David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * vMTRR implementation |
| 4 | * |
| 5 | * Copyright (C) 2006 Qumranet, Inc. |
| 6 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 7 | * Copyright(C) 2015 Intel Corporation. |
| 8 | * |
| 9 | * Authors: |
| 10 | * Yaniv Kamay <yaniv@qumranet.com> |
| 11 | * Avi Kivity <avi@qumranet.com> |
| 12 | * Marcelo Tosatti <mtosatti@redhat.com> |
| 13 | * Paolo Bonzini <pbonzini@redhat.com> |
| 14 | * Xiao Guangrong <guangrong.xiao@linux.intel.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 15 | */ |
| 16 | |
| 17 | #include <linux/kvm_host.h> |
| 18 | #include <asm/mtrr.h> |
| 19 | |
| 20 | #include "cpuid.h" |
| 21 | #include "mmu.h" |
| 22 | |
| 23 | #define IA32_MTRR_DEF_TYPE_E (1ULL << 11) |
| 24 | #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10) |
| 25 | #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff) |
| 26 | |
| 27 | static bool msr_mtrr_valid(unsigned msr) |
| 28 | { |
| 29 | switch (msr) { |
| 30 | case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: |
| 31 | case MSR_MTRRfix64K_00000: |
| 32 | case MSR_MTRRfix16K_80000: |
| 33 | case MSR_MTRRfix16K_A0000: |
| 34 | case MSR_MTRRfix4K_C0000: |
| 35 | case MSR_MTRRfix4K_C8000: |
| 36 | case MSR_MTRRfix4K_D0000: |
| 37 | case MSR_MTRRfix4K_D8000: |
| 38 | case MSR_MTRRfix4K_E0000: |
| 39 | case MSR_MTRRfix4K_E8000: |
| 40 | case MSR_MTRRfix4K_F0000: |
| 41 | case MSR_MTRRfix4K_F8000: |
| 42 | case MSR_MTRRdefType: |
| 43 | case MSR_IA32_CR_PAT: |
| 44 | return true; |
| 45 | } |
| 46 | return false; |
| 47 | } |
| 48 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 49 | static bool valid_mtrr_type(unsigned t) |
| 50 | { |
| 51 | return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ |
| 52 | } |
| 53 | |
| 54 | bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| 55 | { |
| 56 | int i; |
| 57 | u64 mask; |
| 58 | |
| 59 | if (!msr_mtrr_valid(msr)) |
| 60 | return false; |
| 61 | |
| 62 | if (msr == MSR_IA32_CR_PAT) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 63 | return kvm_pat_valid(data); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 64 | } else if (msr == MSR_MTRRdefType) { |
| 65 | if (data & ~0xcff) |
| 66 | return false; |
| 67 | return valid_mtrr_type(data & 0xff); |
| 68 | } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { |
| 69 | for (i = 0; i < 8 ; i++) |
| 70 | if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) |
| 71 | return false; |
| 72 | return true; |
| 73 | } |
| 74 | |
| 75 | /* variable MTRRs */ |
| 76 | WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR)); |
| 77 | |
| 78 | mask = (~0ULL) << cpuid_maxphyaddr(vcpu); |
| 79 | if ((msr & 1) == 0) { |
| 80 | /* MTRR base */ |
| 81 | if (!valid_mtrr_type(data & 0xff)) |
| 82 | return false; |
| 83 | mask |= 0xf00; |
| 84 | } else |
| 85 | /* MTRR mask */ |
| 86 | mask |= 0x7ff; |
| 87 | if (data & mask) { |
| 88 | kvm_inject_gp(vcpu, 0); |
| 89 | return false; |
| 90 | } |
| 91 | |
| 92 | return true; |
| 93 | } |
| 94 | EXPORT_SYMBOL_GPL(kvm_mtrr_valid); |
| 95 | |
| 96 | static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state) |
| 97 | { |
| 98 | return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E); |
| 99 | } |
| 100 | |
| 101 | static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state) |
| 102 | { |
| 103 | return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE); |
| 104 | } |
| 105 | |
| 106 | static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state) |
| 107 | { |
| 108 | return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK; |
| 109 | } |
| 110 | |
| 111 | static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu) |
| 112 | { |
| 113 | /* |
| 114 | * Intel SDM 11.11.2.2: all MTRRs are disabled when |
| 115 | * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC |
| 116 | * memory type is applied to all of physical memory. |
| 117 | * |
| 118 | * However, virtual machines can be run with CPUID such that |
| 119 | * there are no MTRRs. In that case, the firmware will never |
| 120 | * enable MTRRs and it is obviously undesirable to run the |
| 121 | * guest entirely with UC memory and we use WB. |
| 122 | */ |
| 123 | if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR)) |
| 124 | return MTRR_TYPE_UNCACHABLE; |
| 125 | else |
| 126 | return MTRR_TYPE_WRBACK; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Three terms are used in the following code: |
| 131 | * - segment, it indicates the address segments covered by fixed MTRRs. |
| 132 | * - unit, it corresponds to the MSR entry in the segment. |
| 133 | * - range, a range is covered in one memory cache type. |
| 134 | */ |
| 135 | struct fixed_mtrr_segment { |
| 136 | u64 start; |
| 137 | u64 end; |
| 138 | |
| 139 | int range_shift; |
| 140 | |
| 141 | /* the start position in kvm_mtrr.fixed_ranges[]. */ |
| 142 | int range_start; |
| 143 | }; |
| 144 | |
| 145 | static struct fixed_mtrr_segment fixed_seg_table[] = { |
| 146 | /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */ |
| 147 | { |
| 148 | .start = 0x0, |
| 149 | .end = 0x80000, |
| 150 | .range_shift = 16, /* 64K */ |
| 151 | .range_start = 0, |
| 152 | }, |
| 153 | |
| 154 | /* |
| 155 | * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units, |
| 156 | * 16K fixed mtrr. |
| 157 | */ |
| 158 | { |
| 159 | .start = 0x80000, |
| 160 | .end = 0xc0000, |
| 161 | .range_shift = 14, /* 16K */ |
| 162 | .range_start = 8, |
| 163 | }, |
| 164 | |
| 165 | /* |
| 166 | * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units, |
| 167 | * 4K fixed mtrr. |
| 168 | */ |
| 169 | { |
| 170 | .start = 0xc0000, |
| 171 | .end = 0x100000, |
| 172 | .range_shift = 12, /* 12K */ |
| 173 | .range_start = 24, |
| 174 | } |
| 175 | }; |
| 176 | |
| 177 | /* |
| 178 | * The size of unit is covered in one MSR, one MSR entry contains |
| 179 | * 8 ranges so that unit size is always 8 * 2^range_shift. |
| 180 | */ |
| 181 | static u64 fixed_mtrr_seg_unit_size(int seg) |
| 182 | { |
| 183 | return 8 << fixed_seg_table[seg].range_shift; |
| 184 | } |
| 185 | |
| 186 | static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit) |
| 187 | { |
| 188 | switch (msr) { |
| 189 | case MSR_MTRRfix64K_00000: |
| 190 | *seg = 0; |
| 191 | *unit = 0; |
| 192 | break; |
| 193 | case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000: |
| 194 | *seg = 1; |
| 195 | *unit = msr - MSR_MTRRfix16K_80000; |
| 196 | break; |
| 197 | case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000: |
| 198 | *seg = 2; |
| 199 | *unit = msr - MSR_MTRRfix4K_C0000; |
| 200 | break; |
| 201 | default: |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | return true; |
| 206 | } |
| 207 | |
| 208 | static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end) |
| 209 | { |
| 210 | struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg]; |
| 211 | u64 unit_size = fixed_mtrr_seg_unit_size(seg); |
| 212 | |
| 213 | *start = mtrr_seg->start + unit * unit_size; |
| 214 | *end = *start + unit_size; |
| 215 | WARN_ON(*end > mtrr_seg->end); |
| 216 | } |
| 217 | |
| 218 | static int fixed_mtrr_seg_unit_range_index(int seg, int unit) |
| 219 | { |
| 220 | struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg]; |
| 221 | |
| 222 | WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg) |
| 223 | > mtrr_seg->end); |
| 224 | |
| 225 | /* each unit has 8 ranges. */ |
| 226 | return mtrr_seg->range_start + 8 * unit; |
| 227 | } |
| 228 | |
| 229 | static int fixed_mtrr_seg_end_range_index(int seg) |
| 230 | { |
| 231 | struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg]; |
| 232 | int n; |
| 233 | |
| 234 | n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift; |
| 235 | return mtrr_seg->range_start + n - 1; |
| 236 | } |
| 237 | |
| 238 | static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end) |
| 239 | { |
| 240 | int seg, unit; |
| 241 | |
| 242 | if (!fixed_msr_to_seg_unit(msr, &seg, &unit)) |
| 243 | return false; |
| 244 | |
| 245 | fixed_mtrr_seg_unit_range(seg, unit, start, end); |
| 246 | return true; |
| 247 | } |
| 248 | |
| 249 | static int fixed_msr_to_range_index(u32 msr) |
| 250 | { |
| 251 | int seg, unit; |
| 252 | |
| 253 | if (!fixed_msr_to_seg_unit(msr, &seg, &unit)) |
| 254 | return -1; |
| 255 | |
| 256 | return fixed_mtrr_seg_unit_range_index(seg, unit); |
| 257 | } |
| 258 | |
| 259 | static int fixed_mtrr_addr_to_seg(u64 addr) |
| 260 | { |
| 261 | struct fixed_mtrr_segment *mtrr_seg; |
| 262 | int seg, seg_num = ARRAY_SIZE(fixed_seg_table); |
| 263 | |
| 264 | for (seg = 0; seg < seg_num; seg++) { |
| 265 | mtrr_seg = &fixed_seg_table[seg]; |
| 266 | if (mtrr_seg->start <= addr && addr < mtrr_seg->end) |
| 267 | return seg; |
| 268 | } |
| 269 | |
| 270 | return -1; |
| 271 | } |
| 272 | |
| 273 | static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg) |
| 274 | { |
| 275 | struct fixed_mtrr_segment *mtrr_seg; |
| 276 | int index; |
| 277 | |
| 278 | mtrr_seg = &fixed_seg_table[seg]; |
| 279 | index = mtrr_seg->range_start; |
| 280 | index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift; |
| 281 | return index; |
| 282 | } |
| 283 | |
| 284 | static u64 fixed_mtrr_range_end_addr(int seg, int index) |
| 285 | { |
| 286 | struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg]; |
| 287 | int pos = index - mtrr_seg->range_start; |
| 288 | |
| 289 | return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift); |
| 290 | } |
| 291 | |
| 292 | static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end) |
| 293 | { |
| 294 | u64 mask; |
| 295 | |
| 296 | *start = range->base & PAGE_MASK; |
| 297 | |
| 298 | mask = range->mask & PAGE_MASK; |
| 299 | |
| 300 | /* This cannot overflow because writing to the reserved bits of |
| 301 | * variable MTRRs causes a #GP. |
| 302 | */ |
| 303 | *end = (*start | ~mask) + 1; |
| 304 | } |
| 305 | |
| 306 | static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr) |
| 307 | { |
| 308 | struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state; |
| 309 | gfn_t start, end; |
| 310 | int index; |
| 311 | |
| 312 | if (msr == MSR_IA32_CR_PAT || !tdp_enabled || |
| 313 | !kvm_arch_has_noncoherent_dma(vcpu->kvm)) |
| 314 | return; |
| 315 | |
| 316 | if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType) |
| 317 | return; |
| 318 | |
| 319 | /* fixed MTRRs. */ |
| 320 | if (fixed_msr_to_range(msr, &start, &end)) { |
| 321 | if (!fixed_mtrr_is_enabled(mtrr_state)) |
| 322 | return; |
| 323 | } else if (msr == MSR_MTRRdefType) { |
| 324 | start = 0x0; |
| 325 | end = ~0ULL; |
| 326 | } else { |
| 327 | /* variable range MTRRs. */ |
| 328 | index = (msr - 0x200) / 2; |
| 329 | var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end); |
| 330 | } |
| 331 | |
| 332 | kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end)); |
| 333 | } |
| 334 | |
| 335 | static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range) |
| 336 | { |
| 337 | return (range->mask & (1 << 11)) != 0; |
| 338 | } |
| 339 | |
| 340 | static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| 341 | { |
| 342 | struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state; |
| 343 | struct kvm_mtrr_range *tmp, *cur; |
| 344 | int index, is_mtrr_mask; |
| 345 | |
| 346 | index = (msr - 0x200) / 2; |
| 347 | is_mtrr_mask = msr - 0x200 - 2 * index; |
| 348 | cur = &mtrr_state->var_ranges[index]; |
| 349 | |
| 350 | /* remove the entry if it's in the list. */ |
| 351 | if (var_mtrr_range_is_valid(cur)) |
| 352 | list_del(&mtrr_state->var_ranges[index].node); |
| 353 | |
| 354 | /* Extend the mask with all 1 bits to the left, since those |
| 355 | * bits must implicitly be 0. The bits are then cleared |
| 356 | * when reading them. |
| 357 | */ |
| 358 | if (!is_mtrr_mask) |
| 359 | cur->base = data; |
| 360 | else |
| 361 | cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu)); |
| 362 | |
| 363 | /* add it to the list if it's enabled. */ |
| 364 | if (var_mtrr_range_is_valid(cur)) { |
| 365 | list_for_each_entry(tmp, &mtrr_state->head, node) |
| 366 | if (cur->base >= tmp->base) |
| 367 | break; |
| 368 | list_add_tail(&cur->node, &tmp->node); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| 373 | { |
| 374 | int index; |
| 375 | |
| 376 | if (!kvm_mtrr_valid(vcpu, msr, data)) |
| 377 | return 1; |
| 378 | |
| 379 | index = fixed_msr_to_range_index(msr); |
| 380 | if (index >= 0) |
| 381 | *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data; |
| 382 | else if (msr == MSR_MTRRdefType) |
| 383 | vcpu->arch.mtrr_state.deftype = data; |
| 384 | else if (msr == MSR_IA32_CR_PAT) |
| 385 | vcpu->arch.pat = data; |
| 386 | else |
| 387 | set_var_mtrr_msr(vcpu, msr, data); |
| 388 | |
| 389 | update_mtrr(vcpu, msr); |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| 394 | { |
| 395 | int index; |
| 396 | |
| 397 | /* MSR_MTRRcap is a readonly MSR. */ |
| 398 | if (msr == MSR_MTRRcap) { |
| 399 | /* |
| 400 | * SMRR = 0 |
| 401 | * WC = 1 |
| 402 | * FIX = 1 |
| 403 | * VCNT = KVM_NR_VAR_MTRR |
| 404 | */ |
| 405 | *pdata = 0x500 | KVM_NR_VAR_MTRR; |
| 406 | return 0; |
| 407 | } |
| 408 | |
| 409 | if (!msr_mtrr_valid(msr)) |
| 410 | return 1; |
| 411 | |
| 412 | index = fixed_msr_to_range_index(msr); |
| 413 | if (index >= 0) |
| 414 | *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index]; |
| 415 | else if (msr == MSR_MTRRdefType) |
| 416 | *pdata = vcpu->arch.mtrr_state.deftype; |
| 417 | else if (msr == MSR_IA32_CR_PAT) |
| 418 | *pdata = vcpu->arch.pat; |
| 419 | else { /* Variable MTRRs */ |
| 420 | int is_mtrr_mask; |
| 421 | |
| 422 | index = (msr - 0x200) / 2; |
| 423 | is_mtrr_mask = msr - 0x200 - 2 * index; |
| 424 | if (!is_mtrr_mask) |
| 425 | *pdata = vcpu->arch.mtrr_state.var_ranges[index].base; |
| 426 | else |
| 427 | *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask; |
| 428 | |
| 429 | *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1; |
| 430 | } |
| 431 | |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu) |
| 436 | { |
| 437 | INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head); |
| 438 | } |
| 439 | |
| 440 | struct mtrr_iter { |
| 441 | /* input fields. */ |
| 442 | struct kvm_mtrr *mtrr_state; |
| 443 | u64 start; |
| 444 | u64 end; |
| 445 | |
| 446 | /* output fields. */ |
| 447 | int mem_type; |
| 448 | /* mtrr is completely disabled? */ |
| 449 | bool mtrr_disabled; |
| 450 | /* [start, end) is not fully covered in MTRRs? */ |
| 451 | bool partial_map; |
| 452 | |
| 453 | /* private fields. */ |
| 454 | union { |
| 455 | /* used for fixed MTRRs. */ |
| 456 | struct { |
| 457 | int index; |
| 458 | int seg; |
| 459 | }; |
| 460 | |
| 461 | /* used for var MTRRs. */ |
| 462 | struct { |
| 463 | struct kvm_mtrr_range *range; |
| 464 | /* max address has been covered in var MTRRs. */ |
| 465 | u64 start_max; |
| 466 | }; |
| 467 | }; |
| 468 | |
| 469 | bool fixed; |
| 470 | }; |
| 471 | |
| 472 | static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter) |
| 473 | { |
| 474 | int seg, index; |
| 475 | |
| 476 | if (!fixed_mtrr_is_enabled(iter->mtrr_state)) |
| 477 | return false; |
| 478 | |
| 479 | seg = fixed_mtrr_addr_to_seg(iter->start); |
| 480 | if (seg < 0) |
| 481 | return false; |
| 482 | |
| 483 | iter->fixed = true; |
| 484 | index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg); |
| 485 | iter->index = index; |
| 486 | iter->seg = seg; |
| 487 | return true; |
| 488 | } |
| 489 | |
| 490 | static bool match_var_range(struct mtrr_iter *iter, |
| 491 | struct kvm_mtrr_range *range) |
| 492 | { |
| 493 | u64 start, end; |
| 494 | |
| 495 | var_mtrr_range(range, &start, &end); |
| 496 | if (!(start >= iter->end || end <= iter->start)) { |
| 497 | iter->range = range; |
| 498 | |
| 499 | /* |
| 500 | * the function is called when we do kvm_mtrr.head walking. |
| 501 | * Range has the minimum base address which interleaves |
| 502 | * [looker->start_max, looker->end). |
| 503 | */ |
| 504 | iter->partial_map |= iter->start_max < start; |
| 505 | |
| 506 | /* update the max address has been covered. */ |
| 507 | iter->start_max = max(iter->start_max, end); |
| 508 | return true; |
| 509 | } |
| 510 | |
| 511 | return false; |
| 512 | } |
| 513 | |
| 514 | static void __mtrr_lookup_var_next(struct mtrr_iter *iter) |
| 515 | { |
| 516 | struct kvm_mtrr *mtrr_state = iter->mtrr_state; |
| 517 | |
| 518 | list_for_each_entry_continue(iter->range, &mtrr_state->head, node) |
| 519 | if (match_var_range(iter, iter->range)) |
| 520 | return; |
| 521 | |
| 522 | iter->range = NULL; |
| 523 | iter->partial_map |= iter->start_max < iter->end; |
| 524 | } |
| 525 | |
| 526 | static void mtrr_lookup_var_start(struct mtrr_iter *iter) |
| 527 | { |
| 528 | struct kvm_mtrr *mtrr_state = iter->mtrr_state; |
| 529 | |
| 530 | iter->fixed = false; |
| 531 | iter->start_max = iter->start; |
| 532 | iter->range = NULL; |
| 533 | iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node); |
| 534 | |
| 535 | __mtrr_lookup_var_next(iter); |
| 536 | } |
| 537 | |
| 538 | static void mtrr_lookup_fixed_next(struct mtrr_iter *iter) |
| 539 | { |
| 540 | /* terminate the lookup. */ |
| 541 | if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) { |
| 542 | iter->fixed = false; |
| 543 | iter->range = NULL; |
| 544 | return; |
| 545 | } |
| 546 | |
| 547 | iter->index++; |
| 548 | |
| 549 | /* have looked up for all fixed MTRRs. */ |
| 550 | if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges)) |
| 551 | return mtrr_lookup_var_start(iter); |
| 552 | |
| 553 | /* switch to next segment. */ |
| 554 | if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg)) |
| 555 | iter->seg++; |
| 556 | } |
| 557 | |
| 558 | static void mtrr_lookup_var_next(struct mtrr_iter *iter) |
| 559 | { |
| 560 | __mtrr_lookup_var_next(iter); |
| 561 | } |
| 562 | |
| 563 | static void mtrr_lookup_start(struct mtrr_iter *iter) |
| 564 | { |
| 565 | if (!mtrr_is_enabled(iter->mtrr_state)) { |
| 566 | iter->mtrr_disabled = true; |
| 567 | return; |
| 568 | } |
| 569 | |
| 570 | if (!mtrr_lookup_fixed_start(iter)) |
| 571 | mtrr_lookup_var_start(iter); |
| 572 | } |
| 573 | |
| 574 | static void mtrr_lookup_init(struct mtrr_iter *iter, |
| 575 | struct kvm_mtrr *mtrr_state, u64 start, u64 end) |
| 576 | { |
| 577 | iter->mtrr_state = mtrr_state; |
| 578 | iter->start = start; |
| 579 | iter->end = end; |
| 580 | iter->mtrr_disabled = false; |
| 581 | iter->partial_map = false; |
| 582 | iter->fixed = false; |
| 583 | iter->range = NULL; |
| 584 | |
| 585 | mtrr_lookup_start(iter); |
| 586 | } |
| 587 | |
| 588 | static bool mtrr_lookup_okay(struct mtrr_iter *iter) |
| 589 | { |
| 590 | if (iter->fixed) { |
| 591 | iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index]; |
| 592 | return true; |
| 593 | } |
| 594 | |
| 595 | if (iter->range) { |
| 596 | iter->mem_type = iter->range->base & 0xff; |
| 597 | return true; |
| 598 | } |
| 599 | |
| 600 | return false; |
| 601 | } |
| 602 | |
| 603 | static void mtrr_lookup_next(struct mtrr_iter *iter) |
| 604 | { |
| 605 | if (iter->fixed) |
| 606 | mtrr_lookup_fixed_next(iter); |
| 607 | else |
| 608 | mtrr_lookup_var_next(iter); |
| 609 | } |
| 610 | |
| 611 | #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \ |
| 612 | for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \ |
| 613 | mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_)) |
| 614 | |
| 615 | u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) |
| 616 | { |
| 617 | struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state; |
| 618 | struct mtrr_iter iter; |
| 619 | u64 start, end; |
| 620 | int type = -1; |
| 621 | const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK) |
| 622 | | (1 << MTRR_TYPE_WRTHROUGH); |
| 623 | |
| 624 | start = gfn_to_gpa(gfn); |
| 625 | end = start + PAGE_SIZE; |
| 626 | |
| 627 | mtrr_for_each_mem_type(&iter, mtrr_state, start, end) { |
| 628 | int curr_type = iter.mem_type; |
| 629 | |
| 630 | /* |
| 631 | * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR |
| 632 | * Precedences. |
| 633 | */ |
| 634 | |
| 635 | if (type == -1) { |
| 636 | type = curr_type; |
| 637 | continue; |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * If two or more variable memory ranges match and the |
| 642 | * memory types are identical, then that memory type is |
| 643 | * used. |
| 644 | */ |
| 645 | if (type == curr_type) |
| 646 | continue; |
| 647 | |
| 648 | /* |
| 649 | * If two or more variable memory ranges match and one of |
| 650 | * the memory types is UC, the UC memory type used. |
| 651 | */ |
| 652 | if (curr_type == MTRR_TYPE_UNCACHABLE) |
| 653 | return MTRR_TYPE_UNCACHABLE; |
| 654 | |
| 655 | /* |
| 656 | * If two or more variable memory ranges match and the |
| 657 | * memory types are WT and WB, the WT memory type is used. |
| 658 | */ |
| 659 | if (((1 << type) & wt_wb_mask) && |
| 660 | ((1 << curr_type) & wt_wb_mask)) { |
| 661 | type = MTRR_TYPE_WRTHROUGH; |
| 662 | continue; |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * For overlaps not defined by the above rules, processor |
| 667 | * behavior is undefined. |
| 668 | */ |
| 669 | |
| 670 | /* We use WB for this undefined behavior. :( */ |
| 671 | return MTRR_TYPE_WRBACK; |
| 672 | } |
| 673 | |
| 674 | if (iter.mtrr_disabled) |
| 675 | return mtrr_disabled_type(vcpu); |
| 676 | |
| 677 | /* not contained in any MTRRs. */ |
| 678 | if (type == -1) |
| 679 | return mtrr_default_type(mtrr_state); |
| 680 | |
| 681 | /* |
| 682 | * We just check one page, partially covered by MTRRs is |
| 683 | * impossible. |
| 684 | */ |
| 685 | WARN_ON(iter.partial_map); |
| 686 | |
| 687 | return type; |
| 688 | } |
| 689 | EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type); |
| 690 | |
| 691 | bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 692 | int page_num) |
| 693 | { |
| 694 | struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state; |
| 695 | struct mtrr_iter iter; |
| 696 | u64 start, end; |
| 697 | int type = -1; |
| 698 | |
| 699 | start = gfn_to_gpa(gfn); |
| 700 | end = gfn_to_gpa(gfn + page_num); |
| 701 | mtrr_for_each_mem_type(&iter, mtrr_state, start, end) { |
| 702 | if (type == -1) { |
| 703 | type = iter.mem_type; |
| 704 | continue; |
| 705 | } |
| 706 | |
| 707 | if (type != iter.mem_type) |
| 708 | return false; |
| 709 | } |
| 710 | |
| 711 | if (iter.mtrr_disabled) |
| 712 | return true; |
| 713 | |
| 714 | if (!iter.partial_map) |
| 715 | return true; |
| 716 | |
| 717 | if (type == -1) |
| 718 | return true; |
| 719 | |
| 720 | return type == mtrr_default_type(mtrr_state); |
| 721 | } |