David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | #include <linux/extable.h> |
| 3 | #include <linux/uaccess.h> |
| 4 | #include <linux/sched/debug.h> |
| 5 | #include <xen/xen.h> |
| 6 | |
| 7 | #include <asm/fpu/internal.h> |
| 8 | #include <asm/traps.h> |
| 9 | #include <asm/kdebug.h> |
| 10 | |
| 11 | typedef bool (*ex_handler_t)(const struct exception_table_entry *, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 12 | struct pt_regs *, int, unsigned long, |
| 13 | unsigned long); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 14 | |
| 15 | static inline unsigned long |
| 16 | ex_fixup_addr(const struct exception_table_entry *x) |
| 17 | { |
| 18 | return (unsigned long)&x->fixup + x->fixup; |
| 19 | } |
| 20 | static inline ex_handler_t |
| 21 | ex_fixup_handler(const struct exception_table_entry *x) |
| 22 | { |
| 23 | return (ex_handler_t)((unsigned long)&x->handler + x->handler); |
| 24 | } |
| 25 | |
| 26 | __visible bool ex_handler_default(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 27 | struct pt_regs *regs, int trapnr, |
| 28 | unsigned long error_code, |
| 29 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 30 | { |
| 31 | regs->ip = ex_fixup_addr(fixup); |
| 32 | return true; |
| 33 | } |
| 34 | EXPORT_SYMBOL(ex_handler_default); |
| 35 | |
| 36 | __visible bool ex_handler_fault(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 37 | struct pt_regs *regs, int trapnr, |
| 38 | unsigned long error_code, |
| 39 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 40 | { |
| 41 | regs->ip = ex_fixup_addr(fixup); |
| 42 | regs->ax = trapnr; |
| 43 | return true; |
| 44 | } |
| 45 | EXPORT_SYMBOL_GPL(ex_handler_fault); |
| 46 | |
| 47 | /* |
| 48 | * Handler for UD0 exception following a failed test against the |
| 49 | * result of a refcount inc/dec/add/sub. |
| 50 | */ |
| 51 | __visible bool ex_handler_refcount(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 52 | struct pt_regs *regs, int trapnr, |
| 53 | unsigned long error_code, |
| 54 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 55 | { |
| 56 | /* First unconditionally saturate the refcount. */ |
| 57 | *(int *)regs->cx = INT_MIN / 2; |
| 58 | |
| 59 | /* |
| 60 | * Strictly speaking, this reports the fixup destination, not |
| 61 | * the fault location, and not the actually overflowing |
| 62 | * instruction, which is the instruction before the "js", but |
| 63 | * since that instruction could be a variety of lengths, just |
| 64 | * report the location after the overflow, which should be close |
| 65 | * enough for finding the overflow, as it's at least back in |
| 66 | * the function, having returned from .text.unlikely. |
| 67 | */ |
| 68 | regs->ip = ex_fixup_addr(fixup); |
| 69 | |
| 70 | /* |
| 71 | * This function has been called because either a negative refcount |
| 72 | * value was seen by any of the refcount functions, or a zero |
| 73 | * refcount value was seen by refcount_dec(). |
| 74 | * |
| 75 | * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result |
| 76 | * wrapped around) will be set. Additionally, seeing the refcount |
| 77 | * reach 0 will set ZF (Zero Flag: result was zero). In each of |
| 78 | * these cases we want a report, since it's a boundary condition. |
| 79 | * The SF case is not reported since it indicates post-boundary |
| 80 | * manipulations below zero or above INT_MAX. And if none of the |
| 81 | * flags are set, something has gone very wrong, so report it. |
| 82 | */ |
| 83 | if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) { |
| 84 | bool zero = regs->flags & X86_EFLAGS_ZF; |
| 85 | |
| 86 | refcount_error_report(regs, zero ? "hit zero" : "overflow"); |
| 87 | } else if ((regs->flags & X86_EFLAGS_SF) == 0) { |
| 88 | /* Report if none of OF, ZF, nor SF are set. */ |
| 89 | refcount_error_report(regs, "unexpected saturation"); |
| 90 | } |
| 91 | |
| 92 | return true; |
| 93 | } |
| 94 | EXPORT_SYMBOL(ex_handler_refcount); |
| 95 | |
| 96 | /* |
| 97 | * Handler for when we fail to restore a task's FPU state. We should never get |
| 98 | * here because the FPU state of a task using the FPU (task->thread.fpu.state) |
| 99 | * should always be valid. However, past bugs have allowed userspace to set |
| 100 | * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn(). |
| 101 | * These caused XRSTOR to fail when switching to the task, leaking the FPU |
| 102 | * registers of the task previously executing on the CPU. Mitigate this class |
| 103 | * of vulnerability by restoring from the initial state (essentially, zeroing |
| 104 | * out all the FPU registers) if we can't restore from the task's FPU state. |
| 105 | */ |
| 106 | __visible bool ex_handler_fprestore(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 107 | struct pt_regs *regs, int trapnr, |
| 108 | unsigned long error_code, |
| 109 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 110 | { |
| 111 | regs->ip = ex_fixup_addr(fixup); |
| 112 | |
| 113 | WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.", |
| 114 | (void *)instruction_pointer(regs)); |
| 115 | |
| 116 | __copy_kernel_to_fpregs(&init_fpstate, -1); |
| 117 | return true; |
| 118 | } |
| 119 | EXPORT_SYMBOL_GPL(ex_handler_fprestore); |
| 120 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 121 | __visible bool ex_handler_uaccess(const struct exception_table_entry *fixup, |
| 122 | struct pt_regs *regs, int trapnr, |
| 123 | unsigned long error_code, |
| 124 | unsigned long fault_addr) |
| 125 | { |
| 126 | WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?"); |
| 127 | regs->ip = ex_fixup_addr(fixup); |
| 128 | return true; |
| 129 | } |
| 130 | EXPORT_SYMBOL(ex_handler_uaccess); |
| 131 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 132 | __visible bool ex_handler_ext(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 133 | struct pt_regs *regs, int trapnr, |
| 134 | unsigned long error_code, |
| 135 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 136 | { |
| 137 | /* Special hack for uaccess_err */ |
| 138 | current->thread.uaccess_err = 1; |
| 139 | regs->ip = ex_fixup_addr(fixup); |
| 140 | return true; |
| 141 | } |
| 142 | EXPORT_SYMBOL(ex_handler_ext); |
| 143 | |
| 144 | __visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 145 | struct pt_regs *regs, int trapnr, |
| 146 | unsigned long error_code, |
| 147 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 148 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 149 | if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 150 | (unsigned int)regs->cx, regs->ip, (void *)regs->ip)) |
| 151 | show_stack_regs(regs); |
| 152 | |
| 153 | /* Pretend that the read succeeded and returned 0. */ |
| 154 | regs->ip = ex_fixup_addr(fixup); |
| 155 | regs->ax = 0; |
| 156 | regs->dx = 0; |
| 157 | return true; |
| 158 | } |
| 159 | EXPORT_SYMBOL(ex_handler_rdmsr_unsafe); |
| 160 | |
| 161 | __visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 162 | struct pt_regs *regs, int trapnr, |
| 163 | unsigned long error_code, |
| 164 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 165 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 166 | if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 167 | (unsigned int)regs->cx, (unsigned int)regs->dx, |
| 168 | (unsigned int)regs->ax, regs->ip, (void *)regs->ip)) |
| 169 | show_stack_regs(regs); |
| 170 | |
| 171 | /* Pretend that the write succeeded. */ |
| 172 | regs->ip = ex_fixup_addr(fixup); |
| 173 | return true; |
| 174 | } |
| 175 | EXPORT_SYMBOL(ex_handler_wrmsr_unsafe); |
| 176 | |
| 177 | __visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 178 | struct pt_regs *regs, int trapnr, |
| 179 | unsigned long error_code, |
| 180 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 181 | { |
| 182 | if (static_cpu_has(X86_BUG_NULL_SEG)) |
| 183 | asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS)); |
| 184 | asm volatile ("mov %0, %%fs" : : "rm" (0)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 185 | return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 186 | } |
| 187 | EXPORT_SYMBOL(ex_handler_clear_fs); |
| 188 | |
| 189 | __visible bool ex_has_fault_handler(unsigned long ip) |
| 190 | { |
| 191 | const struct exception_table_entry *e; |
| 192 | ex_handler_t handler; |
| 193 | |
| 194 | e = search_exception_tables(ip); |
| 195 | if (!e) |
| 196 | return false; |
| 197 | handler = ex_fixup_handler(e); |
| 198 | |
| 199 | return handler == ex_handler_fault; |
| 200 | } |
| 201 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 202 | int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code, |
| 203 | unsigned long fault_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 204 | { |
| 205 | const struct exception_table_entry *e; |
| 206 | ex_handler_t handler; |
| 207 | |
| 208 | #ifdef CONFIG_PNPBIOS |
| 209 | if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { |
| 210 | extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; |
| 211 | extern u32 pnp_bios_is_utter_crap; |
| 212 | pnp_bios_is_utter_crap = 1; |
| 213 | printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); |
| 214 | __asm__ volatile( |
| 215 | "movl %0, %%esp\n\t" |
| 216 | "jmp *%1\n\t" |
| 217 | : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); |
| 218 | panic("do_trap: can't hit this"); |
| 219 | } |
| 220 | #endif |
| 221 | |
| 222 | e = search_exception_tables(regs->ip); |
| 223 | if (!e) |
| 224 | return 0; |
| 225 | |
| 226 | handler = ex_fixup_handler(e); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 227 | return handler(e, regs, trapnr, error_code, fault_addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 228 | } |
| 229 | |
| 230 | extern unsigned int early_recursion_flag; |
| 231 | |
| 232 | /* Restricted version used during very early boot */ |
| 233 | void __init early_fixup_exception(struct pt_regs *regs, int trapnr) |
| 234 | { |
| 235 | /* Ignore early NMIs. */ |
| 236 | if (trapnr == X86_TRAP_NMI) |
| 237 | return; |
| 238 | |
| 239 | if (early_recursion_flag > 2) |
| 240 | goto halt_loop; |
| 241 | |
| 242 | /* |
| 243 | * Old CPUs leave the high bits of CS on the stack |
| 244 | * undefined. I'm not sure which CPUs do this, but at least |
| 245 | * the 486 DX works this way. |
| 246 | * Xen pv domains are not using the default __KERNEL_CS. |
| 247 | */ |
| 248 | if (!xen_pv_domain() && regs->cs != __KERNEL_CS) |
| 249 | goto fail; |
| 250 | |
| 251 | /* |
| 252 | * The full exception fixup machinery is available as soon as |
| 253 | * the early IDT is loaded. This means that it is the |
| 254 | * responsibility of extable users to either function correctly |
| 255 | * when handlers are invoked early or to simply avoid causing |
| 256 | * exceptions before they're ready to handle them. |
| 257 | * |
| 258 | * This is better than filtering which handlers can be used, |
| 259 | * because refusing to call a handler here is guaranteed to |
| 260 | * result in a hard-to-debug panic. |
| 261 | * |
| 262 | * Keep in mind that not all vectors actually get here. Early |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 263 | * page faults, for example, are special. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 264 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 265 | if (fixup_exception(regs, trapnr, regs->orig_ax, 0)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 266 | return; |
| 267 | |
| 268 | if (fixup_bug(regs, trapnr)) |
| 269 | return; |
| 270 | |
| 271 | fail: |
| 272 | early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n", |
| 273 | (unsigned)trapnr, (unsigned long)regs->cs, regs->ip, |
| 274 | regs->orig_ax, read_cr2()); |
| 275 | |
| 276 | show_regs(regs); |
| 277 | |
| 278 | halt_loop: |
| 279 | while (true) |
| 280 | halt(); |
| 281 | } |