David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (c) International Business Machines Corp., 2006 |
| 4 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5 | * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * UBI wear-leveling sub-system. |
| 10 | * |
| 11 | * This sub-system is responsible for wear-leveling. It works in terms of |
| 12 | * physical eraseblocks and erase counters and knows nothing about logical |
| 13 | * eraseblocks, volumes, etc. From this sub-system's perspective all physical |
| 14 | * eraseblocks are of two types - used and free. Used physical eraseblocks are |
| 15 | * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical |
| 16 | * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. |
| 17 | * |
| 18 | * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter |
| 19 | * header. The rest of the physical eraseblock contains only %0xFF bytes. |
| 20 | * |
| 21 | * When physical eraseblocks are returned to the WL sub-system by means of the |
| 22 | * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is |
| 23 | * done asynchronously in context of the per-UBI device background thread, |
| 24 | * which is also managed by the WL sub-system. |
| 25 | * |
| 26 | * The wear-leveling is ensured by means of moving the contents of used |
| 27 | * physical eraseblocks with low erase counter to free physical eraseblocks |
| 28 | * with high erase counter. |
| 29 | * |
| 30 | * If the WL sub-system fails to erase a physical eraseblock, it marks it as |
| 31 | * bad. |
| 32 | * |
| 33 | * This sub-system is also responsible for scrubbing. If a bit-flip is detected |
| 34 | * in a physical eraseblock, it has to be moved. Technically this is the same |
| 35 | * as moving it for wear-leveling reasons. |
| 36 | * |
| 37 | * As it was said, for the UBI sub-system all physical eraseblocks are either |
| 38 | * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while |
| 39 | * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub |
| 40 | * RB-trees, as well as (temporarily) in the @wl->pq queue. |
| 41 | * |
| 42 | * When the WL sub-system returns a physical eraseblock, the physical |
| 43 | * eraseblock is protected from being moved for some "time". For this reason, |
| 44 | * the physical eraseblock is not directly moved from the @wl->free tree to the |
| 45 | * @wl->used tree. There is a protection queue in between where this |
| 46 | * physical eraseblock is temporarily stored (@wl->pq). |
| 47 | * |
| 48 | * All this protection stuff is needed because: |
| 49 | * o we don't want to move physical eraseblocks just after we have given them |
| 50 | * to the user; instead, we first want to let users fill them up with data; |
| 51 | * |
| 52 | * o there is a chance that the user will put the physical eraseblock very |
| 53 | * soon, so it makes sense not to move it for some time, but wait. |
| 54 | * |
| 55 | * Physical eraseblocks stay protected only for limited time. But the "time" is |
| 56 | * measured in erase cycles in this case. This is implemented with help of the |
| 57 | * protection queue. Eraseblocks are put to the tail of this queue when they |
| 58 | * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the |
| 59 | * head of the queue on each erase operation (for any eraseblock). So the |
| 60 | * length of the queue defines how may (global) erase cycles PEBs are protected. |
| 61 | * |
| 62 | * To put it differently, each physical eraseblock has 2 main states: free and |
| 63 | * used. The former state corresponds to the @wl->free tree. The latter state |
| 64 | * is split up on several sub-states: |
| 65 | * o the WL movement is allowed (@wl->used tree); |
| 66 | * o the WL movement is disallowed (@wl->erroneous) because the PEB is |
| 67 | * erroneous - e.g., there was a read error; |
| 68 | * o the WL movement is temporarily prohibited (@wl->pq queue); |
| 69 | * o scrubbing is needed (@wl->scrub tree). |
| 70 | * |
| 71 | * Depending on the sub-state, wear-leveling entries of the used physical |
| 72 | * eraseblocks may be kept in one of those structures. |
| 73 | * |
| 74 | * Note, in this implementation, we keep a small in-RAM object for each physical |
| 75 | * eraseblock. This is surely not a scalable solution. But it appears to be good |
| 76 | * enough for moderately large flashes and it is simple. In future, one may |
| 77 | * re-work this sub-system and make it more scalable. |
| 78 | * |
| 79 | * At the moment this sub-system does not utilize the sequence number, which |
| 80 | * was introduced relatively recently. But it would be wise to do this because |
| 81 | * the sequence number of a logical eraseblock characterizes how old is it. For |
| 82 | * example, when we move a PEB with low erase counter, and we need to pick the |
| 83 | * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we |
| 84 | * pick target PEB with an average EC if our PEB is not very "old". This is a |
| 85 | * room for future re-works of the WL sub-system. |
| 86 | */ |
| 87 | |
| 88 | #include <linux/slab.h> |
| 89 | #include <linux/crc32.h> |
| 90 | #include <linux/freezer.h> |
| 91 | #include <linux/kthread.h> |
| 92 | #include "ubi.h" |
| 93 | #include "wl.h" |
| 94 | |
| 95 | /* Number of physical eraseblocks reserved for wear-leveling purposes */ |
| 96 | #define WL_RESERVED_PEBS 1 |
| 97 | |
| 98 | /* |
| 99 | * Maximum difference between two erase counters. If this threshold is |
| 100 | * exceeded, the WL sub-system starts moving data from used physical |
| 101 | * eraseblocks with low erase counter to free physical eraseblocks with high |
| 102 | * erase counter. |
| 103 | */ |
| 104 | #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD |
| 105 | |
| 106 | /* |
| 107 | * When a physical eraseblock is moved, the WL sub-system has to pick the target |
| 108 | * physical eraseblock to move to. The simplest way would be just to pick the |
| 109 | * one with the highest erase counter. But in certain workloads this could lead |
| 110 | * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a |
| 111 | * situation when the picked physical eraseblock is constantly erased after the |
| 112 | * data is written to it. So, we have a constant which limits the highest erase |
| 113 | * counter of the free physical eraseblock to pick. Namely, the WL sub-system |
| 114 | * does not pick eraseblocks with erase counter greater than the lowest erase |
| 115 | * counter plus %WL_FREE_MAX_DIFF. |
| 116 | */ |
| 117 | #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) |
| 118 | |
| 119 | /* |
| 120 | * Maximum number of consecutive background thread failures which is enough to |
| 121 | * switch to read-only mode. |
| 122 | */ |
| 123 | #define WL_MAX_FAILURES 32 |
| 124 | |
| 125 | static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); |
| 126 | static int self_check_in_wl_tree(const struct ubi_device *ubi, |
| 127 | struct ubi_wl_entry *e, struct rb_root *root); |
| 128 | static int self_check_in_pq(const struct ubi_device *ubi, |
| 129 | struct ubi_wl_entry *e); |
| 130 | |
| 131 | /** |
| 132 | * wl_tree_add - add a wear-leveling entry to a WL RB-tree. |
| 133 | * @e: the wear-leveling entry to add |
| 134 | * @root: the root of the tree |
| 135 | * |
| 136 | * Note, we use (erase counter, physical eraseblock number) pairs as keys in |
| 137 | * the @ubi->used and @ubi->free RB-trees. |
| 138 | */ |
| 139 | static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) |
| 140 | { |
| 141 | struct rb_node **p, *parent = NULL; |
| 142 | |
| 143 | p = &root->rb_node; |
| 144 | while (*p) { |
| 145 | struct ubi_wl_entry *e1; |
| 146 | |
| 147 | parent = *p; |
| 148 | e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); |
| 149 | |
| 150 | if (e->ec < e1->ec) |
| 151 | p = &(*p)->rb_left; |
| 152 | else if (e->ec > e1->ec) |
| 153 | p = &(*p)->rb_right; |
| 154 | else { |
| 155 | ubi_assert(e->pnum != e1->pnum); |
| 156 | if (e->pnum < e1->pnum) |
| 157 | p = &(*p)->rb_left; |
| 158 | else |
| 159 | p = &(*p)->rb_right; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | rb_link_node(&e->u.rb, parent, p); |
| 164 | rb_insert_color(&e->u.rb, root); |
| 165 | } |
| 166 | |
| 167 | /** |
| 168 | * wl_tree_destroy - destroy a wear-leveling entry. |
| 169 | * @ubi: UBI device description object |
| 170 | * @e: the wear-leveling entry to add |
| 171 | * |
| 172 | * This function destroys a wear leveling entry and removes |
| 173 | * the reference from the lookup table. |
| 174 | */ |
| 175 | static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) |
| 176 | { |
| 177 | ubi->lookuptbl[e->pnum] = NULL; |
| 178 | kmem_cache_free(ubi_wl_entry_slab, e); |
| 179 | } |
| 180 | |
| 181 | /** |
| 182 | * do_work - do one pending work. |
| 183 | * @ubi: UBI device description object |
| 184 | * |
| 185 | * This function returns zero in case of success and a negative error code in |
| 186 | * case of failure. |
| 187 | */ |
| 188 | static int do_work(struct ubi_device *ubi) |
| 189 | { |
| 190 | int err; |
| 191 | struct ubi_work *wrk; |
| 192 | |
| 193 | cond_resched(); |
| 194 | |
| 195 | /* |
| 196 | * @ubi->work_sem is used to synchronize with the workers. Workers take |
| 197 | * it in read mode, so many of them may be doing works at a time. But |
| 198 | * the queue flush code has to be sure the whole queue of works is |
| 199 | * done, and it takes the mutex in write mode. |
| 200 | */ |
| 201 | down_read(&ubi->work_sem); |
| 202 | spin_lock(&ubi->wl_lock); |
| 203 | if (list_empty(&ubi->works)) { |
| 204 | spin_unlock(&ubi->wl_lock); |
| 205 | up_read(&ubi->work_sem); |
| 206 | return 0; |
| 207 | } |
| 208 | |
| 209 | wrk = list_entry(ubi->works.next, struct ubi_work, list); |
| 210 | list_del(&wrk->list); |
| 211 | ubi->works_count -= 1; |
| 212 | ubi_assert(ubi->works_count >= 0); |
| 213 | spin_unlock(&ubi->wl_lock); |
| 214 | |
| 215 | /* |
| 216 | * Call the worker function. Do not touch the work structure |
| 217 | * after this call as it will have been freed or reused by that |
| 218 | * time by the worker function. |
| 219 | */ |
| 220 | err = wrk->func(ubi, wrk, 0); |
| 221 | if (err) |
| 222 | ubi_err(ubi, "work failed with error code %d", err); |
| 223 | up_read(&ubi->work_sem); |
| 224 | |
| 225 | return err; |
| 226 | } |
| 227 | |
| 228 | /** |
| 229 | * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. |
| 230 | * @e: the wear-leveling entry to check |
| 231 | * @root: the root of the tree |
| 232 | * |
| 233 | * This function returns non-zero if @e is in the @root RB-tree and zero if it |
| 234 | * is not. |
| 235 | */ |
| 236 | static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) |
| 237 | { |
| 238 | struct rb_node *p; |
| 239 | |
| 240 | p = root->rb_node; |
| 241 | while (p) { |
| 242 | struct ubi_wl_entry *e1; |
| 243 | |
| 244 | e1 = rb_entry(p, struct ubi_wl_entry, u.rb); |
| 245 | |
| 246 | if (e->pnum == e1->pnum) { |
| 247 | ubi_assert(e == e1); |
| 248 | return 1; |
| 249 | } |
| 250 | |
| 251 | if (e->ec < e1->ec) |
| 252 | p = p->rb_left; |
| 253 | else if (e->ec > e1->ec) |
| 254 | p = p->rb_right; |
| 255 | else { |
| 256 | ubi_assert(e->pnum != e1->pnum); |
| 257 | if (e->pnum < e1->pnum) |
| 258 | p = p->rb_left; |
| 259 | else |
| 260 | p = p->rb_right; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | return 0; |
| 265 | } |
| 266 | |
| 267 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 268 | * in_pq - check if a wear-leveling entry is present in the protection queue. |
| 269 | * @ubi: UBI device description object |
| 270 | * @e: the wear-leveling entry to check |
| 271 | * |
| 272 | * This function returns non-zero if @e is in the protection queue and zero |
| 273 | * if it is not. |
| 274 | */ |
| 275 | static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) |
| 276 | { |
| 277 | struct ubi_wl_entry *p; |
| 278 | int i; |
| 279 | |
| 280 | for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) |
| 281 | list_for_each_entry(p, &ubi->pq[i], u.list) |
| 282 | if (p == e) |
| 283 | return 1; |
| 284 | |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 289 | * prot_queue_add - add physical eraseblock to the protection queue. |
| 290 | * @ubi: UBI device description object |
| 291 | * @e: the physical eraseblock to add |
| 292 | * |
| 293 | * This function adds @e to the tail of the protection queue @ubi->pq, where |
| 294 | * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be |
| 295 | * temporarily protected from the wear-leveling worker. Note, @wl->lock has to |
| 296 | * be locked. |
| 297 | */ |
| 298 | static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) |
| 299 | { |
| 300 | int pq_tail = ubi->pq_head - 1; |
| 301 | |
| 302 | if (pq_tail < 0) |
| 303 | pq_tail = UBI_PROT_QUEUE_LEN - 1; |
| 304 | ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); |
| 305 | list_add_tail(&e->u.list, &ubi->pq[pq_tail]); |
| 306 | dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); |
| 307 | } |
| 308 | |
| 309 | /** |
| 310 | * find_wl_entry - find wear-leveling entry closest to certain erase counter. |
| 311 | * @ubi: UBI device description object |
| 312 | * @root: the RB-tree where to look for |
| 313 | * @diff: maximum possible difference from the smallest erase counter |
| 314 | * |
| 315 | * This function looks for a wear leveling entry with erase counter closest to |
| 316 | * min + @diff, where min is the smallest erase counter. |
| 317 | */ |
| 318 | static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, |
| 319 | struct rb_root *root, int diff) |
| 320 | { |
| 321 | struct rb_node *p; |
| 322 | struct ubi_wl_entry *e, *prev_e = NULL; |
| 323 | int max; |
| 324 | |
| 325 | e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); |
| 326 | max = e->ec + diff; |
| 327 | |
| 328 | p = root->rb_node; |
| 329 | while (p) { |
| 330 | struct ubi_wl_entry *e1; |
| 331 | |
| 332 | e1 = rb_entry(p, struct ubi_wl_entry, u.rb); |
| 333 | if (e1->ec >= max) |
| 334 | p = p->rb_left; |
| 335 | else { |
| 336 | p = p->rb_right; |
| 337 | prev_e = e; |
| 338 | e = e1; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | /* If no fastmap has been written and this WL entry can be used |
| 343 | * as anchor PEB, hold it back and return the second best WL entry |
| 344 | * such that fastmap can use the anchor PEB later. */ |
| 345 | if (prev_e && !ubi->fm_disabled && |
| 346 | !ubi->fm && e->pnum < UBI_FM_MAX_START) |
| 347 | return prev_e; |
| 348 | |
| 349 | return e; |
| 350 | } |
| 351 | |
| 352 | /** |
| 353 | * find_mean_wl_entry - find wear-leveling entry with medium erase counter. |
| 354 | * @ubi: UBI device description object |
| 355 | * @root: the RB-tree where to look for |
| 356 | * |
| 357 | * This function looks for a wear leveling entry with medium erase counter, |
| 358 | * but not greater or equivalent than the lowest erase counter plus |
| 359 | * %WL_FREE_MAX_DIFF/2. |
| 360 | */ |
| 361 | static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, |
| 362 | struct rb_root *root) |
| 363 | { |
| 364 | struct ubi_wl_entry *e, *first, *last; |
| 365 | |
| 366 | first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); |
| 367 | last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); |
| 368 | |
| 369 | if (last->ec - first->ec < WL_FREE_MAX_DIFF) { |
| 370 | e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); |
| 371 | |
| 372 | /* If no fastmap has been written and this WL entry can be used |
| 373 | * as anchor PEB, hold it back and return the second best |
| 374 | * WL entry such that fastmap can use the anchor PEB later. */ |
| 375 | e = may_reserve_for_fm(ubi, e, root); |
| 376 | } else |
| 377 | e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); |
| 378 | |
| 379 | return e; |
| 380 | } |
| 381 | |
| 382 | /** |
| 383 | * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or |
| 384 | * refill_wl_user_pool(). |
| 385 | * @ubi: UBI device description object |
| 386 | * |
| 387 | * This function returns a a wear leveling entry in case of success and |
| 388 | * NULL in case of failure. |
| 389 | */ |
| 390 | static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) |
| 391 | { |
| 392 | struct ubi_wl_entry *e; |
| 393 | |
| 394 | e = find_mean_wl_entry(ubi, &ubi->free); |
| 395 | if (!e) { |
| 396 | ubi_err(ubi, "no free eraseblocks"); |
| 397 | return NULL; |
| 398 | } |
| 399 | |
| 400 | self_check_in_wl_tree(ubi, e, &ubi->free); |
| 401 | |
| 402 | /* |
| 403 | * Move the physical eraseblock to the protection queue where it will |
| 404 | * be protected from being moved for some time. |
| 405 | */ |
| 406 | rb_erase(&e->u.rb, &ubi->free); |
| 407 | ubi->free_count--; |
| 408 | dbg_wl("PEB %d EC %d", e->pnum, e->ec); |
| 409 | |
| 410 | return e; |
| 411 | } |
| 412 | |
| 413 | /** |
| 414 | * prot_queue_del - remove a physical eraseblock from the protection queue. |
| 415 | * @ubi: UBI device description object |
| 416 | * @pnum: the physical eraseblock to remove |
| 417 | * |
| 418 | * This function deletes PEB @pnum from the protection queue and returns zero |
| 419 | * in case of success and %-ENODEV if the PEB was not found. |
| 420 | */ |
| 421 | static int prot_queue_del(struct ubi_device *ubi, int pnum) |
| 422 | { |
| 423 | struct ubi_wl_entry *e; |
| 424 | |
| 425 | e = ubi->lookuptbl[pnum]; |
| 426 | if (!e) |
| 427 | return -ENODEV; |
| 428 | |
| 429 | if (self_check_in_pq(ubi, e)) |
| 430 | return -ENODEV; |
| 431 | |
| 432 | list_del(&e->u.list); |
| 433 | dbg_wl("deleted PEB %d from the protection queue", e->pnum); |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | /** |
| 438 | * sync_erase - synchronously erase a physical eraseblock. |
| 439 | * @ubi: UBI device description object |
| 440 | * @e: the the physical eraseblock to erase |
| 441 | * @torture: if the physical eraseblock has to be tortured |
| 442 | * |
| 443 | * This function returns zero in case of success and a negative error code in |
| 444 | * case of failure. |
| 445 | */ |
| 446 | static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| 447 | int torture) |
| 448 | { |
| 449 | int err; |
| 450 | struct ubi_ec_hdr *ec_hdr; |
| 451 | unsigned long long ec = e->ec; |
| 452 | |
| 453 | dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); |
| 454 | |
| 455 | err = self_check_ec(ubi, e->pnum, e->ec); |
| 456 | if (err) |
| 457 | return -EINVAL; |
| 458 | |
| 459 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
| 460 | if (!ec_hdr) |
| 461 | return -ENOMEM; |
| 462 | |
| 463 | err = ubi_io_sync_erase(ubi, e->pnum, torture); |
| 464 | if (err < 0) |
| 465 | goto out_free; |
| 466 | |
| 467 | ec += err; |
| 468 | if (ec > UBI_MAX_ERASECOUNTER) { |
| 469 | /* |
| 470 | * Erase counter overflow. Upgrade UBI and use 64-bit |
| 471 | * erase counters internally. |
| 472 | */ |
| 473 | ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", |
| 474 | e->pnum, ec); |
| 475 | err = -EINVAL; |
| 476 | goto out_free; |
| 477 | } |
| 478 | |
| 479 | dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); |
| 480 | |
| 481 | ec_hdr->ec = cpu_to_be64(ec); |
| 482 | |
| 483 | err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); |
| 484 | if (err) |
| 485 | goto out_free; |
| 486 | |
| 487 | e->ec = ec; |
| 488 | spin_lock(&ubi->wl_lock); |
| 489 | if (e->ec > ubi->max_ec) |
| 490 | ubi->max_ec = e->ec; |
| 491 | spin_unlock(&ubi->wl_lock); |
| 492 | |
| 493 | out_free: |
| 494 | kfree(ec_hdr); |
| 495 | return err; |
| 496 | } |
| 497 | |
| 498 | /** |
| 499 | * serve_prot_queue - check if it is time to stop protecting PEBs. |
| 500 | * @ubi: UBI device description object |
| 501 | * |
| 502 | * This function is called after each erase operation and removes PEBs from the |
| 503 | * tail of the protection queue. These PEBs have been protected for long enough |
| 504 | * and should be moved to the used tree. |
| 505 | */ |
| 506 | static void serve_prot_queue(struct ubi_device *ubi) |
| 507 | { |
| 508 | struct ubi_wl_entry *e, *tmp; |
| 509 | int count; |
| 510 | |
| 511 | /* |
| 512 | * There may be several protected physical eraseblock to remove, |
| 513 | * process them all. |
| 514 | */ |
| 515 | repeat: |
| 516 | count = 0; |
| 517 | spin_lock(&ubi->wl_lock); |
| 518 | list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { |
| 519 | dbg_wl("PEB %d EC %d protection over, move to used tree", |
| 520 | e->pnum, e->ec); |
| 521 | |
| 522 | list_del(&e->u.list); |
| 523 | wl_tree_add(e, &ubi->used); |
| 524 | if (count++ > 32) { |
| 525 | /* |
| 526 | * Let's be nice and avoid holding the spinlock for |
| 527 | * too long. |
| 528 | */ |
| 529 | spin_unlock(&ubi->wl_lock); |
| 530 | cond_resched(); |
| 531 | goto repeat; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | ubi->pq_head += 1; |
| 536 | if (ubi->pq_head == UBI_PROT_QUEUE_LEN) |
| 537 | ubi->pq_head = 0; |
| 538 | ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); |
| 539 | spin_unlock(&ubi->wl_lock); |
| 540 | } |
| 541 | |
| 542 | /** |
| 543 | * __schedule_ubi_work - schedule a work. |
| 544 | * @ubi: UBI device description object |
| 545 | * @wrk: the work to schedule |
| 546 | * |
| 547 | * This function adds a work defined by @wrk to the tail of the pending works |
| 548 | * list. Can only be used if ubi->work_sem is already held in read mode! |
| 549 | */ |
| 550 | static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) |
| 551 | { |
| 552 | spin_lock(&ubi->wl_lock); |
| 553 | list_add_tail(&wrk->list, &ubi->works); |
| 554 | ubi_assert(ubi->works_count >= 0); |
| 555 | ubi->works_count += 1; |
| 556 | if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) |
| 557 | wake_up_process(ubi->bgt_thread); |
| 558 | spin_unlock(&ubi->wl_lock); |
| 559 | } |
| 560 | |
| 561 | /** |
| 562 | * schedule_ubi_work - schedule a work. |
| 563 | * @ubi: UBI device description object |
| 564 | * @wrk: the work to schedule |
| 565 | * |
| 566 | * This function adds a work defined by @wrk to the tail of the pending works |
| 567 | * list. |
| 568 | */ |
| 569 | static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) |
| 570 | { |
| 571 | down_read(&ubi->work_sem); |
| 572 | __schedule_ubi_work(ubi, wrk); |
| 573 | up_read(&ubi->work_sem); |
| 574 | } |
| 575 | |
| 576 | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, |
| 577 | int shutdown); |
| 578 | |
| 579 | /** |
| 580 | * schedule_erase - schedule an erase work. |
| 581 | * @ubi: UBI device description object |
| 582 | * @e: the WL entry of the physical eraseblock to erase |
| 583 | * @vol_id: the volume ID that last used this PEB |
| 584 | * @lnum: the last used logical eraseblock number for the PEB |
| 585 | * @torture: if the physical eraseblock has to be tortured |
| 586 | * |
| 587 | * This function returns zero in case of success and a %-ENOMEM in case of |
| 588 | * failure. |
| 589 | */ |
| 590 | static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| 591 | int vol_id, int lnum, int torture, bool nested) |
| 592 | { |
| 593 | struct ubi_work *wl_wrk; |
| 594 | |
| 595 | ubi_assert(e); |
| 596 | |
| 597 | dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", |
| 598 | e->pnum, e->ec, torture); |
| 599 | |
| 600 | wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); |
| 601 | if (!wl_wrk) |
| 602 | return -ENOMEM; |
| 603 | |
| 604 | wl_wrk->func = &erase_worker; |
| 605 | wl_wrk->e = e; |
| 606 | wl_wrk->vol_id = vol_id; |
| 607 | wl_wrk->lnum = lnum; |
| 608 | wl_wrk->torture = torture; |
| 609 | |
| 610 | if (nested) |
| 611 | __schedule_ubi_work(ubi, wl_wrk); |
| 612 | else |
| 613 | schedule_ubi_work(ubi, wl_wrk); |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); |
| 618 | /** |
| 619 | * do_sync_erase - run the erase worker synchronously. |
| 620 | * @ubi: UBI device description object |
| 621 | * @e: the WL entry of the physical eraseblock to erase |
| 622 | * @vol_id: the volume ID that last used this PEB |
| 623 | * @lnum: the last used logical eraseblock number for the PEB |
| 624 | * @torture: if the physical eraseblock has to be tortured |
| 625 | * |
| 626 | */ |
| 627 | static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| 628 | int vol_id, int lnum, int torture) |
| 629 | { |
| 630 | struct ubi_work wl_wrk; |
| 631 | |
| 632 | dbg_wl("sync erase of PEB %i", e->pnum); |
| 633 | |
| 634 | wl_wrk.e = e; |
| 635 | wl_wrk.vol_id = vol_id; |
| 636 | wl_wrk.lnum = lnum; |
| 637 | wl_wrk.torture = torture; |
| 638 | |
| 639 | return __erase_worker(ubi, &wl_wrk); |
| 640 | } |
| 641 | |
| 642 | static int ensure_wear_leveling(struct ubi_device *ubi, int nested); |
| 643 | /** |
| 644 | * wear_leveling_worker - wear-leveling worker function. |
| 645 | * @ubi: UBI device description object |
| 646 | * @wrk: the work object |
| 647 | * @shutdown: non-zero if the worker has to free memory and exit |
| 648 | * because the WL-subsystem is shutting down |
| 649 | * |
| 650 | * This function copies a more worn out physical eraseblock to a less worn out |
| 651 | * one. Returns zero in case of success and a negative error code in case of |
| 652 | * failure. |
| 653 | */ |
| 654 | static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, |
| 655 | int shutdown) |
| 656 | { |
| 657 | int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; |
| 658 | int erase = 0, keep = 0, vol_id = -1, lnum = -1; |
| 659 | #ifdef CONFIG_MTD_UBI_FASTMAP |
| 660 | int anchor = wrk->anchor; |
| 661 | #endif |
| 662 | struct ubi_wl_entry *e1, *e2; |
| 663 | struct ubi_vid_io_buf *vidb; |
| 664 | struct ubi_vid_hdr *vid_hdr; |
| 665 | int dst_leb_clean = 0; |
| 666 | |
| 667 | kfree(wrk); |
| 668 | if (shutdown) |
| 669 | return 0; |
| 670 | |
| 671 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| 672 | if (!vidb) |
| 673 | return -ENOMEM; |
| 674 | |
| 675 | vid_hdr = ubi_get_vid_hdr(vidb); |
| 676 | |
| 677 | down_read(&ubi->fm_eba_sem); |
| 678 | mutex_lock(&ubi->move_mutex); |
| 679 | spin_lock(&ubi->wl_lock); |
| 680 | ubi_assert(!ubi->move_from && !ubi->move_to); |
| 681 | ubi_assert(!ubi->move_to_put); |
| 682 | |
| 683 | if (!ubi->free.rb_node || |
| 684 | (!ubi->used.rb_node && !ubi->scrub.rb_node)) { |
| 685 | /* |
| 686 | * No free physical eraseblocks? Well, they must be waiting in |
| 687 | * the queue to be erased. Cancel movement - it will be |
| 688 | * triggered again when a free physical eraseblock appears. |
| 689 | * |
| 690 | * No used physical eraseblocks? They must be temporarily |
| 691 | * protected from being moved. They will be moved to the |
| 692 | * @ubi->used tree later and the wear-leveling will be |
| 693 | * triggered again. |
| 694 | */ |
| 695 | dbg_wl("cancel WL, a list is empty: free %d, used %d", |
| 696 | !ubi->free.rb_node, !ubi->used.rb_node); |
| 697 | goto out_cancel; |
| 698 | } |
| 699 | |
| 700 | #ifdef CONFIG_MTD_UBI_FASTMAP |
| 701 | /* Check whether we need to produce an anchor PEB */ |
| 702 | if (!anchor) |
| 703 | anchor = !anchor_pebs_available(&ubi->free); |
| 704 | |
| 705 | if (anchor) { |
| 706 | e1 = find_anchor_wl_entry(&ubi->used); |
| 707 | if (!e1) |
| 708 | goto out_cancel; |
| 709 | e2 = get_peb_for_wl(ubi); |
| 710 | if (!e2) |
| 711 | goto out_cancel; |
| 712 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 713 | /* |
| 714 | * Anchor move within the anchor area is useless. |
| 715 | */ |
| 716 | if (e2->pnum < UBI_FM_MAX_START) |
| 717 | goto out_cancel; |
| 718 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 719 | self_check_in_wl_tree(ubi, e1, &ubi->used); |
| 720 | rb_erase(&e1->u.rb, &ubi->used); |
| 721 | dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); |
| 722 | } else if (!ubi->scrub.rb_node) { |
| 723 | #else |
| 724 | if (!ubi->scrub.rb_node) { |
| 725 | #endif |
| 726 | /* |
| 727 | * Now pick the least worn-out used physical eraseblock and a |
| 728 | * highly worn-out free physical eraseblock. If the erase |
| 729 | * counters differ much enough, start wear-leveling. |
| 730 | */ |
| 731 | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); |
| 732 | e2 = get_peb_for_wl(ubi); |
| 733 | if (!e2) |
| 734 | goto out_cancel; |
| 735 | |
| 736 | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { |
| 737 | dbg_wl("no WL needed: min used EC %d, max free EC %d", |
| 738 | e1->ec, e2->ec); |
| 739 | |
| 740 | /* Give the unused PEB back */ |
| 741 | wl_tree_add(e2, &ubi->free); |
| 742 | ubi->free_count++; |
| 743 | goto out_cancel; |
| 744 | } |
| 745 | self_check_in_wl_tree(ubi, e1, &ubi->used); |
| 746 | rb_erase(&e1->u.rb, &ubi->used); |
| 747 | dbg_wl("move PEB %d EC %d to PEB %d EC %d", |
| 748 | e1->pnum, e1->ec, e2->pnum, e2->ec); |
| 749 | } else { |
| 750 | /* Perform scrubbing */ |
| 751 | scrubbing = 1; |
| 752 | e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); |
| 753 | e2 = get_peb_for_wl(ubi); |
| 754 | if (!e2) |
| 755 | goto out_cancel; |
| 756 | |
| 757 | self_check_in_wl_tree(ubi, e1, &ubi->scrub); |
| 758 | rb_erase(&e1->u.rb, &ubi->scrub); |
| 759 | dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); |
| 760 | } |
| 761 | |
| 762 | ubi->move_from = e1; |
| 763 | ubi->move_to = e2; |
| 764 | spin_unlock(&ubi->wl_lock); |
| 765 | |
| 766 | /* |
| 767 | * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. |
| 768 | * We so far do not know which logical eraseblock our physical |
| 769 | * eraseblock (@e1) belongs to. We have to read the volume identifier |
| 770 | * header first. |
| 771 | * |
| 772 | * Note, we are protected from this PEB being unmapped and erased. The |
| 773 | * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB |
| 774 | * which is being moved was unmapped. |
| 775 | */ |
| 776 | |
| 777 | err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); |
| 778 | if (err && err != UBI_IO_BITFLIPS) { |
| 779 | dst_leb_clean = 1; |
| 780 | if (err == UBI_IO_FF) { |
| 781 | /* |
| 782 | * We are trying to move PEB without a VID header. UBI |
| 783 | * always write VID headers shortly after the PEB was |
| 784 | * given, so we have a situation when it has not yet |
| 785 | * had a chance to write it, because it was preempted. |
| 786 | * So add this PEB to the protection queue so far, |
| 787 | * because presumably more data will be written there |
| 788 | * (including the missing VID header), and then we'll |
| 789 | * move it. |
| 790 | */ |
| 791 | dbg_wl("PEB %d has no VID header", e1->pnum); |
| 792 | protect = 1; |
| 793 | goto out_not_moved; |
| 794 | } else if (err == UBI_IO_FF_BITFLIPS) { |
| 795 | /* |
| 796 | * The same situation as %UBI_IO_FF, but bit-flips were |
| 797 | * detected. It is better to schedule this PEB for |
| 798 | * scrubbing. |
| 799 | */ |
| 800 | dbg_wl("PEB %d has no VID header but has bit-flips", |
| 801 | e1->pnum); |
| 802 | scrubbing = 1; |
| 803 | goto out_not_moved; |
| 804 | } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { |
| 805 | /* |
| 806 | * While a full scan would detect interrupted erasures |
| 807 | * at attach time we can face them here when attached from |
| 808 | * Fastmap. |
| 809 | */ |
| 810 | dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", |
| 811 | e1->pnum); |
| 812 | erase = 1; |
| 813 | goto out_not_moved; |
| 814 | } |
| 815 | |
| 816 | ubi_err(ubi, "error %d while reading VID header from PEB %d", |
| 817 | err, e1->pnum); |
| 818 | goto out_error; |
| 819 | } |
| 820 | |
| 821 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 822 | lnum = be32_to_cpu(vid_hdr->lnum); |
| 823 | |
| 824 | err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); |
| 825 | if (err) { |
| 826 | if (err == MOVE_CANCEL_RACE) { |
| 827 | /* |
| 828 | * The LEB has not been moved because the volume is |
| 829 | * being deleted or the PEB has been put meanwhile. We |
| 830 | * should prevent this PEB from being selected for |
| 831 | * wear-leveling movement again, so put it to the |
| 832 | * protection queue. |
| 833 | */ |
| 834 | protect = 1; |
| 835 | dst_leb_clean = 1; |
| 836 | goto out_not_moved; |
| 837 | } |
| 838 | if (err == MOVE_RETRY) { |
| 839 | scrubbing = 1; |
| 840 | dst_leb_clean = 1; |
| 841 | goto out_not_moved; |
| 842 | } |
| 843 | if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || |
| 844 | err == MOVE_TARGET_RD_ERR) { |
| 845 | /* |
| 846 | * Target PEB had bit-flips or write error - torture it. |
| 847 | */ |
| 848 | torture = 1; |
| 849 | keep = 1; |
| 850 | goto out_not_moved; |
| 851 | } |
| 852 | |
| 853 | if (err == MOVE_SOURCE_RD_ERR) { |
| 854 | /* |
| 855 | * An error happened while reading the source PEB. Do |
| 856 | * not switch to R/O mode in this case, and give the |
| 857 | * upper layers a possibility to recover from this, |
| 858 | * e.g. by unmapping corresponding LEB. Instead, just |
| 859 | * put this PEB to the @ubi->erroneous list to prevent |
| 860 | * UBI from trying to move it over and over again. |
| 861 | */ |
| 862 | if (ubi->erroneous_peb_count > ubi->max_erroneous) { |
| 863 | ubi_err(ubi, "too many erroneous eraseblocks (%d)", |
| 864 | ubi->erroneous_peb_count); |
| 865 | goto out_error; |
| 866 | } |
| 867 | dst_leb_clean = 1; |
| 868 | erroneous = 1; |
| 869 | goto out_not_moved; |
| 870 | } |
| 871 | |
| 872 | if (err < 0) |
| 873 | goto out_error; |
| 874 | |
| 875 | ubi_assert(0); |
| 876 | } |
| 877 | |
| 878 | /* The PEB has been successfully moved */ |
| 879 | if (scrubbing) |
| 880 | ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", |
| 881 | e1->pnum, vol_id, lnum, e2->pnum); |
| 882 | ubi_free_vid_buf(vidb); |
| 883 | |
| 884 | spin_lock(&ubi->wl_lock); |
| 885 | if (!ubi->move_to_put) { |
| 886 | wl_tree_add(e2, &ubi->used); |
| 887 | e2 = NULL; |
| 888 | } |
| 889 | ubi->move_from = ubi->move_to = NULL; |
| 890 | ubi->move_to_put = ubi->wl_scheduled = 0; |
| 891 | spin_unlock(&ubi->wl_lock); |
| 892 | |
| 893 | err = do_sync_erase(ubi, e1, vol_id, lnum, 0); |
| 894 | if (err) { |
| 895 | if (e2) |
| 896 | wl_entry_destroy(ubi, e2); |
| 897 | goto out_ro; |
| 898 | } |
| 899 | |
| 900 | if (e2) { |
| 901 | /* |
| 902 | * Well, the target PEB was put meanwhile, schedule it for |
| 903 | * erasure. |
| 904 | */ |
| 905 | dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", |
| 906 | e2->pnum, vol_id, lnum); |
| 907 | err = do_sync_erase(ubi, e2, vol_id, lnum, 0); |
| 908 | if (err) |
| 909 | goto out_ro; |
| 910 | } |
| 911 | |
| 912 | dbg_wl("done"); |
| 913 | mutex_unlock(&ubi->move_mutex); |
| 914 | up_read(&ubi->fm_eba_sem); |
| 915 | return 0; |
| 916 | |
| 917 | /* |
| 918 | * For some reasons the LEB was not moved, might be an error, might be |
| 919 | * something else. @e1 was not changed, so return it back. @e2 might |
| 920 | * have been changed, schedule it for erasure. |
| 921 | */ |
| 922 | out_not_moved: |
| 923 | if (vol_id != -1) |
| 924 | dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", |
| 925 | e1->pnum, vol_id, lnum, e2->pnum, err); |
| 926 | else |
| 927 | dbg_wl("cancel moving PEB %d to PEB %d (%d)", |
| 928 | e1->pnum, e2->pnum, err); |
| 929 | spin_lock(&ubi->wl_lock); |
| 930 | if (protect) |
| 931 | prot_queue_add(ubi, e1); |
| 932 | else if (erroneous) { |
| 933 | wl_tree_add(e1, &ubi->erroneous); |
| 934 | ubi->erroneous_peb_count += 1; |
| 935 | } else if (scrubbing) |
| 936 | wl_tree_add(e1, &ubi->scrub); |
| 937 | else if (keep) |
| 938 | wl_tree_add(e1, &ubi->used); |
| 939 | if (dst_leb_clean) { |
| 940 | wl_tree_add(e2, &ubi->free); |
| 941 | ubi->free_count++; |
| 942 | } |
| 943 | |
| 944 | ubi_assert(!ubi->move_to_put); |
| 945 | ubi->move_from = ubi->move_to = NULL; |
| 946 | ubi->wl_scheduled = 0; |
| 947 | spin_unlock(&ubi->wl_lock); |
| 948 | |
| 949 | ubi_free_vid_buf(vidb); |
| 950 | if (dst_leb_clean) { |
| 951 | ensure_wear_leveling(ubi, 1); |
| 952 | } else { |
| 953 | err = do_sync_erase(ubi, e2, vol_id, lnum, torture); |
| 954 | if (err) |
| 955 | goto out_ro; |
| 956 | } |
| 957 | |
| 958 | if (erase) { |
| 959 | err = do_sync_erase(ubi, e1, vol_id, lnum, 1); |
| 960 | if (err) |
| 961 | goto out_ro; |
| 962 | } |
| 963 | |
| 964 | mutex_unlock(&ubi->move_mutex); |
| 965 | up_read(&ubi->fm_eba_sem); |
| 966 | return 0; |
| 967 | |
| 968 | out_error: |
| 969 | if (vol_id != -1) |
| 970 | ubi_err(ubi, "error %d while moving PEB %d to PEB %d", |
| 971 | err, e1->pnum, e2->pnum); |
| 972 | else |
| 973 | ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", |
| 974 | err, e1->pnum, vol_id, lnum, e2->pnum); |
| 975 | spin_lock(&ubi->wl_lock); |
| 976 | ubi->move_from = ubi->move_to = NULL; |
| 977 | ubi->move_to_put = ubi->wl_scheduled = 0; |
| 978 | spin_unlock(&ubi->wl_lock); |
| 979 | |
| 980 | ubi_free_vid_buf(vidb); |
| 981 | wl_entry_destroy(ubi, e1); |
| 982 | wl_entry_destroy(ubi, e2); |
| 983 | |
| 984 | out_ro: |
| 985 | ubi_ro_mode(ubi); |
| 986 | mutex_unlock(&ubi->move_mutex); |
| 987 | up_read(&ubi->fm_eba_sem); |
| 988 | ubi_assert(err != 0); |
| 989 | return err < 0 ? err : -EIO; |
| 990 | |
| 991 | out_cancel: |
| 992 | ubi->wl_scheduled = 0; |
| 993 | spin_unlock(&ubi->wl_lock); |
| 994 | mutex_unlock(&ubi->move_mutex); |
| 995 | up_read(&ubi->fm_eba_sem); |
| 996 | ubi_free_vid_buf(vidb); |
| 997 | return 0; |
| 998 | } |
| 999 | |
| 1000 | /** |
| 1001 | * ensure_wear_leveling - schedule wear-leveling if it is needed. |
| 1002 | * @ubi: UBI device description object |
| 1003 | * @nested: set to non-zero if this function is called from UBI worker |
| 1004 | * |
| 1005 | * This function checks if it is time to start wear-leveling and schedules it |
| 1006 | * if yes. This function returns zero in case of success and a negative error |
| 1007 | * code in case of failure. |
| 1008 | */ |
| 1009 | static int ensure_wear_leveling(struct ubi_device *ubi, int nested) |
| 1010 | { |
| 1011 | int err = 0; |
| 1012 | struct ubi_wl_entry *e1; |
| 1013 | struct ubi_wl_entry *e2; |
| 1014 | struct ubi_work *wrk; |
| 1015 | |
| 1016 | spin_lock(&ubi->wl_lock); |
| 1017 | if (ubi->wl_scheduled) |
| 1018 | /* Wear-leveling is already in the work queue */ |
| 1019 | goto out_unlock; |
| 1020 | |
| 1021 | /* |
| 1022 | * If the ubi->scrub tree is not empty, scrubbing is needed, and the |
| 1023 | * the WL worker has to be scheduled anyway. |
| 1024 | */ |
| 1025 | if (!ubi->scrub.rb_node) { |
| 1026 | if (!ubi->used.rb_node || !ubi->free.rb_node) |
| 1027 | /* No physical eraseblocks - no deal */ |
| 1028 | goto out_unlock; |
| 1029 | |
| 1030 | /* |
| 1031 | * We schedule wear-leveling only if the difference between the |
| 1032 | * lowest erase counter of used physical eraseblocks and a high |
| 1033 | * erase counter of free physical eraseblocks is greater than |
| 1034 | * %UBI_WL_THRESHOLD. |
| 1035 | */ |
| 1036 | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); |
| 1037 | e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); |
| 1038 | |
| 1039 | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) |
| 1040 | goto out_unlock; |
| 1041 | dbg_wl("schedule wear-leveling"); |
| 1042 | } else |
| 1043 | dbg_wl("schedule scrubbing"); |
| 1044 | |
| 1045 | ubi->wl_scheduled = 1; |
| 1046 | spin_unlock(&ubi->wl_lock); |
| 1047 | |
| 1048 | wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); |
| 1049 | if (!wrk) { |
| 1050 | err = -ENOMEM; |
| 1051 | goto out_cancel; |
| 1052 | } |
| 1053 | |
| 1054 | wrk->anchor = 0; |
| 1055 | wrk->func = &wear_leveling_worker; |
| 1056 | if (nested) |
| 1057 | __schedule_ubi_work(ubi, wrk); |
| 1058 | else |
| 1059 | schedule_ubi_work(ubi, wrk); |
| 1060 | return err; |
| 1061 | |
| 1062 | out_cancel: |
| 1063 | spin_lock(&ubi->wl_lock); |
| 1064 | ubi->wl_scheduled = 0; |
| 1065 | out_unlock: |
| 1066 | spin_unlock(&ubi->wl_lock); |
| 1067 | return err; |
| 1068 | } |
| 1069 | |
| 1070 | /** |
| 1071 | * __erase_worker - physical eraseblock erase worker function. |
| 1072 | * @ubi: UBI device description object |
| 1073 | * @wl_wrk: the work object |
| 1074 | * @shutdown: non-zero if the worker has to free memory and exit |
| 1075 | * because the WL sub-system is shutting down |
| 1076 | * |
| 1077 | * This function erases a physical eraseblock and perform torture testing if |
| 1078 | * needed. It also takes care about marking the physical eraseblock bad if |
| 1079 | * needed. Returns zero in case of success and a negative error code in case of |
| 1080 | * failure. |
| 1081 | */ |
| 1082 | static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) |
| 1083 | { |
| 1084 | struct ubi_wl_entry *e = wl_wrk->e; |
| 1085 | int pnum = e->pnum; |
| 1086 | int vol_id = wl_wrk->vol_id; |
| 1087 | int lnum = wl_wrk->lnum; |
| 1088 | int err, available_consumed = 0; |
| 1089 | |
| 1090 | dbg_wl("erase PEB %d EC %d LEB %d:%d", |
| 1091 | pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); |
| 1092 | |
| 1093 | err = sync_erase(ubi, e, wl_wrk->torture); |
| 1094 | if (!err) { |
| 1095 | spin_lock(&ubi->wl_lock); |
| 1096 | wl_tree_add(e, &ubi->free); |
| 1097 | ubi->free_count++; |
| 1098 | spin_unlock(&ubi->wl_lock); |
| 1099 | |
| 1100 | /* |
| 1101 | * One more erase operation has happened, take care about |
| 1102 | * protected physical eraseblocks. |
| 1103 | */ |
| 1104 | serve_prot_queue(ubi); |
| 1105 | |
| 1106 | /* And take care about wear-leveling */ |
| 1107 | err = ensure_wear_leveling(ubi, 1); |
| 1108 | return err; |
| 1109 | } |
| 1110 | |
| 1111 | ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); |
| 1112 | |
| 1113 | if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || |
| 1114 | err == -EBUSY) { |
| 1115 | int err1; |
| 1116 | |
| 1117 | /* Re-schedule the LEB for erasure */ |
| 1118 | err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); |
| 1119 | if (err1) { |
| 1120 | wl_entry_destroy(ubi, e); |
| 1121 | err = err1; |
| 1122 | goto out_ro; |
| 1123 | } |
| 1124 | return err; |
| 1125 | } |
| 1126 | |
| 1127 | wl_entry_destroy(ubi, e); |
| 1128 | if (err != -EIO) |
| 1129 | /* |
| 1130 | * If this is not %-EIO, we have no idea what to do. Scheduling |
| 1131 | * this physical eraseblock for erasure again would cause |
| 1132 | * errors again and again. Well, lets switch to R/O mode. |
| 1133 | */ |
| 1134 | goto out_ro; |
| 1135 | |
| 1136 | /* It is %-EIO, the PEB went bad */ |
| 1137 | |
| 1138 | if (!ubi->bad_allowed) { |
| 1139 | ubi_err(ubi, "bad physical eraseblock %d detected", pnum); |
| 1140 | goto out_ro; |
| 1141 | } |
| 1142 | |
| 1143 | spin_lock(&ubi->volumes_lock); |
| 1144 | if (ubi->beb_rsvd_pebs == 0) { |
| 1145 | if (ubi->avail_pebs == 0) { |
| 1146 | spin_unlock(&ubi->volumes_lock); |
| 1147 | ubi_err(ubi, "no reserved/available physical eraseblocks"); |
| 1148 | goto out_ro; |
| 1149 | } |
| 1150 | ubi->avail_pebs -= 1; |
| 1151 | available_consumed = 1; |
| 1152 | } |
| 1153 | spin_unlock(&ubi->volumes_lock); |
| 1154 | |
| 1155 | ubi_msg(ubi, "mark PEB %d as bad", pnum); |
| 1156 | err = ubi_io_mark_bad(ubi, pnum); |
| 1157 | if (err) |
| 1158 | goto out_ro; |
| 1159 | |
| 1160 | spin_lock(&ubi->volumes_lock); |
| 1161 | if (ubi->beb_rsvd_pebs > 0) { |
| 1162 | if (available_consumed) { |
| 1163 | /* |
| 1164 | * The amount of reserved PEBs increased since we last |
| 1165 | * checked. |
| 1166 | */ |
| 1167 | ubi->avail_pebs += 1; |
| 1168 | available_consumed = 0; |
| 1169 | } |
| 1170 | ubi->beb_rsvd_pebs -= 1; |
| 1171 | } |
| 1172 | ubi->bad_peb_count += 1; |
| 1173 | ubi->good_peb_count -= 1; |
| 1174 | ubi_calculate_reserved(ubi); |
| 1175 | if (available_consumed) |
| 1176 | ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); |
| 1177 | else if (ubi->beb_rsvd_pebs) |
| 1178 | ubi_msg(ubi, "%d PEBs left in the reserve", |
| 1179 | ubi->beb_rsvd_pebs); |
| 1180 | else |
| 1181 | ubi_warn(ubi, "last PEB from the reserve was used"); |
| 1182 | spin_unlock(&ubi->volumes_lock); |
| 1183 | |
| 1184 | return err; |
| 1185 | |
| 1186 | out_ro: |
| 1187 | if (available_consumed) { |
| 1188 | spin_lock(&ubi->volumes_lock); |
| 1189 | ubi->avail_pebs += 1; |
| 1190 | spin_unlock(&ubi->volumes_lock); |
| 1191 | } |
| 1192 | ubi_ro_mode(ubi); |
| 1193 | return err; |
| 1194 | } |
| 1195 | |
| 1196 | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, |
| 1197 | int shutdown) |
| 1198 | { |
| 1199 | int ret; |
| 1200 | |
| 1201 | if (shutdown) { |
| 1202 | struct ubi_wl_entry *e = wl_wrk->e; |
| 1203 | |
| 1204 | dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); |
| 1205 | kfree(wl_wrk); |
| 1206 | wl_entry_destroy(ubi, e); |
| 1207 | return 0; |
| 1208 | } |
| 1209 | |
| 1210 | ret = __erase_worker(ubi, wl_wrk); |
| 1211 | kfree(wl_wrk); |
| 1212 | return ret; |
| 1213 | } |
| 1214 | |
| 1215 | /** |
| 1216 | * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. |
| 1217 | * @ubi: UBI device description object |
| 1218 | * @vol_id: the volume ID that last used this PEB |
| 1219 | * @lnum: the last used logical eraseblock number for the PEB |
| 1220 | * @pnum: physical eraseblock to return |
| 1221 | * @torture: if this physical eraseblock has to be tortured |
| 1222 | * |
| 1223 | * This function is called to return physical eraseblock @pnum to the pool of |
| 1224 | * free physical eraseblocks. The @torture flag has to be set if an I/O error |
| 1225 | * occurred to this @pnum and it has to be tested. This function returns zero |
| 1226 | * in case of success, and a negative error code in case of failure. |
| 1227 | */ |
| 1228 | int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, |
| 1229 | int pnum, int torture) |
| 1230 | { |
| 1231 | int err; |
| 1232 | struct ubi_wl_entry *e; |
| 1233 | |
| 1234 | dbg_wl("PEB %d", pnum); |
| 1235 | ubi_assert(pnum >= 0); |
| 1236 | ubi_assert(pnum < ubi->peb_count); |
| 1237 | |
| 1238 | down_read(&ubi->fm_protect); |
| 1239 | |
| 1240 | retry: |
| 1241 | spin_lock(&ubi->wl_lock); |
| 1242 | e = ubi->lookuptbl[pnum]; |
| 1243 | if (e == ubi->move_from) { |
| 1244 | /* |
| 1245 | * User is putting the physical eraseblock which was selected to |
| 1246 | * be moved. It will be scheduled for erasure in the |
| 1247 | * wear-leveling worker. |
| 1248 | */ |
| 1249 | dbg_wl("PEB %d is being moved, wait", pnum); |
| 1250 | spin_unlock(&ubi->wl_lock); |
| 1251 | |
| 1252 | /* Wait for the WL worker by taking the @ubi->move_mutex */ |
| 1253 | mutex_lock(&ubi->move_mutex); |
| 1254 | mutex_unlock(&ubi->move_mutex); |
| 1255 | goto retry; |
| 1256 | } else if (e == ubi->move_to) { |
| 1257 | /* |
| 1258 | * User is putting the physical eraseblock which was selected |
| 1259 | * as the target the data is moved to. It may happen if the EBA |
| 1260 | * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' |
| 1261 | * but the WL sub-system has not put the PEB to the "used" tree |
| 1262 | * yet, but it is about to do this. So we just set a flag which |
| 1263 | * will tell the WL worker that the PEB is not needed anymore |
| 1264 | * and should be scheduled for erasure. |
| 1265 | */ |
| 1266 | dbg_wl("PEB %d is the target of data moving", pnum); |
| 1267 | ubi_assert(!ubi->move_to_put); |
| 1268 | ubi->move_to_put = 1; |
| 1269 | spin_unlock(&ubi->wl_lock); |
| 1270 | up_read(&ubi->fm_protect); |
| 1271 | return 0; |
| 1272 | } else { |
| 1273 | if (in_wl_tree(e, &ubi->used)) { |
| 1274 | self_check_in_wl_tree(ubi, e, &ubi->used); |
| 1275 | rb_erase(&e->u.rb, &ubi->used); |
| 1276 | } else if (in_wl_tree(e, &ubi->scrub)) { |
| 1277 | self_check_in_wl_tree(ubi, e, &ubi->scrub); |
| 1278 | rb_erase(&e->u.rb, &ubi->scrub); |
| 1279 | } else if (in_wl_tree(e, &ubi->erroneous)) { |
| 1280 | self_check_in_wl_tree(ubi, e, &ubi->erroneous); |
| 1281 | rb_erase(&e->u.rb, &ubi->erroneous); |
| 1282 | ubi->erroneous_peb_count -= 1; |
| 1283 | ubi_assert(ubi->erroneous_peb_count >= 0); |
| 1284 | /* Erroneous PEBs should be tortured */ |
| 1285 | torture = 1; |
| 1286 | } else { |
| 1287 | err = prot_queue_del(ubi, e->pnum); |
| 1288 | if (err) { |
| 1289 | ubi_err(ubi, "PEB %d not found", pnum); |
| 1290 | ubi_ro_mode(ubi); |
| 1291 | spin_unlock(&ubi->wl_lock); |
| 1292 | up_read(&ubi->fm_protect); |
| 1293 | return err; |
| 1294 | } |
| 1295 | } |
| 1296 | } |
| 1297 | spin_unlock(&ubi->wl_lock); |
| 1298 | |
| 1299 | err = schedule_erase(ubi, e, vol_id, lnum, torture, false); |
| 1300 | if (err) { |
| 1301 | spin_lock(&ubi->wl_lock); |
| 1302 | wl_tree_add(e, &ubi->used); |
| 1303 | spin_unlock(&ubi->wl_lock); |
| 1304 | } |
| 1305 | |
| 1306 | up_read(&ubi->fm_protect); |
| 1307 | return err; |
| 1308 | } |
| 1309 | |
| 1310 | /** |
| 1311 | * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. |
| 1312 | * @ubi: UBI device description object |
| 1313 | * @pnum: the physical eraseblock to schedule |
| 1314 | * |
| 1315 | * If a bit-flip in a physical eraseblock is detected, this physical eraseblock |
| 1316 | * needs scrubbing. This function schedules a physical eraseblock for |
| 1317 | * scrubbing which is done in background. This function returns zero in case of |
| 1318 | * success and a negative error code in case of failure. |
| 1319 | */ |
| 1320 | int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) |
| 1321 | { |
| 1322 | struct ubi_wl_entry *e; |
| 1323 | |
| 1324 | ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); |
| 1325 | |
| 1326 | retry: |
| 1327 | spin_lock(&ubi->wl_lock); |
| 1328 | e = ubi->lookuptbl[pnum]; |
| 1329 | if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || |
| 1330 | in_wl_tree(e, &ubi->erroneous)) { |
| 1331 | spin_unlock(&ubi->wl_lock); |
| 1332 | return 0; |
| 1333 | } |
| 1334 | |
| 1335 | if (e == ubi->move_to) { |
| 1336 | /* |
| 1337 | * This physical eraseblock was used to move data to. The data |
| 1338 | * was moved but the PEB was not yet inserted to the proper |
| 1339 | * tree. We should just wait a little and let the WL worker |
| 1340 | * proceed. |
| 1341 | */ |
| 1342 | spin_unlock(&ubi->wl_lock); |
| 1343 | dbg_wl("the PEB %d is not in proper tree, retry", pnum); |
| 1344 | yield(); |
| 1345 | goto retry; |
| 1346 | } |
| 1347 | |
| 1348 | if (in_wl_tree(e, &ubi->used)) { |
| 1349 | self_check_in_wl_tree(ubi, e, &ubi->used); |
| 1350 | rb_erase(&e->u.rb, &ubi->used); |
| 1351 | } else { |
| 1352 | int err; |
| 1353 | |
| 1354 | err = prot_queue_del(ubi, e->pnum); |
| 1355 | if (err) { |
| 1356 | ubi_err(ubi, "PEB %d not found", pnum); |
| 1357 | ubi_ro_mode(ubi); |
| 1358 | spin_unlock(&ubi->wl_lock); |
| 1359 | return err; |
| 1360 | } |
| 1361 | } |
| 1362 | |
| 1363 | wl_tree_add(e, &ubi->scrub); |
| 1364 | spin_unlock(&ubi->wl_lock); |
| 1365 | |
| 1366 | /* |
| 1367 | * Technically scrubbing is the same as wear-leveling, so it is done |
| 1368 | * by the WL worker. |
| 1369 | */ |
| 1370 | return ensure_wear_leveling(ubi, 0); |
| 1371 | } |
| 1372 | |
| 1373 | /** |
| 1374 | * ubi_wl_flush - flush all pending works. |
| 1375 | * @ubi: UBI device description object |
| 1376 | * @vol_id: the volume id to flush for |
| 1377 | * @lnum: the logical eraseblock number to flush for |
| 1378 | * |
| 1379 | * This function executes all pending works for a particular volume id / |
| 1380 | * logical eraseblock number pair. If either value is set to %UBI_ALL, then it |
| 1381 | * acts as a wildcard for all of the corresponding volume numbers or logical |
| 1382 | * eraseblock numbers. It returns zero in case of success and a negative error |
| 1383 | * code in case of failure. |
| 1384 | */ |
| 1385 | int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) |
| 1386 | { |
| 1387 | int err = 0; |
| 1388 | int found = 1; |
| 1389 | |
| 1390 | /* |
| 1391 | * Erase while the pending works queue is not empty, but not more than |
| 1392 | * the number of currently pending works. |
| 1393 | */ |
| 1394 | dbg_wl("flush pending work for LEB %d:%d (%d pending works)", |
| 1395 | vol_id, lnum, ubi->works_count); |
| 1396 | |
| 1397 | while (found) { |
| 1398 | struct ubi_work *wrk, *tmp; |
| 1399 | found = 0; |
| 1400 | |
| 1401 | down_read(&ubi->work_sem); |
| 1402 | spin_lock(&ubi->wl_lock); |
| 1403 | list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { |
| 1404 | if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && |
| 1405 | (lnum == UBI_ALL || wrk->lnum == lnum)) { |
| 1406 | list_del(&wrk->list); |
| 1407 | ubi->works_count -= 1; |
| 1408 | ubi_assert(ubi->works_count >= 0); |
| 1409 | spin_unlock(&ubi->wl_lock); |
| 1410 | |
| 1411 | err = wrk->func(ubi, wrk, 0); |
| 1412 | if (err) { |
| 1413 | up_read(&ubi->work_sem); |
| 1414 | return err; |
| 1415 | } |
| 1416 | |
| 1417 | spin_lock(&ubi->wl_lock); |
| 1418 | found = 1; |
| 1419 | break; |
| 1420 | } |
| 1421 | } |
| 1422 | spin_unlock(&ubi->wl_lock); |
| 1423 | up_read(&ubi->work_sem); |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * Make sure all the works which have been done in parallel are |
| 1428 | * finished. |
| 1429 | */ |
| 1430 | down_write(&ubi->work_sem); |
| 1431 | up_write(&ubi->work_sem); |
| 1432 | |
| 1433 | return err; |
| 1434 | } |
| 1435 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1436 | static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) |
| 1437 | { |
| 1438 | if (in_wl_tree(e, &ubi->scrub)) |
| 1439 | return false; |
| 1440 | else if (in_wl_tree(e, &ubi->erroneous)) |
| 1441 | return false; |
| 1442 | else if (ubi->move_from == e) |
| 1443 | return false; |
| 1444 | else if (ubi->move_to == e) |
| 1445 | return false; |
| 1446 | |
| 1447 | return true; |
| 1448 | } |
| 1449 | |
| 1450 | /** |
| 1451 | * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. |
| 1452 | * @ubi: UBI device description object |
| 1453 | * @pnum: the physical eraseblock to schedule |
| 1454 | * @force: dont't read the block, assume bitflips happened and take action. |
| 1455 | * |
| 1456 | * This function reads the given eraseblock and checks if bitflips occured. |
| 1457 | * In case of bitflips, the eraseblock is scheduled for scrubbing. |
| 1458 | * If scrubbing is forced with @force, the eraseblock is not read, |
| 1459 | * but scheduled for scrubbing right away. |
| 1460 | * |
| 1461 | * Returns: |
| 1462 | * %EINVAL, PEB is out of range |
| 1463 | * %ENOENT, PEB is no longer used by UBI |
| 1464 | * %EBUSY, PEB cannot be checked now or a check is currently running on it |
| 1465 | * %EAGAIN, bit flips happened but scrubbing is currently not possible |
| 1466 | * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing |
| 1467 | * %0, no bit flips detected |
| 1468 | */ |
| 1469 | int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) |
| 1470 | { |
| 1471 | int err = 0; |
| 1472 | struct ubi_wl_entry *e; |
| 1473 | |
| 1474 | if (pnum < 0 || pnum >= ubi->peb_count) { |
| 1475 | err = -EINVAL; |
| 1476 | goto out; |
| 1477 | } |
| 1478 | |
| 1479 | /* |
| 1480 | * Pause all parallel work, otherwise it can happen that the |
| 1481 | * erase worker frees a wl entry under us. |
| 1482 | */ |
| 1483 | down_write(&ubi->work_sem); |
| 1484 | |
| 1485 | /* |
| 1486 | * Make sure that the wl entry does not change state while |
| 1487 | * inspecting it. |
| 1488 | */ |
| 1489 | spin_lock(&ubi->wl_lock); |
| 1490 | e = ubi->lookuptbl[pnum]; |
| 1491 | if (!e) { |
| 1492 | spin_unlock(&ubi->wl_lock); |
| 1493 | err = -ENOENT; |
| 1494 | goto out_resume; |
| 1495 | } |
| 1496 | |
| 1497 | /* |
| 1498 | * Does it make sense to check this PEB? |
| 1499 | */ |
| 1500 | if (!scrub_possible(ubi, e)) { |
| 1501 | spin_unlock(&ubi->wl_lock); |
| 1502 | err = -EBUSY; |
| 1503 | goto out_resume; |
| 1504 | } |
| 1505 | spin_unlock(&ubi->wl_lock); |
| 1506 | |
| 1507 | if (!force) { |
| 1508 | mutex_lock(&ubi->buf_mutex); |
| 1509 | err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| 1510 | mutex_unlock(&ubi->buf_mutex); |
| 1511 | } |
| 1512 | |
| 1513 | if (force || err == UBI_IO_BITFLIPS) { |
| 1514 | /* |
| 1515 | * Okay, bit flip happened, let's figure out what we can do. |
| 1516 | */ |
| 1517 | spin_lock(&ubi->wl_lock); |
| 1518 | |
| 1519 | /* |
| 1520 | * Recheck. We released wl_lock, UBI might have killed the |
| 1521 | * wl entry under us. |
| 1522 | */ |
| 1523 | e = ubi->lookuptbl[pnum]; |
| 1524 | if (!e) { |
| 1525 | spin_unlock(&ubi->wl_lock); |
| 1526 | err = -ENOENT; |
| 1527 | goto out_resume; |
| 1528 | } |
| 1529 | |
| 1530 | /* |
| 1531 | * Need to re-check state |
| 1532 | */ |
| 1533 | if (!scrub_possible(ubi, e)) { |
| 1534 | spin_unlock(&ubi->wl_lock); |
| 1535 | err = -EBUSY; |
| 1536 | goto out_resume; |
| 1537 | } |
| 1538 | |
| 1539 | if (in_pq(ubi, e)) { |
| 1540 | prot_queue_del(ubi, e->pnum); |
| 1541 | wl_tree_add(e, &ubi->scrub); |
| 1542 | spin_unlock(&ubi->wl_lock); |
| 1543 | |
| 1544 | err = ensure_wear_leveling(ubi, 1); |
| 1545 | } else if (in_wl_tree(e, &ubi->used)) { |
| 1546 | rb_erase(&e->u.rb, &ubi->used); |
| 1547 | wl_tree_add(e, &ubi->scrub); |
| 1548 | spin_unlock(&ubi->wl_lock); |
| 1549 | |
| 1550 | err = ensure_wear_leveling(ubi, 1); |
| 1551 | } else if (in_wl_tree(e, &ubi->free)) { |
| 1552 | rb_erase(&e->u.rb, &ubi->free); |
| 1553 | ubi->free_count--; |
| 1554 | spin_unlock(&ubi->wl_lock); |
| 1555 | |
| 1556 | /* |
| 1557 | * This PEB is empty we can schedule it for |
| 1558 | * erasure right away. No wear leveling needed. |
| 1559 | */ |
| 1560 | err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, |
| 1561 | force ? 0 : 1, true); |
| 1562 | } else { |
| 1563 | spin_unlock(&ubi->wl_lock); |
| 1564 | err = -EAGAIN; |
| 1565 | } |
| 1566 | |
| 1567 | if (!err && !force) |
| 1568 | err = -EUCLEAN; |
| 1569 | } else { |
| 1570 | err = 0; |
| 1571 | } |
| 1572 | |
| 1573 | out_resume: |
| 1574 | up_write(&ubi->work_sem); |
| 1575 | out: |
| 1576 | |
| 1577 | return err; |
| 1578 | } |
| 1579 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1580 | /** |
| 1581 | * tree_destroy - destroy an RB-tree. |
| 1582 | * @ubi: UBI device description object |
| 1583 | * @root: the root of the tree to destroy |
| 1584 | */ |
| 1585 | static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) |
| 1586 | { |
| 1587 | struct rb_node *rb; |
| 1588 | struct ubi_wl_entry *e; |
| 1589 | |
| 1590 | rb = root->rb_node; |
| 1591 | while (rb) { |
| 1592 | if (rb->rb_left) |
| 1593 | rb = rb->rb_left; |
| 1594 | else if (rb->rb_right) |
| 1595 | rb = rb->rb_right; |
| 1596 | else { |
| 1597 | e = rb_entry(rb, struct ubi_wl_entry, u.rb); |
| 1598 | |
| 1599 | rb = rb_parent(rb); |
| 1600 | if (rb) { |
| 1601 | if (rb->rb_left == &e->u.rb) |
| 1602 | rb->rb_left = NULL; |
| 1603 | else |
| 1604 | rb->rb_right = NULL; |
| 1605 | } |
| 1606 | |
| 1607 | wl_entry_destroy(ubi, e); |
| 1608 | } |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | /** |
| 1613 | * ubi_thread - UBI background thread. |
| 1614 | * @u: the UBI device description object pointer |
| 1615 | */ |
| 1616 | int ubi_thread(void *u) |
| 1617 | { |
| 1618 | int failures = 0; |
| 1619 | struct ubi_device *ubi = u; |
| 1620 | |
| 1621 | ubi_msg(ubi, "background thread \"%s\" started, PID %d", |
| 1622 | ubi->bgt_name, task_pid_nr(current)); |
| 1623 | |
| 1624 | set_freezable(); |
| 1625 | for (;;) { |
| 1626 | int err; |
| 1627 | |
| 1628 | if (kthread_should_stop()) |
| 1629 | break; |
| 1630 | |
| 1631 | if (try_to_freeze()) |
| 1632 | continue; |
| 1633 | |
| 1634 | spin_lock(&ubi->wl_lock); |
| 1635 | if (list_empty(&ubi->works) || ubi->ro_mode || |
| 1636 | !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { |
| 1637 | set_current_state(TASK_INTERRUPTIBLE); |
| 1638 | spin_unlock(&ubi->wl_lock); |
| 1639 | schedule(); |
| 1640 | continue; |
| 1641 | } |
| 1642 | spin_unlock(&ubi->wl_lock); |
| 1643 | |
| 1644 | err = do_work(ubi); |
| 1645 | if (err) { |
| 1646 | ubi_err(ubi, "%s: work failed with error code %d", |
| 1647 | ubi->bgt_name, err); |
| 1648 | if (failures++ > WL_MAX_FAILURES) { |
| 1649 | /* |
| 1650 | * Too many failures, disable the thread and |
| 1651 | * switch to read-only mode. |
| 1652 | */ |
| 1653 | ubi_msg(ubi, "%s: %d consecutive failures", |
| 1654 | ubi->bgt_name, WL_MAX_FAILURES); |
| 1655 | ubi_ro_mode(ubi); |
| 1656 | ubi->thread_enabled = 0; |
| 1657 | continue; |
| 1658 | } |
| 1659 | } else |
| 1660 | failures = 0; |
| 1661 | |
| 1662 | cond_resched(); |
| 1663 | } |
| 1664 | |
| 1665 | dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); |
| 1666 | ubi->thread_enabled = 0; |
| 1667 | return 0; |
| 1668 | } |
| 1669 | |
| 1670 | /** |
| 1671 | * shutdown_work - shutdown all pending works. |
| 1672 | * @ubi: UBI device description object |
| 1673 | */ |
| 1674 | static void shutdown_work(struct ubi_device *ubi) |
| 1675 | { |
| 1676 | while (!list_empty(&ubi->works)) { |
| 1677 | struct ubi_work *wrk; |
| 1678 | |
| 1679 | wrk = list_entry(ubi->works.next, struct ubi_work, list); |
| 1680 | list_del(&wrk->list); |
| 1681 | wrk->func(ubi, wrk, 1); |
| 1682 | ubi->works_count -= 1; |
| 1683 | ubi_assert(ubi->works_count >= 0); |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | /** |
| 1688 | * erase_aeb - erase a PEB given in UBI attach info PEB |
| 1689 | * @ubi: UBI device description object |
| 1690 | * @aeb: UBI attach info PEB |
| 1691 | * @sync: If true, erase synchronously. Otherwise schedule for erasure |
| 1692 | */ |
| 1693 | static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) |
| 1694 | { |
| 1695 | struct ubi_wl_entry *e; |
| 1696 | int err; |
| 1697 | |
| 1698 | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| 1699 | if (!e) |
| 1700 | return -ENOMEM; |
| 1701 | |
| 1702 | e->pnum = aeb->pnum; |
| 1703 | e->ec = aeb->ec; |
| 1704 | ubi->lookuptbl[e->pnum] = e; |
| 1705 | |
| 1706 | if (sync) { |
| 1707 | err = sync_erase(ubi, e, false); |
| 1708 | if (err) |
| 1709 | goto out_free; |
| 1710 | |
| 1711 | wl_tree_add(e, &ubi->free); |
| 1712 | ubi->free_count++; |
| 1713 | } else { |
| 1714 | err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); |
| 1715 | if (err) |
| 1716 | goto out_free; |
| 1717 | } |
| 1718 | |
| 1719 | return 0; |
| 1720 | |
| 1721 | out_free: |
| 1722 | wl_entry_destroy(ubi, e); |
| 1723 | |
| 1724 | return err; |
| 1725 | } |
| 1726 | |
| 1727 | /** |
| 1728 | * ubi_wl_init - initialize the WL sub-system using attaching information. |
| 1729 | * @ubi: UBI device description object |
| 1730 | * @ai: attaching information |
| 1731 | * |
| 1732 | * This function returns zero in case of success, and a negative error code in |
| 1733 | * case of failure. |
| 1734 | */ |
| 1735 | int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) |
| 1736 | { |
| 1737 | int err, i, reserved_pebs, found_pebs = 0; |
| 1738 | struct rb_node *rb1, *rb2; |
| 1739 | struct ubi_ainf_volume *av; |
| 1740 | struct ubi_ainf_peb *aeb, *tmp; |
| 1741 | struct ubi_wl_entry *e; |
| 1742 | |
| 1743 | ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; |
| 1744 | spin_lock_init(&ubi->wl_lock); |
| 1745 | mutex_init(&ubi->move_mutex); |
| 1746 | init_rwsem(&ubi->work_sem); |
| 1747 | ubi->max_ec = ai->max_ec; |
| 1748 | INIT_LIST_HEAD(&ubi->works); |
| 1749 | |
| 1750 | sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); |
| 1751 | |
| 1752 | err = -ENOMEM; |
| 1753 | ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); |
| 1754 | if (!ubi->lookuptbl) |
| 1755 | return err; |
| 1756 | |
| 1757 | for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) |
| 1758 | INIT_LIST_HEAD(&ubi->pq[i]); |
| 1759 | ubi->pq_head = 0; |
| 1760 | |
| 1761 | ubi->free_count = 0; |
| 1762 | list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { |
| 1763 | cond_resched(); |
| 1764 | |
| 1765 | err = erase_aeb(ubi, aeb, false); |
| 1766 | if (err) |
| 1767 | goto out_free; |
| 1768 | |
| 1769 | found_pebs++; |
| 1770 | } |
| 1771 | |
| 1772 | list_for_each_entry(aeb, &ai->free, u.list) { |
| 1773 | cond_resched(); |
| 1774 | |
| 1775 | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| 1776 | if (!e) { |
| 1777 | err = -ENOMEM; |
| 1778 | goto out_free; |
| 1779 | } |
| 1780 | |
| 1781 | e->pnum = aeb->pnum; |
| 1782 | e->ec = aeb->ec; |
| 1783 | ubi_assert(e->ec >= 0); |
| 1784 | |
| 1785 | wl_tree_add(e, &ubi->free); |
| 1786 | ubi->free_count++; |
| 1787 | |
| 1788 | ubi->lookuptbl[e->pnum] = e; |
| 1789 | |
| 1790 | found_pebs++; |
| 1791 | } |
| 1792 | |
| 1793 | ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { |
| 1794 | ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { |
| 1795 | cond_resched(); |
| 1796 | |
| 1797 | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| 1798 | if (!e) { |
| 1799 | err = -ENOMEM; |
| 1800 | goto out_free; |
| 1801 | } |
| 1802 | |
| 1803 | e->pnum = aeb->pnum; |
| 1804 | e->ec = aeb->ec; |
| 1805 | ubi->lookuptbl[e->pnum] = e; |
| 1806 | |
| 1807 | if (!aeb->scrub) { |
| 1808 | dbg_wl("add PEB %d EC %d to the used tree", |
| 1809 | e->pnum, e->ec); |
| 1810 | wl_tree_add(e, &ubi->used); |
| 1811 | } else { |
| 1812 | dbg_wl("add PEB %d EC %d to the scrub tree", |
| 1813 | e->pnum, e->ec); |
| 1814 | wl_tree_add(e, &ubi->scrub); |
| 1815 | } |
| 1816 | |
| 1817 | found_pebs++; |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | list_for_each_entry(aeb, &ai->fastmap, u.list) { |
| 1822 | cond_resched(); |
| 1823 | |
| 1824 | e = ubi_find_fm_block(ubi, aeb->pnum); |
| 1825 | |
| 1826 | if (e) { |
| 1827 | ubi_assert(!ubi->lookuptbl[e->pnum]); |
| 1828 | ubi->lookuptbl[e->pnum] = e; |
| 1829 | } else { |
| 1830 | bool sync = false; |
| 1831 | |
| 1832 | /* |
| 1833 | * Usually old Fastmap PEBs are scheduled for erasure |
| 1834 | * and we don't have to care about them but if we face |
| 1835 | * an power cut before scheduling them we need to |
| 1836 | * take care of them here. |
| 1837 | */ |
| 1838 | if (ubi->lookuptbl[aeb->pnum]) |
| 1839 | continue; |
| 1840 | |
| 1841 | /* |
| 1842 | * The fastmap update code might not find a free PEB for |
| 1843 | * writing the fastmap anchor to and then reuses the |
| 1844 | * current fastmap anchor PEB. When this PEB gets erased |
| 1845 | * and a power cut happens before it is written again we |
| 1846 | * must make sure that the fastmap attach code doesn't |
| 1847 | * find any outdated fastmap anchors, hence we erase the |
| 1848 | * outdated fastmap anchor PEBs synchronously here. |
| 1849 | */ |
| 1850 | if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) |
| 1851 | sync = true; |
| 1852 | |
| 1853 | err = erase_aeb(ubi, aeb, sync); |
| 1854 | if (err) |
| 1855 | goto out_free; |
| 1856 | } |
| 1857 | |
| 1858 | found_pebs++; |
| 1859 | } |
| 1860 | |
| 1861 | dbg_wl("found %i PEBs", found_pebs); |
| 1862 | |
| 1863 | ubi_assert(ubi->good_peb_count == found_pebs); |
| 1864 | |
| 1865 | reserved_pebs = WL_RESERVED_PEBS; |
| 1866 | ubi_fastmap_init(ubi, &reserved_pebs); |
| 1867 | |
| 1868 | if (ubi->avail_pebs < reserved_pebs) { |
| 1869 | ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", |
| 1870 | ubi->avail_pebs, reserved_pebs); |
| 1871 | if (ubi->corr_peb_count) |
| 1872 | ubi_err(ubi, "%d PEBs are corrupted and not used", |
| 1873 | ubi->corr_peb_count); |
| 1874 | err = -ENOSPC; |
| 1875 | goto out_free; |
| 1876 | } |
| 1877 | ubi->avail_pebs -= reserved_pebs; |
| 1878 | ubi->rsvd_pebs += reserved_pebs; |
| 1879 | |
| 1880 | /* Schedule wear-leveling if needed */ |
| 1881 | err = ensure_wear_leveling(ubi, 0); |
| 1882 | if (err) |
| 1883 | goto out_free; |
| 1884 | |
| 1885 | return 0; |
| 1886 | |
| 1887 | out_free: |
| 1888 | shutdown_work(ubi); |
| 1889 | tree_destroy(ubi, &ubi->used); |
| 1890 | tree_destroy(ubi, &ubi->free); |
| 1891 | tree_destroy(ubi, &ubi->scrub); |
| 1892 | kfree(ubi->lookuptbl); |
| 1893 | return err; |
| 1894 | } |
| 1895 | |
| 1896 | /** |
| 1897 | * protection_queue_destroy - destroy the protection queue. |
| 1898 | * @ubi: UBI device description object |
| 1899 | */ |
| 1900 | static void protection_queue_destroy(struct ubi_device *ubi) |
| 1901 | { |
| 1902 | int i; |
| 1903 | struct ubi_wl_entry *e, *tmp; |
| 1904 | |
| 1905 | for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { |
| 1906 | list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { |
| 1907 | list_del(&e->u.list); |
| 1908 | wl_entry_destroy(ubi, e); |
| 1909 | } |
| 1910 | } |
| 1911 | } |
| 1912 | |
| 1913 | /** |
| 1914 | * ubi_wl_close - close the wear-leveling sub-system. |
| 1915 | * @ubi: UBI device description object |
| 1916 | */ |
| 1917 | void ubi_wl_close(struct ubi_device *ubi) |
| 1918 | { |
| 1919 | dbg_wl("close the WL sub-system"); |
| 1920 | ubi_fastmap_close(ubi); |
| 1921 | shutdown_work(ubi); |
| 1922 | protection_queue_destroy(ubi); |
| 1923 | tree_destroy(ubi, &ubi->used); |
| 1924 | tree_destroy(ubi, &ubi->erroneous); |
| 1925 | tree_destroy(ubi, &ubi->free); |
| 1926 | tree_destroy(ubi, &ubi->scrub); |
| 1927 | kfree(ubi->lookuptbl); |
| 1928 | } |
| 1929 | |
| 1930 | /** |
| 1931 | * self_check_ec - make sure that the erase counter of a PEB is correct. |
| 1932 | * @ubi: UBI device description object |
| 1933 | * @pnum: the physical eraseblock number to check |
| 1934 | * @ec: the erase counter to check |
| 1935 | * |
| 1936 | * This function returns zero if the erase counter of physical eraseblock @pnum |
| 1937 | * is equivalent to @ec, and a negative error code if not or if an error |
| 1938 | * occurred. |
| 1939 | */ |
| 1940 | static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) |
| 1941 | { |
| 1942 | int err; |
| 1943 | long long read_ec; |
| 1944 | struct ubi_ec_hdr *ec_hdr; |
| 1945 | |
| 1946 | if (!ubi_dbg_chk_gen(ubi)) |
| 1947 | return 0; |
| 1948 | |
| 1949 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
| 1950 | if (!ec_hdr) |
| 1951 | return -ENOMEM; |
| 1952 | |
| 1953 | err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); |
| 1954 | if (err && err != UBI_IO_BITFLIPS) { |
| 1955 | /* The header does not have to exist */ |
| 1956 | err = 0; |
| 1957 | goto out_free; |
| 1958 | } |
| 1959 | |
| 1960 | read_ec = be64_to_cpu(ec_hdr->ec); |
| 1961 | if (ec != read_ec && read_ec - ec > 1) { |
| 1962 | ubi_err(ubi, "self-check failed for PEB %d", pnum); |
| 1963 | ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); |
| 1964 | dump_stack(); |
| 1965 | err = 1; |
| 1966 | } else |
| 1967 | err = 0; |
| 1968 | |
| 1969 | out_free: |
| 1970 | kfree(ec_hdr); |
| 1971 | return err; |
| 1972 | } |
| 1973 | |
| 1974 | /** |
| 1975 | * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. |
| 1976 | * @ubi: UBI device description object |
| 1977 | * @e: the wear-leveling entry to check |
| 1978 | * @root: the root of the tree |
| 1979 | * |
| 1980 | * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it |
| 1981 | * is not. |
| 1982 | */ |
| 1983 | static int self_check_in_wl_tree(const struct ubi_device *ubi, |
| 1984 | struct ubi_wl_entry *e, struct rb_root *root) |
| 1985 | { |
| 1986 | if (!ubi_dbg_chk_gen(ubi)) |
| 1987 | return 0; |
| 1988 | |
| 1989 | if (in_wl_tree(e, root)) |
| 1990 | return 0; |
| 1991 | |
| 1992 | ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", |
| 1993 | e->pnum, e->ec, root); |
| 1994 | dump_stack(); |
| 1995 | return -EINVAL; |
| 1996 | } |
| 1997 | |
| 1998 | /** |
| 1999 | * self_check_in_pq - check if wear-leveling entry is in the protection |
| 2000 | * queue. |
| 2001 | * @ubi: UBI device description object |
| 2002 | * @e: the wear-leveling entry to check |
| 2003 | * |
| 2004 | * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. |
| 2005 | */ |
| 2006 | static int self_check_in_pq(const struct ubi_device *ubi, |
| 2007 | struct ubi_wl_entry *e) |
| 2008 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2009 | if (!ubi_dbg_chk_gen(ubi)) |
| 2010 | return 0; |
| 2011 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2012 | if (in_pq(ubi, e)) |
| 2013 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2014 | |
| 2015 | ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", |
| 2016 | e->pnum, e->ec); |
| 2017 | dump_stack(); |
| 2018 | return -EINVAL; |
| 2019 | } |
| 2020 | #ifndef CONFIG_MTD_UBI_FASTMAP |
| 2021 | static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) |
| 2022 | { |
| 2023 | struct ubi_wl_entry *e; |
| 2024 | |
| 2025 | e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); |
| 2026 | self_check_in_wl_tree(ubi, e, &ubi->free); |
| 2027 | ubi->free_count--; |
| 2028 | ubi_assert(ubi->free_count >= 0); |
| 2029 | rb_erase(&e->u.rb, &ubi->free); |
| 2030 | |
| 2031 | return e; |
| 2032 | } |
| 2033 | |
| 2034 | /** |
| 2035 | * produce_free_peb - produce a free physical eraseblock. |
| 2036 | * @ubi: UBI device description object |
| 2037 | * |
| 2038 | * This function tries to make a free PEB by means of synchronous execution of |
| 2039 | * pending works. This may be needed if, for example the background thread is |
| 2040 | * disabled. Returns zero in case of success and a negative error code in case |
| 2041 | * of failure. |
| 2042 | */ |
| 2043 | static int produce_free_peb(struct ubi_device *ubi) |
| 2044 | { |
| 2045 | int err; |
| 2046 | |
| 2047 | while (!ubi->free.rb_node && ubi->works_count) { |
| 2048 | spin_unlock(&ubi->wl_lock); |
| 2049 | |
| 2050 | dbg_wl("do one work synchronously"); |
| 2051 | err = do_work(ubi); |
| 2052 | |
| 2053 | spin_lock(&ubi->wl_lock); |
| 2054 | if (err) |
| 2055 | return err; |
| 2056 | } |
| 2057 | |
| 2058 | return 0; |
| 2059 | } |
| 2060 | |
| 2061 | /** |
| 2062 | * ubi_wl_get_peb - get a physical eraseblock. |
| 2063 | * @ubi: UBI device description object |
| 2064 | * |
| 2065 | * This function returns a physical eraseblock in case of success and a |
| 2066 | * negative error code in case of failure. |
| 2067 | * Returns with ubi->fm_eba_sem held in read mode! |
| 2068 | */ |
| 2069 | int ubi_wl_get_peb(struct ubi_device *ubi) |
| 2070 | { |
| 2071 | int err; |
| 2072 | struct ubi_wl_entry *e; |
| 2073 | |
| 2074 | retry: |
| 2075 | down_read(&ubi->fm_eba_sem); |
| 2076 | spin_lock(&ubi->wl_lock); |
| 2077 | if (!ubi->free.rb_node) { |
| 2078 | if (ubi->works_count == 0) { |
| 2079 | ubi_err(ubi, "no free eraseblocks"); |
| 2080 | ubi_assert(list_empty(&ubi->works)); |
| 2081 | spin_unlock(&ubi->wl_lock); |
| 2082 | return -ENOSPC; |
| 2083 | } |
| 2084 | |
| 2085 | err = produce_free_peb(ubi); |
| 2086 | if (err < 0) { |
| 2087 | spin_unlock(&ubi->wl_lock); |
| 2088 | return err; |
| 2089 | } |
| 2090 | spin_unlock(&ubi->wl_lock); |
| 2091 | up_read(&ubi->fm_eba_sem); |
| 2092 | goto retry; |
| 2093 | |
| 2094 | } |
| 2095 | e = wl_get_wle(ubi); |
| 2096 | prot_queue_add(ubi, e); |
| 2097 | spin_unlock(&ubi->wl_lock); |
| 2098 | |
| 2099 | err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, |
| 2100 | ubi->peb_size - ubi->vid_hdr_aloffset); |
| 2101 | if (err) { |
| 2102 | ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); |
| 2103 | return err; |
| 2104 | } |
| 2105 | |
| 2106 | return e->pnum; |
| 2107 | } |
| 2108 | #else |
| 2109 | #include "fastmap-wl.c" |
| 2110 | #endif |