David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 3 | |
| 4 | #include <linux/kernel.h> |
| 5 | #include <linux/sched.h> |
| 6 | #include <linux/sched/clock.h> |
| 7 | #include <linux/init.h> |
| 8 | #include <linux/export.h> |
| 9 | #include <linux/timer.h> |
| 10 | #include <linux/acpi_pmtmr.h> |
| 11 | #include <linux/cpufreq.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/clocksource.h> |
| 14 | #include <linux/percpu.h> |
| 15 | #include <linux/timex.h> |
| 16 | #include <linux/static_key.h> |
| 17 | |
| 18 | #include <asm/hpet.h> |
| 19 | #include <asm/timer.h> |
| 20 | #include <asm/vgtod.h> |
| 21 | #include <asm/time.h> |
| 22 | #include <asm/delay.h> |
| 23 | #include <asm/hypervisor.h> |
| 24 | #include <asm/nmi.h> |
| 25 | #include <asm/x86_init.h> |
| 26 | #include <asm/geode.h> |
| 27 | #include <asm/apic.h> |
| 28 | #include <asm/intel-family.h> |
| 29 | #include <asm/i8259.h> |
| 30 | #include <asm/uv/uv.h> |
| 31 | |
| 32 | unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ |
| 33 | EXPORT_SYMBOL(cpu_khz); |
| 34 | |
| 35 | unsigned int __read_mostly tsc_khz; |
| 36 | EXPORT_SYMBOL(tsc_khz); |
| 37 | |
| 38 | #define KHZ 1000 |
| 39 | |
| 40 | /* |
| 41 | * TSC can be unstable due to cpufreq or due to unsynced TSCs |
| 42 | */ |
| 43 | static int __read_mostly tsc_unstable; |
| 44 | |
| 45 | static DEFINE_STATIC_KEY_FALSE(__use_tsc); |
| 46 | |
| 47 | int tsc_clocksource_reliable; |
| 48 | |
| 49 | static u32 art_to_tsc_numerator; |
| 50 | static u32 art_to_tsc_denominator; |
| 51 | static u64 art_to_tsc_offset; |
| 52 | struct clocksource *art_related_clocksource; |
| 53 | |
| 54 | struct cyc2ns { |
| 55 | struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ |
| 56 | seqcount_t seq; /* 32 + 4 = 36 */ |
| 57 | |
| 58 | }; /* fits one cacheline */ |
| 59 | |
| 60 | static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); |
| 61 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 62 | __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 63 | { |
| 64 | int seq, idx; |
| 65 | |
| 66 | preempt_disable_notrace(); |
| 67 | |
| 68 | do { |
| 69 | seq = this_cpu_read(cyc2ns.seq.sequence); |
| 70 | idx = seq & 1; |
| 71 | |
| 72 | data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); |
| 73 | data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); |
| 74 | data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); |
| 75 | |
| 76 | } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence))); |
| 77 | } |
| 78 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 79 | __always_inline void cyc2ns_read_end(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 80 | { |
| 81 | preempt_enable_notrace(); |
| 82 | } |
| 83 | |
| 84 | /* |
| 85 | * Accelerators for sched_clock() |
| 86 | * convert from cycles(64bits) => nanoseconds (64bits) |
| 87 | * basic equation: |
| 88 | * ns = cycles / (freq / ns_per_sec) |
| 89 | * ns = cycles * (ns_per_sec / freq) |
| 90 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| 91 | * ns = cycles * (10^6 / cpu_khz) |
| 92 | * |
| 93 | * Then we use scaling math (suggested by george@mvista.com) to get: |
| 94 | * ns = cycles * (10^6 * SC / cpu_khz) / SC |
| 95 | * ns = cycles * cyc2ns_scale / SC |
| 96 | * |
| 97 | * And since SC is a constant power of two, we can convert the div |
| 98 | * into a shift. The larger SC is, the more accurate the conversion, but |
| 99 | * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication |
| 100 | * (64-bit result) can be used. |
| 101 | * |
| 102 | * We can use khz divisor instead of mhz to keep a better precision. |
| 103 | * (mathieu.desnoyers@polymtl.ca) |
| 104 | * |
| 105 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| 106 | */ |
| 107 | |
| 108 | static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) |
| 109 | { |
| 110 | struct cyc2ns_data data; |
| 111 | unsigned long long ns; |
| 112 | |
| 113 | cyc2ns_read_begin(&data); |
| 114 | |
| 115 | ns = data.cyc2ns_offset; |
| 116 | ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); |
| 117 | |
| 118 | cyc2ns_read_end(); |
| 119 | |
| 120 | return ns; |
| 121 | } |
| 122 | |
| 123 | static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) |
| 124 | { |
| 125 | unsigned long long ns_now; |
| 126 | struct cyc2ns_data data; |
| 127 | struct cyc2ns *c2n; |
| 128 | |
| 129 | ns_now = cycles_2_ns(tsc_now); |
| 130 | |
| 131 | /* |
| 132 | * Compute a new multiplier as per the above comment and ensure our |
| 133 | * time function is continuous; see the comment near struct |
| 134 | * cyc2ns_data. |
| 135 | */ |
| 136 | clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, |
| 137 | NSEC_PER_MSEC, 0); |
| 138 | |
| 139 | /* |
| 140 | * cyc2ns_shift is exported via arch_perf_update_userpage() where it is |
| 141 | * not expected to be greater than 31 due to the original published |
| 142 | * conversion algorithm shifting a 32-bit value (now specifies a 64-bit |
| 143 | * value) - refer perf_event_mmap_page documentation in perf_event.h. |
| 144 | */ |
| 145 | if (data.cyc2ns_shift == 32) { |
| 146 | data.cyc2ns_shift = 31; |
| 147 | data.cyc2ns_mul >>= 1; |
| 148 | } |
| 149 | |
| 150 | data.cyc2ns_offset = ns_now - |
| 151 | mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); |
| 152 | |
| 153 | c2n = per_cpu_ptr(&cyc2ns, cpu); |
| 154 | |
| 155 | raw_write_seqcount_latch(&c2n->seq); |
| 156 | c2n->data[0] = data; |
| 157 | raw_write_seqcount_latch(&c2n->seq); |
| 158 | c2n->data[1] = data; |
| 159 | } |
| 160 | |
| 161 | static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) |
| 162 | { |
| 163 | unsigned long flags; |
| 164 | |
| 165 | local_irq_save(flags); |
| 166 | sched_clock_idle_sleep_event(); |
| 167 | |
| 168 | if (khz) |
| 169 | __set_cyc2ns_scale(khz, cpu, tsc_now); |
| 170 | |
| 171 | sched_clock_idle_wakeup_event(); |
| 172 | local_irq_restore(flags); |
| 173 | } |
| 174 | |
| 175 | /* |
| 176 | * Initialize cyc2ns for boot cpu |
| 177 | */ |
| 178 | static void __init cyc2ns_init_boot_cpu(void) |
| 179 | { |
| 180 | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); |
| 181 | |
| 182 | seqcount_init(&c2n->seq); |
| 183 | __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * Secondary CPUs do not run through tsc_init(), so set up |
| 188 | * all the scale factors for all CPUs, assuming the same |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 189 | * speed as the bootup CPU. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 190 | */ |
| 191 | static void __init cyc2ns_init_secondary_cpus(void) |
| 192 | { |
| 193 | unsigned int cpu, this_cpu = smp_processor_id(); |
| 194 | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); |
| 195 | struct cyc2ns_data *data = c2n->data; |
| 196 | |
| 197 | for_each_possible_cpu(cpu) { |
| 198 | if (cpu != this_cpu) { |
| 199 | seqcount_init(&c2n->seq); |
| 200 | c2n = per_cpu_ptr(&cyc2ns, cpu); |
| 201 | c2n->data[0] = data[0]; |
| 202 | c2n->data[1] = data[1]; |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Scheduler clock - returns current time in nanosec units. |
| 209 | */ |
| 210 | u64 native_sched_clock(void) |
| 211 | { |
| 212 | if (static_branch_likely(&__use_tsc)) { |
| 213 | u64 tsc_now = rdtsc(); |
| 214 | |
| 215 | /* return the value in ns */ |
| 216 | return cycles_2_ns(tsc_now); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Fall back to jiffies if there's no TSC available: |
| 221 | * ( But note that we still use it if the TSC is marked |
| 222 | * unstable. We do this because unlike Time Of Day, |
| 223 | * the scheduler clock tolerates small errors and it's |
| 224 | * very important for it to be as fast as the platform |
| 225 | * can achieve it. ) |
| 226 | */ |
| 227 | |
| 228 | /* No locking but a rare wrong value is not a big deal: */ |
| 229 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * Generate a sched_clock if you already have a TSC value. |
| 234 | */ |
| 235 | u64 native_sched_clock_from_tsc(u64 tsc) |
| 236 | { |
| 237 | return cycles_2_ns(tsc); |
| 238 | } |
| 239 | |
| 240 | /* We need to define a real function for sched_clock, to override the |
| 241 | weak default version */ |
| 242 | #ifdef CONFIG_PARAVIRT |
| 243 | unsigned long long sched_clock(void) |
| 244 | { |
| 245 | return paravirt_sched_clock(); |
| 246 | } |
| 247 | |
| 248 | bool using_native_sched_clock(void) |
| 249 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 250 | return pv_ops.time.sched_clock == native_sched_clock; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 251 | } |
| 252 | #else |
| 253 | unsigned long long |
| 254 | sched_clock(void) __attribute__((alias("native_sched_clock"))); |
| 255 | |
| 256 | bool using_native_sched_clock(void) { return true; } |
| 257 | #endif |
| 258 | |
| 259 | int check_tsc_unstable(void) |
| 260 | { |
| 261 | return tsc_unstable; |
| 262 | } |
| 263 | EXPORT_SYMBOL_GPL(check_tsc_unstable); |
| 264 | |
| 265 | #ifdef CONFIG_X86_TSC |
| 266 | int __init notsc_setup(char *str) |
| 267 | { |
| 268 | mark_tsc_unstable("boot parameter notsc"); |
| 269 | return 1; |
| 270 | } |
| 271 | #else |
| 272 | /* |
| 273 | * disable flag for tsc. Takes effect by clearing the TSC cpu flag |
| 274 | * in cpu/common.c |
| 275 | */ |
| 276 | int __init notsc_setup(char *str) |
| 277 | { |
| 278 | setup_clear_cpu_cap(X86_FEATURE_TSC); |
| 279 | return 1; |
| 280 | } |
| 281 | #endif |
| 282 | |
| 283 | __setup("notsc", notsc_setup); |
| 284 | |
| 285 | static int no_sched_irq_time; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 286 | static int no_tsc_watchdog; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 287 | |
| 288 | static int __init tsc_setup(char *str) |
| 289 | { |
| 290 | if (!strcmp(str, "reliable")) |
| 291 | tsc_clocksource_reliable = 1; |
| 292 | if (!strncmp(str, "noirqtime", 9)) |
| 293 | no_sched_irq_time = 1; |
| 294 | if (!strcmp(str, "unstable")) |
| 295 | mark_tsc_unstable("boot parameter"); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 296 | if (!strcmp(str, "nowatchdog")) |
| 297 | no_tsc_watchdog = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 298 | return 1; |
| 299 | } |
| 300 | |
| 301 | __setup("tsc=", tsc_setup); |
| 302 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 303 | #define MAX_RETRIES 5 |
| 304 | #define TSC_DEFAULT_THRESHOLD 0x20000 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 305 | |
| 306 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 307 | * Read TSC and the reference counters. Take care of any disturbances |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 308 | */ |
| 309 | static u64 tsc_read_refs(u64 *p, int hpet) |
| 310 | { |
| 311 | u64 t1, t2; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 312 | u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 313 | int i; |
| 314 | |
| 315 | for (i = 0; i < MAX_RETRIES; i++) { |
| 316 | t1 = get_cycles(); |
| 317 | if (hpet) |
| 318 | *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
| 319 | else |
| 320 | *p = acpi_pm_read_early(); |
| 321 | t2 = get_cycles(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 322 | if ((t2 - t1) < thresh) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 323 | return t2; |
| 324 | } |
| 325 | return ULLONG_MAX; |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * Calculate the TSC frequency from HPET reference |
| 330 | */ |
| 331 | static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) |
| 332 | { |
| 333 | u64 tmp; |
| 334 | |
| 335 | if (hpet2 < hpet1) |
| 336 | hpet2 += 0x100000000ULL; |
| 337 | hpet2 -= hpet1; |
| 338 | tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); |
| 339 | do_div(tmp, 1000000); |
| 340 | deltatsc = div64_u64(deltatsc, tmp); |
| 341 | |
| 342 | return (unsigned long) deltatsc; |
| 343 | } |
| 344 | |
| 345 | /* |
| 346 | * Calculate the TSC frequency from PMTimer reference |
| 347 | */ |
| 348 | static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) |
| 349 | { |
| 350 | u64 tmp; |
| 351 | |
| 352 | if (!pm1 && !pm2) |
| 353 | return ULONG_MAX; |
| 354 | |
| 355 | if (pm2 < pm1) |
| 356 | pm2 += (u64)ACPI_PM_OVRRUN; |
| 357 | pm2 -= pm1; |
| 358 | tmp = pm2 * 1000000000LL; |
| 359 | do_div(tmp, PMTMR_TICKS_PER_SEC); |
| 360 | do_div(deltatsc, tmp); |
| 361 | |
| 362 | return (unsigned long) deltatsc; |
| 363 | } |
| 364 | |
| 365 | #define CAL_MS 10 |
| 366 | #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) |
| 367 | #define CAL_PIT_LOOPS 1000 |
| 368 | |
| 369 | #define CAL2_MS 50 |
| 370 | #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) |
| 371 | #define CAL2_PIT_LOOPS 5000 |
| 372 | |
| 373 | |
| 374 | /* |
| 375 | * Try to calibrate the TSC against the Programmable |
| 376 | * Interrupt Timer and return the frequency of the TSC |
| 377 | * in kHz. |
| 378 | * |
| 379 | * Return ULONG_MAX on failure to calibrate. |
| 380 | */ |
| 381 | static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) |
| 382 | { |
| 383 | u64 tsc, t1, t2, delta; |
| 384 | unsigned long tscmin, tscmax; |
| 385 | int pitcnt; |
| 386 | |
| 387 | if (!has_legacy_pic()) { |
| 388 | /* |
| 389 | * Relies on tsc_early_delay_calibrate() to have given us semi |
| 390 | * usable udelay(), wait for the same 50ms we would have with |
| 391 | * the PIT loop below. |
| 392 | */ |
| 393 | udelay(10 * USEC_PER_MSEC); |
| 394 | udelay(10 * USEC_PER_MSEC); |
| 395 | udelay(10 * USEC_PER_MSEC); |
| 396 | udelay(10 * USEC_PER_MSEC); |
| 397 | udelay(10 * USEC_PER_MSEC); |
| 398 | return ULONG_MAX; |
| 399 | } |
| 400 | |
| 401 | /* Set the Gate high, disable speaker */ |
| 402 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 403 | |
| 404 | /* |
| 405 | * Setup CTC channel 2* for mode 0, (interrupt on terminal |
| 406 | * count mode), binary count. Set the latch register to 50ms |
| 407 | * (LSB then MSB) to begin countdown. |
| 408 | */ |
| 409 | outb(0xb0, 0x43); |
| 410 | outb(latch & 0xff, 0x42); |
| 411 | outb(latch >> 8, 0x42); |
| 412 | |
| 413 | tsc = t1 = t2 = get_cycles(); |
| 414 | |
| 415 | pitcnt = 0; |
| 416 | tscmax = 0; |
| 417 | tscmin = ULONG_MAX; |
| 418 | while ((inb(0x61) & 0x20) == 0) { |
| 419 | t2 = get_cycles(); |
| 420 | delta = t2 - tsc; |
| 421 | tsc = t2; |
| 422 | if ((unsigned long) delta < tscmin) |
| 423 | tscmin = (unsigned int) delta; |
| 424 | if ((unsigned long) delta > tscmax) |
| 425 | tscmax = (unsigned int) delta; |
| 426 | pitcnt++; |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * Sanity checks: |
| 431 | * |
| 432 | * If we were not able to read the PIT more than loopmin |
| 433 | * times, then we have been hit by a massive SMI |
| 434 | * |
| 435 | * If the maximum is 10 times larger than the minimum, |
| 436 | * then we got hit by an SMI as well. |
| 437 | */ |
| 438 | if (pitcnt < loopmin || tscmax > 10 * tscmin) |
| 439 | return ULONG_MAX; |
| 440 | |
| 441 | /* Calculate the PIT value */ |
| 442 | delta = t2 - t1; |
| 443 | do_div(delta, ms); |
| 444 | return delta; |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * This reads the current MSB of the PIT counter, and |
| 449 | * checks if we are running on sufficiently fast and |
| 450 | * non-virtualized hardware. |
| 451 | * |
| 452 | * Our expectations are: |
| 453 | * |
| 454 | * - the PIT is running at roughly 1.19MHz |
| 455 | * |
| 456 | * - each IO is going to take about 1us on real hardware, |
| 457 | * but we allow it to be much faster (by a factor of 10) or |
| 458 | * _slightly_ slower (ie we allow up to a 2us read+counter |
| 459 | * update - anything else implies a unacceptably slow CPU |
| 460 | * or PIT for the fast calibration to work. |
| 461 | * |
| 462 | * - with 256 PIT ticks to read the value, we have 214us to |
| 463 | * see the same MSB (and overhead like doing a single TSC |
| 464 | * read per MSB value etc). |
| 465 | * |
| 466 | * - We're doing 2 reads per loop (LSB, MSB), and we expect |
| 467 | * them each to take about a microsecond on real hardware. |
| 468 | * So we expect a count value of around 100. But we'll be |
| 469 | * generous, and accept anything over 50. |
| 470 | * |
| 471 | * - if the PIT is stuck, and we see *many* more reads, we |
| 472 | * return early (and the next caller of pit_expect_msb() |
| 473 | * then consider it a failure when they don't see the |
| 474 | * next expected value). |
| 475 | * |
| 476 | * These expectations mean that we know that we have seen the |
| 477 | * transition from one expected value to another with a fairly |
| 478 | * high accuracy, and we didn't miss any events. We can thus |
| 479 | * use the TSC value at the transitions to calculate a pretty |
| 480 | * good value for the TSC frequencty. |
| 481 | */ |
| 482 | static inline int pit_verify_msb(unsigned char val) |
| 483 | { |
| 484 | /* Ignore LSB */ |
| 485 | inb(0x42); |
| 486 | return inb(0x42) == val; |
| 487 | } |
| 488 | |
| 489 | static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) |
| 490 | { |
| 491 | int count; |
| 492 | u64 tsc = 0, prev_tsc = 0; |
| 493 | |
| 494 | for (count = 0; count < 50000; count++) { |
| 495 | if (!pit_verify_msb(val)) |
| 496 | break; |
| 497 | prev_tsc = tsc; |
| 498 | tsc = get_cycles(); |
| 499 | } |
| 500 | *deltap = get_cycles() - prev_tsc; |
| 501 | *tscp = tsc; |
| 502 | |
| 503 | /* |
| 504 | * We require _some_ success, but the quality control |
| 505 | * will be based on the error terms on the TSC values. |
| 506 | */ |
| 507 | return count > 5; |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * How many MSB values do we want to see? We aim for |
| 512 | * a maximum error rate of 500ppm (in practice the |
| 513 | * real error is much smaller), but refuse to spend |
| 514 | * more than 50ms on it. |
| 515 | */ |
| 516 | #define MAX_QUICK_PIT_MS 50 |
| 517 | #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) |
| 518 | |
| 519 | static unsigned long quick_pit_calibrate(void) |
| 520 | { |
| 521 | int i; |
| 522 | u64 tsc, delta; |
| 523 | unsigned long d1, d2; |
| 524 | |
| 525 | if (!has_legacy_pic()) |
| 526 | return 0; |
| 527 | |
| 528 | /* Set the Gate high, disable speaker */ |
| 529 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 530 | |
| 531 | /* |
| 532 | * Counter 2, mode 0 (one-shot), binary count |
| 533 | * |
| 534 | * NOTE! Mode 2 decrements by two (and then the |
| 535 | * output is flipped each time, giving the same |
| 536 | * final output frequency as a decrement-by-one), |
| 537 | * so mode 0 is much better when looking at the |
| 538 | * individual counts. |
| 539 | */ |
| 540 | outb(0xb0, 0x43); |
| 541 | |
| 542 | /* Start at 0xffff */ |
| 543 | outb(0xff, 0x42); |
| 544 | outb(0xff, 0x42); |
| 545 | |
| 546 | /* |
| 547 | * The PIT starts counting at the next edge, so we |
| 548 | * need to delay for a microsecond. The easiest way |
| 549 | * to do that is to just read back the 16-bit counter |
| 550 | * once from the PIT. |
| 551 | */ |
| 552 | pit_verify_msb(0); |
| 553 | |
| 554 | if (pit_expect_msb(0xff, &tsc, &d1)) { |
| 555 | for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { |
| 556 | if (!pit_expect_msb(0xff-i, &delta, &d2)) |
| 557 | break; |
| 558 | |
| 559 | delta -= tsc; |
| 560 | |
| 561 | /* |
| 562 | * Extrapolate the error and fail fast if the error will |
| 563 | * never be below 500 ppm. |
| 564 | */ |
| 565 | if (i == 1 && |
| 566 | d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) |
| 567 | return 0; |
| 568 | |
| 569 | /* |
| 570 | * Iterate until the error is less than 500 ppm |
| 571 | */ |
| 572 | if (d1+d2 >= delta >> 11) |
| 573 | continue; |
| 574 | |
| 575 | /* |
| 576 | * Check the PIT one more time to verify that |
| 577 | * all TSC reads were stable wrt the PIT. |
| 578 | * |
| 579 | * This also guarantees serialization of the |
| 580 | * last cycle read ('d2') in pit_expect_msb. |
| 581 | */ |
| 582 | if (!pit_verify_msb(0xfe - i)) |
| 583 | break; |
| 584 | goto success; |
| 585 | } |
| 586 | } |
| 587 | pr_info("Fast TSC calibration failed\n"); |
| 588 | return 0; |
| 589 | |
| 590 | success: |
| 591 | /* |
| 592 | * Ok, if we get here, then we've seen the |
| 593 | * MSB of the PIT decrement 'i' times, and the |
| 594 | * error has shrunk to less than 500 ppm. |
| 595 | * |
| 596 | * As a result, we can depend on there not being |
| 597 | * any odd delays anywhere, and the TSC reads are |
| 598 | * reliable (within the error). |
| 599 | * |
| 600 | * kHz = ticks / time-in-seconds / 1000; |
| 601 | * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 |
| 602 | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) |
| 603 | */ |
| 604 | delta *= PIT_TICK_RATE; |
| 605 | do_div(delta, i*256*1000); |
| 606 | pr_info("Fast TSC calibration using PIT\n"); |
| 607 | return delta; |
| 608 | } |
| 609 | |
| 610 | /** |
| 611 | * native_calibrate_tsc |
| 612 | * Determine TSC frequency via CPUID, else return 0. |
| 613 | */ |
| 614 | unsigned long native_calibrate_tsc(void) |
| 615 | { |
| 616 | unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; |
| 617 | unsigned int crystal_khz; |
| 618 | |
| 619 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| 620 | return 0; |
| 621 | |
| 622 | if (boot_cpu_data.cpuid_level < 0x15) |
| 623 | return 0; |
| 624 | |
| 625 | eax_denominator = ebx_numerator = ecx_hz = edx = 0; |
| 626 | |
| 627 | /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ |
| 628 | cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); |
| 629 | |
| 630 | if (ebx_numerator == 0 || eax_denominator == 0) |
| 631 | return 0; |
| 632 | |
| 633 | crystal_khz = ecx_hz / 1000; |
| 634 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 635 | /* |
| 636 | * Denverton SoCs don't report crystal clock, and also don't support |
| 637 | * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal |
| 638 | * clock. |
| 639 | */ |
| 640 | if (crystal_khz == 0 && |
| 641 | boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D) |
| 642 | crystal_khz = 25000; |
| 643 | |
| 644 | /* |
| 645 | * TSC frequency reported directly by CPUID is a "hardware reported" |
| 646 | * frequency and is the most accurate one so far we have. This |
| 647 | * is considered a known frequency. |
| 648 | */ |
| 649 | if (crystal_khz != 0) |
| 650 | setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); |
| 651 | |
| 652 | /* |
| 653 | * Some Intel SoCs like Skylake and Kabylake don't report the crystal |
| 654 | * clock, but we can easily calculate it to a high degree of accuracy |
| 655 | * by considering the crystal ratio and the CPU speed. |
| 656 | */ |
| 657 | if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) { |
| 658 | unsigned int eax_base_mhz, ebx, ecx, edx; |
| 659 | |
| 660 | cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx); |
| 661 | crystal_khz = eax_base_mhz * 1000 * |
| 662 | eax_denominator / ebx_numerator; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 663 | } |
| 664 | |
| 665 | if (crystal_khz == 0) |
| 666 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 667 | |
| 668 | /* |
| 669 | * For Atom SoCs TSC is the only reliable clocksource. |
| 670 | * Mark TSC reliable so no watchdog on it. |
| 671 | */ |
| 672 | if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) |
| 673 | setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); |
| 674 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 675 | #ifdef CONFIG_X86_LOCAL_APIC |
| 676 | /* |
| 677 | * The local APIC appears to be fed by the core crystal clock |
| 678 | * (which sounds entirely sensible). We can set the global |
| 679 | * lapic_timer_period here to avoid having to calibrate the APIC |
| 680 | * timer later. |
| 681 | */ |
| 682 | lapic_timer_period = crystal_khz * 1000 / HZ; |
| 683 | #endif |
| 684 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 685 | return crystal_khz * ebx_numerator / eax_denominator; |
| 686 | } |
| 687 | |
| 688 | static unsigned long cpu_khz_from_cpuid(void) |
| 689 | { |
| 690 | unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; |
| 691 | |
| 692 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| 693 | return 0; |
| 694 | |
| 695 | if (boot_cpu_data.cpuid_level < 0x16) |
| 696 | return 0; |
| 697 | |
| 698 | eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; |
| 699 | |
| 700 | cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); |
| 701 | |
| 702 | return eax_base_mhz * 1000; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * calibrate cpu using pit, hpet, and ptimer methods. They are available |
| 707 | * later in boot after acpi is initialized. |
| 708 | */ |
| 709 | static unsigned long pit_hpet_ptimer_calibrate_cpu(void) |
| 710 | { |
| 711 | u64 tsc1, tsc2, delta, ref1, ref2; |
| 712 | unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; |
| 713 | unsigned long flags, latch, ms; |
| 714 | int hpet = is_hpet_enabled(), i, loopmin; |
| 715 | |
| 716 | /* |
| 717 | * Run 5 calibration loops to get the lowest frequency value |
| 718 | * (the best estimate). We use two different calibration modes |
| 719 | * here: |
| 720 | * |
| 721 | * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and |
| 722 | * load a timeout of 50ms. We read the time right after we |
| 723 | * started the timer and wait until the PIT count down reaches |
| 724 | * zero. In each wait loop iteration we read the TSC and check |
| 725 | * the delta to the previous read. We keep track of the min |
| 726 | * and max values of that delta. The delta is mostly defined |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 727 | * by the IO time of the PIT access, so we can detect when |
| 728 | * any disturbance happened between the two reads. If the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 729 | * maximum time is significantly larger than the minimum time, |
| 730 | * then we discard the result and have another try. |
| 731 | * |
| 732 | * 2) Reference counter. If available we use the HPET or the |
| 733 | * PMTIMER as a reference to check the sanity of that value. |
| 734 | * We use separate TSC readouts and check inside of the |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 735 | * reference read for any possible disturbance. We dicard |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 736 | * disturbed values here as well. We do that around the PIT |
| 737 | * calibration delay loop as we have to wait for a certain |
| 738 | * amount of time anyway. |
| 739 | */ |
| 740 | |
| 741 | /* Preset PIT loop values */ |
| 742 | latch = CAL_LATCH; |
| 743 | ms = CAL_MS; |
| 744 | loopmin = CAL_PIT_LOOPS; |
| 745 | |
| 746 | for (i = 0; i < 3; i++) { |
| 747 | unsigned long tsc_pit_khz; |
| 748 | |
| 749 | /* |
| 750 | * Read the start value and the reference count of |
| 751 | * hpet/pmtimer when available. Then do the PIT |
| 752 | * calibration, which will take at least 50ms, and |
| 753 | * read the end value. |
| 754 | */ |
| 755 | local_irq_save(flags); |
| 756 | tsc1 = tsc_read_refs(&ref1, hpet); |
| 757 | tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); |
| 758 | tsc2 = tsc_read_refs(&ref2, hpet); |
| 759 | local_irq_restore(flags); |
| 760 | |
| 761 | /* Pick the lowest PIT TSC calibration so far */ |
| 762 | tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); |
| 763 | |
| 764 | /* hpet or pmtimer available ? */ |
| 765 | if (ref1 == ref2) |
| 766 | continue; |
| 767 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 768 | /* Check, whether the sampling was disturbed */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 769 | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) |
| 770 | continue; |
| 771 | |
| 772 | tsc2 = (tsc2 - tsc1) * 1000000LL; |
| 773 | if (hpet) |
| 774 | tsc2 = calc_hpet_ref(tsc2, ref1, ref2); |
| 775 | else |
| 776 | tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); |
| 777 | |
| 778 | tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); |
| 779 | |
| 780 | /* Check the reference deviation */ |
| 781 | delta = ((u64) tsc_pit_min) * 100; |
| 782 | do_div(delta, tsc_ref_min); |
| 783 | |
| 784 | /* |
| 785 | * If both calibration results are inside a 10% window |
| 786 | * then we can be sure, that the calibration |
| 787 | * succeeded. We break out of the loop right away. We |
| 788 | * use the reference value, as it is more precise. |
| 789 | */ |
| 790 | if (delta >= 90 && delta <= 110) { |
| 791 | pr_info("PIT calibration matches %s. %d loops\n", |
| 792 | hpet ? "HPET" : "PMTIMER", i + 1); |
| 793 | return tsc_ref_min; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Check whether PIT failed more than once. This |
| 798 | * happens in virtualized environments. We need to |
| 799 | * give the virtual PC a slightly longer timeframe for |
| 800 | * the HPET/PMTIMER to make the result precise. |
| 801 | */ |
| 802 | if (i == 1 && tsc_pit_min == ULONG_MAX) { |
| 803 | latch = CAL2_LATCH; |
| 804 | ms = CAL2_MS; |
| 805 | loopmin = CAL2_PIT_LOOPS; |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * Now check the results. |
| 811 | */ |
| 812 | if (tsc_pit_min == ULONG_MAX) { |
| 813 | /* PIT gave no useful value */ |
| 814 | pr_warn("Unable to calibrate against PIT\n"); |
| 815 | |
| 816 | /* We don't have an alternative source, disable TSC */ |
| 817 | if (!hpet && !ref1 && !ref2) { |
| 818 | pr_notice("No reference (HPET/PMTIMER) available\n"); |
| 819 | return 0; |
| 820 | } |
| 821 | |
| 822 | /* The alternative source failed as well, disable TSC */ |
| 823 | if (tsc_ref_min == ULONG_MAX) { |
| 824 | pr_warn("HPET/PMTIMER calibration failed\n"); |
| 825 | return 0; |
| 826 | } |
| 827 | |
| 828 | /* Use the alternative source */ |
| 829 | pr_info("using %s reference calibration\n", |
| 830 | hpet ? "HPET" : "PMTIMER"); |
| 831 | |
| 832 | return tsc_ref_min; |
| 833 | } |
| 834 | |
| 835 | /* We don't have an alternative source, use the PIT calibration value */ |
| 836 | if (!hpet && !ref1 && !ref2) { |
| 837 | pr_info("Using PIT calibration value\n"); |
| 838 | return tsc_pit_min; |
| 839 | } |
| 840 | |
| 841 | /* The alternative source failed, use the PIT calibration value */ |
| 842 | if (tsc_ref_min == ULONG_MAX) { |
| 843 | pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); |
| 844 | return tsc_pit_min; |
| 845 | } |
| 846 | |
| 847 | /* |
| 848 | * The calibration values differ too much. In doubt, we use |
| 849 | * the PIT value as we know that there are PMTIMERs around |
| 850 | * running at double speed. At least we let the user know: |
| 851 | */ |
| 852 | pr_warn("PIT calibration deviates from %s: %lu %lu\n", |
| 853 | hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); |
| 854 | pr_info("Using PIT calibration value\n"); |
| 855 | return tsc_pit_min; |
| 856 | } |
| 857 | |
| 858 | /** |
| 859 | * native_calibrate_cpu_early - can calibrate the cpu early in boot |
| 860 | */ |
| 861 | unsigned long native_calibrate_cpu_early(void) |
| 862 | { |
| 863 | unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); |
| 864 | |
| 865 | if (!fast_calibrate) |
| 866 | fast_calibrate = cpu_khz_from_msr(); |
| 867 | if (!fast_calibrate) { |
| 868 | local_irq_save(flags); |
| 869 | fast_calibrate = quick_pit_calibrate(); |
| 870 | local_irq_restore(flags); |
| 871 | } |
| 872 | return fast_calibrate; |
| 873 | } |
| 874 | |
| 875 | |
| 876 | /** |
| 877 | * native_calibrate_cpu - calibrate the cpu |
| 878 | */ |
| 879 | static unsigned long native_calibrate_cpu(void) |
| 880 | { |
| 881 | unsigned long tsc_freq = native_calibrate_cpu_early(); |
| 882 | |
| 883 | if (!tsc_freq) |
| 884 | tsc_freq = pit_hpet_ptimer_calibrate_cpu(); |
| 885 | |
| 886 | return tsc_freq; |
| 887 | } |
| 888 | |
| 889 | void recalibrate_cpu_khz(void) |
| 890 | { |
| 891 | #ifndef CONFIG_SMP |
| 892 | unsigned long cpu_khz_old = cpu_khz; |
| 893 | |
| 894 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
| 895 | return; |
| 896 | |
| 897 | cpu_khz = x86_platform.calibrate_cpu(); |
| 898 | tsc_khz = x86_platform.calibrate_tsc(); |
| 899 | if (tsc_khz == 0) |
| 900 | tsc_khz = cpu_khz; |
| 901 | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) |
| 902 | cpu_khz = tsc_khz; |
| 903 | cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, |
| 904 | cpu_khz_old, cpu_khz); |
| 905 | #endif |
| 906 | } |
| 907 | |
| 908 | EXPORT_SYMBOL(recalibrate_cpu_khz); |
| 909 | |
| 910 | |
| 911 | static unsigned long long cyc2ns_suspend; |
| 912 | |
| 913 | void tsc_save_sched_clock_state(void) |
| 914 | { |
| 915 | if (!sched_clock_stable()) |
| 916 | return; |
| 917 | |
| 918 | cyc2ns_suspend = sched_clock(); |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * Even on processors with invariant TSC, TSC gets reset in some the |
| 923 | * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to |
| 924 | * arbitrary value (still sync'd across cpu's) during resume from such sleep |
| 925 | * states. To cope up with this, recompute the cyc2ns_offset for each cpu so |
| 926 | * that sched_clock() continues from the point where it was left off during |
| 927 | * suspend. |
| 928 | */ |
| 929 | void tsc_restore_sched_clock_state(void) |
| 930 | { |
| 931 | unsigned long long offset; |
| 932 | unsigned long flags; |
| 933 | int cpu; |
| 934 | |
| 935 | if (!sched_clock_stable()) |
| 936 | return; |
| 937 | |
| 938 | local_irq_save(flags); |
| 939 | |
| 940 | /* |
| 941 | * We're coming out of suspend, there's no concurrency yet; don't |
| 942 | * bother being nice about the RCU stuff, just write to both |
| 943 | * data fields. |
| 944 | */ |
| 945 | |
| 946 | this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); |
| 947 | this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); |
| 948 | |
| 949 | offset = cyc2ns_suspend - sched_clock(); |
| 950 | |
| 951 | for_each_possible_cpu(cpu) { |
| 952 | per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; |
| 953 | per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; |
| 954 | } |
| 955 | |
| 956 | local_irq_restore(flags); |
| 957 | } |
| 958 | |
| 959 | #ifdef CONFIG_CPU_FREQ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 960 | /* |
| 961 | * Frequency scaling support. Adjust the TSC based timer when the CPU frequency |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 962 | * changes. |
| 963 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 964 | * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC |
| 965 | * as unstable and give up in those cases. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 966 | * |
| 967 | * Should fix up last_tsc too. Currently gettimeofday in the |
| 968 | * first tick after the change will be slightly wrong. |
| 969 | */ |
| 970 | |
| 971 | static unsigned int ref_freq; |
| 972 | static unsigned long loops_per_jiffy_ref; |
| 973 | static unsigned long tsc_khz_ref; |
| 974 | |
| 975 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| 976 | void *data) |
| 977 | { |
| 978 | struct cpufreq_freqs *freq = data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 979 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 980 | if (num_online_cpus() > 1) { |
| 981 | mark_tsc_unstable("cpufreq changes on SMP"); |
| 982 | return 0; |
| 983 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 984 | |
| 985 | if (!ref_freq) { |
| 986 | ref_freq = freq->old; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 987 | loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 988 | tsc_khz_ref = tsc_khz; |
| 989 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 990 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 991 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 992 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { |
| 993 | boot_cpu_data.loops_per_jiffy = |
| 994 | cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 995 | |
| 996 | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); |
| 997 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 998 | mark_tsc_unstable("cpufreq changes"); |
| 999 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1000 | set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1001 | } |
| 1002 | |
| 1003 | return 0; |
| 1004 | } |
| 1005 | |
| 1006 | static struct notifier_block time_cpufreq_notifier_block = { |
| 1007 | .notifier_call = time_cpufreq_notifier |
| 1008 | }; |
| 1009 | |
| 1010 | static int __init cpufreq_register_tsc_scaling(void) |
| 1011 | { |
| 1012 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
| 1013 | return 0; |
| 1014 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| 1015 | return 0; |
| 1016 | cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| 1017 | CPUFREQ_TRANSITION_NOTIFIER); |
| 1018 | return 0; |
| 1019 | } |
| 1020 | |
| 1021 | core_initcall(cpufreq_register_tsc_scaling); |
| 1022 | |
| 1023 | #endif /* CONFIG_CPU_FREQ */ |
| 1024 | |
| 1025 | #define ART_CPUID_LEAF (0x15) |
| 1026 | #define ART_MIN_DENOMINATOR (1) |
| 1027 | |
| 1028 | |
| 1029 | /* |
| 1030 | * If ART is present detect the numerator:denominator to convert to TSC |
| 1031 | */ |
| 1032 | static void __init detect_art(void) |
| 1033 | { |
| 1034 | unsigned int unused[2]; |
| 1035 | |
| 1036 | if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) |
| 1037 | return; |
| 1038 | |
| 1039 | /* |
| 1040 | * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, |
| 1041 | * and the TSC counter resets must not occur asynchronously. |
| 1042 | */ |
| 1043 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || |
| 1044 | !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || |
| 1045 | !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || |
| 1046 | tsc_async_resets) |
| 1047 | return; |
| 1048 | |
| 1049 | cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, |
| 1050 | &art_to_tsc_numerator, unused, unused+1); |
| 1051 | |
| 1052 | if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) |
| 1053 | return; |
| 1054 | |
| 1055 | rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); |
| 1056 | |
| 1057 | /* Make this sticky over multiple CPU init calls */ |
| 1058 | setup_force_cpu_cap(X86_FEATURE_ART); |
| 1059 | } |
| 1060 | |
| 1061 | |
| 1062 | /* clocksource code */ |
| 1063 | |
| 1064 | static void tsc_resume(struct clocksource *cs) |
| 1065 | { |
| 1066 | tsc_verify_tsc_adjust(true); |
| 1067 | } |
| 1068 | |
| 1069 | /* |
| 1070 | * We used to compare the TSC to the cycle_last value in the clocksource |
| 1071 | * structure to avoid a nasty time-warp. This can be observed in a |
| 1072 | * very small window right after one CPU updated cycle_last under |
| 1073 | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which |
| 1074 | * is smaller than the cycle_last reference value due to a TSC which |
| 1075 | * is slighty behind. This delta is nowhere else observable, but in |
| 1076 | * that case it results in a forward time jump in the range of hours |
| 1077 | * due to the unsigned delta calculation of the time keeping core |
| 1078 | * code, which is necessary to support wrapping clocksources like pm |
| 1079 | * timer. |
| 1080 | * |
| 1081 | * This sanity check is now done in the core timekeeping code. |
| 1082 | * checking the result of read_tsc() - cycle_last for being negative. |
| 1083 | * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. |
| 1084 | */ |
| 1085 | static u64 read_tsc(struct clocksource *cs) |
| 1086 | { |
| 1087 | return (u64)rdtsc_ordered(); |
| 1088 | } |
| 1089 | |
| 1090 | static void tsc_cs_mark_unstable(struct clocksource *cs) |
| 1091 | { |
| 1092 | if (tsc_unstable) |
| 1093 | return; |
| 1094 | |
| 1095 | tsc_unstable = 1; |
| 1096 | if (using_native_sched_clock()) |
| 1097 | clear_sched_clock_stable(); |
| 1098 | disable_sched_clock_irqtime(); |
| 1099 | pr_info("Marking TSC unstable due to clocksource watchdog\n"); |
| 1100 | } |
| 1101 | |
| 1102 | static void tsc_cs_tick_stable(struct clocksource *cs) |
| 1103 | { |
| 1104 | if (tsc_unstable) |
| 1105 | return; |
| 1106 | |
| 1107 | if (using_native_sched_clock()) |
| 1108 | sched_clock_tick_stable(); |
| 1109 | } |
| 1110 | |
| 1111 | /* |
| 1112 | * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() |
| 1113 | */ |
| 1114 | static struct clocksource clocksource_tsc_early = { |
| 1115 | .name = "tsc-early", |
| 1116 | .rating = 299, |
| 1117 | .read = read_tsc, |
| 1118 | .mask = CLOCKSOURCE_MASK(64), |
| 1119 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
| 1120 | CLOCK_SOURCE_MUST_VERIFY, |
| 1121 | .archdata = { .vclock_mode = VCLOCK_TSC }, |
| 1122 | .resume = tsc_resume, |
| 1123 | .mark_unstable = tsc_cs_mark_unstable, |
| 1124 | .tick_stable = tsc_cs_tick_stable, |
| 1125 | .list = LIST_HEAD_INIT(clocksource_tsc_early.list), |
| 1126 | }; |
| 1127 | |
| 1128 | /* |
| 1129 | * Must mark VALID_FOR_HRES early such that when we unregister tsc_early |
| 1130 | * this one will immediately take over. We will only register if TSC has |
| 1131 | * been found good. |
| 1132 | */ |
| 1133 | static struct clocksource clocksource_tsc = { |
| 1134 | .name = "tsc", |
| 1135 | .rating = 300, |
| 1136 | .read = read_tsc, |
| 1137 | .mask = CLOCKSOURCE_MASK(64), |
| 1138 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
| 1139 | CLOCK_SOURCE_VALID_FOR_HRES | |
| 1140 | CLOCK_SOURCE_MUST_VERIFY, |
| 1141 | .archdata = { .vclock_mode = VCLOCK_TSC }, |
| 1142 | .resume = tsc_resume, |
| 1143 | .mark_unstable = tsc_cs_mark_unstable, |
| 1144 | .tick_stable = tsc_cs_tick_stable, |
| 1145 | .list = LIST_HEAD_INIT(clocksource_tsc.list), |
| 1146 | }; |
| 1147 | |
| 1148 | void mark_tsc_unstable(char *reason) |
| 1149 | { |
| 1150 | if (tsc_unstable) |
| 1151 | return; |
| 1152 | |
| 1153 | tsc_unstable = 1; |
| 1154 | if (using_native_sched_clock()) |
| 1155 | clear_sched_clock_stable(); |
| 1156 | disable_sched_clock_irqtime(); |
| 1157 | pr_info("Marking TSC unstable due to %s\n", reason); |
| 1158 | |
| 1159 | clocksource_mark_unstable(&clocksource_tsc_early); |
| 1160 | clocksource_mark_unstable(&clocksource_tsc); |
| 1161 | } |
| 1162 | |
| 1163 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); |
| 1164 | |
| 1165 | static void __init check_system_tsc_reliable(void) |
| 1166 | { |
| 1167 | #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) |
| 1168 | if (is_geode_lx()) { |
| 1169 | /* RTSC counts during suspend */ |
| 1170 | #define RTSC_SUSP 0x100 |
| 1171 | unsigned long res_low, res_high; |
| 1172 | |
| 1173 | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); |
| 1174 | /* Geode_LX - the OLPC CPU has a very reliable TSC */ |
| 1175 | if (res_low & RTSC_SUSP) |
| 1176 | tsc_clocksource_reliable = 1; |
| 1177 | } |
| 1178 | #endif |
| 1179 | if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) |
| 1180 | tsc_clocksource_reliable = 1; |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * Make an educated guess if the TSC is trustworthy and synchronized |
| 1185 | * over all CPUs. |
| 1186 | */ |
| 1187 | int unsynchronized_tsc(void) |
| 1188 | { |
| 1189 | if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) |
| 1190 | return 1; |
| 1191 | |
| 1192 | #ifdef CONFIG_SMP |
| 1193 | if (apic_is_clustered_box()) |
| 1194 | return 1; |
| 1195 | #endif |
| 1196 | |
| 1197 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| 1198 | return 0; |
| 1199 | |
| 1200 | if (tsc_clocksource_reliable) |
| 1201 | return 0; |
| 1202 | /* |
| 1203 | * Intel systems are normally all synchronized. |
| 1204 | * Exceptions must mark TSC as unstable: |
| 1205 | */ |
| 1206 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { |
| 1207 | /* assume multi socket systems are not synchronized: */ |
| 1208 | if (num_possible_cpus() > 1) |
| 1209 | return 1; |
| 1210 | } |
| 1211 | |
| 1212 | return 0; |
| 1213 | } |
| 1214 | |
| 1215 | /* |
| 1216 | * Convert ART to TSC given numerator/denominator found in detect_art() |
| 1217 | */ |
| 1218 | struct system_counterval_t convert_art_to_tsc(u64 art) |
| 1219 | { |
| 1220 | u64 tmp, res, rem; |
| 1221 | |
| 1222 | rem = do_div(art, art_to_tsc_denominator); |
| 1223 | |
| 1224 | res = art * art_to_tsc_numerator; |
| 1225 | tmp = rem * art_to_tsc_numerator; |
| 1226 | |
| 1227 | do_div(tmp, art_to_tsc_denominator); |
| 1228 | res += tmp + art_to_tsc_offset; |
| 1229 | |
| 1230 | return (struct system_counterval_t) {.cs = art_related_clocksource, |
| 1231 | .cycles = res}; |
| 1232 | } |
| 1233 | EXPORT_SYMBOL(convert_art_to_tsc); |
| 1234 | |
| 1235 | /** |
| 1236 | * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. |
| 1237 | * @art_ns: ART (Always Running Timer) in unit of nanoseconds |
| 1238 | * |
| 1239 | * PTM requires all timestamps to be in units of nanoseconds. When user |
| 1240 | * software requests a cross-timestamp, this function converts system timestamp |
| 1241 | * to TSC. |
| 1242 | * |
| 1243 | * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set |
| 1244 | * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check |
| 1245 | * that this flag is set before conversion to TSC is attempted. |
| 1246 | * |
| 1247 | * Return: |
| 1248 | * struct system_counterval_t - system counter value with the pointer to the |
| 1249 | * corresponding clocksource |
| 1250 | * @cycles: System counter value |
| 1251 | * @cs: Clocksource corresponding to system counter value. Used |
| 1252 | * by timekeeping code to verify comparibility of two cycle |
| 1253 | * values. |
| 1254 | */ |
| 1255 | |
| 1256 | struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) |
| 1257 | { |
| 1258 | u64 tmp, res, rem; |
| 1259 | |
| 1260 | rem = do_div(art_ns, USEC_PER_SEC); |
| 1261 | |
| 1262 | res = art_ns * tsc_khz; |
| 1263 | tmp = rem * tsc_khz; |
| 1264 | |
| 1265 | do_div(tmp, USEC_PER_SEC); |
| 1266 | res += tmp; |
| 1267 | |
| 1268 | return (struct system_counterval_t) { .cs = art_related_clocksource, |
| 1269 | .cycles = res}; |
| 1270 | } |
| 1271 | EXPORT_SYMBOL(convert_art_ns_to_tsc); |
| 1272 | |
| 1273 | |
| 1274 | static void tsc_refine_calibration_work(struct work_struct *work); |
| 1275 | static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); |
| 1276 | /** |
| 1277 | * tsc_refine_calibration_work - Further refine tsc freq calibration |
| 1278 | * @work - ignored. |
| 1279 | * |
| 1280 | * This functions uses delayed work over a period of a |
| 1281 | * second to further refine the TSC freq value. Since this is |
| 1282 | * timer based, instead of loop based, we don't block the boot |
| 1283 | * process while this longer calibration is done. |
| 1284 | * |
| 1285 | * If there are any calibration anomalies (too many SMIs, etc), |
| 1286 | * or the refined calibration is off by 1% of the fast early |
| 1287 | * calibration, we throw out the new calibration and use the |
| 1288 | * early calibration. |
| 1289 | */ |
| 1290 | static void tsc_refine_calibration_work(struct work_struct *work) |
| 1291 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1292 | static u64 tsc_start = ULLONG_MAX, ref_start; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1293 | static int hpet; |
| 1294 | u64 tsc_stop, ref_stop, delta; |
| 1295 | unsigned long freq; |
| 1296 | int cpu; |
| 1297 | |
| 1298 | /* Don't bother refining TSC on unstable systems */ |
| 1299 | if (tsc_unstable) |
| 1300 | goto unreg; |
| 1301 | |
| 1302 | /* |
| 1303 | * Since the work is started early in boot, we may be |
| 1304 | * delayed the first time we expire. So set the workqueue |
| 1305 | * again once we know timers are working. |
| 1306 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1307 | if (tsc_start == ULLONG_MAX) { |
| 1308 | restart: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1309 | /* |
| 1310 | * Only set hpet once, to avoid mixing hardware |
| 1311 | * if the hpet becomes enabled later. |
| 1312 | */ |
| 1313 | hpet = is_hpet_enabled(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1314 | tsc_start = tsc_read_refs(&ref_start, hpet); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1315 | schedule_delayed_work(&tsc_irqwork, HZ); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1316 | return; |
| 1317 | } |
| 1318 | |
| 1319 | tsc_stop = tsc_read_refs(&ref_stop, hpet); |
| 1320 | |
| 1321 | /* hpet or pmtimer available ? */ |
| 1322 | if (ref_start == ref_stop) |
| 1323 | goto out; |
| 1324 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1325 | /* Check, whether the sampling was disturbed */ |
| 1326 | if (tsc_stop == ULLONG_MAX) |
| 1327 | goto restart; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1328 | |
| 1329 | delta = tsc_stop - tsc_start; |
| 1330 | delta *= 1000000LL; |
| 1331 | if (hpet) |
| 1332 | freq = calc_hpet_ref(delta, ref_start, ref_stop); |
| 1333 | else |
| 1334 | freq = calc_pmtimer_ref(delta, ref_start, ref_stop); |
| 1335 | |
| 1336 | /* Make sure we're within 1% */ |
| 1337 | if (abs(tsc_khz - freq) > tsc_khz/100) |
| 1338 | goto out; |
| 1339 | |
| 1340 | tsc_khz = freq; |
| 1341 | pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", |
| 1342 | (unsigned long)tsc_khz / 1000, |
| 1343 | (unsigned long)tsc_khz % 1000); |
| 1344 | |
| 1345 | /* Inform the TSC deadline clockevent devices about the recalibration */ |
| 1346 | lapic_update_tsc_freq(); |
| 1347 | |
| 1348 | /* Update the sched_clock() rate to match the clocksource one */ |
| 1349 | for_each_possible_cpu(cpu) |
| 1350 | set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); |
| 1351 | |
| 1352 | out: |
| 1353 | if (tsc_unstable) |
| 1354 | goto unreg; |
| 1355 | |
| 1356 | if (boot_cpu_has(X86_FEATURE_ART)) |
| 1357 | art_related_clocksource = &clocksource_tsc; |
| 1358 | clocksource_register_khz(&clocksource_tsc, tsc_khz); |
| 1359 | unreg: |
| 1360 | clocksource_unregister(&clocksource_tsc_early); |
| 1361 | } |
| 1362 | |
| 1363 | |
| 1364 | static int __init init_tsc_clocksource(void) |
| 1365 | { |
| 1366 | if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) |
| 1367 | return 0; |
| 1368 | |
| 1369 | if (tsc_unstable) |
| 1370 | goto unreg; |
| 1371 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1372 | if (tsc_clocksource_reliable || no_tsc_watchdog) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1373 | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; |
| 1374 | |
| 1375 | if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) |
| 1376 | clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; |
| 1377 | |
| 1378 | /* |
| 1379 | * When TSC frequency is known (retrieved via MSR or CPUID), we skip |
| 1380 | * the refined calibration and directly register it as a clocksource. |
| 1381 | */ |
| 1382 | if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { |
| 1383 | if (boot_cpu_has(X86_FEATURE_ART)) |
| 1384 | art_related_clocksource = &clocksource_tsc; |
| 1385 | clocksource_register_khz(&clocksource_tsc, tsc_khz); |
| 1386 | unreg: |
| 1387 | clocksource_unregister(&clocksource_tsc_early); |
| 1388 | return 0; |
| 1389 | } |
| 1390 | |
| 1391 | schedule_delayed_work(&tsc_irqwork, 0); |
| 1392 | return 0; |
| 1393 | } |
| 1394 | /* |
| 1395 | * We use device_initcall here, to ensure we run after the hpet |
| 1396 | * is fully initialized, which may occur at fs_initcall time. |
| 1397 | */ |
| 1398 | device_initcall(init_tsc_clocksource); |
| 1399 | |
| 1400 | static bool __init determine_cpu_tsc_frequencies(bool early) |
| 1401 | { |
| 1402 | /* Make sure that cpu and tsc are not already calibrated */ |
| 1403 | WARN_ON(cpu_khz || tsc_khz); |
| 1404 | |
| 1405 | if (early) { |
| 1406 | cpu_khz = x86_platform.calibrate_cpu(); |
| 1407 | tsc_khz = x86_platform.calibrate_tsc(); |
| 1408 | } else { |
| 1409 | /* We should not be here with non-native cpu calibration */ |
| 1410 | WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); |
| 1411 | cpu_khz = pit_hpet_ptimer_calibrate_cpu(); |
| 1412 | } |
| 1413 | |
| 1414 | /* |
| 1415 | * Trust non-zero tsc_khz as authoritative, |
| 1416 | * and use it to sanity check cpu_khz, |
| 1417 | * which will be off if system timer is off. |
| 1418 | */ |
| 1419 | if (tsc_khz == 0) |
| 1420 | tsc_khz = cpu_khz; |
| 1421 | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) |
| 1422 | cpu_khz = tsc_khz; |
| 1423 | |
| 1424 | if (tsc_khz == 0) |
| 1425 | return false; |
| 1426 | |
| 1427 | pr_info("Detected %lu.%03lu MHz processor\n", |
| 1428 | (unsigned long)cpu_khz / KHZ, |
| 1429 | (unsigned long)cpu_khz % KHZ); |
| 1430 | |
| 1431 | if (cpu_khz != tsc_khz) { |
| 1432 | pr_info("Detected %lu.%03lu MHz TSC", |
| 1433 | (unsigned long)tsc_khz / KHZ, |
| 1434 | (unsigned long)tsc_khz % KHZ); |
| 1435 | } |
| 1436 | return true; |
| 1437 | } |
| 1438 | |
| 1439 | static unsigned long __init get_loops_per_jiffy(void) |
| 1440 | { |
| 1441 | u64 lpj = (u64)tsc_khz * KHZ; |
| 1442 | |
| 1443 | do_div(lpj, HZ); |
| 1444 | return lpj; |
| 1445 | } |
| 1446 | |
| 1447 | static void __init tsc_enable_sched_clock(void) |
| 1448 | { |
| 1449 | /* Sanitize TSC ADJUST before cyc2ns gets initialized */ |
| 1450 | tsc_store_and_check_tsc_adjust(true); |
| 1451 | cyc2ns_init_boot_cpu(); |
| 1452 | static_branch_enable(&__use_tsc); |
| 1453 | } |
| 1454 | |
| 1455 | void __init tsc_early_init(void) |
| 1456 | { |
| 1457 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
| 1458 | return; |
| 1459 | /* Don't change UV TSC multi-chassis synchronization */ |
| 1460 | if (is_early_uv_system()) |
| 1461 | return; |
| 1462 | if (!determine_cpu_tsc_frequencies(true)) |
| 1463 | return; |
| 1464 | loops_per_jiffy = get_loops_per_jiffy(); |
| 1465 | |
| 1466 | tsc_enable_sched_clock(); |
| 1467 | } |
| 1468 | |
| 1469 | void __init tsc_init(void) |
| 1470 | { |
| 1471 | /* |
| 1472 | * native_calibrate_cpu_early can only calibrate using methods that are |
| 1473 | * available early in boot. |
| 1474 | */ |
| 1475 | if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) |
| 1476 | x86_platform.calibrate_cpu = native_calibrate_cpu; |
| 1477 | |
| 1478 | if (!boot_cpu_has(X86_FEATURE_TSC)) { |
| 1479 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| 1480 | return; |
| 1481 | } |
| 1482 | |
| 1483 | if (!tsc_khz) { |
| 1484 | /* We failed to determine frequencies earlier, try again */ |
| 1485 | if (!determine_cpu_tsc_frequencies(false)) { |
| 1486 | mark_tsc_unstable("could not calculate TSC khz"); |
| 1487 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| 1488 | return; |
| 1489 | } |
| 1490 | tsc_enable_sched_clock(); |
| 1491 | } |
| 1492 | |
| 1493 | cyc2ns_init_secondary_cpus(); |
| 1494 | |
| 1495 | if (!no_sched_irq_time) |
| 1496 | enable_sched_clock_irqtime(); |
| 1497 | |
| 1498 | lpj_fine = get_loops_per_jiffy(); |
| 1499 | use_tsc_delay(); |
| 1500 | |
| 1501 | check_system_tsc_reliable(); |
| 1502 | |
| 1503 | if (unsynchronized_tsc()) { |
| 1504 | mark_tsc_unstable("TSCs unsynchronized"); |
| 1505 | return; |
| 1506 | } |
| 1507 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1508 | if (tsc_clocksource_reliable || no_tsc_watchdog) |
| 1509 | clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; |
| 1510 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1511 | clocksource_register_khz(&clocksource_tsc_early, tsc_khz); |
| 1512 | detect_art(); |
| 1513 | } |
| 1514 | |
| 1515 | #ifdef CONFIG_SMP |
| 1516 | /* |
| 1517 | * If we have a constant TSC and are using the TSC for the delay loop, |
| 1518 | * we can skip clock calibration if another cpu in the same socket has already |
| 1519 | * been calibrated. This assumes that CONSTANT_TSC applies to all |
| 1520 | * cpus in the socket - this should be a safe assumption. |
| 1521 | */ |
| 1522 | unsigned long calibrate_delay_is_known(void) |
| 1523 | { |
| 1524 | int sibling, cpu = smp_processor_id(); |
| 1525 | int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); |
| 1526 | const struct cpumask *mask = topology_core_cpumask(cpu); |
| 1527 | |
| 1528 | if (!constant_tsc || !mask) |
| 1529 | return 0; |
| 1530 | |
| 1531 | sibling = cpumask_any_but(mask, cpu); |
| 1532 | if (sibling < nr_cpu_ids) |
| 1533 | return cpu_data(sibling).loops_per_jiffy; |
| 1534 | return 0; |
| 1535 | } |
| 1536 | #endif |