David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4 | */ |
| 5 | |
| 6 | #include <linux/efi.h> |
| 7 | #include <linux/log2.h> |
| 8 | #include <asm/efi.h> |
| 9 | |
| 10 | #include "efistub.h" |
| 11 | |
| 12 | struct efi_rng_protocol { |
| 13 | efi_status_t (*get_info)(struct efi_rng_protocol *, |
| 14 | unsigned long *, efi_guid_t *); |
| 15 | efi_status_t (*get_rng)(struct efi_rng_protocol *, |
| 16 | efi_guid_t *, unsigned long, u8 *out); |
| 17 | }; |
| 18 | |
| 19 | efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg, |
| 20 | unsigned long size, u8 *out) |
| 21 | { |
| 22 | efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; |
| 23 | efi_status_t status; |
| 24 | struct efi_rng_protocol *rng; |
| 25 | |
| 26 | status = efi_call_early(locate_protocol, &rng_proto, NULL, |
| 27 | (void **)&rng); |
| 28 | if (status != EFI_SUCCESS) |
| 29 | return status; |
| 30 | |
| 31 | return rng->get_rng(rng, NULL, size, out); |
| 32 | } |
| 33 | |
| 34 | /* |
| 35 | * Return the number of slots covered by this entry, i.e., the number of |
| 36 | * addresses it covers that are suitably aligned and supply enough room |
| 37 | * for the allocation. |
| 38 | */ |
| 39 | static unsigned long get_entry_num_slots(efi_memory_desc_t *md, |
| 40 | unsigned long size, |
| 41 | unsigned long align_shift) |
| 42 | { |
| 43 | unsigned long align = 1UL << align_shift; |
| 44 | u64 first_slot, last_slot, region_end; |
| 45 | |
| 46 | if (md->type != EFI_CONVENTIONAL_MEMORY) |
| 47 | return 0; |
| 48 | |
| 49 | region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1); |
| 50 | |
| 51 | first_slot = round_up(md->phys_addr, align); |
| 52 | last_slot = round_down(region_end - size + 1, align); |
| 53 | |
| 54 | if (first_slot > last_slot) |
| 55 | return 0; |
| 56 | |
| 57 | return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1; |
| 58 | } |
| 59 | |
| 60 | /* |
| 61 | * The UEFI memory descriptors have a virtual address field that is only used |
| 62 | * when installing the virtual mapping using SetVirtualAddressMap(). Since it |
| 63 | * is unused here, we can reuse it to keep track of each descriptor's slot |
| 64 | * count. |
| 65 | */ |
| 66 | #define MD_NUM_SLOTS(md) ((md)->virt_addr) |
| 67 | |
| 68 | efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg, |
| 69 | unsigned long size, |
| 70 | unsigned long align, |
| 71 | unsigned long *addr, |
| 72 | unsigned long random_seed) |
| 73 | { |
| 74 | unsigned long map_size, desc_size, total_slots = 0, target_slot; |
| 75 | unsigned long buff_size; |
| 76 | efi_status_t status; |
| 77 | efi_memory_desc_t *memory_map; |
| 78 | int map_offset; |
| 79 | struct efi_boot_memmap map; |
| 80 | |
| 81 | map.map = &memory_map; |
| 82 | map.map_size = &map_size; |
| 83 | map.desc_size = &desc_size; |
| 84 | map.desc_ver = NULL; |
| 85 | map.key_ptr = NULL; |
| 86 | map.buff_size = &buff_size; |
| 87 | |
| 88 | status = efi_get_memory_map(sys_table_arg, &map); |
| 89 | if (status != EFI_SUCCESS) |
| 90 | return status; |
| 91 | |
| 92 | if (align < EFI_ALLOC_ALIGN) |
| 93 | align = EFI_ALLOC_ALIGN; |
| 94 | |
| 95 | /* count the suitable slots in each memory map entry */ |
| 96 | for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { |
| 97 | efi_memory_desc_t *md = (void *)memory_map + map_offset; |
| 98 | unsigned long slots; |
| 99 | |
| 100 | slots = get_entry_num_slots(md, size, ilog2(align)); |
| 101 | MD_NUM_SLOTS(md) = slots; |
| 102 | total_slots += slots; |
| 103 | } |
| 104 | |
| 105 | /* find a random number between 0 and total_slots */ |
| 106 | target_slot = (total_slots * (u16)random_seed) >> 16; |
| 107 | |
| 108 | /* |
| 109 | * target_slot is now a value in the range [0, total_slots), and so |
| 110 | * it corresponds with exactly one of the suitable slots we recorded |
| 111 | * when iterating over the memory map the first time around. |
| 112 | * |
| 113 | * So iterate over the memory map again, subtracting the number of |
| 114 | * slots of each entry at each iteration, until we have found the entry |
| 115 | * that covers our chosen slot. Use the residual value of target_slot |
| 116 | * to calculate the randomly chosen address, and allocate it directly |
| 117 | * using EFI_ALLOCATE_ADDRESS. |
| 118 | */ |
| 119 | for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { |
| 120 | efi_memory_desc_t *md = (void *)memory_map + map_offset; |
| 121 | efi_physical_addr_t target; |
| 122 | unsigned long pages; |
| 123 | |
| 124 | if (target_slot >= MD_NUM_SLOTS(md)) { |
| 125 | target_slot -= MD_NUM_SLOTS(md); |
| 126 | continue; |
| 127 | } |
| 128 | |
| 129 | target = round_up(md->phys_addr, align) + target_slot * align; |
| 130 | pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; |
| 131 | |
| 132 | status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS, |
| 133 | EFI_LOADER_DATA, pages, &target); |
| 134 | if (status == EFI_SUCCESS) |
| 135 | *addr = target; |
| 136 | break; |
| 137 | } |
| 138 | |
| 139 | efi_call_early(free_pool, memory_map); |
| 140 | |
| 141 | return status; |
| 142 | } |
| 143 | |
| 144 | efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg) |
| 145 | { |
| 146 | efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; |
| 147 | efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW; |
| 148 | efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID; |
| 149 | struct efi_rng_protocol *rng; |
| 150 | struct linux_efi_random_seed *seed; |
| 151 | efi_status_t status; |
| 152 | |
| 153 | status = efi_call_early(locate_protocol, &rng_proto, NULL, |
| 154 | (void **)&rng); |
| 155 | if (status != EFI_SUCCESS) |
| 156 | return status; |
| 157 | |
| 158 | status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA, |
| 159 | sizeof(*seed) + EFI_RANDOM_SEED_SIZE, |
| 160 | (void **)&seed); |
| 161 | if (status != EFI_SUCCESS) |
| 162 | return status; |
| 163 | |
| 164 | status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE, |
| 165 | seed->bits); |
| 166 | if (status == EFI_UNSUPPORTED) |
| 167 | /* |
| 168 | * Use whatever algorithm we have available if the raw algorithm |
| 169 | * is not implemented. |
| 170 | */ |
| 171 | status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE, |
| 172 | seed->bits); |
| 173 | |
| 174 | if (status != EFI_SUCCESS) |
| 175 | goto err_freepool; |
| 176 | |
| 177 | seed->size = EFI_RANDOM_SEED_SIZE; |
| 178 | status = efi_call_early(install_configuration_table, &rng_table_guid, |
| 179 | seed); |
| 180 | if (status != EFI_SUCCESS) |
| 181 | goto err_freepool; |
| 182 | |
| 183 | return EFI_SUCCESS; |
| 184 | |
| 185 | err_freepool: |
| 186 | efi_call_early(free_pool, seed); |
| 187 | return status; |
| 188 | } |