David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* Common code for 32 and 64-bit NUMA */ |
| 3 | #include <linux/acpi.h> |
| 4 | #include <linux/kernel.h> |
| 5 | #include <linux/mm.h> |
| 6 | #include <linux/string.h> |
| 7 | #include <linux/init.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 8 | #include <linux/memblock.h> |
| 9 | #include <linux/mmzone.h> |
| 10 | #include <linux/ctype.h> |
| 11 | #include <linux/nodemask.h> |
| 12 | #include <linux/sched.h> |
| 13 | #include <linux/topology.h> |
| 14 | |
| 15 | #include <asm/e820/api.h> |
| 16 | #include <asm/proto.h> |
| 17 | #include <asm/dma.h> |
| 18 | #include <asm/amd_nb.h> |
| 19 | |
| 20 | #include "numa_internal.h" |
| 21 | |
| 22 | int numa_off; |
| 23 | nodemask_t numa_nodes_parsed __initdata; |
| 24 | |
| 25 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; |
| 26 | EXPORT_SYMBOL(node_data); |
| 27 | |
| 28 | static struct numa_meminfo numa_meminfo |
| 29 | #ifndef CONFIG_MEMORY_HOTPLUG |
| 30 | __initdata |
| 31 | #endif |
| 32 | ; |
| 33 | |
| 34 | static int numa_distance_cnt; |
| 35 | static u8 *numa_distance; |
| 36 | |
| 37 | static __init int numa_setup(char *opt) |
| 38 | { |
| 39 | if (!opt) |
| 40 | return -EINVAL; |
| 41 | if (!strncmp(opt, "off", 3)) |
| 42 | numa_off = 1; |
| 43 | #ifdef CONFIG_NUMA_EMU |
| 44 | if (!strncmp(opt, "fake=", 5)) |
| 45 | numa_emu_cmdline(opt + 5); |
| 46 | #endif |
| 47 | #ifdef CONFIG_ACPI_NUMA |
| 48 | if (!strncmp(opt, "noacpi", 6)) |
| 49 | acpi_numa = -1; |
| 50 | #endif |
| 51 | return 0; |
| 52 | } |
| 53 | early_param("numa", numa_setup); |
| 54 | |
| 55 | /* |
| 56 | * apicid, cpu, node mappings |
| 57 | */ |
| 58 | s16 __apicid_to_node[MAX_LOCAL_APIC] = { |
| 59 | [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE |
| 60 | }; |
| 61 | |
| 62 | int numa_cpu_node(int cpu) |
| 63 | { |
| 64 | int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); |
| 65 | |
| 66 | if (apicid != BAD_APICID) |
| 67 | return __apicid_to_node[apicid]; |
| 68 | return NUMA_NO_NODE; |
| 69 | } |
| 70 | |
| 71 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; |
| 72 | EXPORT_SYMBOL(node_to_cpumask_map); |
| 73 | |
| 74 | /* |
| 75 | * Map cpu index to node index |
| 76 | */ |
| 77 | DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); |
| 78 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); |
| 79 | |
| 80 | void numa_set_node(int cpu, int node) |
| 81 | { |
| 82 | int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); |
| 83 | |
| 84 | /* early setting, no percpu area yet */ |
| 85 | if (cpu_to_node_map) { |
| 86 | cpu_to_node_map[cpu] = node; |
| 87 | return; |
| 88 | } |
| 89 | |
| 90 | #ifdef CONFIG_DEBUG_PER_CPU_MAPS |
| 91 | if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { |
| 92 | printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); |
| 93 | dump_stack(); |
| 94 | return; |
| 95 | } |
| 96 | #endif |
| 97 | per_cpu(x86_cpu_to_node_map, cpu) = node; |
| 98 | |
| 99 | set_cpu_numa_node(cpu, node); |
| 100 | } |
| 101 | |
| 102 | void numa_clear_node(int cpu) |
| 103 | { |
| 104 | numa_set_node(cpu, NUMA_NO_NODE); |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * Allocate node_to_cpumask_map based on number of available nodes |
| 109 | * Requires node_possible_map to be valid. |
| 110 | * |
| 111 | * Note: cpumask_of_node() is not valid until after this is done. |
| 112 | * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) |
| 113 | */ |
| 114 | void __init setup_node_to_cpumask_map(void) |
| 115 | { |
| 116 | unsigned int node; |
| 117 | |
| 118 | /* setup nr_node_ids if not done yet */ |
| 119 | if (nr_node_ids == MAX_NUMNODES) |
| 120 | setup_nr_node_ids(); |
| 121 | |
| 122 | /* allocate the map */ |
| 123 | for (node = 0; node < nr_node_ids; node++) |
| 124 | alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); |
| 125 | |
| 126 | /* cpumask_of_node() will now work */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 127 | pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 128 | } |
| 129 | |
| 130 | static int __init numa_add_memblk_to(int nid, u64 start, u64 end, |
| 131 | struct numa_meminfo *mi) |
| 132 | { |
| 133 | /* ignore zero length blks */ |
| 134 | if (start == end) |
| 135 | return 0; |
| 136 | |
| 137 | /* whine about and ignore invalid blks */ |
| 138 | if (start > end || nid < 0 || nid >= MAX_NUMNODES) { |
| 139 | pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", |
| 140 | nid, start, end - 1); |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | if (mi->nr_blks >= NR_NODE_MEMBLKS) { |
| 145 | pr_err("too many memblk ranges\n"); |
| 146 | return -EINVAL; |
| 147 | } |
| 148 | |
| 149 | mi->blk[mi->nr_blks].start = start; |
| 150 | mi->blk[mi->nr_blks].end = end; |
| 151 | mi->blk[mi->nr_blks].nid = nid; |
| 152 | mi->nr_blks++; |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | /** |
| 157 | * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo |
| 158 | * @idx: Index of memblk to remove |
| 159 | * @mi: numa_meminfo to remove memblk from |
| 160 | * |
| 161 | * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and |
| 162 | * decrementing @mi->nr_blks. |
| 163 | */ |
| 164 | void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) |
| 165 | { |
| 166 | mi->nr_blks--; |
| 167 | memmove(&mi->blk[idx], &mi->blk[idx + 1], |
| 168 | (mi->nr_blks - idx) * sizeof(mi->blk[0])); |
| 169 | } |
| 170 | |
| 171 | /** |
| 172 | * numa_add_memblk - Add one numa_memblk to numa_meminfo |
| 173 | * @nid: NUMA node ID of the new memblk |
| 174 | * @start: Start address of the new memblk |
| 175 | * @end: End address of the new memblk |
| 176 | * |
| 177 | * Add a new memblk to the default numa_meminfo. |
| 178 | * |
| 179 | * RETURNS: |
| 180 | * 0 on success, -errno on failure. |
| 181 | */ |
| 182 | int __init numa_add_memblk(int nid, u64 start, u64 end) |
| 183 | { |
| 184 | return numa_add_memblk_to(nid, start, end, &numa_meminfo); |
| 185 | } |
| 186 | |
| 187 | /* Allocate NODE_DATA for a node on the local memory */ |
| 188 | static void __init alloc_node_data(int nid) |
| 189 | { |
| 190 | const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); |
| 191 | u64 nd_pa; |
| 192 | void *nd; |
| 193 | int tnid; |
| 194 | |
| 195 | /* |
| 196 | * Allocate node data. Try node-local memory and then any node. |
| 197 | * Never allocate in DMA zone. |
| 198 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 199 | nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 200 | if (!nd_pa) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 201 | pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", |
| 202 | nd_size, nid); |
| 203 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 204 | } |
| 205 | nd = __va(nd_pa); |
| 206 | |
| 207 | /* report and initialize */ |
| 208 | printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, |
| 209 | nd_pa, nd_pa + nd_size - 1); |
| 210 | tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); |
| 211 | if (tnid != nid) |
| 212 | printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); |
| 213 | |
| 214 | node_data[nid] = nd; |
| 215 | memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); |
| 216 | |
| 217 | node_set_online(nid); |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * numa_cleanup_meminfo - Cleanup a numa_meminfo |
| 222 | * @mi: numa_meminfo to clean up |
| 223 | * |
| 224 | * Sanitize @mi by merging and removing unnecessary memblks. Also check for |
| 225 | * conflicts and clear unused memblks. |
| 226 | * |
| 227 | * RETURNS: |
| 228 | * 0 on success, -errno on failure. |
| 229 | */ |
| 230 | int __init numa_cleanup_meminfo(struct numa_meminfo *mi) |
| 231 | { |
| 232 | const u64 low = 0; |
| 233 | const u64 high = PFN_PHYS(max_pfn); |
| 234 | int i, j, k; |
| 235 | |
| 236 | /* first, trim all entries */ |
| 237 | for (i = 0; i < mi->nr_blks; i++) { |
| 238 | struct numa_memblk *bi = &mi->blk[i]; |
| 239 | |
| 240 | /* make sure all blocks are inside the limits */ |
| 241 | bi->start = max(bi->start, low); |
| 242 | bi->end = min(bi->end, high); |
| 243 | |
| 244 | /* and there's no empty or non-exist block */ |
| 245 | if (bi->start >= bi->end || |
| 246 | !memblock_overlaps_region(&memblock.memory, |
| 247 | bi->start, bi->end - bi->start)) |
| 248 | numa_remove_memblk_from(i--, mi); |
| 249 | } |
| 250 | |
| 251 | /* merge neighboring / overlapping entries */ |
| 252 | for (i = 0; i < mi->nr_blks; i++) { |
| 253 | struct numa_memblk *bi = &mi->blk[i]; |
| 254 | |
| 255 | for (j = i + 1; j < mi->nr_blks; j++) { |
| 256 | struct numa_memblk *bj = &mi->blk[j]; |
| 257 | u64 start, end; |
| 258 | |
| 259 | /* |
| 260 | * See whether there are overlapping blocks. Whine |
| 261 | * about but allow overlaps of the same nid. They |
| 262 | * will be merged below. |
| 263 | */ |
| 264 | if (bi->end > bj->start && bi->start < bj->end) { |
| 265 | if (bi->nid != bj->nid) { |
| 266 | pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", |
| 267 | bi->nid, bi->start, bi->end - 1, |
| 268 | bj->nid, bj->start, bj->end - 1); |
| 269 | return -EINVAL; |
| 270 | } |
| 271 | pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", |
| 272 | bi->nid, bi->start, bi->end - 1, |
| 273 | bj->start, bj->end - 1); |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Join together blocks on the same node, holes |
| 278 | * between which don't overlap with memory on other |
| 279 | * nodes. |
| 280 | */ |
| 281 | if (bi->nid != bj->nid) |
| 282 | continue; |
| 283 | start = min(bi->start, bj->start); |
| 284 | end = max(bi->end, bj->end); |
| 285 | for (k = 0; k < mi->nr_blks; k++) { |
| 286 | struct numa_memblk *bk = &mi->blk[k]; |
| 287 | |
| 288 | if (bi->nid == bk->nid) |
| 289 | continue; |
| 290 | if (start < bk->end && end > bk->start) |
| 291 | break; |
| 292 | } |
| 293 | if (k < mi->nr_blks) |
| 294 | continue; |
| 295 | printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", |
| 296 | bi->nid, bi->start, bi->end - 1, bj->start, |
| 297 | bj->end - 1, start, end - 1); |
| 298 | bi->start = start; |
| 299 | bi->end = end; |
| 300 | numa_remove_memblk_from(j--, mi); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | /* clear unused ones */ |
| 305 | for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { |
| 306 | mi->blk[i].start = mi->blk[i].end = 0; |
| 307 | mi->blk[i].nid = NUMA_NO_NODE; |
| 308 | } |
| 309 | |
| 310 | return 0; |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Set nodes, which have memory in @mi, in *@nodemask. |
| 315 | */ |
| 316 | static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, |
| 317 | const struct numa_meminfo *mi) |
| 318 | { |
| 319 | int i; |
| 320 | |
| 321 | for (i = 0; i < ARRAY_SIZE(mi->blk); i++) |
| 322 | if (mi->blk[i].start != mi->blk[i].end && |
| 323 | mi->blk[i].nid != NUMA_NO_NODE) |
| 324 | node_set(mi->blk[i].nid, *nodemask); |
| 325 | } |
| 326 | |
| 327 | /** |
| 328 | * numa_reset_distance - Reset NUMA distance table |
| 329 | * |
| 330 | * The current table is freed. The next numa_set_distance() call will |
| 331 | * create a new one. |
| 332 | */ |
| 333 | void __init numa_reset_distance(void) |
| 334 | { |
| 335 | size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); |
| 336 | |
| 337 | /* numa_distance could be 1LU marking allocation failure, test cnt */ |
| 338 | if (numa_distance_cnt) |
| 339 | memblock_free(__pa(numa_distance), size); |
| 340 | numa_distance_cnt = 0; |
| 341 | numa_distance = NULL; /* enable table creation */ |
| 342 | } |
| 343 | |
| 344 | static int __init numa_alloc_distance(void) |
| 345 | { |
| 346 | nodemask_t nodes_parsed; |
| 347 | size_t size; |
| 348 | int i, j, cnt = 0; |
| 349 | u64 phys; |
| 350 | |
| 351 | /* size the new table and allocate it */ |
| 352 | nodes_parsed = numa_nodes_parsed; |
| 353 | numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); |
| 354 | |
| 355 | for_each_node_mask(i, nodes_parsed) |
| 356 | cnt = i; |
| 357 | cnt++; |
| 358 | size = cnt * cnt * sizeof(numa_distance[0]); |
| 359 | |
| 360 | phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), |
| 361 | size, PAGE_SIZE); |
| 362 | if (!phys) { |
| 363 | pr_warn("Warning: can't allocate distance table!\n"); |
| 364 | /* don't retry until explicitly reset */ |
| 365 | numa_distance = (void *)1LU; |
| 366 | return -ENOMEM; |
| 367 | } |
| 368 | memblock_reserve(phys, size); |
| 369 | |
| 370 | numa_distance = __va(phys); |
| 371 | numa_distance_cnt = cnt; |
| 372 | |
| 373 | /* fill with the default distances */ |
| 374 | for (i = 0; i < cnt; i++) |
| 375 | for (j = 0; j < cnt; j++) |
| 376 | numa_distance[i * cnt + j] = i == j ? |
| 377 | LOCAL_DISTANCE : REMOTE_DISTANCE; |
| 378 | printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); |
| 379 | |
| 380 | return 0; |
| 381 | } |
| 382 | |
| 383 | /** |
| 384 | * numa_set_distance - Set NUMA distance from one NUMA to another |
| 385 | * @from: the 'from' node to set distance |
| 386 | * @to: the 'to' node to set distance |
| 387 | * @distance: NUMA distance |
| 388 | * |
| 389 | * Set the distance from node @from to @to to @distance. If distance table |
| 390 | * doesn't exist, one which is large enough to accommodate all the currently |
| 391 | * known nodes will be created. |
| 392 | * |
| 393 | * If such table cannot be allocated, a warning is printed and further |
| 394 | * calls are ignored until the distance table is reset with |
| 395 | * numa_reset_distance(). |
| 396 | * |
| 397 | * If @from or @to is higher than the highest known node or lower than zero |
| 398 | * at the time of table creation or @distance doesn't make sense, the call |
| 399 | * is ignored. |
| 400 | * This is to allow simplification of specific NUMA config implementations. |
| 401 | */ |
| 402 | void __init numa_set_distance(int from, int to, int distance) |
| 403 | { |
| 404 | if (!numa_distance && numa_alloc_distance() < 0) |
| 405 | return; |
| 406 | |
| 407 | if (from >= numa_distance_cnt || to >= numa_distance_cnt || |
| 408 | from < 0 || to < 0) { |
| 409 | pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", |
| 410 | from, to, distance); |
| 411 | return; |
| 412 | } |
| 413 | |
| 414 | if ((u8)distance != distance || |
| 415 | (from == to && distance != LOCAL_DISTANCE)) { |
| 416 | pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", |
| 417 | from, to, distance); |
| 418 | return; |
| 419 | } |
| 420 | |
| 421 | numa_distance[from * numa_distance_cnt + to] = distance; |
| 422 | } |
| 423 | |
| 424 | int __node_distance(int from, int to) |
| 425 | { |
| 426 | if (from >= numa_distance_cnt || to >= numa_distance_cnt) |
| 427 | return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; |
| 428 | return numa_distance[from * numa_distance_cnt + to]; |
| 429 | } |
| 430 | EXPORT_SYMBOL(__node_distance); |
| 431 | |
| 432 | /* |
| 433 | * Sanity check to catch more bad NUMA configurations (they are amazingly |
| 434 | * common). Make sure the nodes cover all memory. |
| 435 | */ |
| 436 | static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) |
| 437 | { |
| 438 | u64 numaram, e820ram; |
| 439 | int i; |
| 440 | |
| 441 | numaram = 0; |
| 442 | for (i = 0; i < mi->nr_blks; i++) { |
| 443 | u64 s = mi->blk[i].start >> PAGE_SHIFT; |
| 444 | u64 e = mi->blk[i].end >> PAGE_SHIFT; |
| 445 | numaram += e - s; |
| 446 | numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); |
| 447 | if ((s64)numaram < 0) |
| 448 | numaram = 0; |
| 449 | } |
| 450 | |
| 451 | e820ram = max_pfn - absent_pages_in_range(0, max_pfn); |
| 452 | |
| 453 | /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ |
| 454 | if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { |
| 455 | printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", |
| 456 | (numaram << PAGE_SHIFT) >> 20, |
| 457 | (e820ram << PAGE_SHIFT) >> 20); |
| 458 | return false; |
| 459 | } |
| 460 | return true; |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * Mark all currently memblock-reserved physical memory (which covers the |
| 465 | * kernel's own memory ranges) as hot-unswappable. |
| 466 | */ |
| 467 | static void __init numa_clear_kernel_node_hotplug(void) |
| 468 | { |
| 469 | nodemask_t reserved_nodemask = NODE_MASK_NONE; |
| 470 | struct memblock_region *mb_region; |
| 471 | int i; |
| 472 | |
| 473 | /* |
| 474 | * We have to do some preprocessing of memblock regions, to |
| 475 | * make them suitable for reservation. |
| 476 | * |
| 477 | * At this time, all memory regions reserved by memblock are |
| 478 | * used by the kernel, but those regions are not split up |
| 479 | * along node boundaries yet, and don't necessarily have their |
| 480 | * node ID set yet either. |
| 481 | * |
| 482 | * So iterate over all memory known to the x86 architecture, |
| 483 | * and use those ranges to set the nid in memblock.reserved. |
| 484 | * This will split up the memblock regions along node |
| 485 | * boundaries and will set the node IDs as well. |
| 486 | */ |
| 487 | for (i = 0; i < numa_meminfo.nr_blks; i++) { |
| 488 | struct numa_memblk *mb = numa_meminfo.blk + i; |
| 489 | int ret; |
| 490 | |
| 491 | ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); |
| 492 | WARN_ON_ONCE(ret); |
| 493 | } |
| 494 | |
| 495 | /* |
| 496 | * Now go over all reserved memblock regions, to construct a |
| 497 | * node mask of all kernel reserved memory areas. |
| 498 | * |
| 499 | * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, |
| 500 | * numa_meminfo might not include all memblock.reserved |
| 501 | * memory ranges, because quirks such as trim_snb_memory() |
| 502 | * reserve specific pages for Sandy Bridge graphics. ] |
| 503 | */ |
| 504 | for_each_memblock(reserved, mb_region) { |
| 505 | if (mb_region->nid != MAX_NUMNODES) |
| 506 | node_set(mb_region->nid, reserved_nodemask); |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory |
| 511 | * belonging to the reserved node mask. |
| 512 | * |
| 513 | * Note that this will include memory regions that reside |
| 514 | * on nodes that contain kernel memory - entire nodes |
| 515 | * become hot-unpluggable: |
| 516 | */ |
| 517 | for (i = 0; i < numa_meminfo.nr_blks; i++) { |
| 518 | struct numa_memblk *mb = numa_meminfo.blk + i; |
| 519 | |
| 520 | if (!node_isset(mb->nid, reserved_nodemask)) |
| 521 | continue; |
| 522 | |
| 523 | memblock_clear_hotplug(mb->start, mb->end - mb->start); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | static int __init numa_register_memblks(struct numa_meminfo *mi) |
| 528 | { |
| 529 | unsigned long uninitialized_var(pfn_align); |
| 530 | int i, nid; |
| 531 | |
| 532 | /* Account for nodes with cpus and no memory */ |
| 533 | node_possible_map = numa_nodes_parsed; |
| 534 | numa_nodemask_from_meminfo(&node_possible_map, mi); |
| 535 | if (WARN_ON(nodes_empty(node_possible_map))) |
| 536 | return -EINVAL; |
| 537 | |
| 538 | for (i = 0; i < mi->nr_blks; i++) { |
| 539 | struct numa_memblk *mb = &mi->blk[i]; |
| 540 | memblock_set_node(mb->start, mb->end - mb->start, |
| 541 | &memblock.memory, mb->nid); |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * At very early time, the kernel have to use some memory such as |
| 546 | * loading the kernel image. We cannot prevent this anyway. So any |
| 547 | * node the kernel resides in should be un-hotpluggable. |
| 548 | * |
| 549 | * And when we come here, alloc node data won't fail. |
| 550 | */ |
| 551 | numa_clear_kernel_node_hotplug(); |
| 552 | |
| 553 | /* |
| 554 | * If sections array is gonna be used for pfn -> nid mapping, check |
| 555 | * whether its granularity is fine enough. |
| 556 | */ |
| 557 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
| 558 | pfn_align = node_map_pfn_alignment(); |
| 559 | if (pfn_align && pfn_align < PAGES_PER_SECTION) { |
| 560 | printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", |
| 561 | PFN_PHYS(pfn_align) >> 20, |
| 562 | PFN_PHYS(PAGES_PER_SECTION) >> 20); |
| 563 | return -EINVAL; |
| 564 | } |
| 565 | #endif |
| 566 | if (!numa_meminfo_cover_memory(mi)) |
| 567 | return -EINVAL; |
| 568 | |
| 569 | /* Finally register nodes. */ |
| 570 | for_each_node_mask(nid, node_possible_map) { |
| 571 | u64 start = PFN_PHYS(max_pfn); |
| 572 | u64 end = 0; |
| 573 | |
| 574 | for (i = 0; i < mi->nr_blks; i++) { |
| 575 | if (nid != mi->blk[i].nid) |
| 576 | continue; |
| 577 | start = min(mi->blk[i].start, start); |
| 578 | end = max(mi->blk[i].end, end); |
| 579 | } |
| 580 | |
| 581 | if (start >= end) |
| 582 | continue; |
| 583 | |
| 584 | /* |
| 585 | * Don't confuse VM with a node that doesn't have the |
| 586 | * minimum amount of memory: |
| 587 | */ |
| 588 | if (end && (end - start) < NODE_MIN_SIZE) |
| 589 | continue; |
| 590 | |
| 591 | alloc_node_data(nid); |
| 592 | } |
| 593 | |
| 594 | /* Dump memblock with node info and return. */ |
| 595 | memblock_dump_all(); |
| 596 | return 0; |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * There are unfortunately some poorly designed mainboards around that |
| 601 | * only connect memory to a single CPU. This breaks the 1:1 cpu->node |
| 602 | * mapping. To avoid this fill in the mapping for all possible CPUs, |
| 603 | * as the number of CPUs is not known yet. We round robin the existing |
| 604 | * nodes. |
| 605 | */ |
| 606 | static void __init numa_init_array(void) |
| 607 | { |
| 608 | int rr, i; |
| 609 | |
| 610 | rr = first_node(node_online_map); |
| 611 | for (i = 0; i < nr_cpu_ids; i++) { |
| 612 | if (early_cpu_to_node(i) != NUMA_NO_NODE) |
| 613 | continue; |
| 614 | numa_set_node(i, rr); |
| 615 | rr = next_node_in(rr, node_online_map); |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | static int __init numa_init(int (*init_func)(void)) |
| 620 | { |
| 621 | int i; |
| 622 | int ret; |
| 623 | |
| 624 | for (i = 0; i < MAX_LOCAL_APIC; i++) |
| 625 | set_apicid_to_node(i, NUMA_NO_NODE); |
| 626 | |
| 627 | nodes_clear(numa_nodes_parsed); |
| 628 | nodes_clear(node_possible_map); |
| 629 | nodes_clear(node_online_map); |
| 630 | memset(&numa_meminfo, 0, sizeof(numa_meminfo)); |
| 631 | WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, |
| 632 | MAX_NUMNODES)); |
| 633 | WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, |
| 634 | MAX_NUMNODES)); |
| 635 | /* In case that parsing SRAT failed. */ |
| 636 | WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); |
| 637 | numa_reset_distance(); |
| 638 | |
| 639 | ret = init_func(); |
| 640 | if (ret < 0) |
| 641 | return ret; |
| 642 | |
| 643 | /* |
| 644 | * We reset memblock back to the top-down direction |
| 645 | * here because if we configured ACPI_NUMA, we have |
| 646 | * parsed SRAT in init_func(). It is ok to have the |
| 647 | * reset here even if we did't configure ACPI_NUMA |
| 648 | * or acpi numa init fails and fallbacks to dummy |
| 649 | * numa init. |
| 650 | */ |
| 651 | memblock_set_bottom_up(false); |
| 652 | |
| 653 | ret = numa_cleanup_meminfo(&numa_meminfo); |
| 654 | if (ret < 0) |
| 655 | return ret; |
| 656 | |
| 657 | numa_emulation(&numa_meminfo, numa_distance_cnt); |
| 658 | |
| 659 | ret = numa_register_memblks(&numa_meminfo); |
| 660 | if (ret < 0) |
| 661 | return ret; |
| 662 | |
| 663 | for (i = 0; i < nr_cpu_ids; i++) { |
| 664 | int nid = early_cpu_to_node(i); |
| 665 | |
| 666 | if (nid == NUMA_NO_NODE) |
| 667 | continue; |
| 668 | if (!node_online(nid)) |
| 669 | numa_clear_node(i); |
| 670 | } |
| 671 | numa_init_array(); |
| 672 | |
| 673 | return 0; |
| 674 | } |
| 675 | |
| 676 | /** |
| 677 | * dummy_numa_init - Fallback dummy NUMA init |
| 678 | * |
| 679 | * Used if there's no underlying NUMA architecture, NUMA initialization |
| 680 | * fails, or NUMA is disabled on the command line. |
| 681 | * |
| 682 | * Must online at least one node and add memory blocks that cover all |
| 683 | * allowed memory. This function must not fail. |
| 684 | */ |
| 685 | static int __init dummy_numa_init(void) |
| 686 | { |
| 687 | printk(KERN_INFO "%s\n", |
| 688 | numa_off ? "NUMA turned off" : "No NUMA configuration found"); |
| 689 | printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", |
| 690 | 0LLU, PFN_PHYS(max_pfn) - 1); |
| 691 | |
| 692 | node_set(0, numa_nodes_parsed); |
| 693 | numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); |
| 694 | |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | /** |
| 699 | * x86_numa_init - Initialize NUMA |
| 700 | * |
| 701 | * Try each configured NUMA initialization method until one succeeds. The |
| 702 | * last fallback is dummy single node config encomapssing whole memory and |
| 703 | * never fails. |
| 704 | */ |
| 705 | void __init x86_numa_init(void) |
| 706 | { |
| 707 | if (!numa_off) { |
| 708 | #ifdef CONFIG_ACPI_NUMA |
| 709 | if (!numa_init(x86_acpi_numa_init)) |
| 710 | return; |
| 711 | #endif |
| 712 | #ifdef CONFIG_AMD_NUMA |
| 713 | if (!numa_init(amd_numa_init)) |
| 714 | return; |
| 715 | #endif |
| 716 | } |
| 717 | |
| 718 | numa_init(dummy_numa_init); |
| 719 | } |
| 720 | |
| 721 | static void __init init_memory_less_node(int nid) |
| 722 | { |
| 723 | unsigned long zones_size[MAX_NR_ZONES] = {0}; |
| 724 | unsigned long zholes_size[MAX_NR_ZONES] = {0}; |
| 725 | |
| 726 | /* Allocate and initialize node data. Memory-less node is now online.*/ |
| 727 | alloc_node_data(nid); |
| 728 | free_area_init_node(nid, zones_size, 0, zholes_size); |
| 729 | |
| 730 | /* |
| 731 | * All zonelists will be built later in start_kernel() after per cpu |
| 732 | * areas are initialized. |
| 733 | */ |
| 734 | } |
| 735 | |
| 736 | /* |
| 737 | * Setup early cpu_to_node. |
| 738 | * |
| 739 | * Populate cpu_to_node[] only if x86_cpu_to_apicid[], |
| 740 | * and apicid_to_node[] tables have valid entries for a CPU. |
| 741 | * This means we skip cpu_to_node[] initialisation for NUMA |
| 742 | * emulation and faking node case (when running a kernel compiled |
| 743 | * for NUMA on a non NUMA box), which is OK as cpu_to_node[] |
| 744 | * is already initialized in a round robin manner at numa_init_array, |
| 745 | * prior to this call, and this initialization is good enough |
| 746 | * for the fake NUMA cases. |
| 747 | * |
| 748 | * Called before the per_cpu areas are setup. |
| 749 | */ |
| 750 | void __init init_cpu_to_node(void) |
| 751 | { |
| 752 | int cpu; |
| 753 | u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); |
| 754 | |
| 755 | BUG_ON(cpu_to_apicid == NULL); |
| 756 | |
| 757 | for_each_possible_cpu(cpu) { |
| 758 | int node = numa_cpu_node(cpu); |
| 759 | |
| 760 | if (node == NUMA_NO_NODE) |
| 761 | continue; |
| 762 | |
| 763 | if (!node_online(node)) |
| 764 | init_memory_less_node(node); |
| 765 | |
| 766 | numa_set_node(cpu, node); |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | #ifndef CONFIG_DEBUG_PER_CPU_MAPS |
| 771 | |
| 772 | # ifndef CONFIG_NUMA_EMU |
| 773 | void numa_add_cpu(int cpu) |
| 774 | { |
| 775 | cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); |
| 776 | } |
| 777 | |
| 778 | void numa_remove_cpu(int cpu) |
| 779 | { |
| 780 | cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); |
| 781 | } |
| 782 | # endif /* !CONFIG_NUMA_EMU */ |
| 783 | |
| 784 | #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ |
| 785 | |
| 786 | int __cpu_to_node(int cpu) |
| 787 | { |
| 788 | if (early_per_cpu_ptr(x86_cpu_to_node_map)) { |
| 789 | printk(KERN_WARNING |
| 790 | "cpu_to_node(%d): usage too early!\n", cpu); |
| 791 | dump_stack(); |
| 792 | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; |
| 793 | } |
| 794 | return per_cpu(x86_cpu_to_node_map, cpu); |
| 795 | } |
| 796 | EXPORT_SYMBOL(__cpu_to_node); |
| 797 | |
| 798 | /* |
| 799 | * Same function as cpu_to_node() but used if called before the |
| 800 | * per_cpu areas are setup. |
| 801 | */ |
| 802 | int early_cpu_to_node(int cpu) |
| 803 | { |
| 804 | if (early_per_cpu_ptr(x86_cpu_to_node_map)) |
| 805 | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; |
| 806 | |
| 807 | if (!cpu_possible(cpu)) { |
| 808 | printk(KERN_WARNING |
| 809 | "early_cpu_to_node(%d): no per_cpu area!\n", cpu); |
| 810 | dump_stack(); |
| 811 | return NUMA_NO_NODE; |
| 812 | } |
| 813 | return per_cpu(x86_cpu_to_node_map, cpu); |
| 814 | } |
| 815 | |
| 816 | void debug_cpumask_set_cpu(int cpu, int node, bool enable) |
| 817 | { |
| 818 | struct cpumask *mask; |
| 819 | |
| 820 | if (node == NUMA_NO_NODE) { |
| 821 | /* early_cpu_to_node() already emits a warning and trace */ |
| 822 | return; |
| 823 | } |
| 824 | mask = node_to_cpumask_map[node]; |
| 825 | if (!mask) { |
| 826 | pr_err("node_to_cpumask_map[%i] NULL\n", node); |
| 827 | dump_stack(); |
| 828 | return; |
| 829 | } |
| 830 | |
| 831 | if (enable) |
| 832 | cpumask_set_cpu(cpu, mask); |
| 833 | else |
| 834 | cpumask_clear_cpu(cpu, mask); |
| 835 | |
| 836 | printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", |
| 837 | enable ? "numa_add_cpu" : "numa_remove_cpu", |
| 838 | cpu, node, cpumask_pr_args(mask)); |
| 839 | return; |
| 840 | } |
| 841 | |
| 842 | # ifndef CONFIG_NUMA_EMU |
| 843 | static void numa_set_cpumask(int cpu, bool enable) |
| 844 | { |
| 845 | debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); |
| 846 | } |
| 847 | |
| 848 | void numa_add_cpu(int cpu) |
| 849 | { |
| 850 | numa_set_cpumask(cpu, true); |
| 851 | } |
| 852 | |
| 853 | void numa_remove_cpu(int cpu) |
| 854 | { |
| 855 | numa_set_cpumask(cpu, false); |
| 856 | } |
| 857 | # endif /* !CONFIG_NUMA_EMU */ |
| 858 | |
| 859 | /* |
| 860 | * Returns a pointer to the bitmask of CPUs on Node 'node'. |
| 861 | */ |
| 862 | const struct cpumask *cpumask_of_node(int node) |
| 863 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 864 | if ((unsigned)node >= nr_node_ids) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 865 | printk(KERN_WARNING |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 866 | "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 867 | node, nr_node_ids); |
| 868 | dump_stack(); |
| 869 | return cpu_none_mask; |
| 870 | } |
| 871 | if (node_to_cpumask_map[node] == NULL) { |
| 872 | printk(KERN_WARNING |
| 873 | "cpumask_of_node(%d): no node_to_cpumask_map!\n", |
| 874 | node); |
| 875 | dump_stack(); |
| 876 | return cpu_online_mask; |
| 877 | } |
| 878 | return node_to_cpumask_map[node]; |
| 879 | } |
| 880 | EXPORT_SYMBOL(cpumask_of_node); |
| 881 | |
| 882 | #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ |
| 883 | |
| 884 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 885 | int memory_add_physaddr_to_nid(u64 start) |
| 886 | { |
| 887 | struct numa_meminfo *mi = &numa_meminfo; |
| 888 | int nid = mi->blk[0].nid; |
| 889 | int i; |
| 890 | |
| 891 | for (i = 0; i < mi->nr_blks; i++) |
| 892 | if (mi->blk[i].start <= start && mi->blk[i].end > start) |
| 893 | nid = mi->blk[i].nid; |
| 894 | return nid; |
| 895 | } |
| 896 | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); |
| 897 | #endif |