; |
| 3294 | return NULL; |
| 3295 | } |
| 3296 | |
| 3297 | void efx_free_rss_context_entry(struct efx_rss_context *ctx) |
| 3298 | { |
| 3299 | list_del(&ctx->list); |
| 3300 | kfree(ctx); |
| 3301 | } |
| 3302 | |
| 3303 | /************************************************************************** |
| 3304 | * |
| 3305 | * PCI interface |
| 3306 | * |
| 3307 | **************************************************************************/ |
| 3308 | |
| 3309 | /* Main body of final NIC shutdown code |
| 3310 | * This is called only at module unload (or hotplug removal). |
| 3311 | */ |
| 3312 | static void efx_pci_remove_main(struct efx_nic *efx) |
| 3313 | { |
| 3314 | /* Flush reset_work. It can no longer be scheduled since we |
| 3315 | * are not READY. |
| 3316 | */ |
| 3317 | BUG_ON(efx->state == STATE_READY); |
| 3318 | cancel_work_sync(&efx->reset_work); |
| 3319 | |
| 3320 | efx_disable_interrupts(efx); |
| 3321 | efx_clear_interrupt_affinity(efx); |
| 3322 | efx_nic_fini_interrupt(efx); |
| 3323 | efx_fini_port(efx); |
| 3324 | efx->type->fini(efx); |
| 3325 | efx_fini_napi(efx); |
| 3326 | efx_remove_all(efx); |
| 3327 | } |
| 3328 | |
| 3329 | /* Final NIC shutdown |
| 3330 | * This is called only at module unload (or hotplug removal). A PF can call |
| 3331 | * this on its VFs to ensure they are unbound first. |
| 3332 | */ |
| 3333 | static void efx_pci_remove(struct pci_dev *pci_dev) |
| 3334 | { |
| 3335 | struct efx_nic *efx; |
| 3336 | |
| 3337 | efx = pci_get_drvdata(pci_dev); |
| 3338 | if (!efx) |
| 3339 | return; |
| 3340 | |
| 3341 | /* Mark the NIC as fini, then stop the interface */ |
| 3342 | rtnl_lock(); |
| 3343 | efx_dissociate(efx); |
| 3344 | dev_close(efx->net_dev); |
| 3345 | efx_disable_interrupts(efx); |
| 3346 | efx->state = STATE_UNINIT; |
| 3347 | rtnl_unlock(); |
| 3348 | |
| 3349 | if (efx->type->sriov_fini) |
| 3350 | efx->type->sriov_fini(efx); |
| 3351 | |
| 3352 | efx_unregister_netdev(efx); |
| 3353 | |
| 3354 | efx_mtd_remove(efx); |
| 3355 | |
| 3356 | efx_pci_remove_main(efx); |
| 3357 | |
| 3358 | efx_fini_io(efx); |
| 3359 | netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); |
| 3360 | |
| 3361 | efx_fini_struct(efx); |
| 3362 | free_netdev(efx->net_dev); |
| 3363 | |
| 3364 | pci_disable_pcie_error_reporting(pci_dev); |
| 3365 | }; |
| 3366 | |
| 3367 | /* NIC VPD information |
| 3368 | * Called during probe to display the part number of the |
| 3369 | * installed NIC. VPD is potentially very large but this should |
| 3370 | * always appear within the first 512 bytes. |
| 3371 | */ |
| 3372 | #define SFC_VPD_LEN 512 |
| 3373 | static void efx_probe_vpd_strings(struct efx_nic *efx) |
| 3374 | { |
| 3375 | struct pci_dev *dev = efx->pci_dev; |
| 3376 | char vpd_data[SFC_VPD_LEN]; |
| 3377 | ssize_t vpd_size; |
| 3378 | int ro_start, ro_size, i, j; |
| 3379 | |
| 3380 | /* Get the vpd data from the device */ |
| 3381 | vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); |
| 3382 | if (vpd_size <= 0) { |
| 3383 | netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); |
| 3384 | return; |
| 3385 | } |
| 3386 | |
| 3387 | /* Get the Read only section */ |
| 3388 | ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); |
| 3389 | if (ro_start < 0) { |
| 3390 | netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); |
| 3391 | return; |
| 3392 | } |
| 3393 | |
| 3394 | ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); |
| 3395 | j = ro_size; |
| 3396 | i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| 3397 | if (i + j > vpd_size) |
| 3398 | j = vpd_size - i; |
| 3399 | |
| 3400 | /* Get the Part number */ |
| 3401 | i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); |
| 3402 | if (i < 0) { |
| 3403 | netif_err(efx, drv, efx->net_dev, "Part number not found\n"); |
| 3404 | return; |
| 3405 | } |
| 3406 | |
| 3407 | j = pci_vpd_info_field_size(&vpd_data[i]); |
| 3408 | i += PCI_VPD_INFO_FLD_HDR_SIZE; |
| 3409 | if (i + j > vpd_size) { |
| 3410 | netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); |
| 3411 | return; |
| 3412 | } |
| 3413 | |
| 3414 | netif_info(efx, drv, efx->net_dev, |
| 3415 | "Part Number : %.*s\n", j, &vpd_data[i]); |
| 3416 | |
| 3417 | i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| 3418 | j = ro_size; |
| 3419 | i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); |
| 3420 | if (i < 0) { |
| 3421 | netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); |
| 3422 | return; |
| 3423 | } |
| 3424 | |
| 3425 | j = pci_vpd_info_field_size(&vpd_data[i]); |
| 3426 | i += PCI_VPD_INFO_FLD_HDR_SIZE; |
| 3427 | if (i + j > vpd_size) { |
| 3428 | netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); |
| 3429 | return; |
| 3430 | } |
| 3431 | |
| 3432 | efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); |
| 3433 | if (!efx->vpd_sn) |
| 3434 | return; |
| 3435 | |
| 3436 | snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); |
| 3437 | } |
| 3438 | |
| 3439 | |
| 3440 | /* Main body of NIC initialisation |
| 3441 | * This is called at module load (or hotplug insertion, theoretically). |
| 3442 | */ |
| 3443 | static int efx_pci_probe_main(struct efx_nic *efx) |
| 3444 | { |
| 3445 | int rc; |
| 3446 | |
| 3447 | /* Do start-of-day initialisation */ |
| 3448 | rc = efx_probe_all(efx); |
| 3449 | if (rc) |
| 3450 | goto fail1; |
| 3451 | |
| 3452 | efx_init_napi(efx); |
| 3453 | |
| 3454 | down_write(&efx->filter_sem); |
| 3455 | rc = efx->type->init(efx); |
| 3456 | up_write(&efx->filter_sem); |
| 3457 | if (rc) { |
| 3458 | netif_err(efx, probe, efx->net_dev, |
| 3459 | "failed to initialise NIC\n"); |
| 3460 | goto fail3; |
| 3461 | } |
| 3462 | |
| 3463 | rc = efx_init_port(efx); |
| 3464 | if (rc) { |
| 3465 | netif_err(efx, probe, efx->net_dev, |
| 3466 | "failed to initialise port\n"); |
| 3467 | goto fail4; |
| 3468 | } |
| 3469 | |
| 3470 | rc = efx_nic_init_interrupt(efx); |
| 3471 | if (rc) |
| 3472 | goto fail5; |
| 3473 | |
| 3474 | efx_set_interrupt_affinity(efx); |
| 3475 | rc = efx_enable_interrupts(efx); |
| 3476 | if (rc) |
| 3477 | goto fail6; |
| 3478 | |
| 3479 | return 0; |
| 3480 | |
| 3481 | fail6: |
| 3482 | efx_clear_interrupt_affinity(efx); |
| 3483 | efx_nic_fini_interrupt(efx); |
| 3484 | fail5: |
| 3485 | efx_fini_port(efx); |
| 3486 | fail4: |
| 3487 | efx->type->fini(efx); |
| 3488 | fail3: |
| 3489 | efx_fini_napi(efx); |
| 3490 | efx_remove_all(efx); |
| 3491 | fail1: |
| 3492 | return rc; |
| 3493 | } |
| 3494 | |
| 3495 | static int efx_pci_probe_post_io(struct efx_nic *efx) |
| 3496 | { |
| 3497 | struct net_device *net_dev = efx->net_dev; |
| 3498 | int rc = efx_pci_probe_main(efx); |
| 3499 | |
| 3500 | if (rc) |
| 3501 | return rc; |
| 3502 | |
| 3503 | if (efx->type->sriov_init) { |
| 3504 | rc = efx->type->sriov_init(efx); |
| 3505 | if (rc) |
| 3506 | netif_err(efx, probe, efx->net_dev, |
| 3507 | "SR-IOV can't be enabled rc %d\n", rc); |
| 3508 | } |
| 3509 | |
| 3510 | /* Determine netdevice features */ |
| 3511 | net_dev->features |= (efx->type->offload_features | NETIF_F_SG | |
| 3512 | NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); |
| 3513 | if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) |
| 3514 | net_dev->features |= NETIF_F_TSO6; |
| 3515 | /* Check whether device supports TSO */ |
| 3516 | if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) |
| 3517 | net_dev->features &= ~NETIF_F_ALL_TSO; |
| 3518 | /* Mask for features that also apply to VLAN devices */ |
| 3519 | net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | |
| 3520 | NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | |
| 3521 | NETIF_F_RXCSUM); |
| 3522 | |
| 3523 | net_dev->hw_features |= net_dev->features & ~efx->fixed_features; |
| 3524 | |
| 3525 | /* Disable receiving frames with bad FCS, by default. */ |
| 3526 | net_dev->features &= ~NETIF_F_RXALL; |
| 3527 | |
| 3528 | /* Disable VLAN filtering by default. It may be enforced if |
| 3529 | * the feature is fixed (i.e. VLAN filters are required to |
| 3530 | * receive VLAN tagged packets due to vPort restrictions). |
| 3531 | */ |
| 3532 | net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; |
| 3533 | net_dev->features |= efx->fixed_features; |
| 3534 | |
| 3535 | rc = efx_register_netdev(efx); |
| 3536 | if (!rc) |
| 3537 | return 0; |
| 3538 | |
| 3539 | efx_pci_remove_main(efx); |
| 3540 | return rc; |
| 3541 | } |
| 3542 | |
| 3543 | /* NIC initialisation |
| 3544 | * |
| 3545 | * This is called at module load (or hotplug insertion, |
| 3546 | * theoretically). It sets up PCI mappings, resets the NIC, |
| 3547 | * sets up and registers the network devices with the kernel and hooks |
| 3548 | * the interrupt service routine. It does not prepare the device for |
| 3549 | * transmission; this is left to the first time one of the network |
| 3550 | * interfaces is brought up (i.e. efx_net_open). |
| 3551 | */ |
| 3552 | static int efx_pci_probe(struct pci_dev *pci_dev, |
| 3553 | const struct pci_device_id *entry) |
| 3554 | { |
| 3555 | struct net_device *net_dev; |
| 3556 | struct efx_nic *efx; |
| 3557 | int rc; |
| 3558 | |
| 3559 | /* Allocate and initialise a struct net_device and struct efx_nic */ |
| 3560 | net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, |
| 3561 | EFX_MAX_RX_QUEUES); |
| 3562 | if (!net_dev) |
| 3563 | return -ENOMEM; |
| 3564 | efx = netdev_priv(net_dev); |
| 3565 | efx->type = (const struct efx_nic_type *) entry->driver_data; |
| 3566 | efx->fixed_features |= NETIF_F_HIGHDMA; |
| 3567 | |
| 3568 | pci_set_drvdata(pci_dev, efx); |
| 3569 | SET_NETDEV_DEV(net_dev, &pci_dev->dev); |
| 3570 | rc = efx_init_struct(efx, pci_dev, net_dev); |
| 3571 | if (rc) |
| 3572 | goto fail1; |
| 3573 | |
| 3574 | netif_info(efx, probe, efx->net_dev, |
| 3575 | "Solarflare NIC detected\n"); |
| 3576 | |
| 3577 | if (!efx->type->is_vf) |
| 3578 | efx_probe_vpd_strings(efx); |
| 3579 | |
| 3580 | /* Set up basic I/O (BAR mappings etc) */ |
| 3581 | rc = efx_init_io(efx); |
| 3582 | if (rc) |
| 3583 | goto fail2; |
| 3584 | |
| 3585 | rc = efx_pci_probe_post_io(efx); |
| 3586 | if (rc) { |
| 3587 | /* On failure, retry once immediately. |
| 3588 | * If we aborted probe due to a scheduled reset, dismiss it. |
| 3589 | */ |
| 3590 | efx->reset_pending = 0; |
| 3591 | rc = efx_pci_probe_post_io(efx); |
| 3592 | if (rc) { |
| 3593 | /* On another failure, retry once more |
| 3594 | * after a 50-305ms delay. |
| 3595 | */ |
| 3596 | unsigned char r; |
| 3597 | |
| 3598 | get_random_bytes(&r, 1); |
| 3599 | msleep((unsigned int)r + 50); |
| 3600 | efx->reset_pending = 0; |
| 3601 | rc = efx_pci_probe_post_io(efx); |
| 3602 | } |
| 3603 | } |
| 3604 | if (rc) |
| 3605 | goto fail3; |
| 3606 | |
| 3607 | netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); |
| 3608 | |
| 3609 | /* Try to create MTDs, but allow this to fail */ |
| 3610 | rtnl_lock(); |
| 3611 | rc = efx_mtd_probe(efx); |
| 3612 | rtnl_unlock(); |
| 3613 | if (rc && rc != -EPERM) |
| 3614 | netif_warn(efx, probe, efx->net_dev, |
| 3615 | "failed to create MTDs (%d)\n", rc); |
| 3616 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3617 | (void)pci_enable_pcie_error_reporting(pci_dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3618 | |
| 3619 | if (efx->type->udp_tnl_push_ports) |
| 3620 | efx->type->udp_tnl_push_ports(efx); |
| 3621 | |
| 3622 | return 0; |
| 3623 | |
| 3624 | fail3: |
| 3625 | efx_fini_io(efx); |
| 3626 | fail2: |
| 3627 | efx_fini_struct(efx); |
| 3628 | fail1: |
| 3629 | WARN_ON(rc > 0); |
| 3630 | netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); |
| 3631 | free_netdev(net_dev); |
| 3632 | return rc; |
| 3633 | } |
| 3634 | |
| 3635 | /* efx_pci_sriov_configure returns the actual number of Virtual Functions |
| 3636 | * enabled on success |
| 3637 | */ |
| 3638 | #ifdef CONFIG_SFC_SRIOV |
| 3639 | static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) |
| 3640 | { |
| 3641 | int rc; |
| 3642 | struct efx_nic *efx = pci_get_drvdata(dev); |
| 3643 | |
| 3644 | if (efx->type->sriov_configure) { |
| 3645 | rc = efx->type->sriov_configure(efx, num_vfs); |
| 3646 | if (rc) |
| 3647 | return rc; |
| 3648 | else |
| 3649 | return num_vfs; |
| 3650 | } else |
| 3651 | return -EOPNOTSUPP; |
| 3652 | } |
| 3653 | #endif |
| 3654 | |
| 3655 | static int efx_pm_freeze(struct device *dev) |
| 3656 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3657 | struct efx_nic *efx = dev_get_drvdata(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3658 | |
| 3659 | rtnl_lock(); |
| 3660 | |
| 3661 | if (efx->state != STATE_DISABLED) { |
| 3662 | efx->state = STATE_UNINIT; |
| 3663 | |
| 3664 | efx_device_detach_sync(efx); |
| 3665 | |
| 3666 | efx_stop_all(efx); |
| 3667 | efx_disable_interrupts(efx); |
| 3668 | } |
| 3669 | |
| 3670 | rtnl_unlock(); |
| 3671 | |
| 3672 | return 0; |
| 3673 | } |
| 3674 | |
| 3675 | static int efx_pm_thaw(struct device *dev) |
| 3676 | { |
| 3677 | int rc; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 3678 | struct efx_nic *efx = dev_get_drvdata(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3679 | |
| 3680 | rtnl_lock(); |
| 3681 | |
| 3682 | if (efx->state != STATE_DISABLED) { |
| 3683 | rc = efx_enable_interrupts(efx); |
| 3684 | if (rc) |
| 3685 | goto fail; |
| 3686 | |
| 3687 | mutex_lock(&efx->mac_lock); |
| 3688 | efx->phy_op->reconfigure(efx); |
| 3689 | mutex_unlock(&efx->mac_lock); |
| 3690 | |
| 3691 | efx_start_all(efx); |
| 3692 | |
| 3693 | efx_device_attach_if_not_resetting(efx); |
| 3694 | |
| 3695 | efx->state = STATE_READY; |
| 3696 | |
| 3697 | efx->type->resume_wol(efx); |
| 3698 | } |
| 3699 | |
| 3700 | rtnl_unlock(); |
| 3701 | |
| 3702 | /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ |
| 3703 | queue_work(reset_workqueue, &efx->reset_work); |
| 3704 | |
| 3705 | return 0; |
| 3706 | |
| 3707 | fail: |
| 3708 | rtnl_unlock(); |
| 3709 | |
| 3710 | return rc; |
| 3711 | } |
| 3712 | |
| 3713 | static int efx_pm_poweroff(struct device *dev) |
| 3714 | { |
| 3715 | struct pci_dev *pci_dev = to_pci_dev(dev); |
| 3716 | struct efx_nic *efx = pci_get_drvdata(pci_dev); |
| 3717 | |
| 3718 | efx->type->fini(efx); |
| 3719 | |
| 3720 | efx->reset_pending = 0; |
| 3721 | |
| 3722 | pci_save_state(pci_dev); |
| 3723 | return pci_set_power_state(pci_dev, PCI_D3hot); |
| 3724 | } |
| 3725 | |
| 3726 | /* Used for both resume and restore */ |
| 3727 | static int efx_pm_resume(struct device *dev) |
| 3728 | { |
| 3729 | struct pci_dev *pci_dev = to_pci_dev(dev); |
| 3730 | struct efx_nic *efx = pci_get_drvdata(pci_dev); |
| 3731 | int rc; |
| 3732 | |
| 3733 | rc = pci_set_power_state(pci_dev, PCI_D0); |
| 3734 | if (rc) |
| 3735 | return rc; |
| 3736 | pci_restore_state(pci_dev); |
| 3737 | rc = pci_enable_device(pci_dev); |
| 3738 | if (rc) |
| 3739 | return rc; |
| 3740 | pci_set_master(efx->pci_dev); |
| 3741 | rc = efx->type->reset(efx, RESET_TYPE_ALL); |
| 3742 | if (rc) |
| 3743 | return rc; |
| 3744 | down_write(&efx->filter_sem); |
| 3745 | rc = efx->type->init(efx); |
| 3746 | up_write(&efx->filter_sem); |
| 3747 | if (rc) |
| 3748 | return rc; |
| 3749 | rc = efx_pm_thaw(dev); |
| 3750 | return rc; |
| 3751 | } |
| 3752 | |
| 3753 | static int efx_pm_suspend(struct device *dev) |
| 3754 | { |
| 3755 | int rc; |
| 3756 | |
| 3757 | efx_pm_freeze(dev); |
| 3758 | rc = efx_pm_poweroff(dev); |
| 3759 | if (rc) |
| 3760 | efx_pm_resume(dev); |
| 3761 | return rc; |
| 3762 | } |
| 3763 | |
| 3764 | static const struct dev_pm_ops efx_pm_ops = { |
| 3765 | .suspend = efx_pm_suspend, |
| 3766 | .resume = efx_pm_resume, |
| 3767 | .freeze = efx_pm_freeze, |
| 3768 | .thaw = efx_pm_thaw, |
| 3769 | .poweroff = efx_pm_poweroff, |
| 3770 | .restore = efx_pm_resume, |
| 3771 | }; |
| 3772 | |
| 3773 | /* A PCI error affecting this device was detected. |
| 3774 | * At this point MMIO and DMA may be disabled. |
| 3775 | * Stop the software path and request a slot reset. |
| 3776 | */ |
| 3777 | static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, |
| 3778 | enum pci_channel_state state) |
| 3779 | { |
| 3780 | pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
| 3781 | struct efx_nic *efx = pci_get_drvdata(pdev); |
| 3782 | |
| 3783 | if (state == pci_channel_io_perm_failure) |
| 3784 | return PCI_ERS_RESULT_DISCONNECT; |
| 3785 | |
| 3786 | rtnl_lock(); |
| 3787 | |
| 3788 | if (efx->state != STATE_DISABLED) { |
| 3789 | efx->state = STATE_RECOVERY; |
| 3790 | efx->reset_pending = 0; |
| 3791 | |
| 3792 | efx_device_detach_sync(efx); |
| 3793 | |
| 3794 | efx_stop_all(efx); |
| 3795 | efx_disable_interrupts(efx); |
| 3796 | |
| 3797 | status = PCI_ERS_RESULT_NEED_RESET; |
| 3798 | } else { |
| 3799 | /* If the interface is disabled we don't want to do anything |
| 3800 | * with it. |
| 3801 | */ |
| 3802 | status = PCI_ERS_RESULT_RECOVERED; |
| 3803 | } |
| 3804 | |
| 3805 | rtnl_unlock(); |
| 3806 | |
| 3807 | pci_disable_device(pdev); |
| 3808 | |
| 3809 | return status; |
| 3810 | } |
| 3811 | |
| 3812 | /* Fake a successful reset, which will be performed later in efx_io_resume. */ |
| 3813 | static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) |
| 3814 | { |
| 3815 | struct efx_nic *efx = pci_get_drvdata(pdev); |
| 3816 | pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3817 | |
| 3818 | if (pci_enable_device(pdev)) { |
| 3819 | netif_err(efx, hw, efx->net_dev, |
| 3820 | "Cannot re-enable PCI device after reset.\n"); |
| 3821 | status = PCI_ERS_RESULT_DISCONNECT; |
| 3822 | } |
| 3823 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3824 | return status; |
| 3825 | } |
| 3826 | |
| 3827 | /* Perform the actual reset and resume I/O operations. */ |
| 3828 | static void efx_io_resume(struct pci_dev *pdev) |
| 3829 | { |
| 3830 | struct efx_nic *efx = pci_get_drvdata(pdev); |
| 3831 | int rc; |
| 3832 | |
| 3833 | rtnl_lock(); |
| 3834 | |
| 3835 | if (efx->state == STATE_DISABLED) |
| 3836 | goto out; |
| 3837 | |
| 3838 | rc = efx_reset(efx, RESET_TYPE_ALL); |
| 3839 | if (rc) { |
| 3840 | netif_err(efx, hw, efx->net_dev, |
| 3841 | "efx_reset failed after PCI error (%d)\n", rc); |
| 3842 | } else { |
| 3843 | efx->state = STATE_READY; |
| 3844 | netif_dbg(efx, hw, efx->net_dev, |
| 3845 | "Done resetting and resuming IO after PCI error.\n"); |
| 3846 | } |
| 3847 | |
| 3848 | out: |
| 3849 | rtnl_unlock(); |
| 3850 | } |
| 3851 | |
| 3852 | /* For simplicity and reliability, we always require a slot reset and try to |
| 3853 | * reset the hardware when a pci error affecting the device is detected. |
| 3854 | * We leave both the link_reset and mmio_enabled callback unimplemented: |
| 3855 | * with our request for slot reset the mmio_enabled callback will never be |
| 3856 | * called, and the link_reset callback is not used by AER or EEH mechanisms. |
| 3857 | */ |
| 3858 | static const struct pci_error_handlers efx_err_handlers = { |
| 3859 | .error_detected = efx_io_error_detected, |
| 3860 | .slot_reset = efx_io_slot_reset, |
| 3861 | .resume = efx_io_resume, |
| 3862 | }; |
| 3863 | |
| 3864 | static struct pci_driver efx_pci_driver = { |
| 3865 | .name = KBUILD_MODNAME, |
| 3866 | .id_table = efx_pci_table, |
| 3867 | .probe = efx_pci_probe, |
| 3868 | .remove = efx_pci_remove, |
| 3869 | .driver.pm = &efx_pm_ops, |
| 3870 | .err_handler = &efx_err_handlers, |
| 3871 | #ifdef CONFIG_SFC_SRIOV |
| 3872 | .sriov_configure = efx_pci_sriov_configure, |
| 3873 | #endif |
| 3874 | }; |
| 3875 | |
| 3876 | /************************************************************************** |
| 3877 | * |
| 3878 | * Kernel module interface |
| 3879 | * |
| 3880 | *************************************************************************/ |
| 3881 | |
| 3882 | module_param(interrupt_mode, uint, 0444); |
| 3883 | MODULE_PARM_DESC(interrupt_mode, |
| 3884 | "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); |
| 3885 | |
| 3886 | static int __init efx_init_module(void) |
| 3887 | { |
| 3888 | int rc; |
| 3889 | |
| 3890 | printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); |
| 3891 | |
| 3892 | rc = register_netdevice_notifier(&efx_netdev_notifier); |
| 3893 | if (rc) |
| 3894 | goto err_notifier; |
| 3895 | |
| 3896 | #ifdef CONFIG_SFC_SRIOV |
| 3897 | rc = efx_init_sriov(); |
| 3898 | if (rc) |
| 3899 | goto err_sriov; |
| 3900 | #endif |
| 3901 | |
| 3902 | reset_workqueue = create_singlethread_workqueue("sfc_reset"); |
| 3903 | if (!reset_workqueue) { |
| 3904 | rc = -ENOMEM; |
| 3905 | goto err_reset; |
| 3906 | } |
| 3907 | |
| 3908 | rc = pci_register_driver(&efx_pci_driver); |
| 3909 | if (rc < 0) |
| 3910 | goto err_pci; |
| 3911 | |
| 3912 | return 0; |
| 3913 | |
| 3914 | err_pci: |
| 3915 | destroy_workqueue(reset_workqueue); |
| 3916 | err_reset: |
| 3917 | #ifdef CONFIG_SFC_SRIOV |
| 3918 | efx_fini_sriov(); |
| 3919 | err_sriov: |
| 3920 | #endif |
| 3921 | unregister_netdevice_notifier(&efx_netdev_notifier); |
| 3922 | err_notifier: |
| 3923 | return rc; |
| 3924 | } |
| 3925 | |
| 3926 | static void __exit efx_exit_module(void) |
| 3927 | { |
| 3928 | printk(KERN_INFO "Solarflare NET driver unloading\n"); |
| 3929 | |
| 3930 | pci_unregister_driver(&efx_pci_driver); |
| 3931 | destroy_workqueue(reset_workqueue); |
| 3932 | #ifdef CONFIG_SFC_SRIOV |
| 3933 | efx_fini_sriov(); |
| 3934 | #endif |
| 3935 | unregister_netdevice_notifier(&efx_netdev_notifier); |
| 3936 | |
| 3937 | } |
| 3938 | |
| 3939 | module_init(efx_init_module); |
| 3940 | module_exit(efx_exit_module); |
| 3941 | |
| 3942 | MODULE_AUTHOR("Solarflare Communications and " |
| 3943 | "Michael Brown <mbrown@fensystems.co.uk>"); |
| 3944 | MODULE_DESCRIPTION("Solarflare network driver"); |
| 3945 | MODULE_LICENSE("GPL"); |
| 3946 | MODULE_DEVICE_TABLE(pci, efx_pci_table); |
| 3947 | MODULE_VERSION(EFX_DRIVER_VERSION); |