Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * This is for all the tests related to logic bugs (e.g. bad dereferences, |
| 4 | * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and |
| 5 | * lockups) along with other things that don't fit well into existing LKDTM |
| 6 | * test source files. |
| 7 | */ |
| 8 | #include "lkdtm.h" |
| 9 | #include <linux/list.h> |
| 10 | #include <linux/sched.h> |
| 11 | #include <linux/sched/signal.h> |
| 12 | #include <linux/sched/task_stack.h> |
| 13 | #include <linux/uaccess.h> |
| 14 | |
| 15 | struct lkdtm_list { |
| 16 | struct list_head node; |
| 17 | }; |
| 18 | |
| 19 | /* |
| 20 | * Make sure our attempts to over run the kernel stack doesn't trigger |
| 21 | * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we |
| 22 | * recurse past the end of THREAD_SIZE by default. |
| 23 | */ |
| 24 | #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 25 | #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 26 | #else |
| 27 | #define REC_STACK_SIZE (THREAD_SIZE / 8) |
| 28 | #endif |
| 29 | #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2) |
| 30 | |
| 31 | static int recur_count = REC_NUM_DEFAULT; |
| 32 | |
| 33 | static DEFINE_SPINLOCK(lock_me_up); |
| 34 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 35 | /* |
| 36 | * Make sure compiler does not optimize this function or stack frame away: |
| 37 | * - function marked noinline |
| 38 | * - stack variables are marked volatile |
| 39 | * - stack variables are written (memset()) and read (pr_info()) |
| 40 | * - function has external effects (pr_info()) |
| 41 | * */ |
| 42 | static int noinline recursive_loop(int remaining) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 43 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 44 | volatile char buf[REC_STACK_SIZE]; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 45 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 46 | memset((void *)buf, remaining & 0xFF, sizeof(buf)); |
| 47 | pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)], |
| 48 | recur_count); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 49 | if (!remaining) |
| 50 | return 0; |
| 51 | else |
| 52 | return recursive_loop(remaining - 1); |
| 53 | } |
| 54 | |
| 55 | /* If the depth is negative, use the default, otherwise keep parameter. */ |
| 56 | void __init lkdtm_bugs_init(int *recur_param) |
| 57 | { |
| 58 | if (*recur_param < 0) |
| 59 | *recur_param = recur_count; |
| 60 | else |
| 61 | recur_count = *recur_param; |
| 62 | } |
| 63 | |
| 64 | void lkdtm_PANIC(void) |
| 65 | { |
| 66 | panic("dumptest"); |
| 67 | } |
| 68 | |
| 69 | void lkdtm_BUG(void) |
| 70 | { |
| 71 | BUG(); |
| 72 | } |
| 73 | |
| 74 | static int warn_counter; |
| 75 | |
| 76 | void lkdtm_WARNING(void) |
| 77 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 78 | WARN_ON(++warn_counter); |
| 79 | } |
| 80 | |
| 81 | void lkdtm_WARNING_MESSAGE(void) |
| 82 | { |
| 83 | WARN(1, "Warning message trigger count: %d\n", ++warn_counter); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 84 | } |
| 85 | |
| 86 | void lkdtm_EXCEPTION(void) |
| 87 | { |
| 88 | *((volatile int *) 0) = 0; |
| 89 | } |
| 90 | |
| 91 | void lkdtm_LOOP(void) |
| 92 | { |
| 93 | for (;;) |
| 94 | ; |
| 95 | } |
| 96 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 97 | void lkdtm_EXHAUST_STACK(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 98 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 99 | pr_info("Calling function with %lu frame size to depth %d ...\n", |
| 100 | REC_STACK_SIZE, recur_count); |
| 101 | recursive_loop(recur_count); |
| 102 | pr_info("FAIL: survived without exhausting stack?!\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 103 | } |
| 104 | |
| 105 | static noinline void __lkdtm_CORRUPT_STACK(void *stack) |
| 106 | { |
| 107 | memset(stack, '\xff', 64); |
| 108 | } |
| 109 | |
| 110 | /* This should trip the stack canary, not corrupt the return address. */ |
| 111 | noinline void lkdtm_CORRUPT_STACK(void) |
| 112 | { |
| 113 | /* Use default char array length that triggers stack protection. */ |
| 114 | char data[8] __aligned(sizeof(void *)); |
| 115 | |
| 116 | __lkdtm_CORRUPT_STACK(&data); |
| 117 | |
| 118 | pr_info("Corrupted stack containing char array ...\n"); |
| 119 | } |
| 120 | |
| 121 | /* Same as above but will only get a canary with -fstack-protector-strong */ |
| 122 | noinline void lkdtm_CORRUPT_STACK_STRONG(void) |
| 123 | { |
| 124 | union { |
| 125 | unsigned short shorts[4]; |
| 126 | unsigned long *ptr; |
| 127 | } data __aligned(sizeof(void *)); |
| 128 | |
| 129 | __lkdtm_CORRUPT_STACK(&data); |
| 130 | |
| 131 | pr_info("Corrupted stack containing union ...\n"); |
| 132 | } |
| 133 | |
| 134 | void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void) |
| 135 | { |
| 136 | static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5}; |
| 137 | u32 *p; |
| 138 | u32 val = 0x12345678; |
| 139 | |
| 140 | p = (u32 *)(data + 1); |
| 141 | if (*p == 0) |
| 142 | val = 0x87654321; |
| 143 | *p = val; |
| 144 | } |
| 145 | |
| 146 | void lkdtm_SOFTLOCKUP(void) |
| 147 | { |
| 148 | preempt_disable(); |
| 149 | for (;;) |
| 150 | cpu_relax(); |
| 151 | } |
| 152 | |
| 153 | void lkdtm_HARDLOCKUP(void) |
| 154 | { |
| 155 | local_irq_disable(); |
| 156 | for (;;) |
| 157 | cpu_relax(); |
| 158 | } |
| 159 | |
| 160 | void lkdtm_SPINLOCKUP(void) |
| 161 | { |
| 162 | /* Must be called twice to trigger. */ |
| 163 | spin_lock(&lock_me_up); |
| 164 | /* Let sparse know we intended to exit holding the lock. */ |
| 165 | __release(&lock_me_up); |
| 166 | } |
| 167 | |
| 168 | void lkdtm_HUNG_TASK(void) |
| 169 | { |
| 170 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 171 | schedule(); |
| 172 | } |
| 173 | |
| 174 | void lkdtm_CORRUPT_LIST_ADD(void) |
| 175 | { |
| 176 | /* |
| 177 | * Initially, an empty list via LIST_HEAD: |
| 178 | * test_head.next = &test_head |
| 179 | * test_head.prev = &test_head |
| 180 | */ |
| 181 | LIST_HEAD(test_head); |
| 182 | struct lkdtm_list good, bad; |
| 183 | void *target[2] = { }; |
| 184 | void *redirection = ⌖ |
| 185 | |
| 186 | pr_info("attempting good list addition\n"); |
| 187 | |
| 188 | /* |
| 189 | * Adding to the list performs these actions: |
| 190 | * test_head.next->prev = &good.node |
| 191 | * good.node.next = test_head.next |
| 192 | * good.node.prev = test_head |
| 193 | * test_head.next = good.node |
| 194 | */ |
| 195 | list_add(&good.node, &test_head); |
| 196 | |
| 197 | pr_info("attempting corrupted list addition\n"); |
| 198 | /* |
| 199 | * In simulating this "write what where" primitive, the "what" is |
| 200 | * the address of &bad.node, and the "where" is the address held |
| 201 | * by "redirection". |
| 202 | */ |
| 203 | test_head.next = redirection; |
| 204 | list_add(&bad.node, &test_head); |
| 205 | |
| 206 | if (target[0] == NULL && target[1] == NULL) |
| 207 | pr_err("Overwrite did not happen, but no BUG?!\n"); |
| 208 | else |
| 209 | pr_err("list_add() corruption not detected!\n"); |
| 210 | } |
| 211 | |
| 212 | void lkdtm_CORRUPT_LIST_DEL(void) |
| 213 | { |
| 214 | LIST_HEAD(test_head); |
| 215 | struct lkdtm_list item; |
| 216 | void *target[2] = { }; |
| 217 | void *redirection = ⌖ |
| 218 | |
| 219 | list_add(&item.node, &test_head); |
| 220 | |
| 221 | pr_info("attempting good list removal\n"); |
| 222 | list_del(&item.node); |
| 223 | |
| 224 | pr_info("attempting corrupted list removal\n"); |
| 225 | list_add(&item.node, &test_head); |
| 226 | |
| 227 | /* As with the list_add() test above, this corrupts "next". */ |
| 228 | item.node.next = redirection; |
| 229 | list_del(&item.node); |
| 230 | |
| 231 | if (target[0] == NULL && target[1] == NULL) |
| 232 | pr_err("Overwrite did not happen, but no BUG?!\n"); |
| 233 | else |
| 234 | pr_err("list_del() corruption not detected!\n"); |
| 235 | } |
| 236 | |
| 237 | /* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */ |
| 238 | void lkdtm_CORRUPT_USER_DS(void) |
| 239 | { |
| 240 | pr_info("setting bad task size limit\n"); |
| 241 | set_fs(KERNEL_DS); |
| 242 | |
| 243 | /* Make sure we do not keep running with a KERNEL_DS! */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 244 | force_sig(SIGKILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 245 | } |
| 246 | |
| 247 | /* Test that VMAP_STACK is actually allocating with a leading guard page */ |
| 248 | void lkdtm_STACK_GUARD_PAGE_LEADING(void) |
| 249 | { |
| 250 | const unsigned char *stack = task_stack_page(current); |
| 251 | const unsigned char *ptr = stack - 1; |
| 252 | volatile unsigned char byte; |
| 253 | |
| 254 | pr_info("attempting bad read from page below current stack\n"); |
| 255 | |
| 256 | byte = *ptr; |
| 257 | |
| 258 | pr_err("FAIL: accessed page before stack!\n"); |
| 259 | } |
| 260 | |
| 261 | /* Test that VMAP_STACK is actually allocating with a trailing guard page */ |
| 262 | void lkdtm_STACK_GUARD_PAGE_TRAILING(void) |
| 263 | { |
| 264 | const unsigned char *stack = task_stack_page(current); |
| 265 | const unsigned char *ptr = stack + THREAD_SIZE; |
| 266 | volatile unsigned char byte; |
| 267 | |
| 268 | pr_info("attempting bad read from page above current stack\n"); |
| 269 | |
| 270 | byte = *ptr; |
| 271 | |
| 272 | pr_err("FAIL: accessed page after stack!\n"); |
| 273 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 274 | |
| 275 | void lkdtm_UNSET_SMEP(void) |
| 276 | { |
| 277 | #ifdef CONFIG_X86_64 |
| 278 | #define MOV_CR4_DEPTH 64 |
| 279 | void (*direct_write_cr4)(unsigned long val); |
| 280 | unsigned char *insn; |
| 281 | unsigned long cr4; |
| 282 | int i; |
| 283 | |
| 284 | cr4 = native_read_cr4(); |
| 285 | |
| 286 | if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) { |
| 287 | pr_err("FAIL: SMEP not in use\n"); |
| 288 | return; |
| 289 | } |
| 290 | cr4 &= ~(X86_CR4_SMEP); |
| 291 | |
| 292 | pr_info("trying to clear SMEP normally\n"); |
| 293 | native_write_cr4(cr4); |
| 294 | if (cr4 == native_read_cr4()) { |
| 295 | pr_err("FAIL: pinning SMEP failed!\n"); |
| 296 | cr4 |= X86_CR4_SMEP; |
| 297 | pr_info("restoring SMEP\n"); |
| 298 | native_write_cr4(cr4); |
| 299 | return; |
| 300 | } |
| 301 | pr_info("ok: SMEP did not get cleared\n"); |
| 302 | |
| 303 | /* |
| 304 | * To test the post-write pinning verification we need to call |
| 305 | * directly into the middle of native_write_cr4() where the |
| 306 | * cr4 write happens, skipping any pinning. This searches for |
| 307 | * the cr4 writing instruction. |
| 308 | */ |
| 309 | insn = (unsigned char *)native_write_cr4; |
| 310 | for (i = 0; i < MOV_CR4_DEPTH; i++) { |
| 311 | /* mov %rdi, %cr4 */ |
| 312 | if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7) |
| 313 | break; |
| 314 | /* mov %rdi,%rax; mov %rax, %cr4 */ |
| 315 | if (insn[i] == 0x48 && insn[i+1] == 0x89 && |
| 316 | insn[i+2] == 0xf8 && insn[i+3] == 0x0f && |
| 317 | insn[i+4] == 0x22 && insn[i+5] == 0xe0) |
| 318 | break; |
| 319 | } |
| 320 | if (i >= MOV_CR4_DEPTH) { |
| 321 | pr_info("ok: cannot locate cr4 writing call gadget\n"); |
| 322 | return; |
| 323 | } |
| 324 | direct_write_cr4 = (void *)(insn + i); |
| 325 | |
| 326 | pr_info("trying to clear SMEP with call gadget\n"); |
| 327 | direct_write_cr4(cr4); |
| 328 | if (native_read_cr4() & X86_CR4_SMEP) { |
| 329 | pr_info("ok: SMEP removal was reverted\n"); |
| 330 | } else { |
| 331 | pr_err("FAIL: cleared SMEP not detected!\n"); |
| 332 | cr4 |= X86_CR4_SMEP; |
| 333 | pr_info("restoring SMEP\n"); |
| 334 | native_write_cr4(cr4); |
| 335 | } |
| 336 | #else |
| 337 | pr_err("FAIL: this test is x86_64-only\n"); |
| 338 | #endif |
| 339 | } |