David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Intel PCH/PCU SPI flash driver. |
| 4 | * |
| 5 | * Copyright (C) 2016, Intel Corporation |
| 6 | * Author: Mika Westerberg <mika.westerberg@linux.intel.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 7 | */ |
| 8 | |
| 9 | #include <linux/err.h> |
| 10 | #include <linux/io.h> |
| 11 | #include <linux/iopoll.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/sched.h> |
| 14 | #include <linux/sizes.h> |
| 15 | #include <linux/mtd/mtd.h> |
| 16 | #include <linux/mtd/partitions.h> |
| 17 | #include <linux/mtd/spi-nor.h> |
| 18 | #include <linux/platform_data/intel-spi.h> |
| 19 | |
| 20 | #include "intel-spi.h" |
| 21 | |
| 22 | /* Offsets are from @ispi->base */ |
| 23 | #define BFPREG 0x00 |
| 24 | |
| 25 | #define HSFSTS_CTL 0x04 |
| 26 | #define HSFSTS_CTL_FSMIE BIT(31) |
| 27 | #define HSFSTS_CTL_FDBC_SHIFT 24 |
| 28 | #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT) |
| 29 | |
| 30 | #define HSFSTS_CTL_FCYCLE_SHIFT 17 |
| 31 | #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT) |
| 32 | /* HW sequencer opcodes */ |
| 33 | #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT) |
| 34 | #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT) |
| 35 | #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT) |
| 36 | #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT) |
| 37 | #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT) |
| 38 | #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT) |
| 39 | #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT) |
| 40 | |
| 41 | #define HSFSTS_CTL_FGO BIT(16) |
| 42 | #define HSFSTS_CTL_FLOCKDN BIT(15) |
| 43 | #define HSFSTS_CTL_FDV BIT(14) |
| 44 | #define HSFSTS_CTL_SCIP BIT(5) |
| 45 | #define HSFSTS_CTL_AEL BIT(2) |
| 46 | #define HSFSTS_CTL_FCERR BIT(1) |
| 47 | #define HSFSTS_CTL_FDONE BIT(0) |
| 48 | |
| 49 | #define FADDR 0x08 |
| 50 | #define DLOCK 0x0c |
| 51 | #define FDATA(n) (0x10 + ((n) * 4)) |
| 52 | |
| 53 | #define FRACC 0x50 |
| 54 | |
| 55 | #define FREG(n) (0x54 + ((n) * 4)) |
| 56 | #define FREG_BASE_MASK 0x3fff |
| 57 | #define FREG_LIMIT_SHIFT 16 |
| 58 | #define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT) |
| 59 | |
| 60 | /* Offset is from @ispi->pregs */ |
| 61 | #define PR(n) ((n) * 4) |
| 62 | #define PR_WPE BIT(31) |
| 63 | #define PR_LIMIT_SHIFT 16 |
| 64 | #define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT) |
| 65 | #define PR_RPE BIT(15) |
| 66 | #define PR_BASE_MASK 0x3fff |
| 67 | |
| 68 | /* Offsets are from @ispi->sregs */ |
| 69 | #define SSFSTS_CTL 0x00 |
| 70 | #define SSFSTS_CTL_FSMIE BIT(23) |
| 71 | #define SSFSTS_CTL_DS BIT(22) |
| 72 | #define SSFSTS_CTL_DBC_SHIFT 16 |
| 73 | #define SSFSTS_CTL_SPOP BIT(11) |
| 74 | #define SSFSTS_CTL_ACS BIT(10) |
| 75 | #define SSFSTS_CTL_SCGO BIT(9) |
| 76 | #define SSFSTS_CTL_COP_SHIFT 12 |
| 77 | #define SSFSTS_CTL_FRS BIT(7) |
| 78 | #define SSFSTS_CTL_DOFRS BIT(6) |
| 79 | #define SSFSTS_CTL_AEL BIT(4) |
| 80 | #define SSFSTS_CTL_FCERR BIT(3) |
| 81 | #define SSFSTS_CTL_FDONE BIT(2) |
| 82 | #define SSFSTS_CTL_SCIP BIT(0) |
| 83 | |
| 84 | #define PREOP_OPTYPE 0x04 |
| 85 | #define OPMENU0 0x08 |
| 86 | #define OPMENU1 0x0c |
| 87 | |
| 88 | #define OPTYPE_READ_NO_ADDR 0 |
| 89 | #define OPTYPE_WRITE_NO_ADDR 1 |
| 90 | #define OPTYPE_READ_WITH_ADDR 2 |
| 91 | #define OPTYPE_WRITE_WITH_ADDR 3 |
| 92 | |
| 93 | /* CPU specifics */ |
| 94 | #define BYT_PR 0x74 |
| 95 | #define BYT_SSFSTS_CTL 0x90 |
| 96 | #define BYT_BCR 0xfc |
| 97 | #define BYT_BCR_WPD BIT(0) |
| 98 | #define BYT_FREG_NUM 5 |
| 99 | #define BYT_PR_NUM 5 |
| 100 | |
| 101 | #define LPT_PR 0x74 |
| 102 | #define LPT_SSFSTS_CTL 0x90 |
| 103 | #define LPT_FREG_NUM 5 |
| 104 | #define LPT_PR_NUM 5 |
| 105 | |
| 106 | #define BXT_PR 0x84 |
| 107 | #define BXT_SSFSTS_CTL 0xa0 |
| 108 | #define BXT_FREG_NUM 12 |
| 109 | #define BXT_PR_NUM 6 |
| 110 | |
| 111 | #define LVSCC 0xc4 |
| 112 | #define UVSCC 0xc8 |
| 113 | #define ERASE_OPCODE_SHIFT 8 |
| 114 | #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) |
| 115 | #define ERASE_64K_OPCODE_SHIFT 16 |
| 116 | #define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) |
| 117 | |
| 118 | #define INTEL_SPI_TIMEOUT 5000 /* ms */ |
| 119 | #define INTEL_SPI_FIFO_SZ 64 |
| 120 | |
| 121 | /** |
| 122 | * struct intel_spi - Driver private data |
| 123 | * @dev: Device pointer |
| 124 | * @info: Pointer to board specific info |
| 125 | * @nor: SPI NOR layer structure |
| 126 | * @base: Beginning of MMIO space |
| 127 | * @pregs: Start of protection registers |
| 128 | * @sregs: Start of software sequencer registers |
| 129 | * @nregions: Maximum number of regions |
| 130 | * @pr_num: Maximum number of protected range registers |
| 131 | * @writeable: Is the chip writeable |
| 132 | * @locked: Is SPI setting locked |
| 133 | * @swseq_reg: Use SW sequencer in register reads/writes |
| 134 | * @swseq_erase: Use SW sequencer in erase operation |
| 135 | * @erase_64k: 64k erase supported |
| 136 | * @atomic_preopcode: Holds preopcode when atomic sequence is requested |
| 137 | * @opcodes: Opcodes which are supported. This are programmed by BIOS |
| 138 | * before it locks down the controller. |
| 139 | */ |
| 140 | struct intel_spi { |
| 141 | struct device *dev; |
| 142 | const struct intel_spi_boardinfo *info; |
| 143 | struct spi_nor nor; |
| 144 | void __iomem *base; |
| 145 | void __iomem *pregs; |
| 146 | void __iomem *sregs; |
| 147 | size_t nregions; |
| 148 | size_t pr_num; |
| 149 | bool writeable; |
| 150 | bool locked; |
| 151 | bool swseq_reg; |
| 152 | bool swseq_erase; |
| 153 | bool erase_64k; |
| 154 | u8 atomic_preopcode; |
| 155 | u8 opcodes[8]; |
| 156 | }; |
| 157 | |
| 158 | static bool writeable; |
| 159 | module_param(writeable, bool, 0); |
| 160 | MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)"); |
| 161 | |
| 162 | static void intel_spi_dump_regs(struct intel_spi *ispi) |
| 163 | { |
| 164 | u32 value; |
| 165 | int i; |
| 166 | |
| 167 | dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG)); |
| 168 | |
| 169 | value = readl(ispi->base + HSFSTS_CTL); |
| 170 | dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value); |
| 171 | if (value & HSFSTS_CTL_FLOCKDN) |
| 172 | dev_dbg(ispi->dev, "-> Locked\n"); |
| 173 | |
| 174 | dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR)); |
| 175 | dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK)); |
| 176 | |
| 177 | for (i = 0; i < 16; i++) |
| 178 | dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n", |
| 179 | i, readl(ispi->base + FDATA(i))); |
| 180 | |
| 181 | dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC)); |
| 182 | |
| 183 | for (i = 0; i < ispi->nregions; i++) |
| 184 | dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i, |
| 185 | readl(ispi->base + FREG(i))); |
| 186 | for (i = 0; i < ispi->pr_num; i++) |
| 187 | dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i, |
| 188 | readl(ispi->pregs + PR(i))); |
| 189 | |
| 190 | value = readl(ispi->sregs + SSFSTS_CTL); |
| 191 | dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value); |
| 192 | dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n", |
| 193 | readl(ispi->sregs + PREOP_OPTYPE)); |
| 194 | dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0)); |
| 195 | dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1)); |
| 196 | |
| 197 | if (ispi->info->type == INTEL_SPI_BYT) |
| 198 | dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR)); |
| 199 | |
| 200 | dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC)); |
| 201 | dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC)); |
| 202 | |
| 203 | dev_dbg(ispi->dev, "Protected regions:\n"); |
| 204 | for (i = 0; i < ispi->pr_num; i++) { |
| 205 | u32 base, limit; |
| 206 | |
| 207 | value = readl(ispi->pregs + PR(i)); |
| 208 | if (!(value & (PR_WPE | PR_RPE))) |
| 209 | continue; |
| 210 | |
| 211 | limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; |
| 212 | base = value & PR_BASE_MASK; |
| 213 | |
| 214 | dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n", |
| 215 | i, base << 12, (limit << 12) | 0xfff, |
| 216 | value & PR_WPE ? 'W' : '.', |
| 217 | value & PR_RPE ? 'R' : '.'); |
| 218 | } |
| 219 | |
| 220 | dev_dbg(ispi->dev, "Flash regions:\n"); |
| 221 | for (i = 0; i < ispi->nregions; i++) { |
| 222 | u32 region, base, limit; |
| 223 | |
| 224 | region = readl(ispi->base + FREG(i)); |
| 225 | base = region & FREG_BASE_MASK; |
| 226 | limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; |
| 227 | |
| 228 | if (base >= limit || (i > 0 && limit == 0)) |
| 229 | dev_dbg(ispi->dev, " %02d disabled\n", i); |
| 230 | else |
| 231 | dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n", |
| 232 | i, base << 12, (limit << 12) | 0xfff); |
| 233 | } |
| 234 | |
| 235 | dev_dbg(ispi->dev, "Using %cW sequencer for register access\n", |
| 236 | ispi->swseq_reg ? 'S' : 'H'); |
| 237 | dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n", |
| 238 | ispi->swseq_erase ? 'S' : 'H'); |
| 239 | } |
| 240 | |
| 241 | /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */ |
| 242 | static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size) |
| 243 | { |
| 244 | size_t bytes; |
| 245 | int i = 0; |
| 246 | |
| 247 | if (size > INTEL_SPI_FIFO_SZ) |
| 248 | return -EINVAL; |
| 249 | |
| 250 | while (size > 0) { |
| 251 | bytes = min_t(size_t, size, 4); |
| 252 | memcpy_fromio(buf, ispi->base + FDATA(i), bytes); |
| 253 | size -= bytes; |
| 254 | buf += bytes; |
| 255 | i++; |
| 256 | } |
| 257 | |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */ |
| 262 | static int intel_spi_write_block(struct intel_spi *ispi, const void *buf, |
| 263 | size_t size) |
| 264 | { |
| 265 | size_t bytes; |
| 266 | int i = 0; |
| 267 | |
| 268 | if (size > INTEL_SPI_FIFO_SZ) |
| 269 | return -EINVAL; |
| 270 | |
| 271 | while (size > 0) { |
| 272 | bytes = min_t(size_t, size, 4); |
| 273 | memcpy_toio(ispi->base + FDATA(i), buf, bytes); |
| 274 | size -= bytes; |
| 275 | buf += bytes; |
| 276 | i++; |
| 277 | } |
| 278 | |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | static int intel_spi_wait_hw_busy(struct intel_spi *ispi) |
| 283 | { |
| 284 | u32 val; |
| 285 | |
| 286 | return readl_poll_timeout(ispi->base + HSFSTS_CTL, val, |
| 287 | !(val & HSFSTS_CTL_SCIP), 40, |
| 288 | INTEL_SPI_TIMEOUT * 1000); |
| 289 | } |
| 290 | |
| 291 | static int intel_spi_wait_sw_busy(struct intel_spi *ispi) |
| 292 | { |
| 293 | u32 val; |
| 294 | |
| 295 | return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val, |
| 296 | !(val & SSFSTS_CTL_SCIP), 40, |
| 297 | INTEL_SPI_TIMEOUT * 1000); |
| 298 | } |
| 299 | |
| 300 | static int intel_spi_init(struct intel_spi *ispi) |
| 301 | { |
| 302 | u32 opmenu0, opmenu1, lvscc, uvscc, val; |
| 303 | int i; |
| 304 | |
| 305 | switch (ispi->info->type) { |
| 306 | case INTEL_SPI_BYT: |
| 307 | ispi->sregs = ispi->base + BYT_SSFSTS_CTL; |
| 308 | ispi->pregs = ispi->base + BYT_PR; |
| 309 | ispi->nregions = BYT_FREG_NUM; |
| 310 | ispi->pr_num = BYT_PR_NUM; |
| 311 | ispi->swseq_reg = true; |
| 312 | |
| 313 | if (writeable) { |
| 314 | /* Disable write protection */ |
| 315 | val = readl(ispi->base + BYT_BCR); |
| 316 | if (!(val & BYT_BCR_WPD)) { |
| 317 | val |= BYT_BCR_WPD; |
| 318 | writel(val, ispi->base + BYT_BCR); |
| 319 | val = readl(ispi->base + BYT_BCR); |
| 320 | } |
| 321 | |
| 322 | ispi->writeable = !!(val & BYT_BCR_WPD); |
| 323 | } |
| 324 | |
| 325 | break; |
| 326 | |
| 327 | case INTEL_SPI_LPT: |
| 328 | ispi->sregs = ispi->base + LPT_SSFSTS_CTL; |
| 329 | ispi->pregs = ispi->base + LPT_PR; |
| 330 | ispi->nregions = LPT_FREG_NUM; |
| 331 | ispi->pr_num = LPT_PR_NUM; |
| 332 | ispi->swseq_reg = true; |
| 333 | break; |
| 334 | |
| 335 | case INTEL_SPI_BXT: |
| 336 | ispi->sregs = ispi->base + BXT_SSFSTS_CTL; |
| 337 | ispi->pregs = ispi->base + BXT_PR; |
| 338 | ispi->nregions = BXT_FREG_NUM; |
| 339 | ispi->pr_num = BXT_PR_NUM; |
| 340 | ispi->erase_64k = true; |
| 341 | break; |
| 342 | |
| 343 | default: |
| 344 | return -EINVAL; |
| 345 | } |
| 346 | |
| 347 | /* Disable #SMI generation from HW sequencer */ |
| 348 | val = readl(ispi->base + HSFSTS_CTL); |
| 349 | val &= ~HSFSTS_CTL_FSMIE; |
| 350 | writel(val, ispi->base + HSFSTS_CTL); |
| 351 | |
| 352 | /* |
| 353 | * Determine whether erase operation should use HW or SW sequencer. |
| 354 | * |
| 355 | * The HW sequencer has a predefined list of opcodes, with only the |
| 356 | * erase opcode being programmable in LVSCC and UVSCC registers. |
| 357 | * If these registers don't contain a valid erase opcode, erase |
| 358 | * cannot be done using HW sequencer. |
| 359 | */ |
| 360 | lvscc = readl(ispi->base + LVSCC); |
| 361 | uvscc = readl(ispi->base + UVSCC); |
| 362 | if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK)) |
| 363 | ispi->swseq_erase = true; |
| 364 | /* SPI controller on Intel BXT supports 64K erase opcode */ |
| 365 | if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase) |
| 366 | if (!(lvscc & ERASE_64K_OPCODE_MASK) || |
| 367 | !(uvscc & ERASE_64K_OPCODE_MASK)) |
| 368 | ispi->erase_64k = false; |
| 369 | |
| 370 | /* |
| 371 | * Some controllers can only do basic operations using hardware |
| 372 | * sequencer. All other operations are supposed to be carried out |
| 373 | * using software sequencer. |
| 374 | */ |
| 375 | if (ispi->swseq_reg) { |
| 376 | /* Disable #SMI generation from SW sequencer */ |
| 377 | val = readl(ispi->sregs + SSFSTS_CTL); |
| 378 | val &= ~SSFSTS_CTL_FSMIE; |
| 379 | writel(val, ispi->sregs + SSFSTS_CTL); |
| 380 | } |
| 381 | |
| 382 | /* Check controller's lock status */ |
| 383 | val = readl(ispi->base + HSFSTS_CTL); |
| 384 | ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN); |
| 385 | |
| 386 | if (ispi->locked) { |
| 387 | /* |
| 388 | * BIOS programs allowed opcodes and then locks down the |
| 389 | * register. So read back what opcodes it decided to support. |
| 390 | * That's the set we are going to support as well. |
| 391 | */ |
| 392 | opmenu0 = readl(ispi->sregs + OPMENU0); |
| 393 | opmenu1 = readl(ispi->sregs + OPMENU1); |
| 394 | |
| 395 | if (opmenu0 && opmenu1) { |
| 396 | for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) { |
| 397 | ispi->opcodes[i] = opmenu0 >> i * 8; |
| 398 | ispi->opcodes[i + 4] = opmenu1 >> i * 8; |
| 399 | } |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | intel_spi_dump_regs(ispi); |
| 404 | |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype) |
| 409 | { |
| 410 | int i; |
| 411 | int preop; |
| 412 | |
| 413 | if (ispi->locked) { |
| 414 | for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) |
| 415 | if (ispi->opcodes[i] == opcode) |
| 416 | return i; |
| 417 | |
| 418 | return -EINVAL; |
| 419 | } |
| 420 | |
| 421 | /* The lock is off, so just use index 0 */ |
| 422 | writel(opcode, ispi->sregs + OPMENU0); |
| 423 | preop = readw(ispi->sregs + PREOP_OPTYPE); |
| 424 | writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE); |
| 425 | |
| 426 | return 0; |
| 427 | } |
| 428 | |
| 429 | static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len) |
| 430 | { |
| 431 | u32 val, status; |
| 432 | int ret; |
| 433 | |
| 434 | val = readl(ispi->base + HSFSTS_CTL); |
| 435 | val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK); |
| 436 | |
| 437 | switch (opcode) { |
| 438 | case SPINOR_OP_RDID: |
| 439 | val |= HSFSTS_CTL_FCYCLE_RDID; |
| 440 | break; |
| 441 | case SPINOR_OP_WRSR: |
| 442 | val |= HSFSTS_CTL_FCYCLE_WRSR; |
| 443 | break; |
| 444 | case SPINOR_OP_RDSR: |
| 445 | val |= HSFSTS_CTL_FCYCLE_RDSR; |
| 446 | break; |
| 447 | default: |
| 448 | return -EINVAL; |
| 449 | } |
| 450 | |
| 451 | if (len > INTEL_SPI_FIFO_SZ) |
| 452 | return -EINVAL; |
| 453 | |
| 454 | val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT; |
| 455 | val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| 456 | val |= HSFSTS_CTL_FGO; |
| 457 | writel(val, ispi->base + HSFSTS_CTL); |
| 458 | |
| 459 | ret = intel_spi_wait_hw_busy(ispi); |
| 460 | if (ret) |
| 461 | return ret; |
| 462 | |
| 463 | status = readl(ispi->base + HSFSTS_CTL); |
| 464 | if (status & HSFSTS_CTL_FCERR) |
| 465 | return -EIO; |
| 466 | else if (status & HSFSTS_CTL_AEL) |
| 467 | return -EACCES; |
| 468 | |
| 469 | return 0; |
| 470 | } |
| 471 | |
| 472 | static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len, |
| 473 | int optype) |
| 474 | { |
| 475 | u32 val = 0, status; |
| 476 | u8 atomic_preopcode; |
| 477 | int ret; |
| 478 | |
| 479 | ret = intel_spi_opcode_index(ispi, opcode, optype); |
| 480 | if (ret < 0) |
| 481 | return ret; |
| 482 | |
| 483 | if (len > INTEL_SPI_FIFO_SZ) |
| 484 | return -EINVAL; |
| 485 | |
| 486 | /* |
| 487 | * Always clear it after each SW sequencer operation regardless |
| 488 | * of whether it is successful or not. |
| 489 | */ |
| 490 | atomic_preopcode = ispi->atomic_preopcode; |
| 491 | ispi->atomic_preopcode = 0; |
| 492 | |
| 493 | /* Only mark 'Data Cycle' bit when there is data to be transferred */ |
| 494 | if (len > 0) |
| 495 | val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS; |
| 496 | val |= ret << SSFSTS_CTL_COP_SHIFT; |
| 497 | val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE; |
| 498 | val |= SSFSTS_CTL_SCGO; |
| 499 | if (atomic_preopcode) { |
| 500 | u16 preop; |
| 501 | |
| 502 | switch (optype) { |
| 503 | case OPTYPE_WRITE_NO_ADDR: |
| 504 | case OPTYPE_WRITE_WITH_ADDR: |
| 505 | /* Pick matching preopcode for the atomic sequence */ |
| 506 | preop = readw(ispi->sregs + PREOP_OPTYPE); |
| 507 | if ((preop & 0xff) == atomic_preopcode) |
| 508 | ; /* Do nothing */ |
| 509 | else if ((preop >> 8) == atomic_preopcode) |
| 510 | val |= SSFSTS_CTL_SPOP; |
| 511 | else |
| 512 | return -EINVAL; |
| 513 | |
| 514 | /* Enable atomic sequence */ |
| 515 | val |= SSFSTS_CTL_ACS; |
| 516 | break; |
| 517 | |
| 518 | default: |
| 519 | return -EINVAL; |
| 520 | } |
| 521 | |
| 522 | } |
| 523 | writel(val, ispi->sregs + SSFSTS_CTL); |
| 524 | |
| 525 | ret = intel_spi_wait_sw_busy(ispi); |
| 526 | if (ret) |
| 527 | return ret; |
| 528 | |
| 529 | status = readl(ispi->sregs + SSFSTS_CTL); |
| 530 | if (status & SSFSTS_CTL_FCERR) |
| 531 | return -EIO; |
| 532 | else if (status & SSFSTS_CTL_AEL) |
| 533 | return -EACCES; |
| 534 | |
| 535 | return 0; |
| 536 | } |
| 537 | |
| 538 | static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) |
| 539 | { |
| 540 | struct intel_spi *ispi = nor->priv; |
| 541 | int ret; |
| 542 | |
| 543 | /* Address of the first chip */ |
| 544 | writel(0, ispi->base + FADDR); |
| 545 | |
| 546 | if (ispi->swseq_reg) |
| 547 | ret = intel_spi_sw_cycle(ispi, opcode, len, |
| 548 | OPTYPE_READ_NO_ADDR); |
| 549 | else |
| 550 | ret = intel_spi_hw_cycle(ispi, opcode, len); |
| 551 | |
| 552 | if (ret) |
| 553 | return ret; |
| 554 | |
| 555 | return intel_spi_read_block(ispi, buf, len); |
| 556 | } |
| 557 | |
| 558 | static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) |
| 559 | { |
| 560 | struct intel_spi *ispi = nor->priv; |
| 561 | int ret; |
| 562 | |
| 563 | /* |
| 564 | * This is handled with atomic operation and preop code in Intel |
| 565 | * controller so we only verify that it is available. If the |
| 566 | * controller is not locked, program the opcode to the PREOP |
| 567 | * register for later use. |
| 568 | * |
| 569 | * When hardware sequencer is used there is no need to program |
| 570 | * any opcodes (it handles them automatically as part of a command). |
| 571 | */ |
| 572 | if (opcode == SPINOR_OP_WREN) { |
| 573 | u16 preop; |
| 574 | |
| 575 | if (!ispi->swseq_reg) |
| 576 | return 0; |
| 577 | |
| 578 | preop = readw(ispi->sregs + PREOP_OPTYPE); |
| 579 | if ((preop & 0xff) != opcode && (preop >> 8) != opcode) { |
| 580 | if (ispi->locked) |
| 581 | return -EINVAL; |
| 582 | writel(opcode, ispi->sregs + PREOP_OPTYPE); |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * This enables atomic sequence on next SW sycle. Will |
| 587 | * be cleared after next operation. |
| 588 | */ |
| 589 | ispi->atomic_preopcode = opcode; |
| 590 | return 0; |
| 591 | } |
| 592 | |
| 593 | writel(0, ispi->base + FADDR); |
| 594 | |
| 595 | /* Write the value beforehand */ |
| 596 | ret = intel_spi_write_block(ispi, buf, len); |
| 597 | if (ret) |
| 598 | return ret; |
| 599 | |
| 600 | if (ispi->swseq_reg) |
| 601 | return intel_spi_sw_cycle(ispi, opcode, len, |
| 602 | OPTYPE_WRITE_NO_ADDR); |
| 603 | return intel_spi_hw_cycle(ispi, opcode, len); |
| 604 | } |
| 605 | |
| 606 | static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len, |
| 607 | u_char *read_buf) |
| 608 | { |
| 609 | struct intel_spi *ispi = nor->priv; |
| 610 | size_t block_size, retlen = 0; |
| 611 | u32 val, status; |
| 612 | ssize_t ret; |
| 613 | |
| 614 | /* |
| 615 | * Atomic sequence is not expected with HW sequencer reads. Make |
| 616 | * sure it is cleared regardless. |
| 617 | */ |
| 618 | if (WARN_ON_ONCE(ispi->atomic_preopcode)) |
| 619 | ispi->atomic_preopcode = 0; |
| 620 | |
| 621 | switch (nor->read_opcode) { |
| 622 | case SPINOR_OP_READ: |
| 623 | case SPINOR_OP_READ_FAST: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 624 | case SPINOR_OP_READ_4B: |
| 625 | case SPINOR_OP_READ_FAST_4B: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 626 | break; |
| 627 | default: |
| 628 | return -EINVAL; |
| 629 | } |
| 630 | |
| 631 | while (len > 0) { |
| 632 | block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ); |
| 633 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 634 | /* Read cannot cross 4K boundary */ |
| 635 | block_size = min_t(loff_t, from + block_size, |
| 636 | round_up(from + 1, SZ_4K)) - from; |
| 637 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 638 | writel(from, ispi->base + FADDR); |
| 639 | |
| 640 | val = readl(ispi->base + HSFSTS_CTL); |
| 641 | val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); |
| 642 | val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| 643 | val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; |
| 644 | val |= HSFSTS_CTL_FCYCLE_READ; |
| 645 | val |= HSFSTS_CTL_FGO; |
| 646 | writel(val, ispi->base + HSFSTS_CTL); |
| 647 | |
| 648 | ret = intel_spi_wait_hw_busy(ispi); |
| 649 | if (ret) |
| 650 | return ret; |
| 651 | |
| 652 | status = readl(ispi->base + HSFSTS_CTL); |
| 653 | if (status & HSFSTS_CTL_FCERR) |
| 654 | ret = -EIO; |
| 655 | else if (status & HSFSTS_CTL_AEL) |
| 656 | ret = -EACCES; |
| 657 | |
| 658 | if (ret < 0) { |
| 659 | dev_err(ispi->dev, "read error: %llx: %#x\n", from, |
| 660 | status); |
| 661 | return ret; |
| 662 | } |
| 663 | |
| 664 | ret = intel_spi_read_block(ispi, read_buf, block_size); |
| 665 | if (ret) |
| 666 | return ret; |
| 667 | |
| 668 | len -= block_size; |
| 669 | from += block_size; |
| 670 | retlen += block_size; |
| 671 | read_buf += block_size; |
| 672 | } |
| 673 | |
| 674 | return retlen; |
| 675 | } |
| 676 | |
| 677 | static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len, |
| 678 | const u_char *write_buf) |
| 679 | { |
| 680 | struct intel_spi *ispi = nor->priv; |
| 681 | size_t block_size, retlen = 0; |
| 682 | u32 val, status; |
| 683 | ssize_t ret; |
| 684 | |
| 685 | /* Not needed with HW sequencer write, make sure it is cleared */ |
| 686 | ispi->atomic_preopcode = 0; |
| 687 | |
| 688 | while (len > 0) { |
| 689 | block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ); |
| 690 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 691 | /* Write cannot cross 4K boundary */ |
| 692 | block_size = min_t(loff_t, to + block_size, |
| 693 | round_up(to + 1, SZ_4K)) - to; |
| 694 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 695 | writel(to, ispi->base + FADDR); |
| 696 | |
| 697 | val = readl(ispi->base + HSFSTS_CTL); |
| 698 | val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); |
| 699 | val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| 700 | val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; |
| 701 | val |= HSFSTS_CTL_FCYCLE_WRITE; |
| 702 | |
| 703 | ret = intel_spi_write_block(ispi, write_buf, block_size); |
| 704 | if (ret) { |
| 705 | dev_err(ispi->dev, "failed to write block\n"); |
| 706 | return ret; |
| 707 | } |
| 708 | |
| 709 | /* Start the write now */ |
| 710 | val |= HSFSTS_CTL_FGO; |
| 711 | writel(val, ispi->base + HSFSTS_CTL); |
| 712 | |
| 713 | ret = intel_spi_wait_hw_busy(ispi); |
| 714 | if (ret) { |
| 715 | dev_err(ispi->dev, "timeout\n"); |
| 716 | return ret; |
| 717 | } |
| 718 | |
| 719 | status = readl(ispi->base + HSFSTS_CTL); |
| 720 | if (status & HSFSTS_CTL_FCERR) |
| 721 | ret = -EIO; |
| 722 | else if (status & HSFSTS_CTL_AEL) |
| 723 | ret = -EACCES; |
| 724 | |
| 725 | if (ret < 0) { |
| 726 | dev_err(ispi->dev, "write error: %llx: %#x\n", to, |
| 727 | status); |
| 728 | return ret; |
| 729 | } |
| 730 | |
| 731 | len -= block_size; |
| 732 | to += block_size; |
| 733 | retlen += block_size; |
| 734 | write_buf += block_size; |
| 735 | } |
| 736 | |
| 737 | return retlen; |
| 738 | } |
| 739 | |
| 740 | static int intel_spi_erase(struct spi_nor *nor, loff_t offs) |
| 741 | { |
| 742 | size_t erase_size, len = nor->mtd.erasesize; |
| 743 | struct intel_spi *ispi = nor->priv; |
| 744 | u32 val, status, cmd; |
| 745 | int ret; |
| 746 | |
| 747 | /* If the hardware can do 64k erase use that when possible */ |
| 748 | if (len >= SZ_64K && ispi->erase_64k) { |
| 749 | cmd = HSFSTS_CTL_FCYCLE_ERASE_64K; |
| 750 | erase_size = SZ_64K; |
| 751 | } else { |
| 752 | cmd = HSFSTS_CTL_FCYCLE_ERASE; |
| 753 | erase_size = SZ_4K; |
| 754 | } |
| 755 | |
| 756 | if (ispi->swseq_erase) { |
| 757 | while (len > 0) { |
| 758 | writel(offs, ispi->base + FADDR); |
| 759 | |
| 760 | ret = intel_spi_sw_cycle(ispi, nor->erase_opcode, |
| 761 | 0, OPTYPE_WRITE_WITH_ADDR); |
| 762 | if (ret) |
| 763 | return ret; |
| 764 | |
| 765 | offs += erase_size; |
| 766 | len -= erase_size; |
| 767 | } |
| 768 | |
| 769 | return 0; |
| 770 | } |
| 771 | |
| 772 | /* Not needed with HW sequencer erase, make sure it is cleared */ |
| 773 | ispi->atomic_preopcode = 0; |
| 774 | |
| 775 | while (len > 0) { |
| 776 | writel(offs, ispi->base + FADDR); |
| 777 | |
| 778 | val = readl(ispi->base + HSFSTS_CTL); |
| 779 | val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); |
| 780 | val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; |
| 781 | val |= cmd; |
| 782 | val |= HSFSTS_CTL_FGO; |
| 783 | writel(val, ispi->base + HSFSTS_CTL); |
| 784 | |
| 785 | ret = intel_spi_wait_hw_busy(ispi); |
| 786 | if (ret) |
| 787 | return ret; |
| 788 | |
| 789 | status = readl(ispi->base + HSFSTS_CTL); |
| 790 | if (status & HSFSTS_CTL_FCERR) |
| 791 | return -EIO; |
| 792 | else if (status & HSFSTS_CTL_AEL) |
| 793 | return -EACCES; |
| 794 | |
| 795 | offs += erase_size; |
| 796 | len -= erase_size; |
| 797 | } |
| 798 | |
| 799 | return 0; |
| 800 | } |
| 801 | |
| 802 | static bool intel_spi_is_protected(const struct intel_spi *ispi, |
| 803 | unsigned int base, unsigned int limit) |
| 804 | { |
| 805 | int i; |
| 806 | |
| 807 | for (i = 0; i < ispi->pr_num; i++) { |
| 808 | u32 pr_base, pr_limit, pr_value; |
| 809 | |
| 810 | pr_value = readl(ispi->pregs + PR(i)); |
| 811 | if (!(pr_value & (PR_WPE | PR_RPE))) |
| 812 | continue; |
| 813 | |
| 814 | pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; |
| 815 | pr_base = pr_value & PR_BASE_MASK; |
| 816 | |
| 817 | if (pr_base >= base && pr_limit <= limit) |
| 818 | return true; |
| 819 | } |
| 820 | |
| 821 | return false; |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * There will be a single partition holding all enabled flash regions. We |
| 826 | * call this "BIOS". |
| 827 | */ |
| 828 | static void intel_spi_fill_partition(struct intel_spi *ispi, |
| 829 | struct mtd_partition *part) |
| 830 | { |
| 831 | u64 end; |
| 832 | int i; |
| 833 | |
| 834 | memset(part, 0, sizeof(*part)); |
| 835 | |
| 836 | /* Start from the mandatory descriptor region */ |
| 837 | part->size = 4096; |
| 838 | part->name = "BIOS"; |
| 839 | |
| 840 | /* |
| 841 | * Now try to find where this partition ends based on the flash |
| 842 | * region registers. |
| 843 | */ |
| 844 | for (i = 1; i < ispi->nregions; i++) { |
| 845 | u32 region, base, limit; |
| 846 | |
| 847 | region = readl(ispi->base + FREG(i)); |
| 848 | base = region & FREG_BASE_MASK; |
| 849 | limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; |
| 850 | |
| 851 | if (base >= limit || limit == 0) |
| 852 | continue; |
| 853 | |
| 854 | /* |
| 855 | * If any of the regions have protection bits set, make the |
| 856 | * whole partition read-only to be on the safe side. |
| 857 | */ |
| 858 | if (intel_spi_is_protected(ispi, base, limit)) |
| 859 | ispi->writeable = false; |
| 860 | |
| 861 | end = (limit << 12) + 4096; |
| 862 | if (end > part->size) |
| 863 | part->size = end; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | struct intel_spi *intel_spi_probe(struct device *dev, |
| 868 | struct resource *mem, const struct intel_spi_boardinfo *info) |
| 869 | { |
| 870 | const struct spi_nor_hwcaps hwcaps = { |
| 871 | .mask = SNOR_HWCAPS_READ | |
| 872 | SNOR_HWCAPS_READ_FAST | |
| 873 | SNOR_HWCAPS_PP, |
| 874 | }; |
| 875 | struct mtd_partition part; |
| 876 | struct intel_spi *ispi; |
| 877 | int ret; |
| 878 | |
| 879 | if (!info || !mem) |
| 880 | return ERR_PTR(-EINVAL); |
| 881 | |
| 882 | ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL); |
| 883 | if (!ispi) |
| 884 | return ERR_PTR(-ENOMEM); |
| 885 | |
| 886 | ispi->base = devm_ioremap_resource(dev, mem); |
| 887 | if (IS_ERR(ispi->base)) |
| 888 | return ERR_CAST(ispi->base); |
| 889 | |
| 890 | ispi->dev = dev; |
| 891 | ispi->info = info; |
| 892 | ispi->writeable = info->writeable; |
| 893 | |
| 894 | ret = intel_spi_init(ispi); |
| 895 | if (ret) |
| 896 | return ERR_PTR(ret); |
| 897 | |
| 898 | ispi->nor.dev = ispi->dev; |
| 899 | ispi->nor.priv = ispi; |
| 900 | ispi->nor.read_reg = intel_spi_read_reg; |
| 901 | ispi->nor.write_reg = intel_spi_write_reg; |
| 902 | ispi->nor.read = intel_spi_read; |
| 903 | ispi->nor.write = intel_spi_write; |
| 904 | ispi->nor.erase = intel_spi_erase; |
| 905 | |
| 906 | ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps); |
| 907 | if (ret) { |
| 908 | dev_info(dev, "failed to locate the chip\n"); |
| 909 | return ERR_PTR(ret); |
| 910 | } |
| 911 | |
| 912 | intel_spi_fill_partition(ispi, &part); |
| 913 | |
| 914 | /* Prevent writes if not explicitly enabled */ |
| 915 | if (!ispi->writeable || !writeable) |
| 916 | ispi->nor.mtd.flags &= ~MTD_WRITEABLE; |
| 917 | |
| 918 | ret = mtd_device_register(&ispi->nor.mtd, &part, 1); |
| 919 | if (ret) |
| 920 | return ERR_PTR(ret); |
| 921 | |
| 922 | return ispi; |
| 923 | } |
| 924 | EXPORT_SYMBOL_GPL(intel_spi_probe); |
| 925 | |
| 926 | int intel_spi_remove(struct intel_spi *ispi) |
| 927 | { |
| 928 | return mtd_device_unregister(&ispi->nor.mtd); |
| 929 | } |
| 930 | EXPORT_SYMBOL_GPL(intel_spi_remove); |
| 931 | |
| 932 | MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver"); |
| 933 | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); |
| 934 | MODULE_LICENSE("GPL v2"); |