David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* |
| 4 | * Copyright 2016-2019 HabanaLabs, Ltd. |
| 5 | * All Rights Reserved. |
| 6 | */ |
| 7 | |
| 8 | #include "habanalabs.h" |
| 9 | #include "include/hw_ip/mmu/mmu_general.h" |
| 10 | |
| 11 | #include <linux/genalloc.h> |
| 12 | #include <linux/slab.h> |
| 13 | |
| 14 | static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); |
| 15 | |
| 16 | static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) |
| 17 | { |
| 18 | struct pgt_info *pgt_info = NULL; |
| 19 | |
| 20 | hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, |
| 21 | (unsigned long) hop_addr) |
| 22 | if (hop_addr == pgt_info->shadow_addr) |
| 23 | break; |
| 24 | |
| 25 | return pgt_info; |
| 26 | } |
| 27 | |
| 28 | static void free_hop(struct hl_ctx *ctx, u64 hop_addr) |
| 29 | { |
| 30 | struct hl_device *hdev = ctx->hdev; |
| 31 | struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); |
| 32 | |
| 33 | gen_pool_free(hdev->mmu_pgt_pool, pgt_info->phys_addr, |
| 34 | hdev->asic_prop.mmu_hop_table_size); |
| 35 | hash_del(&pgt_info->node); |
| 36 | kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); |
| 37 | kfree(pgt_info); |
| 38 | } |
| 39 | |
| 40 | static u64 alloc_hop(struct hl_ctx *ctx) |
| 41 | { |
| 42 | struct hl_device *hdev = ctx->hdev; |
| 43 | struct asic_fixed_properties *prop = &hdev->asic_prop; |
| 44 | struct pgt_info *pgt_info; |
| 45 | u64 phys_addr, shadow_addr; |
| 46 | |
| 47 | pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); |
| 48 | if (!pgt_info) |
| 49 | return ULLONG_MAX; |
| 50 | |
| 51 | phys_addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool, |
| 52 | prop->mmu_hop_table_size); |
| 53 | if (!phys_addr) { |
| 54 | dev_err(hdev->dev, "failed to allocate page\n"); |
| 55 | goto pool_add_err; |
| 56 | } |
| 57 | |
| 58 | shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size, |
| 59 | GFP_KERNEL); |
| 60 | if (!shadow_addr) |
| 61 | goto shadow_err; |
| 62 | |
| 63 | pgt_info->phys_addr = phys_addr; |
| 64 | pgt_info->shadow_addr = shadow_addr; |
| 65 | pgt_info->ctx = ctx; |
| 66 | pgt_info->num_of_ptes = 0; |
| 67 | hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); |
| 68 | |
| 69 | return shadow_addr; |
| 70 | |
| 71 | shadow_err: |
| 72 | gen_pool_free(hdev->mmu_pgt_pool, phys_addr, prop->mmu_hop_table_size); |
| 73 | pool_add_err: |
| 74 | kfree(pgt_info); |
| 75 | |
| 76 | return ULLONG_MAX; |
| 77 | } |
| 78 | |
| 79 | static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx) |
| 80 | { |
| 81 | return ctx->hdev->asic_prop.mmu_pgt_addr + |
| 82 | (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); |
| 83 | } |
| 84 | |
| 85 | static inline u64 get_hop0_addr(struct hl_ctx *ctx) |
| 86 | { |
| 87 | return (u64) (uintptr_t) ctx->hdev->mmu_shadow_hop0 + |
| 88 | (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); |
| 89 | } |
| 90 | |
| 91 | static inline void flush(struct hl_ctx *ctx) |
| 92 | { |
| 93 | /* flush all writes from all cores to reach PCI */ |
| 94 | mb(); |
| 95 | ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx)); |
| 96 | } |
| 97 | |
| 98 | /* transform the value to physical address when writing to H/W */ |
| 99 | static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) |
| 100 | { |
| 101 | /* |
| 102 | * The value to write is actually the address of the next shadow hop + |
| 103 | * flags at the 12 LSBs. |
| 104 | * Hence in order to get the value to write to the physical PTE, we |
| 105 | * clear the 12 LSBs and translate the shadow hop to its associated |
| 106 | * physical hop, and add back the original 12 LSBs. |
| 107 | */ |
| 108 | u64 phys_val = get_phys_addr(ctx, val & PTE_PHYS_ADDR_MASK) | |
| 109 | (val & OFFSET_MASK); |
| 110 | |
| 111 | ctx->hdev->asic_funcs->write_pte(ctx->hdev, |
| 112 | get_phys_addr(ctx, shadow_pte_addr), |
| 113 | phys_val); |
| 114 | |
| 115 | *(u64 *) (uintptr_t) shadow_pte_addr = val; |
| 116 | } |
| 117 | |
| 118 | /* do not transform the value to physical address when writing to H/W */ |
| 119 | static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, |
| 120 | u64 val) |
| 121 | { |
| 122 | ctx->hdev->asic_funcs->write_pte(ctx->hdev, |
| 123 | get_phys_addr(ctx, shadow_pte_addr), |
| 124 | val); |
| 125 | *(u64 *) (uintptr_t) shadow_pte_addr = val; |
| 126 | } |
| 127 | |
| 128 | /* clear the last and present bits */ |
| 129 | static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr) |
| 130 | { |
| 131 | /* no need to transform the value to physical address */ |
| 132 | write_final_pte(ctx, pte_addr, 0); |
| 133 | } |
| 134 | |
| 135 | static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) |
| 136 | { |
| 137 | get_pgt_info(ctx, hop_addr)->num_of_ptes++; |
| 138 | } |
| 139 | |
| 140 | /* |
| 141 | * put_pte - decrement the num of ptes and free the hop if possible |
| 142 | * |
| 143 | * @ctx: pointer to the context structure |
| 144 | * @hop_addr: addr of the hop |
| 145 | * |
| 146 | * This function returns the number of ptes left on this hop. If the number is |
| 147 | * 0, it means the pte was freed. |
| 148 | */ |
| 149 | static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) |
| 150 | { |
| 151 | struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); |
| 152 | int num_of_ptes_left; |
| 153 | |
| 154 | pgt_info->num_of_ptes--; |
| 155 | |
| 156 | /* |
| 157 | * Need to save the number of ptes left because free_hop might free |
| 158 | * the pgt_info |
| 159 | */ |
| 160 | num_of_ptes_left = pgt_info->num_of_ptes; |
| 161 | if (!num_of_ptes_left) |
| 162 | free_hop(ctx, hop_addr); |
| 163 | |
| 164 | return num_of_ptes_left; |
| 165 | } |
| 166 | |
| 167 | static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr, |
| 168 | u64 virt_addr, u64 mask, u64 shift) |
| 169 | { |
| 170 | return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * |
| 171 | ((virt_addr & mask) >> shift); |
| 172 | } |
| 173 | |
| 174 | static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) |
| 175 | { |
| 176 | return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP0_MASK, HOP0_SHIFT); |
| 177 | } |
| 178 | |
| 179 | static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) |
| 180 | { |
| 181 | return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP1_MASK, HOP1_SHIFT); |
| 182 | } |
| 183 | |
| 184 | static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) |
| 185 | { |
| 186 | return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP2_MASK, HOP2_SHIFT); |
| 187 | } |
| 188 | |
| 189 | static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) |
| 190 | { |
| 191 | return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP3_MASK, HOP3_SHIFT); |
| 192 | } |
| 193 | |
| 194 | static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) |
| 195 | { |
| 196 | return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP4_MASK, HOP4_SHIFT); |
| 197 | } |
| 198 | |
| 199 | static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) |
| 200 | { |
| 201 | if (curr_pte & PAGE_PRESENT_MASK) |
| 202 | return curr_pte & PHYS_ADDR_MASK; |
| 203 | else |
| 204 | return ULLONG_MAX; |
| 205 | } |
| 206 | |
| 207 | static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, |
| 208 | bool *is_new_hop) |
| 209 | { |
| 210 | u64 hop_addr = get_next_hop_addr(ctx, curr_pte); |
| 211 | |
| 212 | if (hop_addr == ULLONG_MAX) { |
| 213 | hop_addr = alloc_hop(ctx); |
| 214 | *is_new_hop = (hop_addr != ULLONG_MAX); |
| 215 | } |
| 216 | |
| 217 | return hop_addr; |
| 218 | } |
| 219 | |
| 220 | /* translates shadow address inside hop to a physical address */ |
| 221 | static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) |
| 222 | { |
| 223 | u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1); |
| 224 | u64 shadow_hop_addr = shadow_addr & ~page_mask; |
| 225 | u64 pte_offset = shadow_addr & page_mask; |
| 226 | u64 phys_hop_addr; |
| 227 | |
| 228 | if (shadow_hop_addr != get_hop0_addr(ctx)) |
| 229 | phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr; |
| 230 | else |
| 231 | phys_hop_addr = get_phys_hop0_addr(ctx); |
| 232 | |
| 233 | return phys_hop_addr + pte_offset; |
| 234 | } |
| 235 | |
| 236 | static int dram_default_mapping_init(struct hl_ctx *ctx) |
| 237 | { |
| 238 | struct hl_device *hdev = ctx->hdev; |
| 239 | struct asic_fixed_properties *prop = &hdev->asic_prop; |
| 240 | u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, |
| 241 | hop2_pte_addr, hop3_pte_addr, pte_val; |
| 242 | int rc, i, j, hop3_allocated = 0; |
| 243 | |
| 244 | if ((!hdev->dram_supports_virtual_memory) || |
| 245 | (!hdev->dram_default_page_mapping) || |
| 246 | (ctx->asid == HL_KERNEL_ASID_ID)) |
| 247 | return 0; |
| 248 | |
| 249 | num_of_hop3 = prop->dram_size_for_default_page_mapping; |
| 250 | do_div(num_of_hop3, prop->dram_page_size); |
| 251 | do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); |
| 252 | |
| 253 | /* add hop1 and hop2 */ |
| 254 | total_hops = num_of_hop3 + 2; |
| 255 | |
| 256 | ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); |
| 257 | if (!ctx->dram_default_hops) |
| 258 | return -ENOMEM; |
| 259 | |
| 260 | hop0_addr = get_hop0_addr(ctx); |
| 261 | |
| 262 | hop1_addr = alloc_hop(ctx); |
| 263 | if (hop1_addr == ULLONG_MAX) { |
| 264 | dev_err(hdev->dev, "failed to alloc hop 1\n"); |
| 265 | rc = -ENOMEM; |
| 266 | goto hop1_err; |
| 267 | } |
| 268 | |
| 269 | ctx->dram_default_hops[total_hops - 1] = hop1_addr; |
| 270 | |
| 271 | hop2_addr = alloc_hop(ctx); |
| 272 | if (hop2_addr == ULLONG_MAX) { |
| 273 | dev_err(hdev->dev, "failed to alloc hop 2\n"); |
| 274 | rc = -ENOMEM; |
| 275 | goto hop2_err; |
| 276 | } |
| 277 | |
| 278 | ctx->dram_default_hops[total_hops - 2] = hop2_addr; |
| 279 | |
| 280 | for (i = 0 ; i < num_of_hop3 ; i++) { |
| 281 | ctx->dram_default_hops[i] = alloc_hop(ctx); |
| 282 | if (ctx->dram_default_hops[i] == ULLONG_MAX) { |
| 283 | dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); |
| 284 | rc = -ENOMEM; |
| 285 | goto hop3_err; |
| 286 | } |
| 287 | hop3_allocated++; |
| 288 | } |
| 289 | |
| 290 | /* need only pte 0 in hops 0 and 1 */ |
| 291 | pte_val = (hop1_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| 292 | write_pte(ctx, hop0_addr, pte_val); |
| 293 | |
| 294 | pte_val = (hop2_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| 295 | write_pte(ctx, hop1_addr, pte_val); |
| 296 | get_pte(ctx, hop1_addr); |
| 297 | |
| 298 | hop2_pte_addr = hop2_addr; |
| 299 | for (i = 0 ; i < num_of_hop3 ; i++) { |
| 300 | pte_val = (ctx->dram_default_hops[i] & PTE_PHYS_ADDR_MASK) | |
| 301 | PAGE_PRESENT_MASK; |
| 302 | write_pte(ctx, hop2_pte_addr, pte_val); |
| 303 | get_pte(ctx, hop2_addr); |
| 304 | hop2_pte_addr += HL_PTE_SIZE; |
| 305 | } |
| 306 | |
| 307 | pte_val = (prop->mmu_dram_default_page_addr & PTE_PHYS_ADDR_MASK) | |
| 308 | LAST_MASK | PAGE_PRESENT_MASK; |
| 309 | |
| 310 | for (i = 0 ; i < num_of_hop3 ; i++) { |
| 311 | hop3_pte_addr = ctx->dram_default_hops[i]; |
| 312 | for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { |
| 313 | write_final_pte(ctx, hop3_pte_addr, pte_val); |
| 314 | get_pte(ctx, ctx->dram_default_hops[i]); |
| 315 | hop3_pte_addr += HL_PTE_SIZE; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | flush(ctx); |
| 320 | |
| 321 | return 0; |
| 322 | |
| 323 | hop3_err: |
| 324 | for (i = 0 ; i < hop3_allocated ; i++) |
| 325 | free_hop(ctx, ctx->dram_default_hops[i]); |
| 326 | |
| 327 | free_hop(ctx, hop2_addr); |
| 328 | hop2_err: |
| 329 | free_hop(ctx, hop1_addr); |
| 330 | hop1_err: |
| 331 | kfree(ctx->dram_default_hops); |
| 332 | |
| 333 | return rc; |
| 334 | } |
| 335 | |
| 336 | static void dram_default_mapping_fini(struct hl_ctx *ctx) |
| 337 | { |
| 338 | struct hl_device *hdev = ctx->hdev; |
| 339 | struct asic_fixed_properties *prop = &hdev->asic_prop; |
| 340 | u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, |
| 341 | hop2_pte_addr, hop3_pte_addr; |
| 342 | int i, j; |
| 343 | |
| 344 | if ((!hdev->dram_supports_virtual_memory) || |
| 345 | (!hdev->dram_default_page_mapping) || |
| 346 | (ctx->asid == HL_KERNEL_ASID_ID)) |
| 347 | return; |
| 348 | |
| 349 | num_of_hop3 = prop->dram_size_for_default_page_mapping; |
| 350 | do_div(num_of_hop3, prop->dram_page_size); |
| 351 | do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); |
| 352 | |
| 353 | hop0_addr = get_hop0_addr(ctx); |
| 354 | /* add hop1 and hop2 */ |
| 355 | total_hops = num_of_hop3 + 2; |
| 356 | hop1_addr = ctx->dram_default_hops[total_hops - 1]; |
| 357 | hop2_addr = ctx->dram_default_hops[total_hops - 2]; |
| 358 | |
| 359 | for (i = 0 ; i < num_of_hop3 ; i++) { |
| 360 | hop3_pte_addr = ctx->dram_default_hops[i]; |
| 361 | for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { |
| 362 | clear_pte(ctx, hop3_pte_addr); |
| 363 | put_pte(ctx, ctx->dram_default_hops[i]); |
| 364 | hop3_pte_addr += HL_PTE_SIZE; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | hop2_pte_addr = hop2_addr; |
| 369 | hop2_pte_addr = hop2_addr; |
| 370 | for (i = 0 ; i < num_of_hop3 ; i++) { |
| 371 | clear_pte(ctx, hop2_pte_addr); |
| 372 | put_pte(ctx, hop2_addr); |
| 373 | hop2_pte_addr += HL_PTE_SIZE; |
| 374 | } |
| 375 | |
| 376 | clear_pte(ctx, hop1_addr); |
| 377 | put_pte(ctx, hop1_addr); |
| 378 | clear_pte(ctx, hop0_addr); |
| 379 | |
| 380 | kfree(ctx->dram_default_hops); |
| 381 | |
| 382 | flush(ctx); |
| 383 | } |
| 384 | |
| 385 | /** |
| 386 | * hl_mmu_init() - initialize the MMU module. |
| 387 | * @hdev: habanalabs device structure. |
| 388 | * |
| 389 | * This function does the following: |
| 390 | * - Create a pool of pages for pgt_infos. |
| 391 | * - Create a shadow table for pgt |
| 392 | * |
| 393 | * Return: 0 for success, non-zero for failure. |
| 394 | */ |
| 395 | int hl_mmu_init(struct hl_device *hdev) |
| 396 | { |
| 397 | struct asic_fixed_properties *prop = &hdev->asic_prop; |
| 398 | int rc; |
| 399 | |
| 400 | if (!hdev->mmu_enable) |
| 401 | return 0; |
| 402 | |
| 403 | /* MMU H/W init was already done in device hw_init() */ |
| 404 | |
| 405 | hdev->mmu_pgt_pool = |
| 406 | gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); |
| 407 | |
| 408 | if (!hdev->mmu_pgt_pool) { |
| 409 | dev_err(hdev->dev, "Failed to create page gen pool\n"); |
| 410 | return -ENOMEM; |
| 411 | } |
| 412 | |
| 413 | rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr + |
| 414 | prop->mmu_hop0_tables_total_size, |
| 415 | prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, |
| 416 | -1); |
| 417 | if (rc) { |
| 418 | dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); |
| 419 | goto err_pool_add; |
| 420 | } |
| 421 | |
| 422 | hdev->mmu_shadow_hop0 = kvmalloc_array(prop->max_asid, |
| 423 | prop->mmu_hop_table_size, |
| 424 | GFP_KERNEL | __GFP_ZERO); |
| 425 | if (!hdev->mmu_shadow_hop0) { |
| 426 | rc = -ENOMEM; |
| 427 | goto err_pool_add; |
| 428 | } |
| 429 | |
| 430 | return 0; |
| 431 | |
| 432 | err_pool_add: |
| 433 | gen_pool_destroy(hdev->mmu_pgt_pool); |
| 434 | |
| 435 | return rc; |
| 436 | } |
| 437 | |
| 438 | /** |
| 439 | * hl_mmu_fini() - release the MMU module. |
| 440 | * @hdev: habanalabs device structure. |
| 441 | * |
| 442 | * This function does the following: |
| 443 | * - Disable MMU in H/W. |
| 444 | * - Free the pgt_infos pool. |
| 445 | * |
| 446 | * All contexts should be freed before calling this function. |
| 447 | */ |
| 448 | void hl_mmu_fini(struct hl_device *hdev) |
| 449 | { |
| 450 | if (!hdev->mmu_enable) |
| 451 | return; |
| 452 | |
| 453 | kvfree(hdev->mmu_shadow_hop0); |
| 454 | gen_pool_destroy(hdev->mmu_pgt_pool); |
| 455 | |
| 456 | /* MMU H/W fini will be done in device hw_fini() */ |
| 457 | } |
| 458 | |
| 459 | /** |
| 460 | * hl_mmu_ctx_init() - initialize a context for using the MMU module. |
| 461 | * @ctx: pointer to the context structure to initialize. |
| 462 | * |
| 463 | * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all |
| 464 | * page tables hops related to this context. |
| 465 | * Return: 0 on success, non-zero otherwise. |
| 466 | */ |
| 467 | int hl_mmu_ctx_init(struct hl_ctx *ctx) |
| 468 | { |
| 469 | struct hl_device *hdev = ctx->hdev; |
| 470 | |
| 471 | if (!hdev->mmu_enable) |
| 472 | return 0; |
| 473 | |
| 474 | mutex_init(&ctx->mmu_lock); |
| 475 | hash_init(ctx->mmu_phys_hash); |
| 476 | hash_init(ctx->mmu_shadow_hash); |
| 477 | |
| 478 | return dram_default_mapping_init(ctx); |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * hl_mmu_ctx_fini - disable a ctx from using the mmu module |
| 483 | * |
| 484 | * @ctx: pointer to the context structure |
| 485 | * |
| 486 | * This function does the following: |
| 487 | * - Free any pgts which were not freed yet |
| 488 | * - Free the mutex |
| 489 | * - Free DRAM default page mapping hops |
| 490 | */ |
| 491 | void hl_mmu_ctx_fini(struct hl_ctx *ctx) |
| 492 | { |
| 493 | struct hl_device *hdev = ctx->hdev; |
| 494 | struct pgt_info *pgt_info; |
| 495 | struct hlist_node *tmp; |
| 496 | int i; |
| 497 | |
| 498 | if (!hdev->mmu_enable) |
| 499 | return; |
| 500 | |
| 501 | dram_default_mapping_fini(ctx); |
| 502 | |
| 503 | if (!hash_empty(ctx->mmu_shadow_hash)) |
| 504 | dev_err(hdev->dev, "ctx is freed while it has pgts in use\n"); |
| 505 | |
| 506 | hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { |
| 507 | dev_err(hdev->dev, |
| 508 | "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", |
| 509 | pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); |
| 510 | free_hop(ctx, pgt_info->shadow_addr); |
| 511 | } |
| 512 | |
| 513 | mutex_destroy(&ctx->mmu_lock); |
| 514 | } |
| 515 | |
| 516 | static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr) |
| 517 | { |
| 518 | struct hl_device *hdev = ctx->hdev; |
| 519 | struct asic_fixed_properties *prop = &hdev->asic_prop; |
| 520 | u64 hop0_addr = 0, hop0_pte_addr = 0, |
| 521 | hop1_addr = 0, hop1_pte_addr = 0, |
| 522 | hop2_addr = 0, hop2_pte_addr = 0, |
| 523 | hop3_addr = 0, hop3_pte_addr = 0, |
| 524 | hop4_addr = 0, hop4_pte_addr = 0, |
| 525 | curr_pte; |
| 526 | bool is_dram_addr, is_huge, clear_hop3 = true; |
| 527 | |
| 528 | is_dram_addr = hl_mem_area_inside_range(virt_addr, PAGE_SIZE_2MB, |
| 529 | prop->va_space_dram_start_address, |
| 530 | prop->va_space_dram_end_address); |
| 531 | |
| 532 | hop0_addr = get_hop0_addr(ctx); |
| 533 | hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr); |
| 534 | |
| 535 | curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; |
| 536 | |
| 537 | hop1_addr = get_next_hop_addr(ctx, curr_pte); |
| 538 | |
| 539 | if (hop1_addr == ULLONG_MAX) |
| 540 | goto not_mapped; |
| 541 | |
| 542 | hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr); |
| 543 | |
| 544 | curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; |
| 545 | |
| 546 | hop2_addr = get_next_hop_addr(ctx, curr_pte); |
| 547 | |
| 548 | if (hop2_addr == ULLONG_MAX) |
| 549 | goto not_mapped; |
| 550 | |
| 551 | hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr); |
| 552 | |
| 553 | curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; |
| 554 | |
| 555 | hop3_addr = get_next_hop_addr(ctx, curr_pte); |
| 556 | |
| 557 | if (hop3_addr == ULLONG_MAX) |
| 558 | goto not_mapped; |
| 559 | |
| 560 | hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr); |
| 561 | |
| 562 | curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; |
| 563 | |
| 564 | is_huge = curr_pte & LAST_MASK; |
| 565 | |
| 566 | if (is_dram_addr && !is_huge) { |
| 567 | dev_err(hdev->dev, |
| 568 | "DRAM unmapping should use huge pages only\n"); |
| 569 | return -EFAULT; |
| 570 | } |
| 571 | |
| 572 | if (!is_huge) { |
| 573 | hop4_addr = get_next_hop_addr(ctx, curr_pte); |
| 574 | |
| 575 | if (hop4_addr == ULLONG_MAX) |
| 576 | goto not_mapped; |
| 577 | |
| 578 | hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr); |
| 579 | |
| 580 | curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; |
| 581 | |
| 582 | clear_hop3 = false; |
| 583 | } |
| 584 | |
| 585 | if (hdev->dram_default_page_mapping && is_dram_addr) { |
| 586 | u64 default_pte = (prop->mmu_dram_default_page_addr & |
| 587 | PTE_PHYS_ADDR_MASK) | LAST_MASK | |
| 588 | PAGE_PRESENT_MASK; |
| 589 | if (curr_pte == default_pte) { |
| 590 | dev_err(hdev->dev, |
| 591 | "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", |
| 592 | virt_addr); |
| 593 | goto not_mapped; |
| 594 | } |
| 595 | |
| 596 | if (!(curr_pte & PAGE_PRESENT_MASK)) { |
| 597 | dev_err(hdev->dev, |
| 598 | "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", |
| 599 | virt_addr); |
| 600 | goto not_mapped; |
| 601 | } |
| 602 | |
| 603 | write_final_pte(ctx, hop3_pte_addr, default_pte); |
| 604 | put_pte(ctx, hop3_addr); |
| 605 | } else { |
| 606 | if (!(curr_pte & PAGE_PRESENT_MASK)) |
| 607 | goto not_mapped; |
| 608 | |
| 609 | if (hop4_addr) |
| 610 | clear_pte(ctx, hop4_pte_addr); |
| 611 | else |
| 612 | clear_pte(ctx, hop3_pte_addr); |
| 613 | |
| 614 | if (hop4_addr && !put_pte(ctx, hop4_addr)) |
| 615 | clear_hop3 = true; |
| 616 | |
| 617 | if (!clear_hop3) |
| 618 | goto flush; |
| 619 | |
| 620 | clear_pte(ctx, hop3_pte_addr); |
| 621 | |
| 622 | if (put_pte(ctx, hop3_addr)) |
| 623 | goto flush; |
| 624 | |
| 625 | clear_pte(ctx, hop2_pte_addr); |
| 626 | |
| 627 | if (put_pte(ctx, hop2_addr)) |
| 628 | goto flush; |
| 629 | |
| 630 | clear_pte(ctx, hop1_pte_addr); |
| 631 | |
| 632 | if (put_pte(ctx, hop1_addr)) |
| 633 | goto flush; |
| 634 | |
| 635 | clear_pte(ctx, hop0_pte_addr); |
| 636 | } |
| 637 | |
| 638 | flush: |
| 639 | flush(ctx); |
| 640 | |
| 641 | return 0; |
| 642 | |
| 643 | not_mapped: |
| 644 | dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", |
| 645 | virt_addr); |
| 646 | |
| 647 | return -EINVAL; |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * hl_mmu_unmap - unmaps a virtual addr |
| 652 | * |
| 653 | * @ctx: pointer to the context structure |
| 654 | * @virt_addr: virt addr to map from |
| 655 | * @page_size: size of the page to unmap |
| 656 | * |
| 657 | * This function does the following: |
| 658 | * - Check that the virt addr is mapped |
| 659 | * - Unmap the virt addr and frees pgts if possible |
| 660 | * - Returns 0 on success, -EINVAL if the given addr is not mapped |
| 661 | * |
| 662 | * Because this function changes the page tables in the device and because it |
| 663 | * changes the MMU hash, it must be protected by a lock. |
| 664 | * However, because it maps only a single page, the lock should be implemented |
| 665 | * in a higher level in order to protect the entire mapping of the memory area |
| 666 | */ |
| 667 | int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size) |
| 668 | { |
| 669 | struct hl_device *hdev = ctx->hdev; |
| 670 | u64 real_virt_addr; |
| 671 | u32 real_page_size, npages; |
| 672 | int i, rc; |
| 673 | |
| 674 | if (!hdev->mmu_enable) |
| 675 | return 0; |
| 676 | |
| 677 | /* |
| 678 | * The H/W handles mapping of 4KB/2MB page. Hence if the host page size |
| 679 | * is bigger, we break it to sub-pages and unmap them separately. |
| 680 | */ |
| 681 | if ((page_size % PAGE_SIZE_2MB) == 0) { |
| 682 | real_page_size = PAGE_SIZE_2MB; |
| 683 | } else if ((page_size % PAGE_SIZE_4KB) == 0) { |
| 684 | real_page_size = PAGE_SIZE_4KB; |
| 685 | } else { |
| 686 | dev_err(hdev->dev, |
| 687 | "page size of %u is not 4KB nor 2MB aligned, can't unmap\n", |
| 688 | page_size); |
| 689 | |
| 690 | return -EFAULT; |
| 691 | } |
| 692 | |
| 693 | npages = page_size / real_page_size; |
| 694 | real_virt_addr = virt_addr; |
| 695 | |
| 696 | for (i = 0 ; i < npages ; i++) { |
| 697 | rc = _hl_mmu_unmap(ctx, real_virt_addr); |
| 698 | if (rc) |
| 699 | return rc; |
| 700 | |
| 701 | real_virt_addr += real_page_size; |
| 702 | } |
| 703 | |
| 704 | return 0; |
| 705 | } |
| 706 | |
| 707 | static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, |
| 708 | u32 page_size) |
| 709 | { |
| 710 | struct hl_device *hdev = ctx->hdev; |
| 711 | struct asic_fixed_properties *prop = &hdev->asic_prop; |
| 712 | u64 hop0_addr = 0, hop0_pte_addr = 0, |
| 713 | hop1_addr = 0, hop1_pte_addr = 0, |
| 714 | hop2_addr = 0, hop2_pte_addr = 0, |
| 715 | hop3_addr = 0, hop3_pte_addr = 0, |
| 716 | hop4_addr = 0, hop4_pte_addr = 0, |
| 717 | curr_pte = 0; |
| 718 | bool hop1_new = false, hop2_new = false, hop3_new = false, |
| 719 | hop4_new = false, is_huge, is_dram_addr; |
| 720 | int rc = -ENOMEM; |
| 721 | |
| 722 | /* |
| 723 | * This mapping function can map a 4KB/2MB page. For 2MB page there are |
| 724 | * only 3 hops rather than 4. Currently the DRAM allocation uses 2MB |
| 725 | * pages only but user memory could have been allocated with one of the |
| 726 | * two page sizes. Since this is a common code for all the three cases, |
| 727 | * we need this hugs page check. |
| 728 | */ |
| 729 | is_huge = page_size == PAGE_SIZE_2MB; |
| 730 | |
| 731 | is_dram_addr = hl_mem_area_inside_range(virt_addr, page_size, |
| 732 | prop->va_space_dram_start_address, |
| 733 | prop->va_space_dram_end_address); |
| 734 | |
| 735 | if (is_dram_addr && !is_huge) { |
| 736 | dev_err(hdev->dev, "DRAM mapping should use huge pages only\n"); |
| 737 | return -EFAULT; |
| 738 | } |
| 739 | |
| 740 | hop0_addr = get_hop0_addr(ctx); |
| 741 | hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr); |
| 742 | curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; |
| 743 | |
| 744 | hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new); |
| 745 | if (hop1_addr == ULLONG_MAX) |
| 746 | goto err; |
| 747 | |
| 748 | hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr); |
| 749 | curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; |
| 750 | |
| 751 | hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new); |
| 752 | if (hop2_addr == ULLONG_MAX) |
| 753 | goto err; |
| 754 | |
| 755 | hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr); |
| 756 | curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; |
| 757 | |
| 758 | hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new); |
| 759 | if (hop3_addr == ULLONG_MAX) |
| 760 | goto err; |
| 761 | |
| 762 | hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr); |
| 763 | curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; |
| 764 | |
| 765 | if (!is_huge) { |
| 766 | hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new); |
| 767 | if (hop4_addr == ULLONG_MAX) |
| 768 | goto err; |
| 769 | |
| 770 | hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr); |
| 771 | curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; |
| 772 | } |
| 773 | |
| 774 | if (hdev->dram_default_page_mapping && is_dram_addr) { |
| 775 | u64 default_pte = (prop->mmu_dram_default_page_addr & |
| 776 | PTE_PHYS_ADDR_MASK) | LAST_MASK | |
| 777 | PAGE_PRESENT_MASK; |
| 778 | |
| 779 | if (curr_pte != default_pte) { |
| 780 | dev_err(hdev->dev, |
| 781 | "DRAM: mapping already exists for virt_addr 0x%llx\n", |
| 782 | virt_addr); |
| 783 | rc = -EINVAL; |
| 784 | goto err; |
| 785 | } |
| 786 | |
| 787 | if (hop1_new || hop2_new || hop3_new || hop4_new) { |
| 788 | dev_err(hdev->dev, |
| 789 | "DRAM mapping should not allocate more hops\n"); |
| 790 | rc = -EFAULT; |
| 791 | goto err; |
| 792 | } |
| 793 | } else if (curr_pte & PAGE_PRESENT_MASK) { |
| 794 | dev_err(hdev->dev, |
| 795 | "mapping already exists for virt_addr 0x%llx\n", |
| 796 | virt_addr); |
| 797 | |
| 798 | dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n", |
| 799 | *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr); |
| 800 | dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n", |
| 801 | *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr); |
| 802 | dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n", |
| 803 | *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr); |
| 804 | dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n", |
| 805 | *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr); |
| 806 | |
| 807 | if (!is_huge) |
| 808 | dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n", |
| 809 | *(u64 *) (uintptr_t) hop4_pte_addr, |
| 810 | hop4_pte_addr); |
| 811 | |
| 812 | rc = -EINVAL; |
| 813 | goto err; |
| 814 | } |
| 815 | |
| 816 | curr_pte = (phys_addr & PTE_PHYS_ADDR_MASK) | LAST_MASK |
| 817 | | PAGE_PRESENT_MASK; |
| 818 | |
| 819 | if (is_huge) |
| 820 | write_final_pte(ctx, hop3_pte_addr, curr_pte); |
| 821 | else |
| 822 | write_final_pte(ctx, hop4_pte_addr, curr_pte); |
| 823 | |
| 824 | if (hop1_new) { |
| 825 | curr_pte = |
| 826 | (hop1_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| 827 | write_pte(ctx, hop0_pte_addr, curr_pte); |
| 828 | } |
| 829 | if (hop2_new) { |
| 830 | curr_pte = |
| 831 | (hop2_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| 832 | write_pte(ctx, hop1_pte_addr, curr_pte); |
| 833 | get_pte(ctx, hop1_addr); |
| 834 | } |
| 835 | if (hop3_new) { |
| 836 | curr_pte = |
| 837 | (hop3_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| 838 | write_pte(ctx, hop2_pte_addr, curr_pte); |
| 839 | get_pte(ctx, hop2_addr); |
| 840 | } |
| 841 | |
| 842 | if (!is_huge) { |
| 843 | if (hop4_new) { |
| 844 | curr_pte = (hop4_addr & PTE_PHYS_ADDR_MASK) | |
| 845 | PAGE_PRESENT_MASK; |
| 846 | write_pte(ctx, hop3_pte_addr, curr_pte); |
| 847 | get_pte(ctx, hop3_addr); |
| 848 | } |
| 849 | |
| 850 | get_pte(ctx, hop4_addr); |
| 851 | } else { |
| 852 | get_pte(ctx, hop3_addr); |
| 853 | } |
| 854 | |
| 855 | flush(ctx); |
| 856 | |
| 857 | return 0; |
| 858 | |
| 859 | err: |
| 860 | if (hop4_new) |
| 861 | free_hop(ctx, hop4_addr); |
| 862 | if (hop3_new) |
| 863 | free_hop(ctx, hop3_addr); |
| 864 | if (hop2_new) |
| 865 | free_hop(ctx, hop2_addr); |
| 866 | if (hop1_new) |
| 867 | free_hop(ctx, hop1_addr); |
| 868 | |
| 869 | return rc; |
| 870 | } |
| 871 | |
| 872 | /* |
| 873 | * hl_mmu_map - maps a virtual addr to physical addr |
| 874 | * |
| 875 | * @ctx: pointer to the context structure |
| 876 | * @virt_addr: virt addr to map from |
| 877 | * @phys_addr: phys addr to map to |
| 878 | * @page_size: physical page size |
| 879 | * |
| 880 | * This function does the following: |
| 881 | * - Check that the virt addr is not mapped |
| 882 | * - Allocate pgts as necessary in order to map the virt addr to the phys |
| 883 | * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. |
| 884 | * |
| 885 | * Because this function changes the page tables in the device and because it |
| 886 | * changes the MMU hash, it must be protected by a lock. |
| 887 | * However, because it maps only a single page, the lock should be implemented |
| 888 | * in a higher level in order to protect the entire mapping of the memory area |
| 889 | */ |
| 890 | int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size) |
| 891 | { |
| 892 | struct hl_device *hdev = ctx->hdev; |
| 893 | u64 real_virt_addr, real_phys_addr; |
| 894 | u32 real_page_size, npages; |
| 895 | int i, rc, mapped_cnt = 0; |
| 896 | |
| 897 | if (!hdev->mmu_enable) |
| 898 | return 0; |
| 899 | |
| 900 | /* |
| 901 | * The H/W handles mapping of 4KB/2MB page. Hence if the host page size |
| 902 | * is bigger, we break it to sub-pages and map them separately. |
| 903 | */ |
| 904 | if ((page_size % PAGE_SIZE_2MB) == 0) { |
| 905 | real_page_size = PAGE_SIZE_2MB; |
| 906 | } else if ((page_size % PAGE_SIZE_4KB) == 0) { |
| 907 | real_page_size = PAGE_SIZE_4KB; |
| 908 | } else { |
| 909 | dev_err(hdev->dev, |
| 910 | "page size of %u is not 4KB nor 2MB aligned, can't map\n", |
| 911 | page_size); |
| 912 | |
| 913 | return -EFAULT; |
| 914 | } |
| 915 | |
| 916 | WARN_ONCE((phys_addr & (real_page_size - 1)), |
| 917 | "Mapping 0x%llx with page size of 0x%x is erroneous! Address must be divisible by page size", |
| 918 | phys_addr, real_page_size); |
| 919 | |
| 920 | npages = page_size / real_page_size; |
| 921 | real_virt_addr = virt_addr; |
| 922 | real_phys_addr = phys_addr; |
| 923 | |
| 924 | for (i = 0 ; i < npages ; i++) { |
| 925 | rc = _hl_mmu_map(ctx, real_virt_addr, real_phys_addr, |
| 926 | real_page_size); |
| 927 | if (rc) |
| 928 | goto err; |
| 929 | |
| 930 | real_virt_addr += real_page_size; |
| 931 | real_phys_addr += real_page_size; |
| 932 | mapped_cnt++; |
| 933 | } |
| 934 | |
| 935 | return 0; |
| 936 | |
| 937 | err: |
| 938 | real_virt_addr = virt_addr; |
| 939 | for (i = 0 ; i < mapped_cnt ; i++) { |
| 940 | if (_hl_mmu_unmap(ctx, real_virt_addr)) |
| 941 | dev_warn_ratelimited(hdev->dev, |
| 942 | "failed to unmap va: 0x%llx\n", real_virt_addr); |
| 943 | |
| 944 | real_virt_addr += real_page_size; |
| 945 | } |
| 946 | |
| 947 | return rc; |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out |
| 952 | * |
| 953 | * @ctx: pointer to the context structure |
| 954 | * |
| 955 | */ |
| 956 | void hl_mmu_swap_out(struct hl_ctx *ctx) |
| 957 | { |
| 958 | |
| 959 | } |
| 960 | |
| 961 | /* |
| 962 | * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in |
| 963 | * |
| 964 | * @ctx: pointer to the context structure |
| 965 | * |
| 966 | */ |
| 967 | void hl_mmu_swap_in(struct hl_ctx *ctx) |
| 968 | { |
| 969 | |
| 970 | } |