blob: 05127b70527d7f372e5de0d37c6cba6cfb3b8fe5 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * CAAM hardware register-level view
4 *
5 * Copyright 2008-2011 Freescale Semiconductor, Inc.
David Brazdil0f672f62019-12-10 10:32:29 +00006 * Copyright 2018 NXP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007 */
8
9#ifndef REGS_H
10#define REGS_H
11
12#include <linux/types.h>
13#include <linux/bitops.h>
14#include <linux/io.h>
David Brazdil0f672f62019-12-10 10:32:29 +000015#include <linux/io-64-nonatomic-hi-lo.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000016
17/*
18 * Architecture-specific register access methods
19 *
20 * CAAM's bus-addressable registers are 64 bits internally.
21 * They have been wired to be safely accessible on 32-bit
22 * architectures, however. Registers were organized such
23 * that (a) they can be contained in 32 bits, (b) if not, then they
24 * can be treated as two 32-bit entities, or finally (c) if they
25 * must be treated as a single 64-bit value, then this can safely
26 * be done with two 32-bit cycles.
27 *
28 * For 32-bit operations on 64-bit values, CAAM follows the same
29 * 64-bit register access conventions as it's predecessors, in that
30 * writes are "triggered" by a write to the register at the numerically
31 * higher address, thus, a full 64-bit write cycle requires a write
32 * to the lower address, followed by a write to the higher address,
33 * which will latch/execute the write cycle.
34 *
35 * For example, let's assume a SW reset of CAAM through the master
36 * configuration register.
37 * - SWRST is in bit 31 of MCFG.
38 * - MCFG begins at base+0x0000.
39 * - Bits 63-32 are a 32-bit word at base+0x0000 (numerically-lower)
40 * - Bits 31-0 are a 32-bit word at base+0x0004 (numerically-higher)
41 *
42 * (and on Power, the convention is 0-31, 32-63, I know...)
43 *
44 * Assuming a 64-bit write to this MCFG to perform a software reset
45 * would then require a write of 0 to base+0x0000, followed by a
46 * write of 0x80000000 to base+0x0004, which would "execute" the
47 * reset.
48 *
49 * Of course, since MCFG 63-32 is all zero, we could cheat and simply
50 * write 0x8000000 to base+0x0004, and the reset would work fine.
51 * However, since CAAM does contain some write-and-read-intended
52 * 64-bit registers, this code defines 64-bit access methods for
53 * the sake of internal consistency and simplicity, and so that a
54 * clean transition to 64-bit is possible when it becomes necessary.
55 *
56 * There are limitations to this that the developer must recognize.
57 * 32-bit architectures cannot enforce an atomic-64 operation,
58 * Therefore:
59 *
60 * - On writes, since the HW is assumed to latch the cycle on the
61 * write of the higher-numeric-address word, then ordered
62 * writes work OK.
63 *
64 * - For reads, where a register contains a relevant value of more
65 * that 32 bits, the hardware employs logic to latch the other
66 * "half" of the data until read, ensuring an accurate value.
67 * This is of particular relevance when dealing with CAAM's
68 * performance counters.
69 *
70 */
71
72extern bool caam_little_end;
73extern bool caam_imx;
David Brazdil0f672f62019-12-10 10:32:29 +000074extern size_t caam_ptr_sz;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000075
76#define caam_to_cpu(len) \
77static inline u##len caam##len ## _to_cpu(u##len val) \
78{ \
79 if (caam_little_end) \
80 return le##len ## _to_cpu((__force __le##len)val); \
81 else \
82 return be##len ## _to_cpu((__force __be##len)val); \
83}
84
85#define cpu_to_caam(len) \
86static inline u##len cpu_to_caam##len(u##len val) \
87{ \
88 if (caam_little_end) \
89 return (__force u##len)cpu_to_le##len(val); \
90 else \
91 return (__force u##len)cpu_to_be##len(val); \
92}
93
94caam_to_cpu(16)
95caam_to_cpu(32)
96caam_to_cpu(64)
97cpu_to_caam(16)
98cpu_to_caam(32)
99cpu_to_caam(64)
100
101static inline void wr_reg32(void __iomem *reg, u32 data)
102{
103 if (caam_little_end)
104 iowrite32(data, reg);
105 else
106 iowrite32be(data, reg);
107}
108
109static inline u32 rd_reg32(void __iomem *reg)
110{
111 if (caam_little_end)
112 return ioread32(reg);
113
114 return ioread32be(reg);
115}
116
117static inline void clrsetbits_32(void __iomem *reg, u32 clear, u32 set)
118{
119 if (caam_little_end)
120 iowrite32((ioread32(reg) & ~clear) | set, reg);
121 else
122 iowrite32be((ioread32be(reg) & ~clear) | set, reg);
123}
124
125/*
126 * The only users of these wr/rd_reg64 functions is the Job Ring (JR).
127 * The DMA address registers in the JR are handled differently depending on
128 * platform:
129 *
130 * 1. All BE CAAM platforms and i.MX platforms (LE CAAM):
131 *
132 * base + 0x0000 : most-significant 32 bits
133 * base + 0x0004 : least-significant 32 bits
134 *
135 * The 32-bit version of this core therefore has to write to base + 0x0004
136 * to set the 32-bit wide DMA address.
137 *
138 * 2. All other LE CAAM platforms (LS1021A etc.)
139 * base + 0x0000 : least-significant 32 bits
140 * base + 0x0004 : most-significant 32 bits
141 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000142static inline void wr_reg64(void __iomem *reg, u64 data)
143{
David Brazdil0f672f62019-12-10 10:32:29 +0000144 if (caam_little_end) {
145 if (caam_imx) {
146 iowrite32(data >> 32, (u32 __iomem *)(reg));
147 iowrite32(data, (u32 __iomem *)(reg) + 1);
148 } else {
149 iowrite64(data, reg);
150 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000151 } else {
David Brazdil0f672f62019-12-10 10:32:29 +0000152 iowrite64be(data, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000153 }
154}
155
156static inline u64 rd_reg64(void __iomem *reg)
157{
David Brazdil0f672f62019-12-10 10:32:29 +0000158 if (caam_little_end) {
159 if (caam_imx) {
160 u32 low, high;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000161
David Brazdil0f672f62019-12-10 10:32:29 +0000162 high = ioread32(reg);
163 low = ioread32(reg + sizeof(u32));
164
165 return low + ((u64)high << 32);
166 } else {
167 return ioread64(reg);
168 }
169 } else {
170 return ioread64be(reg);
171 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000172}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000173
174static inline u64 cpu_to_caam_dma64(dma_addr_t value)
175{
176 if (caam_imx)
177 return (((u64)cpu_to_caam32(lower_32_bits(value)) << 32) |
178 (u64)cpu_to_caam32(upper_32_bits(value)));
179
180 return cpu_to_caam64(value);
181}
182
183static inline u64 caam_dma64_to_cpu(u64 value)
184{
185 if (caam_imx)
186 return (((u64)caam32_to_cpu(lower_32_bits(value)) << 32) |
187 (u64)caam32_to_cpu(upper_32_bits(value)));
188
189 return caam64_to_cpu(value);
190}
191
David Brazdil0f672f62019-12-10 10:32:29 +0000192static inline u64 cpu_to_caam_dma(u64 value)
193{
194 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) &&
195 caam_ptr_sz == sizeof(u64))
196 return cpu_to_caam_dma64(value);
197 else
198 return cpu_to_caam32(value);
199}
200
201static inline u64 caam_dma_to_cpu(u64 value)
202{
203 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) &&
204 caam_ptr_sz == sizeof(u64))
205 return caam_dma64_to_cpu(value);
206 else
207 return caam32_to_cpu(value);
208}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000209
210/*
211 * jr_outentry
212 * Represents each entry in a JobR output ring
213 */
David Brazdil0f672f62019-12-10 10:32:29 +0000214
215static inline void jr_outentry_get(void *outring, int hw_idx, dma_addr_t *desc,
216 u32 *jrstatus)
217{
218
219 if (caam_ptr_sz == sizeof(u32)) {
220 struct {
221 u32 desc;
222 u32 jrstatus;
223 } __packed *outentry = outring;
224
225 *desc = outentry[hw_idx].desc;
226 *jrstatus = outentry[hw_idx].jrstatus;
227 } else {
228 struct {
229 dma_addr_t desc;/* Pointer to completed descriptor */
230 u32 jrstatus; /* Status for completed descriptor */
231 } __packed *outentry = outring;
232
233 *desc = outentry[hw_idx].desc;
234 *jrstatus = outentry[hw_idx].jrstatus;
235 }
236}
237
238#define SIZEOF_JR_OUTENTRY (caam_ptr_sz + sizeof(u32))
239
240static inline dma_addr_t jr_outentry_desc(void *outring, int hw_idx)
241{
242 dma_addr_t desc;
243 u32 unused;
244
245 jr_outentry_get(outring, hw_idx, &desc, &unused);
246
247 return desc;
248}
249
250static inline u32 jr_outentry_jrstatus(void *outring, int hw_idx)
251{
252 dma_addr_t unused;
253 u32 jrstatus;
254
255 jr_outentry_get(outring, hw_idx, &unused, &jrstatus);
256
257 return jrstatus;
258}
259
260static inline void jr_inpentry_set(void *inpring, int hw_idx, dma_addr_t val)
261{
262 if (caam_ptr_sz == sizeof(u32)) {
263 u32 *inpentry = inpring;
264
265 inpentry[hw_idx] = val;
266 } else {
267 dma_addr_t *inpentry = inpring;
268
269 inpentry[hw_idx] = val;
270 }
271}
272
273#define SIZEOF_JR_INPENTRY caam_ptr_sz
274
275
276/* Version registers (Era 10+) e80-eff */
277struct version_regs {
278 u32 crca; /* CRCA_VERSION */
279 u32 afha; /* AFHA_VERSION */
280 u32 kfha; /* KFHA_VERSION */
281 u32 pkha; /* PKHA_VERSION */
282 u32 aesa; /* AESA_VERSION */
283 u32 mdha; /* MDHA_VERSION */
284 u32 desa; /* DESA_VERSION */
285 u32 snw8a; /* SNW8A_VERSION */
286 u32 snw9a; /* SNW9A_VERSION */
287 u32 zuce; /* ZUCE_VERSION */
288 u32 zuca; /* ZUCA_VERSION */
289 u32 ccha; /* CCHA_VERSION */
290 u32 ptha; /* PTHA_VERSION */
291 u32 rng; /* RNG_VERSION */
292 u32 trng; /* TRNG_VERSION */
293 u32 aaha; /* AAHA_VERSION */
294 u32 rsvd[10];
295 u32 sr; /* SR_VERSION */
296 u32 dma; /* DMA_VERSION */
297 u32 ai; /* AI_VERSION */
298 u32 qi; /* QI_VERSION */
299 u32 jr; /* JR_VERSION */
300 u32 deco; /* DECO_VERSION */
301};
302
303/* Version registers bitfields */
304
305/* Number of CHAs instantiated */
306#define CHA_VER_NUM_MASK 0xffull
307/* CHA Miscellaneous Information */
308#define CHA_VER_MISC_SHIFT 8
309#define CHA_VER_MISC_MASK (0xffull << CHA_VER_MISC_SHIFT)
310/* CHA Revision Number */
311#define CHA_VER_REV_SHIFT 16
312#define CHA_VER_REV_MASK (0xffull << CHA_VER_REV_SHIFT)
313/* CHA Version ID */
314#define CHA_VER_VID_SHIFT 24
315#define CHA_VER_VID_MASK (0xffull << CHA_VER_VID_SHIFT)
316
317/* CHA Miscellaneous Information - AESA_MISC specific */
318#define CHA_VER_MISC_AES_GCM BIT(1 + CHA_VER_MISC_SHIFT)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000319
320/*
321 * caam_perfmon - Performance Monitor/Secure Memory Status/
322 * CAAM Global Status/Component Version IDs
323 *
324 * Spans f00-fff wherever instantiated
325 */
326
327/* Number of DECOs */
328#define CHA_NUM_MS_DECONUM_SHIFT 24
329#define CHA_NUM_MS_DECONUM_MASK (0xfull << CHA_NUM_MS_DECONUM_SHIFT)
330
331/*
David Brazdil0f672f62019-12-10 10:32:29 +0000332 * CHA version IDs / instantiation bitfields (< Era 10)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000333 * Defined for use with the cha_id fields in perfmon, but the same shift/mask
334 * selectors can be used to pull out the number of instantiated blocks within
335 * cha_num fields in perfmon because the locations are the same.
336 */
337#define CHA_ID_LS_AES_SHIFT 0
338#define CHA_ID_LS_AES_MASK (0xfull << CHA_ID_LS_AES_SHIFT)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000339
340#define CHA_ID_LS_DES_SHIFT 4
341#define CHA_ID_LS_DES_MASK (0xfull << CHA_ID_LS_DES_SHIFT)
342
343#define CHA_ID_LS_ARC4_SHIFT 8
344#define CHA_ID_LS_ARC4_MASK (0xfull << CHA_ID_LS_ARC4_SHIFT)
345
346#define CHA_ID_LS_MD_SHIFT 12
347#define CHA_ID_LS_MD_MASK (0xfull << CHA_ID_LS_MD_SHIFT)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000348
349#define CHA_ID_LS_RNG_SHIFT 16
350#define CHA_ID_LS_RNG_MASK (0xfull << CHA_ID_LS_RNG_SHIFT)
351
352#define CHA_ID_LS_SNW8_SHIFT 20
353#define CHA_ID_LS_SNW8_MASK (0xfull << CHA_ID_LS_SNW8_SHIFT)
354
355#define CHA_ID_LS_KAS_SHIFT 24
356#define CHA_ID_LS_KAS_MASK (0xfull << CHA_ID_LS_KAS_SHIFT)
357
358#define CHA_ID_LS_PK_SHIFT 28
359#define CHA_ID_LS_PK_MASK (0xfull << CHA_ID_LS_PK_SHIFT)
360
361#define CHA_ID_MS_CRC_SHIFT 0
362#define CHA_ID_MS_CRC_MASK (0xfull << CHA_ID_MS_CRC_SHIFT)
363
364#define CHA_ID_MS_SNW9_SHIFT 4
365#define CHA_ID_MS_SNW9_MASK (0xfull << CHA_ID_MS_SNW9_SHIFT)
366
367#define CHA_ID_MS_DECO_SHIFT 24
368#define CHA_ID_MS_DECO_MASK (0xfull << CHA_ID_MS_DECO_SHIFT)
369
370#define CHA_ID_MS_JR_SHIFT 28
371#define CHA_ID_MS_JR_MASK (0xfull << CHA_ID_MS_JR_SHIFT)
372
David Brazdil0f672f62019-12-10 10:32:29 +0000373/* Specific CHA version IDs */
374#define CHA_VER_VID_AES_LP 0x3ull
375#define CHA_VER_VID_AES_HP 0x4ull
376#define CHA_VER_VID_MD_LP256 0x0ull
377#define CHA_VER_VID_MD_LP512 0x1ull
378#define CHA_VER_VID_MD_HP 0x2ull
379
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000380struct sec_vid {
381 u16 ip_id;
382 u8 maj_rev;
383 u8 min_rev;
384};
385
386struct caam_perfmon {
387 /* Performance Monitor Registers f00-f9f */
388 u64 req_dequeued; /* PC_REQ_DEQ - Dequeued Requests */
389 u64 ob_enc_req; /* PC_OB_ENC_REQ - Outbound Encrypt Requests */
390 u64 ib_dec_req; /* PC_IB_DEC_REQ - Inbound Decrypt Requests */
391 u64 ob_enc_bytes; /* PC_OB_ENCRYPT - Outbound Bytes Encrypted */
392 u64 ob_prot_bytes; /* PC_OB_PROTECT - Outbound Bytes Protected */
393 u64 ib_dec_bytes; /* PC_IB_DECRYPT - Inbound Bytes Decrypted */
394 u64 ib_valid_bytes; /* PC_IB_VALIDATED Inbound Bytes Validated */
395 u64 rsvd[13];
396
397 /* CAAM Hardware Instantiation Parameters fa0-fbf */
398 u32 cha_rev_ms; /* CRNR - CHA Rev No. Most significant half*/
399 u32 cha_rev_ls; /* CRNR - CHA Rev No. Least significant half*/
400#define CTPR_MS_QI_SHIFT 25
401#define CTPR_MS_QI_MASK (0x1ull << CTPR_MS_QI_SHIFT)
David Brazdil0f672f62019-12-10 10:32:29 +0000402#define CTPR_MS_PS BIT(17)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403#define CTPR_MS_DPAA2 BIT(13)
404#define CTPR_MS_VIRT_EN_INCL 0x00000001
405#define CTPR_MS_VIRT_EN_POR 0x00000002
406#define CTPR_MS_PG_SZ_MASK 0x10
407#define CTPR_MS_PG_SZ_SHIFT 4
408 u32 comp_parms_ms; /* CTPR - Compile Parameters Register */
409 u32 comp_parms_ls; /* CTPR - Compile Parameters Register */
410 u64 rsvd1[2];
411
412 /* CAAM Global Status fc0-fdf */
413 u64 faultaddr; /* FAR - Fault Address */
414 u32 faultliodn; /* FALR - Fault Address LIODN */
415 u32 faultdetail; /* FADR - Fault Addr Detail */
416 u32 rsvd2;
417#define CSTA_PLEND BIT(10)
418#define CSTA_ALT_PLEND BIT(18)
419 u32 status; /* CSTA - CAAM Status */
420 u64 rsvd3;
421
422 /* Component Instantiation Parameters fe0-fff */
423 u32 rtic_id; /* RVID - RTIC Version ID */
424#define CCBVID_ERA_MASK 0xff000000
425#define CCBVID_ERA_SHIFT 24
426 u32 ccb_id; /* CCBVID - CCB Version ID */
427 u32 cha_id_ms; /* CHAVID - CHA Version ID Most Significant*/
428 u32 cha_id_ls; /* CHAVID - CHA Version ID Least Significant*/
429 u32 cha_num_ms; /* CHANUM - CHA Number Most Significant */
430 u32 cha_num_ls; /* CHANUM - CHA Number Least Significant*/
431#define SECVID_MS_IPID_MASK 0xffff0000
432#define SECVID_MS_IPID_SHIFT 16
433#define SECVID_MS_MAJ_REV_MASK 0x0000ff00
434#define SECVID_MS_MAJ_REV_SHIFT 8
435 u32 caam_id_ms; /* CAAMVID - CAAM Version ID MS */
436 u32 caam_id_ls; /* CAAMVID - CAAM Version ID LS */
437};
438
439/* LIODN programming for DMA configuration */
440#define MSTRID_LOCK_LIODN 0x80000000
441#define MSTRID_LOCK_MAKETRUSTED 0x00010000 /* only for JR masterid */
442
443#define MSTRID_LIODN_MASK 0x0fff
444struct masterid {
445 u32 liodn_ms; /* lock and make-trusted control bits */
446 u32 liodn_ls; /* LIODN for non-sequence and seq access */
447};
448
449/* Partition ID for DMA configuration */
450struct partid {
451 u32 rsvd1;
452 u32 pidr; /* partition ID, DECO */
453};
454
455/* RNGB test mode (replicated twice in some configurations) */
456/* Padded out to 0x100 */
457struct rngtst {
458 u32 mode; /* RTSTMODEx - Test mode */
459 u32 rsvd1[3];
460 u32 reset; /* RTSTRESETx - Test reset control */
461 u32 rsvd2[3];
462 u32 status; /* RTSTSSTATUSx - Test status */
463 u32 rsvd3;
464 u32 errstat; /* RTSTERRSTATx - Test error status */
465 u32 rsvd4;
466 u32 errctl; /* RTSTERRCTLx - Test error control */
467 u32 rsvd5;
468 u32 entropy; /* RTSTENTROPYx - Test entropy */
469 u32 rsvd6[15];
470 u32 verifctl; /* RTSTVERIFCTLx - Test verification control */
471 u32 rsvd7;
472 u32 verifstat; /* RTSTVERIFSTATx - Test verification status */
473 u32 rsvd8;
474 u32 verifdata; /* RTSTVERIFDx - Test verification data */
475 u32 rsvd9;
476 u32 xkey; /* RTSTXKEYx - Test XKEY */
477 u32 rsvd10;
478 u32 oscctctl; /* RTSTOSCCTCTLx - Test osc. counter control */
479 u32 rsvd11;
480 u32 oscct; /* RTSTOSCCTx - Test oscillator counter */
481 u32 rsvd12;
482 u32 oscctstat; /* RTSTODCCTSTATx - Test osc counter status */
483 u32 rsvd13[2];
484 u32 ofifo[4]; /* RTSTOFIFOx - Test output FIFO */
485 u32 rsvd14[15];
486};
487
488/* RNG4 TRNG test registers */
489struct rng4tst {
490#define RTMCTL_PRGM 0x00010000 /* 1 -> program mode, 0 -> run mode */
491#define RTMCTL_SAMP_MODE_VON_NEUMANN_ES_SC 0 /* use von Neumann data in
492 both entropy shifter and
493 statistical checker */
494#define RTMCTL_SAMP_MODE_RAW_ES_SC 1 /* use raw data in both
495 entropy shifter and
496 statistical checker */
497#define RTMCTL_SAMP_MODE_VON_NEUMANN_ES_RAW_SC 2 /* use von Neumann data in
498 entropy shifter, raw data
499 in statistical checker */
500#define RTMCTL_SAMP_MODE_INVALID 3 /* invalid combination */
501 u32 rtmctl; /* misc. control register */
502 u32 rtscmisc; /* statistical check misc. register */
503 u32 rtpkrrng; /* poker range register */
504 union {
505 u32 rtpkrmax; /* PRGM=1: poker max. limit register */
506 u32 rtpkrsq; /* PRGM=0: poker square calc. result register */
507 };
508#define RTSDCTL_ENT_DLY_SHIFT 16
509#define RTSDCTL_ENT_DLY_MASK (0xffff << RTSDCTL_ENT_DLY_SHIFT)
510#define RTSDCTL_ENT_DLY_MIN 3200
511#define RTSDCTL_ENT_DLY_MAX 12800
512 u32 rtsdctl; /* seed control register */
513 union {
514 u32 rtsblim; /* PRGM=1: sparse bit limit register */
515 u32 rttotsam; /* PRGM=0: total samples register */
516 };
517 u32 rtfrqmin; /* frequency count min. limit register */
518#define RTFRQMAX_DISABLE (1 << 20)
519 union {
520 u32 rtfrqmax; /* PRGM=1: freq. count max. limit register */
521 u32 rtfrqcnt; /* PRGM=0: freq. count register */
522 };
523 u32 rsvd1[40];
524#define RDSTA_SKVT 0x80000000
525#define RDSTA_SKVN 0x40000000
526#define RDSTA_IF0 0x00000001
527#define RDSTA_IF1 0x00000002
528#define RDSTA_IFMASK (RDSTA_IF1 | RDSTA_IF0)
529 u32 rdsta;
530 u32 rsvd2[15];
531};
532
533/*
534 * caam_ctrl - basic core configuration
535 * starts base + 0x0000 padded out to 0x1000
536 */
537
538#define KEK_KEY_SIZE 8
539#define TKEK_KEY_SIZE 8
540#define TDSK_KEY_SIZE 8
541
542#define DECO_RESET 1 /* Use with DECO reset/availability regs */
543#define DECO_RESET_0 (DECO_RESET << 0)
544#define DECO_RESET_1 (DECO_RESET << 1)
545#define DECO_RESET_2 (DECO_RESET << 2)
546#define DECO_RESET_3 (DECO_RESET << 3)
547#define DECO_RESET_4 (DECO_RESET << 4)
548
549struct caam_ctrl {
550 /* Basic Configuration Section 000-01f */
551 /* Read/Writable */
552 u32 rsvd1;
553 u32 mcr; /* MCFG Master Config Register */
554 u32 rsvd2;
555 u32 scfgr; /* SCFGR, Security Config Register */
556
557 /* Bus Access Configuration Section 010-11f */
558 /* Read/Writable */
559 struct masterid jr_mid[4]; /* JRxLIODNR - JobR LIODN setup */
560 u32 rsvd3[11];
561 u32 jrstart; /* JRSTART - Job Ring Start Register */
562 struct masterid rtic_mid[4]; /* RTICxLIODNR - RTIC LIODN setup */
563 u32 rsvd4[5];
564 u32 deco_rsr; /* DECORSR - Deco Request Source */
565 u32 rsvd11;
566 u32 deco_rq; /* DECORR - DECO Request */
567 struct partid deco_mid[5]; /* DECOxLIODNR - 1 per DECO */
568 u32 rsvd5[22];
569
570 /* DECO Availability/Reset Section 120-3ff */
571 u32 deco_avail; /* DAR - DECO availability */
572 u32 deco_reset; /* DRR - DECO reset */
573 u32 rsvd6[182];
574
575 /* Key Encryption/Decryption Configuration 400-5ff */
576 /* Read/Writable only while in Non-secure mode */
577 u32 kek[KEK_KEY_SIZE]; /* JDKEKR - Key Encryption Key */
578 u32 tkek[TKEK_KEY_SIZE]; /* TDKEKR - Trusted Desc KEK */
579 u32 tdsk[TDSK_KEY_SIZE]; /* TDSKR - Trusted Desc Signing Key */
580 u32 rsvd7[32];
581 u64 sknonce; /* SKNR - Secure Key Nonce */
582 u32 rsvd8[70];
583
584 /* RNG Test/Verification/Debug Access 600-7ff */
585 /* (Useful in Test/Debug modes only...) */
586 union {
587 struct rngtst rtst[2];
588 struct rng4tst r4tst[2];
589 };
590
David Brazdil0f672f62019-12-10 10:32:29 +0000591 u32 rsvd9[416];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000592
David Brazdil0f672f62019-12-10 10:32:29 +0000593 /* Version registers - introduced with era 10 e80-eff */
594 struct version_regs vreg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000595 /* Performance Monitor f00-fff */
596 struct caam_perfmon perfmon;
597};
598
599/*
600 * Controller master config register defs
601 */
602#define MCFGR_SWRESET 0x80000000 /* software reset */
603#define MCFGR_WDENABLE 0x40000000 /* DECO watchdog enable */
604#define MCFGR_WDFAIL 0x20000000 /* DECO watchdog force-fail */
605#define MCFGR_DMA_RESET 0x10000000
606#define MCFGR_LONG_PTR 0x00010000 /* Use >32-bit desc addressing */
607#define SCFGR_RDBENABLE 0x00000400
608#define SCFGR_VIRT_EN 0x00008000
609#define DECORR_RQD0ENABLE 0x00000001 /* Enable DECO0 for direct access */
610#define DECORSR_JR0 0x00000001 /* JR to supply TZ, SDID, ICID */
611#define DECORSR_VALID 0x80000000
612#define DECORR_DEN0 0x00010000 /* DECO0 available for access*/
613
614/* AXI read cache control */
615#define MCFGR_ARCACHE_SHIFT 12
616#define MCFGR_ARCACHE_MASK (0xf << MCFGR_ARCACHE_SHIFT)
617#define MCFGR_ARCACHE_BUFF (0x1 << MCFGR_ARCACHE_SHIFT)
618#define MCFGR_ARCACHE_CACH (0x2 << MCFGR_ARCACHE_SHIFT)
619#define MCFGR_ARCACHE_RALL (0x4 << MCFGR_ARCACHE_SHIFT)
620
621/* AXI write cache control */
622#define MCFGR_AWCACHE_SHIFT 8
623#define MCFGR_AWCACHE_MASK (0xf << MCFGR_AWCACHE_SHIFT)
624#define MCFGR_AWCACHE_BUFF (0x1 << MCFGR_AWCACHE_SHIFT)
625#define MCFGR_AWCACHE_CACH (0x2 << MCFGR_AWCACHE_SHIFT)
626#define MCFGR_AWCACHE_WALL (0x8 << MCFGR_AWCACHE_SHIFT)
627
628/* AXI pipeline depth */
629#define MCFGR_AXIPIPE_SHIFT 4
630#define MCFGR_AXIPIPE_MASK (0xf << MCFGR_AXIPIPE_SHIFT)
631
632#define MCFGR_AXIPRI 0x00000008 /* Assert AXI priority sideband */
633#define MCFGR_LARGE_BURST 0x00000004 /* 128/256-byte burst size */
634#define MCFGR_BURST_64 0x00000001 /* 64-byte burst size */
635
636/* JRSTART register offsets */
637#define JRSTART_JR0_START 0x00000001 /* Start Job ring 0 */
638#define JRSTART_JR1_START 0x00000002 /* Start Job ring 1 */
639#define JRSTART_JR2_START 0x00000004 /* Start Job ring 2 */
640#define JRSTART_JR3_START 0x00000008 /* Start Job ring 3 */
641
642/*
643 * caam_job_ring - direct job ring setup
644 * 1-4 possible per instantiation, base + 1000/2000/3000/4000
645 * Padded out to 0x1000
646 */
647struct caam_job_ring {
648 /* Input ring */
649 u64 inpring_base; /* IRBAx - Input desc ring baseaddr */
650 u32 rsvd1;
651 u32 inpring_size; /* IRSx - Input ring size */
652 u32 rsvd2;
653 u32 inpring_avail; /* IRSAx - Input ring room remaining */
654 u32 rsvd3;
655 u32 inpring_jobadd; /* IRJAx - Input ring jobs added */
656
657 /* Output Ring */
658 u64 outring_base; /* ORBAx - Output status ring base addr */
659 u32 rsvd4;
660 u32 outring_size; /* ORSx - Output ring size */
661 u32 rsvd5;
662 u32 outring_rmvd; /* ORJRx - Output ring jobs removed */
663 u32 rsvd6;
664 u32 outring_used; /* ORSFx - Output ring slots full */
665
666 /* Status/Configuration */
667 u32 rsvd7;
668 u32 jroutstatus; /* JRSTAx - JobR output status */
669 u32 rsvd8;
670 u32 jrintstatus; /* JRINTx - JobR interrupt status */
671 u32 rconfig_hi; /* JRxCFG - Ring configuration */
672 u32 rconfig_lo;
673
674 /* Indices. CAAM maintains as "heads" of each queue */
675 u32 rsvd9;
676 u32 inp_rdidx; /* IRRIx - Input ring read index */
677 u32 rsvd10;
678 u32 out_wtidx; /* ORWIx - Output ring write index */
679
680 /* Command/control */
681 u32 rsvd11;
682 u32 jrcommand; /* JRCRx - JobR command */
683
David Brazdil0f672f62019-12-10 10:32:29 +0000684 u32 rsvd12[900];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000685
David Brazdil0f672f62019-12-10 10:32:29 +0000686 /* Version registers - introduced with era 10 e80-eff */
687 struct version_regs vreg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000688 /* Performance Monitor f00-fff */
689 struct caam_perfmon perfmon;
690};
691
692#define JR_RINGSIZE_MASK 0x03ff
693/*
694 * jrstatus - Job Ring Output Status
695 * All values in lo word
696 * Also note, same values written out as status through QI
697 * in the command/status field of a frame descriptor
698 */
699#define JRSTA_SSRC_SHIFT 28
700#define JRSTA_SSRC_MASK 0xf0000000
701
702#define JRSTA_SSRC_NONE 0x00000000
703#define JRSTA_SSRC_CCB_ERROR 0x20000000
704#define JRSTA_SSRC_JUMP_HALT_USER 0x30000000
705#define JRSTA_SSRC_DECO 0x40000000
David Brazdil0f672f62019-12-10 10:32:29 +0000706#define JRSTA_SSRC_QI 0x50000000
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000707#define JRSTA_SSRC_JRERROR 0x60000000
708#define JRSTA_SSRC_JUMP_HALT_CC 0x70000000
709
710#define JRSTA_DECOERR_JUMP 0x08000000
711#define JRSTA_DECOERR_INDEX_SHIFT 8
712#define JRSTA_DECOERR_INDEX_MASK 0xff00
713#define JRSTA_DECOERR_ERROR_MASK 0x00ff
714
715#define JRSTA_DECOERR_NONE 0x00
716#define JRSTA_DECOERR_LINKLEN 0x01
717#define JRSTA_DECOERR_LINKPTR 0x02
718#define JRSTA_DECOERR_JRCTRL 0x03
719#define JRSTA_DECOERR_DESCCMD 0x04
720#define JRSTA_DECOERR_ORDER 0x05
721#define JRSTA_DECOERR_KEYCMD 0x06
722#define JRSTA_DECOERR_LOADCMD 0x07
723#define JRSTA_DECOERR_STORECMD 0x08
724#define JRSTA_DECOERR_OPCMD 0x09
725#define JRSTA_DECOERR_FIFOLDCMD 0x0a
726#define JRSTA_DECOERR_FIFOSTCMD 0x0b
727#define JRSTA_DECOERR_MOVECMD 0x0c
728#define JRSTA_DECOERR_JUMPCMD 0x0d
729#define JRSTA_DECOERR_MATHCMD 0x0e
730#define JRSTA_DECOERR_SHASHCMD 0x0f
731#define JRSTA_DECOERR_SEQCMD 0x10
732#define JRSTA_DECOERR_DECOINTERNAL 0x11
733#define JRSTA_DECOERR_SHDESCHDR 0x12
734#define JRSTA_DECOERR_HDRLEN 0x13
735#define JRSTA_DECOERR_BURSTER 0x14
736#define JRSTA_DECOERR_DESCSIGNATURE 0x15
737#define JRSTA_DECOERR_DMA 0x16
738#define JRSTA_DECOERR_BURSTFIFO 0x17
739#define JRSTA_DECOERR_JRRESET 0x1a
740#define JRSTA_DECOERR_JOBFAIL 0x1b
741#define JRSTA_DECOERR_DNRERR 0x80
742#define JRSTA_DECOERR_UNDEFPCL 0x81
743#define JRSTA_DECOERR_PDBERR 0x82
744#define JRSTA_DECOERR_ANRPLY_LATE 0x83
745#define JRSTA_DECOERR_ANRPLY_REPLAY 0x84
746#define JRSTA_DECOERR_SEQOVF 0x85
747#define JRSTA_DECOERR_INVSIGN 0x86
748#define JRSTA_DECOERR_DSASIGN 0x87
749
David Brazdil0f672f62019-12-10 10:32:29 +0000750#define JRSTA_QIERR_ERROR_MASK 0x00ff
751
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000752#define JRSTA_CCBERR_JUMP 0x08000000
753#define JRSTA_CCBERR_INDEX_MASK 0xff00
754#define JRSTA_CCBERR_INDEX_SHIFT 8
755#define JRSTA_CCBERR_CHAID_MASK 0x00f0
756#define JRSTA_CCBERR_CHAID_SHIFT 4
757#define JRSTA_CCBERR_ERRID_MASK 0x000f
758
759#define JRSTA_CCBERR_CHAID_AES (0x01 << JRSTA_CCBERR_CHAID_SHIFT)
760#define JRSTA_CCBERR_CHAID_DES (0x02 << JRSTA_CCBERR_CHAID_SHIFT)
761#define JRSTA_CCBERR_CHAID_ARC4 (0x03 << JRSTA_CCBERR_CHAID_SHIFT)
762#define JRSTA_CCBERR_CHAID_MD (0x04 << JRSTA_CCBERR_CHAID_SHIFT)
763#define JRSTA_CCBERR_CHAID_RNG (0x05 << JRSTA_CCBERR_CHAID_SHIFT)
764#define JRSTA_CCBERR_CHAID_SNOW (0x06 << JRSTA_CCBERR_CHAID_SHIFT)
765#define JRSTA_CCBERR_CHAID_KASUMI (0x07 << JRSTA_CCBERR_CHAID_SHIFT)
766#define JRSTA_CCBERR_CHAID_PK (0x08 << JRSTA_CCBERR_CHAID_SHIFT)
767#define JRSTA_CCBERR_CHAID_CRC (0x09 << JRSTA_CCBERR_CHAID_SHIFT)
768
769#define JRSTA_CCBERR_ERRID_NONE 0x00
770#define JRSTA_CCBERR_ERRID_MODE 0x01
771#define JRSTA_CCBERR_ERRID_DATASIZ 0x02
772#define JRSTA_CCBERR_ERRID_KEYSIZ 0x03
773#define JRSTA_CCBERR_ERRID_PKAMEMSZ 0x04
774#define JRSTA_CCBERR_ERRID_PKBMEMSZ 0x05
775#define JRSTA_CCBERR_ERRID_SEQUENCE 0x06
776#define JRSTA_CCBERR_ERRID_PKDIVZRO 0x07
777#define JRSTA_CCBERR_ERRID_PKMODEVN 0x08
778#define JRSTA_CCBERR_ERRID_KEYPARIT 0x09
779#define JRSTA_CCBERR_ERRID_ICVCHK 0x0a
780#define JRSTA_CCBERR_ERRID_HARDWARE 0x0b
781#define JRSTA_CCBERR_ERRID_CCMAAD 0x0c
782#define JRSTA_CCBERR_ERRID_INVCHA 0x0f
783
784#define JRINT_ERR_INDEX_MASK 0x3fff0000
785#define JRINT_ERR_INDEX_SHIFT 16
786#define JRINT_ERR_TYPE_MASK 0xf00
787#define JRINT_ERR_TYPE_SHIFT 8
788#define JRINT_ERR_HALT_MASK 0xc
789#define JRINT_ERR_HALT_SHIFT 2
790#define JRINT_ERR_HALT_INPROGRESS 0x4
791#define JRINT_ERR_HALT_COMPLETE 0x8
792#define JRINT_JR_ERROR 0x02
793#define JRINT_JR_INT 0x01
794
795#define JRINT_ERR_TYPE_WRITE 1
796#define JRINT_ERR_TYPE_BAD_INPADDR 3
797#define JRINT_ERR_TYPE_BAD_OUTADDR 4
798#define JRINT_ERR_TYPE_INV_INPWRT 5
799#define JRINT_ERR_TYPE_INV_OUTWRT 6
800#define JRINT_ERR_TYPE_RESET 7
801#define JRINT_ERR_TYPE_REMOVE_OFL 8
802#define JRINT_ERR_TYPE_ADD_OFL 9
803
804#define JRCFG_SOE 0x04
805#define JRCFG_ICEN 0x02
806#define JRCFG_IMSK 0x01
807#define JRCFG_ICDCT_SHIFT 8
808#define JRCFG_ICTT_SHIFT 16
809
810#define JRCR_RESET 0x01
811
812/*
813 * caam_assurance - Assurance Controller View
814 * base + 0x6000 padded out to 0x1000
815 */
816
817struct rtic_element {
818 u64 address;
819 u32 rsvd;
820 u32 length;
821};
822
823struct rtic_block {
824 struct rtic_element element[2];
825};
826
827struct rtic_memhash {
828 u32 memhash_be[32];
829 u32 memhash_le[32];
830};
831
832struct caam_assurance {
833 /* Status/Command/Watchdog */
834 u32 rsvd1;
835 u32 status; /* RSTA - Status */
836 u32 rsvd2;
837 u32 cmd; /* RCMD - Command */
838 u32 rsvd3;
839 u32 ctrl; /* RCTL - Control */
840 u32 rsvd4;
841 u32 throttle; /* RTHR - Throttle */
842 u32 rsvd5[2];
843 u64 watchdog; /* RWDOG - Watchdog Timer */
844 u32 rsvd6;
845 u32 rend; /* REND - Endian corrections */
846 u32 rsvd7[50];
847
848 /* Block access/configuration @ 100/110/120/130 */
849 struct rtic_block memblk[4]; /* Memory Blocks A-D */
850 u32 rsvd8[32];
851
852 /* Block hashes @ 200/300/400/500 */
853 struct rtic_memhash hash[4]; /* Block hash values A-D */
854 u32 rsvd_3[640];
855};
856
857/*
858 * caam_queue_if - QI configuration and control
859 * starts base + 0x7000, padded out to 0x1000 long
860 */
861
862struct caam_queue_if {
863 u32 qi_control_hi; /* QICTL - QI Control */
864 u32 qi_control_lo;
865 u32 rsvd1;
866 u32 qi_status; /* QISTA - QI Status */
867 u32 qi_deq_cfg_hi; /* QIDQC - QI Dequeue Configuration */
868 u32 qi_deq_cfg_lo;
869 u32 qi_enq_cfg_hi; /* QISEQC - QI Enqueue Command */
870 u32 qi_enq_cfg_lo;
871 u32 rsvd2[1016];
872};
873
874/* QI control bits - low word */
875#define QICTL_DQEN 0x01 /* Enable frame pop */
876#define QICTL_STOP 0x02 /* Stop dequeue/enqueue */
877#define QICTL_SOE 0x04 /* Stop on error */
878
879/* QI control bits - high word */
880#define QICTL_MBSI 0x01
881#define QICTL_MHWSI 0x02
882#define QICTL_MWSI 0x04
883#define QICTL_MDWSI 0x08
884#define QICTL_CBSI 0x10 /* CtrlDataByteSwapInput */
885#define QICTL_CHWSI 0x20 /* CtrlDataHalfSwapInput */
886#define QICTL_CWSI 0x40 /* CtrlDataWordSwapInput */
887#define QICTL_CDWSI 0x80 /* CtrlDataDWordSwapInput */
888#define QICTL_MBSO 0x0100
889#define QICTL_MHWSO 0x0200
890#define QICTL_MWSO 0x0400
891#define QICTL_MDWSO 0x0800
892#define QICTL_CBSO 0x1000 /* CtrlDataByteSwapOutput */
893#define QICTL_CHWSO 0x2000 /* CtrlDataHalfSwapOutput */
894#define QICTL_CWSO 0x4000 /* CtrlDataWordSwapOutput */
895#define QICTL_CDWSO 0x8000 /* CtrlDataDWordSwapOutput */
896#define QICTL_DMBS 0x010000
897#define QICTL_EPO 0x020000
898
899/* QI status bits */
900#define QISTA_PHRDERR 0x01 /* PreHeader Read Error */
901#define QISTA_CFRDERR 0x02 /* Compound Frame Read Error */
902#define QISTA_OFWRERR 0x04 /* Output Frame Read Error */
903#define QISTA_BPDERR 0x08 /* Buffer Pool Depleted */
904#define QISTA_BTSERR 0x10 /* Buffer Undersize */
905#define QISTA_CFWRERR 0x20 /* Compound Frame Write Err */
906#define QISTA_STOPD 0x80000000 /* QI Stopped (see QICTL) */
907
908/* deco_sg_table - DECO view of scatter/gather table */
909struct deco_sg_table {
910 u64 addr; /* Segment Address */
911 u32 elen; /* E, F bits + 30-bit length */
912 u32 bpid_offset; /* Buffer Pool ID + 16-bit length */
913};
914
915/*
916 * caam_deco - descriptor controller - CHA cluster block
917 *
918 * Only accessible when direct DECO access is turned on
919 * (done in DECORR, via MID programmed in DECOxMID
920 *
921 * 5 typical, base + 0x8000/9000/a000/b000
922 * Padded out to 0x1000 long
923 */
924struct caam_deco {
925 u32 rsvd1;
926 u32 cls1_mode; /* CxC1MR - Class 1 Mode */
927 u32 rsvd2;
928 u32 cls1_keysize; /* CxC1KSR - Class 1 Key Size */
929 u32 cls1_datasize_hi; /* CxC1DSR - Class 1 Data Size */
930 u32 cls1_datasize_lo;
931 u32 rsvd3;
932 u32 cls1_icvsize; /* CxC1ICVSR - Class 1 ICV size */
933 u32 rsvd4[5];
934 u32 cha_ctrl; /* CCTLR - CHA control */
935 u32 rsvd5;
936 u32 irq_crtl; /* CxCIRQ - CCB interrupt done/error/clear */
937 u32 rsvd6;
938 u32 clr_written; /* CxCWR - Clear-Written */
939 u32 ccb_status_hi; /* CxCSTA - CCB Status/Error */
940 u32 ccb_status_lo;
941 u32 rsvd7[3];
942 u32 aad_size; /* CxAADSZR - Current AAD Size */
943 u32 rsvd8;
944 u32 cls1_iv_size; /* CxC1IVSZR - Current Class 1 IV Size */
945 u32 rsvd9[7];
946 u32 pkha_a_size; /* PKASZRx - Size of PKHA A */
947 u32 rsvd10;
948 u32 pkha_b_size; /* PKBSZRx - Size of PKHA B */
949 u32 rsvd11;
950 u32 pkha_n_size; /* PKNSZRx - Size of PKHA N */
951 u32 rsvd12;
952 u32 pkha_e_size; /* PKESZRx - Size of PKHA E */
953 u32 rsvd13[24];
954 u32 cls1_ctx[16]; /* CxC1CTXR - Class 1 Context @100 */
955 u32 rsvd14[48];
956 u32 cls1_key[8]; /* CxC1KEYR - Class 1 Key @200 */
957 u32 rsvd15[121];
958 u32 cls2_mode; /* CxC2MR - Class 2 Mode */
959 u32 rsvd16;
960 u32 cls2_keysize; /* CxX2KSR - Class 2 Key Size */
961 u32 cls2_datasize_hi; /* CxC2DSR - Class 2 Data Size */
962 u32 cls2_datasize_lo;
963 u32 rsvd17;
964 u32 cls2_icvsize; /* CxC2ICVSZR - Class 2 ICV Size */
965 u32 rsvd18[56];
966 u32 cls2_ctx[18]; /* CxC2CTXR - Class 2 Context @500 */
967 u32 rsvd19[46];
968 u32 cls2_key[32]; /* CxC2KEYR - Class2 Key @600 */
969 u32 rsvd20[84];
970 u32 inp_infofifo_hi; /* CxIFIFO - Input Info FIFO @7d0 */
971 u32 inp_infofifo_lo;
972 u32 rsvd21[2];
973 u64 inp_datafifo; /* CxDFIFO - Input Data FIFO */
974 u32 rsvd22[2];
975 u64 out_datafifo; /* CxOFIFO - Output Data FIFO */
976 u32 rsvd23[2];
977 u32 jr_ctl_hi; /* CxJRR - JobR Control Register @800 */
978 u32 jr_ctl_lo;
979 u64 jr_descaddr; /* CxDADR - JobR Descriptor Address */
980#define DECO_OP_STATUS_HI_ERR_MASK 0xF00000FF
981 u32 op_status_hi; /* DxOPSTA - DECO Operation Status */
982 u32 op_status_lo;
983 u32 rsvd24[2];
984 u32 liodn; /* DxLSR - DECO LIODN Status - non-seq */
985 u32 td_liodn; /* DxLSR - DECO LIODN Status - trustdesc */
986 u32 rsvd26[6];
987 u64 math[4]; /* DxMTH - Math register */
988 u32 rsvd27[8];
989 struct deco_sg_table gthr_tbl[4]; /* DxGTR - Gather Tables */
990 u32 rsvd28[16];
991 struct deco_sg_table sctr_tbl[4]; /* DxSTR - Scatter Tables */
992 u32 rsvd29[48];
993 u32 descbuf[64]; /* DxDESB - Descriptor buffer */
994 u32 rscvd30[193];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000995#define DESC_DBG_DECO_STAT_VALID 0x80000000
996#define DESC_DBG_DECO_STAT_MASK 0x00F00000
David Brazdil0f672f62019-12-10 10:32:29 +0000997#define DESC_DBG_DECO_STAT_SHIFT 20
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000998 u32 desc_dbg; /* DxDDR - DECO Debug Register */
David Brazdil0f672f62019-12-10 10:32:29 +0000999 u32 rsvd31[13];
1000#define DESC_DER_DECO_STAT_MASK 0x000F0000
1001#define DESC_DER_DECO_STAT_SHIFT 16
1002 u32 dbg_exec; /* DxDER - DECO Debug Exec Register */
1003 u32 rsvd32[112];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001004};
1005
David Brazdil0f672f62019-12-10 10:32:29 +00001006#define DECO_STAT_HOST_ERR 0xD
1007
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001008#define DECO_JQCR_WHL 0x20000000
1009#define DECO_JQCR_FOUR 0x10000000
1010
1011#define JR_BLOCK_NUMBER 1
1012#define ASSURE_BLOCK_NUMBER 6
1013#define QI_BLOCK_NUMBER 7
1014#define DECO_BLOCK_NUMBER 8
1015#define PG_SIZE_4K 0x1000
1016#define PG_SIZE_64K 0x10000
1017#endif /* REGS_H */