Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /*---------------------------------------------------------------------------+ |
| 3 | | fpu_entry.c | |
| 4 | | | |
| 5 | | The entry functions for wm-FPU-emu | |
| 6 | | | |
| 7 | | Copyright (C) 1992,1993,1994,1996,1997 | |
| 8 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | |
| 9 | | E-mail billm@suburbia.net | |
| 10 | | | |
| 11 | | See the files "README" and "COPYING" for further copyright and warranty | |
| 12 | | information. | |
| 13 | | | |
| 14 | +---------------------------------------------------------------------------*/ |
| 15 | |
| 16 | /*---------------------------------------------------------------------------+ |
| 17 | | Note: | |
| 18 | | The file contains code which accesses user memory. | |
| 19 | | Emulator static data may change when user memory is accessed, due to | |
| 20 | | other processes using the emulator while swapping is in progress. | |
| 21 | +---------------------------------------------------------------------------*/ |
| 22 | |
| 23 | /*---------------------------------------------------------------------------+ |
| 24 | | math_emulate(), restore_i387_soft() and save_i387_soft() are the only | |
| 25 | | entry points for wm-FPU-emu. | |
| 26 | +---------------------------------------------------------------------------*/ |
| 27 | |
| 28 | #include <linux/signal.h> |
| 29 | #include <linux/regset.h> |
| 30 | |
| 31 | #include <linux/uaccess.h> |
| 32 | #include <asm/traps.h> |
| 33 | #include <asm/user.h> |
| 34 | #include <asm/fpu/internal.h> |
| 35 | |
| 36 | #include "fpu_system.h" |
| 37 | #include "fpu_emu.h" |
| 38 | #include "exception.h" |
| 39 | #include "control_w.h" |
| 40 | #include "status_w.h" |
| 41 | |
| 42 | #define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */ |
| 43 | |
| 44 | /* fcmovCC and f(u)comi(p) are enabled if CPUID(1).EDX(15) "cmov" is set */ |
| 45 | |
| 46 | /* WARNING: "u" entries are not documented by Intel in their 80486 manual |
| 47 | and may not work on FPU clones or later Intel FPUs. |
| 48 | Changes to support them provided by Linus Torvalds. */ |
| 49 | |
| 50 | static FUNC const st_instr_table[64] = { |
| 51 | /* Opcode: d8 d9 da db */ |
| 52 | /* dc dd de df */ |
| 53 | /* c0..7 */ fadd__, fld_i_, fcmovb, fcmovnb, |
| 54 | /* c0..7 */ fadd_i, ffree_, faddp_, ffreep,/*u*/ |
| 55 | /* c8..f */ fmul__, fxch_i, fcmove, fcmovne, |
| 56 | /* c8..f */ fmul_i, fxch_i,/*u*/ fmulp_, fxch_i,/*u*/ |
| 57 | /* d0..7 */ fcom_st, fp_nop, fcmovbe, fcmovnbe, |
| 58 | /* d0..7 */ fcom_st,/*u*/ fst_i_, fcompst,/*u*/ fstp_i,/*u*/ |
| 59 | /* d8..f */ fcompst, fstp_i,/*u*/ fcmovu, fcmovnu, |
| 60 | /* d8..f */ fcompst,/*u*/ fstp_i, fcompp, fstp_i,/*u*/ |
| 61 | /* e0..7 */ fsub__, FPU_etc, __BAD__, finit_, |
| 62 | /* e0..7 */ fsubri, fucom_, fsubrp, fstsw_, |
| 63 | /* e8..f */ fsubr_, fconst, fucompp, fucomi_, |
| 64 | /* e8..f */ fsub_i, fucomp, fsubp_, fucomip, |
| 65 | /* f0..7 */ fdiv__, FPU_triga, __BAD__, fcomi_, |
| 66 | /* f0..7 */ fdivri, __BAD__, fdivrp, fcomip, |
| 67 | /* f8..f */ fdivr_, FPU_trigb, __BAD__, __BAD__, |
| 68 | /* f8..f */ fdiv_i, __BAD__, fdivp_, __BAD__, |
| 69 | }; |
| 70 | |
| 71 | #define _NONE_ 0 /* Take no special action */ |
| 72 | #define _REG0_ 1 /* Need to check for not empty st(0) */ |
| 73 | #define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */ |
| 74 | #define _REGi_ 0 /* Uses st(rm) */ |
| 75 | #define _PUSH_ 3 /* Need to check for space to push onto stack */ |
| 76 | #define _null_ 4 /* Function illegal or not implemented */ |
| 77 | #define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */ |
| 78 | #define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */ |
| 79 | #define _REGIc 0 /* Compare st(0) and st(rm) */ |
| 80 | #define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */ |
| 81 | |
| 82 | static u_char const type_table[64] = { |
| 83 | /* Opcode: d8 d9 da db dc dd de df */ |
| 84 | /* c0..7 */ _REGI_, _NONE_, _REGIn, _REGIn, _REGIi, _REGi_, _REGIp, _REGi_, |
| 85 | /* c8..f */ _REGI_, _REGIn, _REGIn, _REGIn, _REGIi, _REGI_, _REGIp, _REGI_, |
| 86 | /* d0..7 */ _REGIc, _NONE_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_, |
| 87 | /* d8..f */ _REGIc, _REG0_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_, |
| 88 | /* e0..7 */ _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_, |
| 89 | /* e8..f */ _REGI_, _NONE_, _REGIc, _REGIc, _REGIi, _REGIc, _REGIp, _REGIc, |
| 90 | /* f0..7 */ _REGI_, _NONE_, _null_, _REGIc, _REGIi, _null_, _REGIp, _REGIc, |
| 91 | /* f8..f */ _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_, |
| 92 | }; |
| 93 | |
| 94 | #ifdef RE_ENTRANT_CHECKING |
| 95 | u_char emulating = 0; |
| 96 | #endif /* RE_ENTRANT_CHECKING */ |
| 97 | |
| 98 | static int valid_prefix(u_char *Byte, u_char __user ** fpu_eip, |
| 99 | overrides * override); |
| 100 | |
| 101 | void math_emulate(struct math_emu_info *info) |
| 102 | { |
| 103 | u_char FPU_modrm, byte1; |
| 104 | unsigned short code; |
| 105 | fpu_addr_modes addr_modes; |
| 106 | int unmasked; |
| 107 | FPU_REG loaded_data; |
| 108 | FPU_REG *st0_ptr; |
| 109 | u_char loaded_tag, st0_tag; |
| 110 | void __user *data_address; |
| 111 | struct address data_sel_off; |
| 112 | struct address entry_sel_off; |
| 113 | unsigned long code_base = 0; |
| 114 | unsigned long code_limit = 0; /* Initialized to stop compiler warnings */ |
| 115 | struct desc_struct code_descriptor; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 116 | |
| 117 | #ifdef RE_ENTRANT_CHECKING |
| 118 | if (emulating) { |
| 119 | printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n"); |
| 120 | } |
| 121 | RE_ENTRANT_CHECK_ON; |
| 122 | #endif /* RE_ENTRANT_CHECKING */ |
| 123 | |
| 124 | FPU_info = info; |
| 125 | |
| 126 | FPU_ORIG_EIP = FPU_EIP; |
| 127 | |
| 128 | if ((FPU_EFLAGS & 0x00020000) != 0) { |
| 129 | /* Virtual 8086 mode */ |
| 130 | addr_modes.default_mode = VM86; |
| 131 | FPU_EIP += code_base = FPU_CS << 4; |
| 132 | code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */ |
| 133 | } else if (FPU_CS == __USER_CS && FPU_DS == __USER_DS) { |
| 134 | addr_modes.default_mode = 0; |
| 135 | } else if (FPU_CS == __KERNEL_CS) { |
| 136 | printk("math_emulate: %04x:%08lx\n", FPU_CS, FPU_EIP); |
| 137 | panic("Math emulation needed in kernel"); |
| 138 | } else { |
| 139 | |
| 140 | if ((FPU_CS & 4) != 4) { /* Must be in the LDT */ |
| 141 | /* Can only handle segmented addressing via the LDT |
| 142 | for now, and it must be 16 bit */ |
| 143 | printk("FPU emulator: Unsupported addressing mode\n"); |
| 144 | math_abort(FPU_info, SIGILL); |
| 145 | } |
| 146 | |
| 147 | code_descriptor = FPU_get_ldt_descriptor(FPU_CS); |
| 148 | if (code_descriptor.d) { |
| 149 | /* The above test may be wrong, the book is not clear */ |
| 150 | /* Segmented 32 bit protected mode */ |
| 151 | addr_modes.default_mode = SEG32; |
| 152 | } else { |
| 153 | /* 16 bit protected mode */ |
| 154 | addr_modes.default_mode = PM16; |
| 155 | } |
| 156 | FPU_EIP += code_base = seg_get_base(&code_descriptor); |
| 157 | code_limit = seg_get_limit(&code_descriptor) + 1; |
| 158 | code_limit *= seg_get_granularity(&code_descriptor); |
| 159 | code_limit += code_base - 1; |
| 160 | if (code_limit < code_base) |
| 161 | code_limit = 0xffffffff; |
| 162 | } |
| 163 | |
| 164 | FPU_lookahead = !(FPU_EFLAGS & X86_EFLAGS_TF); |
| 165 | |
| 166 | if (!valid_prefix(&byte1, (u_char __user **) & FPU_EIP, |
| 167 | &addr_modes.override)) { |
| 168 | RE_ENTRANT_CHECK_OFF; |
| 169 | printk |
| 170 | ("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n" |
| 171 | "FPU emulator: self-modifying code! (emulation impossible)\n", |
| 172 | byte1); |
| 173 | RE_ENTRANT_CHECK_ON; |
| 174 | EXCEPTION(EX_INTERNAL | 0x126); |
| 175 | math_abort(FPU_info, SIGILL); |
| 176 | } |
| 177 | |
| 178 | do_another_FPU_instruction: |
| 179 | |
| 180 | no_ip_update = 0; |
| 181 | |
| 182 | FPU_EIP++; /* We have fetched the prefix and first code bytes. */ |
| 183 | |
| 184 | if (addr_modes.default_mode) { |
| 185 | /* This checks for the minimum instruction bytes. |
| 186 | We also need to check any extra (address mode) code access. */ |
| 187 | if (FPU_EIP > code_limit) |
| 188 | math_abort(FPU_info, SIGSEGV); |
| 189 | } |
| 190 | |
| 191 | if ((byte1 & 0xf8) != 0xd8) { |
| 192 | if (byte1 == FWAIT_OPCODE) { |
| 193 | if (partial_status & SW_Summary) |
| 194 | goto do_the_FPU_interrupt; |
| 195 | else |
| 196 | goto FPU_fwait_done; |
| 197 | } |
| 198 | #ifdef PARANOID |
| 199 | EXCEPTION(EX_INTERNAL | 0x128); |
| 200 | math_abort(FPU_info, SIGILL); |
| 201 | #endif /* PARANOID */ |
| 202 | } |
| 203 | |
| 204 | RE_ENTRANT_CHECK_OFF; |
| 205 | FPU_code_access_ok(1); |
| 206 | FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP); |
| 207 | RE_ENTRANT_CHECK_ON; |
| 208 | FPU_EIP++; |
| 209 | |
| 210 | if (partial_status & SW_Summary) { |
| 211 | /* Ignore the error for now if the current instruction is a no-wait |
| 212 | control instruction */ |
| 213 | /* The 80486 manual contradicts itself on this topic, |
| 214 | but a real 80486 uses the following instructions: |
| 215 | fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex. |
| 216 | */ |
| 217 | code = (FPU_modrm << 8) | byte1; |
| 218 | if (!((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */ |
| 219 | (((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv, |
| 220 | fnstsw */ |
| 221 | ((code & 0xc000) != 0xc000))))) { |
| 222 | /* |
| 223 | * We need to simulate the action of the kernel to FPU |
| 224 | * interrupts here. |
| 225 | */ |
| 226 | do_the_FPU_interrupt: |
| 227 | |
| 228 | FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */ |
| 229 | |
| 230 | RE_ENTRANT_CHECK_OFF; |
| 231 | current->thread.trap_nr = X86_TRAP_MF; |
| 232 | current->thread.error_code = 0; |
| 233 | send_sig(SIGFPE, current, 1); |
| 234 | return; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | entry_sel_off.offset = FPU_ORIG_EIP; |
| 239 | entry_sel_off.selector = FPU_CS; |
| 240 | entry_sel_off.opcode = (byte1 << 8) | FPU_modrm; |
| 241 | entry_sel_off.empty = 0; |
| 242 | |
| 243 | FPU_rm = FPU_modrm & 7; |
| 244 | |
| 245 | if (FPU_modrm < 0300) { |
| 246 | /* All of these instructions use the mod/rm byte to get a data address */ |
| 247 | |
| 248 | if ((addr_modes.default_mode & SIXTEEN) |
| 249 | ^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX)) |
| 250 | data_address = |
| 251 | FPU_get_address_16(FPU_modrm, &FPU_EIP, |
| 252 | &data_sel_off, addr_modes); |
| 253 | else |
| 254 | data_address = |
| 255 | FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off, |
| 256 | addr_modes); |
| 257 | |
| 258 | if (addr_modes.default_mode) { |
| 259 | if (FPU_EIP - 1 > code_limit) |
| 260 | math_abort(FPU_info, SIGSEGV); |
| 261 | } |
| 262 | |
| 263 | if (!(byte1 & 1)) { |
| 264 | unsigned short status1 = partial_status; |
| 265 | |
| 266 | st0_ptr = &st(0); |
| 267 | st0_tag = FPU_gettag0(); |
| 268 | |
| 269 | /* Stack underflow has priority */ |
| 270 | if (NOT_EMPTY_ST0) { |
| 271 | if (addr_modes.default_mode & PROTECTED) { |
| 272 | /* This table works for 16 and 32 bit protected mode */ |
| 273 | if (access_limit < |
| 274 | data_sizes_16[(byte1 >> 1) & 3]) |
| 275 | math_abort(FPU_info, SIGSEGV); |
| 276 | } |
| 277 | |
| 278 | unmasked = 0; /* Do this here to stop compiler warnings. */ |
| 279 | switch ((byte1 >> 1) & 3) { |
| 280 | case 0: |
| 281 | unmasked = |
| 282 | FPU_load_single((float __user *) |
| 283 | data_address, |
| 284 | &loaded_data); |
| 285 | loaded_tag = unmasked & 0xff; |
| 286 | unmasked &= ~0xff; |
| 287 | break; |
| 288 | case 1: |
| 289 | loaded_tag = |
| 290 | FPU_load_int32((long __user *) |
| 291 | data_address, |
| 292 | &loaded_data); |
| 293 | break; |
| 294 | case 2: |
| 295 | unmasked = |
| 296 | FPU_load_double((double __user *) |
| 297 | data_address, |
| 298 | &loaded_data); |
| 299 | loaded_tag = unmasked & 0xff; |
| 300 | unmasked &= ~0xff; |
| 301 | break; |
| 302 | case 3: |
| 303 | default: /* Used here to suppress gcc warnings. */ |
| 304 | loaded_tag = |
| 305 | FPU_load_int16((short __user *) |
| 306 | data_address, |
| 307 | &loaded_data); |
| 308 | break; |
| 309 | } |
| 310 | |
| 311 | /* No more access to user memory, it is safe |
| 312 | to use static data now */ |
| 313 | |
| 314 | /* NaN operands have the next priority. */ |
| 315 | /* We have to delay looking at st(0) until after |
| 316 | loading the data, because that data might contain an SNaN */ |
| 317 | if (((st0_tag == TAG_Special) && isNaN(st0_ptr)) |
| 318 | || ((loaded_tag == TAG_Special) |
| 319 | && isNaN(&loaded_data))) { |
| 320 | /* Restore the status word; we might have loaded a |
| 321 | denormal. */ |
| 322 | partial_status = status1; |
| 323 | if ((FPU_modrm & 0x30) == 0x10) { |
| 324 | /* fcom or fcomp */ |
| 325 | EXCEPTION(EX_Invalid); |
| 326 | setcc(SW_C3 | SW_C2 | SW_C0); |
| 327 | if ((FPU_modrm & 0x08) |
| 328 | && (control_word & |
| 329 | CW_Invalid)) |
| 330 | FPU_pop(); /* fcomp, masked, so we pop. */ |
| 331 | } else { |
| 332 | if (loaded_tag == TAG_Special) |
| 333 | loaded_tag = |
| 334 | FPU_Special |
| 335 | (&loaded_data); |
| 336 | #ifdef PECULIAR_486 |
| 337 | /* This is not really needed, but gives behaviour |
| 338 | identical to an 80486 */ |
| 339 | if ((FPU_modrm & 0x28) == 0x20) |
| 340 | /* fdiv or fsub */ |
| 341 | real_2op_NaN |
| 342 | (&loaded_data, |
| 343 | loaded_tag, 0, |
| 344 | &loaded_data); |
| 345 | else |
| 346 | #endif /* PECULIAR_486 */ |
| 347 | /* fadd, fdivr, fmul, or fsubr */ |
| 348 | real_2op_NaN |
| 349 | (&loaded_data, |
| 350 | loaded_tag, 0, |
| 351 | st0_ptr); |
| 352 | } |
| 353 | goto reg_mem_instr_done; |
| 354 | } |
| 355 | |
| 356 | if (unmasked && !((FPU_modrm & 0x30) == 0x10)) { |
| 357 | /* Is not a comparison instruction. */ |
| 358 | if ((FPU_modrm & 0x38) == 0x38) { |
| 359 | /* fdivr */ |
| 360 | if ((st0_tag == TAG_Zero) && |
| 361 | ((loaded_tag == TAG_Valid) |
| 362 | || (loaded_tag == |
| 363 | TAG_Special |
| 364 | && |
| 365 | isdenormal |
| 366 | (&loaded_data)))) { |
| 367 | if (FPU_divide_by_zero |
| 368 | (0, |
| 369 | getsign |
| 370 | (&loaded_data)) |
| 371 | < 0) { |
| 372 | /* We use the fact here that the unmasked |
| 373 | exception in the loaded data was for a |
| 374 | denormal operand */ |
| 375 | /* Restore the state of the denormal op bit */ |
| 376 | partial_status |
| 377 | &= |
| 378 | ~SW_Denorm_Op; |
| 379 | partial_status |
| 380 | |= |
| 381 | status1 & |
| 382 | SW_Denorm_Op; |
| 383 | } else |
| 384 | setsign(st0_ptr, |
| 385 | getsign |
| 386 | (&loaded_data)); |
| 387 | } |
| 388 | } |
| 389 | goto reg_mem_instr_done; |
| 390 | } |
| 391 | |
| 392 | switch ((FPU_modrm >> 3) & 7) { |
| 393 | case 0: /* fadd */ |
| 394 | clear_C1(); |
| 395 | FPU_add(&loaded_data, loaded_tag, 0, |
| 396 | control_word); |
| 397 | break; |
| 398 | case 1: /* fmul */ |
| 399 | clear_C1(); |
| 400 | FPU_mul(&loaded_data, loaded_tag, 0, |
| 401 | control_word); |
| 402 | break; |
| 403 | case 2: /* fcom */ |
| 404 | FPU_compare_st_data(&loaded_data, |
| 405 | loaded_tag); |
| 406 | break; |
| 407 | case 3: /* fcomp */ |
| 408 | if (!FPU_compare_st_data |
| 409 | (&loaded_data, loaded_tag) |
| 410 | && !unmasked) |
| 411 | FPU_pop(); |
| 412 | break; |
| 413 | case 4: /* fsub */ |
| 414 | clear_C1(); |
| 415 | FPU_sub(LOADED | loaded_tag, |
| 416 | (int)&loaded_data, |
| 417 | control_word); |
| 418 | break; |
| 419 | case 5: /* fsubr */ |
| 420 | clear_C1(); |
| 421 | FPU_sub(REV | LOADED | loaded_tag, |
| 422 | (int)&loaded_data, |
| 423 | control_word); |
| 424 | break; |
| 425 | case 6: /* fdiv */ |
| 426 | clear_C1(); |
| 427 | FPU_div(LOADED | loaded_tag, |
| 428 | (int)&loaded_data, |
| 429 | control_word); |
| 430 | break; |
| 431 | case 7: /* fdivr */ |
| 432 | clear_C1(); |
| 433 | if (st0_tag == TAG_Zero) |
| 434 | partial_status = status1; /* Undo any denorm tag, |
| 435 | zero-divide has priority. */ |
| 436 | FPU_div(REV | LOADED | loaded_tag, |
| 437 | (int)&loaded_data, |
| 438 | control_word); |
| 439 | break; |
| 440 | } |
| 441 | } else { |
| 442 | if ((FPU_modrm & 0x30) == 0x10) { |
| 443 | /* The instruction is fcom or fcomp */ |
| 444 | EXCEPTION(EX_StackUnder); |
| 445 | setcc(SW_C3 | SW_C2 | SW_C0); |
| 446 | if ((FPU_modrm & 0x08) |
| 447 | && (control_word & CW_Invalid)) |
| 448 | FPU_pop(); /* fcomp */ |
| 449 | } else |
| 450 | FPU_stack_underflow(); |
| 451 | } |
| 452 | reg_mem_instr_done: |
| 453 | operand_address = data_sel_off; |
| 454 | } else { |
| 455 | if (!(no_ip_update = |
| 456 | FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6)) |
| 457 | >> 1, addr_modes, data_address))) { |
| 458 | operand_address = data_sel_off; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | } else { |
| 463 | /* None of these instructions access user memory */ |
| 464 | u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7); |
| 465 | |
| 466 | #ifdef PECULIAR_486 |
| 467 | /* This is supposed to be undefined, but a real 80486 seems |
| 468 | to do this: */ |
| 469 | operand_address.offset = 0; |
| 470 | operand_address.selector = FPU_DS; |
| 471 | #endif /* PECULIAR_486 */ |
| 472 | |
| 473 | st0_ptr = &st(0); |
| 474 | st0_tag = FPU_gettag0(); |
| 475 | switch (type_table[(int)instr_index]) { |
| 476 | case _NONE_: /* also _REGIc: _REGIn */ |
| 477 | break; |
| 478 | case _REG0_: |
| 479 | if (!NOT_EMPTY_ST0) { |
| 480 | FPU_stack_underflow(); |
| 481 | goto FPU_instruction_done; |
| 482 | } |
| 483 | break; |
| 484 | case _REGIi: |
| 485 | if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) { |
| 486 | FPU_stack_underflow_i(FPU_rm); |
| 487 | goto FPU_instruction_done; |
| 488 | } |
| 489 | break; |
| 490 | case _REGIp: |
| 491 | if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) { |
| 492 | FPU_stack_underflow_pop(FPU_rm); |
| 493 | goto FPU_instruction_done; |
| 494 | } |
| 495 | break; |
| 496 | case _REGI_: |
| 497 | if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) { |
| 498 | FPU_stack_underflow(); |
| 499 | goto FPU_instruction_done; |
| 500 | } |
| 501 | break; |
| 502 | case _PUSH_: /* Only used by the fld st(i) instruction */ |
| 503 | break; |
| 504 | case _null_: |
| 505 | FPU_illegal(); |
| 506 | goto FPU_instruction_done; |
| 507 | default: |
| 508 | EXCEPTION(EX_INTERNAL | 0x111); |
| 509 | goto FPU_instruction_done; |
| 510 | } |
| 511 | (*st_instr_table[(int)instr_index]) (); |
| 512 | |
| 513 | FPU_instruction_done: |
| 514 | ; |
| 515 | } |
| 516 | |
| 517 | if (!no_ip_update) |
| 518 | instruction_address = entry_sel_off; |
| 519 | |
| 520 | FPU_fwait_done: |
| 521 | |
| 522 | #ifdef DEBUG |
| 523 | RE_ENTRANT_CHECK_OFF; |
| 524 | FPU_printall(); |
| 525 | RE_ENTRANT_CHECK_ON; |
| 526 | #endif /* DEBUG */ |
| 527 | |
| 528 | if (FPU_lookahead && !need_resched()) { |
| 529 | FPU_ORIG_EIP = FPU_EIP - code_base; |
| 530 | if (valid_prefix(&byte1, (u_char __user **) & FPU_EIP, |
| 531 | &addr_modes.override)) |
| 532 | goto do_another_FPU_instruction; |
| 533 | } |
| 534 | |
| 535 | if (addr_modes.default_mode) |
| 536 | FPU_EIP -= code_base; |
| 537 | |
| 538 | RE_ENTRANT_CHECK_OFF; |
| 539 | } |
| 540 | |
| 541 | /* Support for prefix bytes is not yet complete. To properly handle |
| 542 | all prefix bytes, further changes are needed in the emulator code |
| 543 | which accesses user address space. Access to separate segments is |
| 544 | important for msdos emulation. */ |
| 545 | static int valid_prefix(u_char *Byte, u_char __user **fpu_eip, |
| 546 | overrides * override) |
| 547 | { |
| 548 | u_char byte; |
| 549 | u_char __user *ip = *fpu_eip; |
| 550 | |
| 551 | *override = (overrides) { |
| 552 | 0, 0, PREFIX_DEFAULT}; /* defaults */ |
| 553 | |
| 554 | RE_ENTRANT_CHECK_OFF; |
| 555 | FPU_code_access_ok(1); |
| 556 | FPU_get_user(byte, ip); |
| 557 | RE_ENTRANT_CHECK_ON; |
| 558 | |
| 559 | while (1) { |
| 560 | switch (byte) { |
| 561 | case ADDR_SIZE_PREFIX: |
| 562 | override->address_size = ADDR_SIZE_PREFIX; |
| 563 | goto do_next_byte; |
| 564 | |
| 565 | case OP_SIZE_PREFIX: |
| 566 | override->operand_size = OP_SIZE_PREFIX; |
| 567 | goto do_next_byte; |
| 568 | |
| 569 | case PREFIX_CS: |
| 570 | override->segment = PREFIX_CS_; |
| 571 | goto do_next_byte; |
| 572 | case PREFIX_ES: |
| 573 | override->segment = PREFIX_ES_; |
| 574 | goto do_next_byte; |
| 575 | case PREFIX_SS: |
| 576 | override->segment = PREFIX_SS_; |
| 577 | goto do_next_byte; |
| 578 | case PREFIX_FS: |
| 579 | override->segment = PREFIX_FS_; |
| 580 | goto do_next_byte; |
| 581 | case PREFIX_GS: |
| 582 | override->segment = PREFIX_GS_; |
| 583 | goto do_next_byte; |
| 584 | case PREFIX_DS: |
| 585 | override->segment = PREFIX_DS_; |
| 586 | goto do_next_byte; |
| 587 | |
| 588 | /* lock is not a valid prefix for FPU instructions, |
| 589 | let the cpu handle it to generate a SIGILL. */ |
| 590 | /* case PREFIX_LOCK: */ |
| 591 | |
| 592 | /* rep.. prefixes have no meaning for FPU instructions */ |
| 593 | case PREFIX_REPE: |
| 594 | case PREFIX_REPNE: |
| 595 | |
| 596 | do_next_byte: |
| 597 | ip++; |
| 598 | RE_ENTRANT_CHECK_OFF; |
| 599 | FPU_code_access_ok(1); |
| 600 | FPU_get_user(byte, ip); |
| 601 | RE_ENTRANT_CHECK_ON; |
| 602 | break; |
| 603 | case FWAIT_OPCODE: |
| 604 | *Byte = byte; |
| 605 | return 1; |
| 606 | default: |
| 607 | if ((byte & 0xf8) == 0xd8) { |
| 608 | *Byte = byte; |
| 609 | *fpu_eip = ip; |
| 610 | return 1; |
| 611 | } else { |
| 612 | /* Not a valid sequence of prefix bytes followed by |
| 613 | an FPU instruction. */ |
| 614 | *Byte = byte; /* Needed for error message. */ |
| 615 | return 0; |
| 616 | } |
| 617 | } |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | void math_abort(struct math_emu_info *info, unsigned int signal) |
| 622 | { |
| 623 | FPU_EIP = FPU_ORIG_EIP; |
| 624 | current->thread.trap_nr = X86_TRAP_MF; |
| 625 | current->thread.error_code = 0; |
| 626 | send_sig(signal, current, 1); |
| 627 | RE_ENTRANT_CHECK_OFF; |
| 628 | __asm__("movl %0,%%esp ; ret": :"g"(((long)info) - 4)); |
| 629 | #ifdef PARANOID |
| 630 | printk("ERROR: wm-FPU-emu math_abort failed!\n"); |
| 631 | #endif /* PARANOID */ |
| 632 | } |
| 633 | |
| 634 | #define S387 ((struct swregs_state *)s387) |
| 635 | #define sstatus_word() \ |
| 636 | ((S387->swd & ~SW_Top & 0xffff) | ((S387->ftop << SW_Top_Shift) & SW_Top)) |
| 637 | |
| 638 | int fpregs_soft_set(struct task_struct *target, |
| 639 | const struct user_regset *regset, |
| 640 | unsigned int pos, unsigned int count, |
| 641 | const void *kbuf, const void __user *ubuf) |
| 642 | { |
| 643 | struct swregs_state *s387 = &target->thread.fpu.state.soft; |
| 644 | void *space = s387->st_space; |
| 645 | int ret; |
| 646 | int offset, other, i, tags, regnr, tag, newtop; |
| 647 | |
| 648 | RE_ENTRANT_CHECK_OFF; |
| 649 | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, s387, 0, |
| 650 | offsetof(struct swregs_state, st_space)); |
| 651 | RE_ENTRANT_CHECK_ON; |
| 652 | |
| 653 | if (ret) |
| 654 | return ret; |
| 655 | |
| 656 | S387->ftop = (S387->swd >> SW_Top_Shift) & 7; |
| 657 | offset = (S387->ftop & 7) * 10; |
| 658 | other = 80 - offset; |
| 659 | |
| 660 | RE_ENTRANT_CHECK_OFF; |
| 661 | |
| 662 | /* Copy all registers in stack order. */ |
| 663 | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| 664 | space + offset, 0, other); |
| 665 | if (!ret && offset) |
| 666 | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| 667 | space, 0, offset); |
| 668 | |
| 669 | RE_ENTRANT_CHECK_ON; |
| 670 | |
| 671 | /* The tags may need to be corrected now. */ |
| 672 | tags = S387->twd; |
| 673 | newtop = S387->ftop; |
| 674 | for (i = 0; i < 8; i++) { |
| 675 | regnr = (i + newtop) & 7; |
| 676 | if (((tags >> ((regnr & 7) * 2)) & 3) != TAG_Empty) { |
| 677 | /* The loaded data over-rides all other cases. */ |
| 678 | tag = |
| 679 | FPU_tagof((FPU_REG *) ((u_char *) S387->st_space + |
| 680 | 10 * regnr)); |
| 681 | tags &= ~(3 << (regnr * 2)); |
| 682 | tags |= (tag & 3) << (regnr * 2); |
| 683 | } |
| 684 | } |
| 685 | S387->twd = tags; |
| 686 | |
| 687 | return ret; |
| 688 | } |
| 689 | |
| 690 | int fpregs_soft_get(struct task_struct *target, |
| 691 | const struct user_regset *regset, |
| 692 | unsigned int pos, unsigned int count, |
| 693 | void *kbuf, void __user *ubuf) |
| 694 | { |
| 695 | struct swregs_state *s387 = &target->thread.fpu.state.soft; |
| 696 | const void *space = s387->st_space; |
| 697 | int ret; |
| 698 | int offset = (S387->ftop & 7) * 10, other = 80 - offset; |
| 699 | |
| 700 | RE_ENTRANT_CHECK_OFF; |
| 701 | |
| 702 | #ifdef PECULIAR_486 |
| 703 | S387->cwd &= ~0xe080; |
| 704 | /* An 80486 sets nearly all of the reserved bits to 1. */ |
| 705 | S387->cwd |= 0xffff0040; |
| 706 | S387->swd = sstatus_word() | 0xffff0000; |
| 707 | S387->twd |= 0xffff0000; |
| 708 | S387->fcs &= ~0xf8000000; |
| 709 | S387->fos |= 0xffff0000; |
| 710 | #endif /* PECULIAR_486 */ |
| 711 | |
| 712 | ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, s387, 0, |
| 713 | offsetof(struct swregs_state, st_space)); |
| 714 | |
| 715 | /* Copy all registers in stack order. */ |
| 716 | if (!ret) |
| 717 | ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| 718 | space + offset, 0, other); |
| 719 | if (!ret) |
| 720 | ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| 721 | space, 0, offset); |
| 722 | |
| 723 | RE_ENTRANT_CHECK_ON; |
| 724 | |
| 725 | return ret; |
| 726 | } |