Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * kaslr.c |
| 4 | * |
| 5 | * This contains the routines needed to generate a reasonable level of |
| 6 | * entropy to choose a randomized kernel base address offset in support |
| 7 | * of Kernel Address Space Layout Randomization (KASLR). Additionally |
| 8 | * handles walking the physical memory maps (and tracking memory regions |
| 9 | * to avoid) in order to select a physical memory location that can |
| 10 | * contain the entire properly aligned running kernel image. |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | /* |
| 15 | * isspace() in linux/ctype.h is expected by next_args() to filter |
| 16 | * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, |
| 17 | * since isdigit() is implemented in both of them. Hence disable it |
| 18 | * here. |
| 19 | */ |
| 20 | #define BOOT_CTYPE_H |
| 21 | |
| 22 | /* |
| 23 | * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h. |
| 24 | * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL |
| 25 | * which is meaningless and will cause compiling error in some cases. |
| 26 | */ |
| 27 | #define __DISABLE_EXPORTS |
| 28 | |
| 29 | #include "misc.h" |
| 30 | #include "error.h" |
| 31 | #include "../string.h" |
| 32 | |
| 33 | #include <generated/compile.h> |
| 34 | #include <linux/module.h> |
| 35 | #include <linux/uts.h> |
| 36 | #include <linux/utsname.h> |
| 37 | #include <linux/ctype.h> |
| 38 | #include <linux/efi.h> |
| 39 | #include <generated/utsrelease.h> |
| 40 | #include <asm/efi.h> |
| 41 | |
| 42 | /* Macros used by the included decompressor code below. */ |
| 43 | #define STATIC |
| 44 | #include <linux/decompress/mm.h> |
| 45 | |
| 46 | #ifdef CONFIG_X86_5LEVEL |
| 47 | unsigned int __pgtable_l5_enabled; |
| 48 | unsigned int pgdir_shift __ro_after_init = 39; |
| 49 | unsigned int ptrs_per_p4d __ro_after_init = 1; |
| 50 | #endif |
| 51 | |
| 52 | extern unsigned long get_cmd_line_ptr(void); |
| 53 | |
| 54 | /* Used by PAGE_KERN* macros: */ |
| 55 | pteval_t __default_kernel_pte_mask __read_mostly = ~0; |
| 56 | |
| 57 | /* Simplified build-specific string for starting entropy. */ |
| 58 | static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" |
| 59 | LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; |
| 60 | |
| 61 | static unsigned long rotate_xor(unsigned long hash, const void *area, |
| 62 | size_t size) |
| 63 | { |
| 64 | size_t i; |
| 65 | unsigned long *ptr = (unsigned long *)area; |
| 66 | |
| 67 | for (i = 0; i < size / sizeof(hash); i++) { |
| 68 | /* Rotate by odd number of bits and XOR. */ |
| 69 | hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); |
| 70 | hash ^= ptr[i]; |
| 71 | } |
| 72 | |
| 73 | return hash; |
| 74 | } |
| 75 | |
| 76 | /* Attempt to create a simple but unpredictable starting entropy. */ |
| 77 | static unsigned long get_boot_seed(void) |
| 78 | { |
| 79 | unsigned long hash = 0; |
| 80 | |
| 81 | hash = rotate_xor(hash, build_str, sizeof(build_str)); |
| 82 | hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); |
| 83 | |
| 84 | return hash; |
| 85 | } |
| 86 | |
| 87 | #define KASLR_COMPRESSED_BOOT |
| 88 | #include "../../lib/kaslr.c" |
| 89 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 90 | |
| 91 | /* Only supporting at most 4 unusable memmap regions with kaslr */ |
| 92 | #define MAX_MEMMAP_REGIONS 4 |
| 93 | |
| 94 | static bool memmap_too_large; |
| 95 | |
| 96 | |
| 97 | /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */ |
| 98 | static unsigned long long mem_limit = ULLONG_MAX; |
| 99 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 100 | /* Number of immovable memory regions */ |
| 101 | static int num_immovable_mem; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 102 | |
| 103 | enum mem_avoid_index { |
| 104 | MEM_AVOID_ZO_RANGE = 0, |
| 105 | MEM_AVOID_INITRD, |
| 106 | MEM_AVOID_CMDLINE, |
| 107 | MEM_AVOID_BOOTPARAMS, |
| 108 | MEM_AVOID_MEMMAP_BEGIN, |
| 109 | MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, |
| 110 | MEM_AVOID_MAX, |
| 111 | }; |
| 112 | |
| 113 | static struct mem_vector mem_avoid[MEM_AVOID_MAX]; |
| 114 | |
| 115 | static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) |
| 116 | { |
| 117 | /* Item one is entirely before item two. */ |
| 118 | if (one->start + one->size <= two->start) |
| 119 | return false; |
| 120 | /* Item one is entirely after item two. */ |
| 121 | if (one->start >= two->start + two->size) |
| 122 | return false; |
| 123 | return true; |
| 124 | } |
| 125 | |
| 126 | char *skip_spaces(const char *str) |
| 127 | { |
| 128 | while (isspace(*str)) |
| 129 | ++str; |
| 130 | return (char *)str; |
| 131 | } |
| 132 | #include "../../../../lib/ctype.c" |
| 133 | #include "../../../../lib/cmdline.c" |
| 134 | |
| 135 | static int |
| 136 | parse_memmap(char *p, unsigned long long *start, unsigned long long *size) |
| 137 | { |
| 138 | char *oldp; |
| 139 | |
| 140 | if (!p) |
| 141 | return -EINVAL; |
| 142 | |
| 143 | /* We don't care about this option here */ |
| 144 | if (!strncmp(p, "exactmap", 8)) |
| 145 | return -EINVAL; |
| 146 | |
| 147 | oldp = p; |
| 148 | *size = memparse(p, &p); |
| 149 | if (p == oldp) |
| 150 | return -EINVAL; |
| 151 | |
| 152 | switch (*p) { |
| 153 | case '#': |
| 154 | case '$': |
| 155 | case '!': |
| 156 | *start = memparse(p + 1, &p); |
| 157 | return 0; |
| 158 | case '@': |
| 159 | /* memmap=nn@ss specifies usable region, should be skipped */ |
| 160 | *size = 0; |
| 161 | /* Fall through */ |
| 162 | default: |
| 163 | /* |
| 164 | * If w/o offset, only size specified, memmap=nn[KMG] has the |
| 165 | * same behaviour as mem=nn[KMG]. It limits the max address |
| 166 | * system can use. Region above the limit should be avoided. |
| 167 | */ |
| 168 | *start = 0; |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | return -EINVAL; |
| 173 | } |
| 174 | |
| 175 | static void mem_avoid_memmap(char *str) |
| 176 | { |
| 177 | static int i; |
| 178 | |
| 179 | if (i >= MAX_MEMMAP_REGIONS) |
| 180 | return; |
| 181 | |
| 182 | while (str && (i < MAX_MEMMAP_REGIONS)) { |
| 183 | int rc; |
| 184 | unsigned long long start, size; |
| 185 | char *k = strchr(str, ','); |
| 186 | |
| 187 | if (k) |
| 188 | *k++ = 0; |
| 189 | |
| 190 | rc = parse_memmap(str, &start, &size); |
| 191 | if (rc < 0) |
| 192 | break; |
| 193 | str = k; |
| 194 | |
| 195 | if (start == 0) { |
| 196 | /* Store the specified memory limit if size > 0 */ |
| 197 | if (size > 0) |
| 198 | mem_limit = size; |
| 199 | |
| 200 | continue; |
| 201 | } |
| 202 | |
| 203 | mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; |
| 204 | mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; |
| 205 | i++; |
| 206 | } |
| 207 | |
| 208 | /* More than 4 memmaps, fail kaslr */ |
| 209 | if ((i >= MAX_MEMMAP_REGIONS) && str) |
| 210 | memmap_too_large = true; |
| 211 | } |
| 212 | |
| 213 | /* Store the number of 1GB huge pages which users specified: */ |
| 214 | static unsigned long max_gb_huge_pages; |
| 215 | |
| 216 | static void parse_gb_huge_pages(char *param, char *val) |
| 217 | { |
| 218 | static bool gbpage_sz; |
| 219 | char *p; |
| 220 | |
| 221 | if (!strcmp(param, "hugepagesz")) { |
| 222 | p = val; |
| 223 | if (memparse(p, &p) != PUD_SIZE) { |
| 224 | gbpage_sz = false; |
| 225 | return; |
| 226 | } |
| 227 | |
| 228 | if (gbpage_sz) |
| 229 | warn("Repeatedly set hugeTLB page size of 1G!\n"); |
| 230 | gbpage_sz = true; |
| 231 | return; |
| 232 | } |
| 233 | |
| 234 | if (!strcmp(param, "hugepages") && gbpage_sz) { |
| 235 | p = val; |
| 236 | max_gb_huge_pages = simple_strtoull(p, &p, 0); |
| 237 | return; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 242 | static void handle_mem_options(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 243 | { |
| 244 | char *args = (char *)get_cmd_line_ptr(); |
| 245 | size_t len = strlen((char *)args); |
| 246 | char *tmp_cmdline; |
| 247 | char *param, *val; |
| 248 | u64 mem_size; |
| 249 | |
| 250 | if (!strstr(args, "memmap=") && !strstr(args, "mem=") && |
| 251 | !strstr(args, "hugepages")) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 252 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 253 | |
| 254 | tmp_cmdline = malloc(len + 1); |
| 255 | if (!tmp_cmdline) |
| 256 | error("Failed to allocate space for tmp_cmdline"); |
| 257 | |
| 258 | memcpy(tmp_cmdline, args, len); |
| 259 | tmp_cmdline[len] = 0; |
| 260 | args = tmp_cmdline; |
| 261 | |
| 262 | /* Chew leading spaces */ |
| 263 | args = skip_spaces(args); |
| 264 | |
| 265 | while (*args) { |
| 266 | args = next_arg(args, ¶m, &val); |
| 267 | /* Stop at -- */ |
| 268 | if (!val && strcmp(param, "--") == 0) { |
| 269 | warn("Only '--' specified in cmdline"); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 270 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 271 | } |
| 272 | |
| 273 | if (!strcmp(param, "memmap")) { |
| 274 | mem_avoid_memmap(val); |
| 275 | } else if (strstr(param, "hugepages")) { |
| 276 | parse_gb_huge_pages(param, val); |
| 277 | } else if (!strcmp(param, "mem")) { |
| 278 | char *p = val; |
| 279 | |
| 280 | if (!strcmp(p, "nopentium")) |
| 281 | continue; |
| 282 | mem_size = memparse(p, &p); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 283 | if (mem_size == 0) |
| 284 | goto out; |
| 285 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 286 | mem_limit = mem_size; |
| 287 | } |
| 288 | } |
| 289 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 290 | out: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 291 | free(tmp_cmdline); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 292 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 293 | } |
| 294 | |
| 295 | /* |
| 296 | * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T). |
| 297 | * The mem_avoid array is used to store the ranges that need to be avoided |
| 298 | * when KASLR searches for an appropriate random address. We must avoid any |
| 299 | * regions that are unsafe to overlap with during decompression, and other |
| 300 | * things like the initrd, cmdline and boot_params. This comment seeks to |
| 301 | * explain mem_avoid as clearly as possible since incorrect mem_avoid |
| 302 | * memory ranges lead to really hard to debug boot failures. |
| 303 | * |
| 304 | * The initrd, cmdline, and boot_params are trivial to identify for |
| 305 | * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and |
| 306 | * MEM_AVOID_BOOTPARAMS respectively below. |
| 307 | * |
| 308 | * What is not obvious how to avoid is the range of memory that is used |
| 309 | * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover |
| 310 | * the compressed kernel (ZO) and its run space, which is used to extract |
| 311 | * the uncompressed kernel (VO) and relocs. |
| 312 | * |
| 313 | * ZO's full run size sits against the end of the decompression buffer, so |
| 314 | * we can calculate where text, data, bss, etc of ZO are positioned more |
| 315 | * easily. |
| 316 | * |
| 317 | * For additional background, the decompression calculations can be found |
| 318 | * in header.S, and the memory diagram is based on the one found in misc.c. |
| 319 | * |
| 320 | * The following conditions are already enforced by the image layouts and |
| 321 | * associated code: |
| 322 | * - input + input_size >= output + output_size |
| 323 | * - kernel_total_size <= init_size |
| 324 | * - kernel_total_size <= output_size (see Note below) |
| 325 | * - output + init_size >= output + output_size |
| 326 | * |
| 327 | * (Note that kernel_total_size and output_size have no fundamental |
| 328 | * relationship, but output_size is passed to choose_random_location |
| 329 | * as a maximum of the two. The diagram is showing a case where |
| 330 | * kernel_total_size is larger than output_size, but this case is |
| 331 | * handled by bumping output_size.) |
| 332 | * |
| 333 | * The above conditions can be illustrated by a diagram: |
| 334 | * |
| 335 | * 0 output input input+input_size output+init_size |
| 336 | * | | | | | |
| 337 | * | | | | | |
| 338 | * |-----|--------|--------|--------------|-----------|--|-------------| |
| 339 | * | | | |
| 340 | * | | | |
| 341 | * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size |
| 342 | * |
| 343 | * [output, output+init_size) is the entire memory range used for |
| 344 | * extracting the compressed image. |
| 345 | * |
| 346 | * [output, output+kernel_total_size) is the range needed for the |
| 347 | * uncompressed kernel (VO) and its run size (bss, brk, etc). |
| 348 | * |
| 349 | * [output, output+output_size) is VO plus relocs (i.e. the entire |
| 350 | * uncompressed payload contained by ZO). This is the area of the buffer |
| 351 | * written to during decompression. |
| 352 | * |
| 353 | * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case |
| 354 | * range of the copied ZO and decompression code. (i.e. the range |
| 355 | * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) |
| 356 | * |
| 357 | * [input, input+input_size) is the original copied compressed image (ZO) |
| 358 | * (i.e. it does not include its run size). This range must be avoided |
| 359 | * because it contains the data used for decompression. |
| 360 | * |
| 361 | * [input+input_size, output+init_size) is [_text, _end) for ZO. This |
| 362 | * range includes ZO's heap and stack, and must be avoided since it |
| 363 | * performs the decompression. |
| 364 | * |
| 365 | * Since the above two ranges need to be avoided and they are adjacent, |
| 366 | * they can be merged, resulting in: [input, output+init_size) which |
| 367 | * becomes the MEM_AVOID_ZO_RANGE below. |
| 368 | */ |
| 369 | static void mem_avoid_init(unsigned long input, unsigned long input_size, |
| 370 | unsigned long output) |
| 371 | { |
| 372 | unsigned long init_size = boot_params->hdr.init_size; |
| 373 | u64 initrd_start, initrd_size; |
| 374 | u64 cmd_line, cmd_line_size; |
| 375 | char *ptr; |
| 376 | |
| 377 | /* |
| 378 | * Avoid the region that is unsafe to overlap during |
| 379 | * decompression. |
| 380 | */ |
| 381 | mem_avoid[MEM_AVOID_ZO_RANGE].start = input; |
| 382 | mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; |
| 383 | add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start, |
| 384 | mem_avoid[MEM_AVOID_ZO_RANGE].size); |
| 385 | |
| 386 | /* Avoid initrd. */ |
| 387 | initrd_start = (u64)boot_params->ext_ramdisk_image << 32; |
| 388 | initrd_start |= boot_params->hdr.ramdisk_image; |
| 389 | initrd_size = (u64)boot_params->ext_ramdisk_size << 32; |
| 390 | initrd_size |= boot_params->hdr.ramdisk_size; |
| 391 | mem_avoid[MEM_AVOID_INITRD].start = initrd_start; |
| 392 | mem_avoid[MEM_AVOID_INITRD].size = initrd_size; |
| 393 | /* No need to set mapping for initrd, it will be handled in VO. */ |
| 394 | |
| 395 | /* Avoid kernel command line. */ |
| 396 | cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32; |
| 397 | cmd_line |= boot_params->hdr.cmd_line_ptr; |
| 398 | /* Calculate size of cmd_line. */ |
| 399 | ptr = (char *)(unsigned long)cmd_line; |
| 400 | for (cmd_line_size = 0; ptr[cmd_line_size++];) |
| 401 | ; |
| 402 | mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; |
| 403 | mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; |
| 404 | add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start, |
| 405 | mem_avoid[MEM_AVOID_CMDLINE].size); |
| 406 | |
| 407 | /* Avoid boot parameters. */ |
| 408 | mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; |
| 409 | mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); |
| 410 | add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start, |
| 411 | mem_avoid[MEM_AVOID_BOOTPARAMS].size); |
| 412 | |
| 413 | /* We don't need to set a mapping for setup_data. */ |
| 414 | |
| 415 | /* Mark the memmap regions we need to avoid */ |
| 416 | handle_mem_options(); |
| 417 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 418 | /* Enumerate the immovable memory regions */ |
| 419 | num_immovable_mem = count_immovable_mem_regions(); |
| 420 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 421 | #ifdef CONFIG_X86_VERBOSE_BOOTUP |
| 422 | /* Make sure video RAM can be used. */ |
| 423 | add_identity_map(0, PMD_SIZE); |
| 424 | #endif |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Does this memory vector overlap a known avoided area? If so, record the |
| 429 | * overlap region with the lowest address. |
| 430 | */ |
| 431 | static bool mem_avoid_overlap(struct mem_vector *img, |
| 432 | struct mem_vector *overlap) |
| 433 | { |
| 434 | int i; |
| 435 | struct setup_data *ptr; |
| 436 | unsigned long earliest = img->start + img->size; |
| 437 | bool is_overlapping = false; |
| 438 | |
| 439 | for (i = 0; i < MEM_AVOID_MAX; i++) { |
| 440 | if (mem_overlaps(img, &mem_avoid[i]) && |
| 441 | mem_avoid[i].start < earliest) { |
| 442 | *overlap = mem_avoid[i]; |
| 443 | earliest = overlap->start; |
| 444 | is_overlapping = true; |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | /* Avoid all entries in the setup_data linked list. */ |
| 449 | ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; |
| 450 | while (ptr) { |
| 451 | struct mem_vector avoid; |
| 452 | |
| 453 | avoid.start = (unsigned long)ptr; |
| 454 | avoid.size = sizeof(*ptr) + ptr->len; |
| 455 | |
| 456 | if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { |
| 457 | *overlap = avoid; |
| 458 | earliest = overlap->start; |
| 459 | is_overlapping = true; |
| 460 | } |
| 461 | |
| 462 | ptr = (struct setup_data *)(unsigned long)ptr->next; |
| 463 | } |
| 464 | |
| 465 | return is_overlapping; |
| 466 | } |
| 467 | |
| 468 | struct slot_area { |
| 469 | unsigned long addr; |
| 470 | int num; |
| 471 | }; |
| 472 | |
| 473 | #define MAX_SLOT_AREA 100 |
| 474 | |
| 475 | static struct slot_area slot_areas[MAX_SLOT_AREA]; |
| 476 | |
| 477 | static unsigned long slot_max; |
| 478 | |
| 479 | static unsigned long slot_area_index; |
| 480 | |
| 481 | static void store_slot_info(struct mem_vector *region, unsigned long image_size) |
| 482 | { |
| 483 | struct slot_area slot_area; |
| 484 | |
| 485 | if (slot_area_index == MAX_SLOT_AREA) |
| 486 | return; |
| 487 | |
| 488 | slot_area.addr = region->start; |
| 489 | slot_area.num = (region->size - image_size) / |
| 490 | CONFIG_PHYSICAL_ALIGN + 1; |
| 491 | |
| 492 | if (slot_area.num > 0) { |
| 493 | slot_areas[slot_area_index++] = slot_area; |
| 494 | slot_max += slot_area.num; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * Skip as many 1GB huge pages as possible in the passed region |
| 500 | * according to the number which users specified: |
| 501 | */ |
| 502 | static void |
| 503 | process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) |
| 504 | { |
| 505 | unsigned long addr, size = 0; |
| 506 | struct mem_vector tmp; |
| 507 | int i = 0; |
| 508 | |
| 509 | if (!max_gb_huge_pages) { |
| 510 | store_slot_info(region, image_size); |
| 511 | return; |
| 512 | } |
| 513 | |
| 514 | addr = ALIGN(region->start, PUD_SIZE); |
| 515 | /* Did we raise the address above the passed in memory entry? */ |
| 516 | if (addr < region->start + region->size) |
| 517 | size = region->size - (addr - region->start); |
| 518 | |
| 519 | /* Check how many 1GB huge pages can be filtered out: */ |
| 520 | while (size > PUD_SIZE && max_gb_huge_pages) { |
| 521 | size -= PUD_SIZE; |
| 522 | max_gb_huge_pages--; |
| 523 | i++; |
| 524 | } |
| 525 | |
| 526 | /* No good 1GB huge pages found: */ |
| 527 | if (!i) { |
| 528 | store_slot_info(region, image_size); |
| 529 | return; |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | * Skip those 'i'*1GB good huge pages, and continue checking and |
| 534 | * processing the remaining head or tail part of the passed region |
| 535 | * if available. |
| 536 | */ |
| 537 | |
| 538 | if (addr >= region->start + image_size) { |
| 539 | tmp.start = region->start; |
| 540 | tmp.size = addr - region->start; |
| 541 | store_slot_info(&tmp, image_size); |
| 542 | } |
| 543 | |
| 544 | size = region->size - (addr - region->start) - i * PUD_SIZE; |
| 545 | if (size >= image_size) { |
| 546 | tmp.start = addr + i * PUD_SIZE; |
| 547 | tmp.size = size; |
| 548 | store_slot_info(&tmp, image_size); |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | static unsigned long slots_fetch_random(void) |
| 553 | { |
| 554 | unsigned long slot; |
| 555 | int i; |
| 556 | |
| 557 | /* Handle case of no slots stored. */ |
| 558 | if (slot_max == 0) |
| 559 | return 0; |
| 560 | |
| 561 | slot = kaslr_get_random_long("Physical") % slot_max; |
| 562 | |
| 563 | for (i = 0; i < slot_area_index; i++) { |
| 564 | if (slot >= slot_areas[i].num) { |
| 565 | slot -= slot_areas[i].num; |
| 566 | continue; |
| 567 | } |
| 568 | return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN; |
| 569 | } |
| 570 | |
| 571 | if (i == slot_area_index) |
| 572 | debug_putstr("slots_fetch_random() failed!?\n"); |
| 573 | return 0; |
| 574 | } |
| 575 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 576 | static void __process_mem_region(struct mem_vector *entry, |
| 577 | unsigned long minimum, |
| 578 | unsigned long image_size) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 579 | { |
| 580 | struct mem_vector region, overlap; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 581 | unsigned long start_orig, end; |
| 582 | struct mem_vector cur_entry; |
| 583 | |
| 584 | /* On 32-bit, ignore entries entirely above our maximum. */ |
| 585 | if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE) |
| 586 | return; |
| 587 | |
| 588 | /* Ignore entries entirely below our minimum. */ |
| 589 | if (entry->start + entry->size < minimum) |
| 590 | return; |
| 591 | |
| 592 | /* Ignore entries above memory limit */ |
| 593 | end = min(entry->size + entry->start, mem_limit); |
| 594 | if (entry->start >= end) |
| 595 | return; |
| 596 | cur_entry.start = entry->start; |
| 597 | cur_entry.size = end - entry->start; |
| 598 | |
| 599 | region.start = cur_entry.start; |
| 600 | region.size = cur_entry.size; |
| 601 | |
| 602 | /* Give up if slot area array is full. */ |
| 603 | while (slot_area_index < MAX_SLOT_AREA) { |
| 604 | start_orig = region.start; |
| 605 | |
| 606 | /* Potentially raise address to minimum location. */ |
| 607 | if (region.start < minimum) |
| 608 | region.start = minimum; |
| 609 | |
| 610 | /* Potentially raise address to meet alignment needs. */ |
| 611 | region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); |
| 612 | |
| 613 | /* Did we raise the address above the passed in memory entry? */ |
| 614 | if (region.start > cur_entry.start + cur_entry.size) |
| 615 | return; |
| 616 | |
| 617 | /* Reduce size by any delta from the original address. */ |
| 618 | region.size -= region.start - start_orig; |
| 619 | |
| 620 | /* On 32-bit, reduce region size to fit within max size. */ |
| 621 | if (IS_ENABLED(CONFIG_X86_32) && |
| 622 | region.start + region.size > KERNEL_IMAGE_SIZE) |
| 623 | region.size = KERNEL_IMAGE_SIZE - region.start; |
| 624 | |
| 625 | /* Return if region can't contain decompressed kernel */ |
| 626 | if (region.size < image_size) |
| 627 | return; |
| 628 | |
| 629 | /* If nothing overlaps, store the region and return. */ |
| 630 | if (!mem_avoid_overlap(®ion, &overlap)) { |
| 631 | process_gb_huge_pages(®ion, image_size); |
| 632 | return; |
| 633 | } |
| 634 | |
| 635 | /* Store beginning of region if holds at least image_size. */ |
| 636 | if (overlap.start > region.start + image_size) { |
| 637 | struct mem_vector beginning; |
| 638 | |
| 639 | beginning.start = region.start; |
| 640 | beginning.size = overlap.start - region.start; |
| 641 | process_gb_huge_pages(&beginning, image_size); |
| 642 | } |
| 643 | |
| 644 | /* Return if overlap extends to or past end of region. */ |
| 645 | if (overlap.start + overlap.size >= region.start + region.size) |
| 646 | return; |
| 647 | |
| 648 | /* Clip off the overlapping region and start over. */ |
| 649 | region.size -= overlap.start - region.start + overlap.size; |
| 650 | region.start = overlap.start + overlap.size; |
| 651 | } |
| 652 | } |
| 653 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 654 | static bool process_mem_region(struct mem_vector *region, |
| 655 | unsigned long long minimum, |
| 656 | unsigned long long image_size) |
| 657 | { |
| 658 | int i; |
| 659 | /* |
| 660 | * If no immovable memory found, or MEMORY_HOTREMOVE disabled, |
| 661 | * use @region directly. |
| 662 | */ |
| 663 | if (!num_immovable_mem) { |
| 664 | __process_mem_region(region, minimum, image_size); |
| 665 | |
| 666 | if (slot_area_index == MAX_SLOT_AREA) { |
| 667 | debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); |
| 668 | return 1; |
| 669 | } |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) |
| 674 | /* |
| 675 | * If immovable memory found, filter the intersection between |
| 676 | * immovable memory and @region. |
| 677 | */ |
| 678 | for (i = 0; i < num_immovable_mem; i++) { |
| 679 | unsigned long long start, end, entry_end, region_end; |
| 680 | struct mem_vector entry; |
| 681 | |
| 682 | if (!mem_overlaps(region, &immovable_mem[i])) |
| 683 | continue; |
| 684 | |
| 685 | start = immovable_mem[i].start; |
| 686 | end = start + immovable_mem[i].size; |
| 687 | region_end = region->start + region->size; |
| 688 | |
| 689 | entry.start = clamp(region->start, start, end); |
| 690 | entry_end = clamp(region_end, start, end); |
| 691 | entry.size = entry_end - entry.start; |
| 692 | |
| 693 | __process_mem_region(&entry, minimum, image_size); |
| 694 | |
| 695 | if (slot_area_index == MAX_SLOT_AREA) { |
| 696 | debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); |
| 697 | return 1; |
| 698 | } |
| 699 | } |
| 700 | #endif |
| 701 | return 0; |
| 702 | } |
| 703 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 704 | #ifdef CONFIG_EFI |
| 705 | /* |
| 706 | * Returns true if mirror region found (and must have been processed |
| 707 | * for slots adding) |
| 708 | */ |
| 709 | static bool |
| 710 | process_efi_entries(unsigned long minimum, unsigned long image_size) |
| 711 | { |
| 712 | struct efi_info *e = &boot_params->efi_info; |
| 713 | bool efi_mirror_found = false; |
| 714 | struct mem_vector region; |
| 715 | efi_memory_desc_t *md; |
| 716 | unsigned long pmap; |
| 717 | char *signature; |
| 718 | u32 nr_desc; |
| 719 | int i; |
| 720 | |
| 721 | signature = (char *)&e->efi_loader_signature; |
| 722 | if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && |
| 723 | strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) |
| 724 | return false; |
| 725 | |
| 726 | #ifdef CONFIG_X86_32 |
| 727 | /* Can't handle data above 4GB at this time */ |
| 728 | if (e->efi_memmap_hi) { |
| 729 | warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); |
| 730 | return false; |
| 731 | } |
| 732 | pmap = e->efi_memmap; |
| 733 | #else |
| 734 | pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); |
| 735 | #endif |
| 736 | |
| 737 | nr_desc = e->efi_memmap_size / e->efi_memdesc_size; |
| 738 | for (i = 0; i < nr_desc; i++) { |
| 739 | md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); |
| 740 | if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { |
| 741 | efi_mirror_found = true; |
| 742 | break; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | for (i = 0; i < nr_desc; i++) { |
| 747 | md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); |
| 748 | |
| 749 | /* |
| 750 | * Here we are more conservative in picking free memory than |
| 751 | * the EFI spec allows: |
| 752 | * |
| 753 | * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also |
| 754 | * free memory and thus available to place the kernel image into, |
| 755 | * but in practice there's firmware where using that memory leads |
| 756 | * to crashes. |
| 757 | * |
| 758 | * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free. |
| 759 | */ |
| 760 | if (md->type != EFI_CONVENTIONAL_MEMORY) |
| 761 | continue; |
| 762 | |
| 763 | if (efi_mirror_found && |
| 764 | !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) |
| 765 | continue; |
| 766 | |
| 767 | region.start = md->phys_addr; |
| 768 | region.size = md->num_pages << EFI_PAGE_SHIFT; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 769 | if (process_mem_region(®ion, minimum, image_size)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 770 | break; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 771 | } |
| 772 | return true; |
| 773 | } |
| 774 | #else |
| 775 | static inline bool |
| 776 | process_efi_entries(unsigned long minimum, unsigned long image_size) |
| 777 | { |
| 778 | return false; |
| 779 | } |
| 780 | #endif |
| 781 | |
| 782 | static void process_e820_entries(unsigned long minimum, |
| 783 | unsigned long image_size) |
| 784 | { |
| 785 | int i; |
| 786 | struct mem_vector region; |
| 787 | struct boot_e820_entry *entry; |
| 788 | |
| 789 | /* Verify potential e820 positions, appending to slots list. */ |
| 790 | for (i = 0; i < boot_params->e820_entries; i++) { |
| 791 | entry = &boot_params->e820_table[i]; |
| 792 | /* Skip non-RAM entries. */ |
| 793 | if (entry->type != E820_TYPE_RAM) |
| 794 | continue; |
| 795 | region.start = entry->addr; |
| 796 | region.size = entry->size; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 797 | if (process_mem_region(®ion, minimum, image_size)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 798 | break; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 799 | } |
| 800 | } |
| 801 | |
| 802 | static unsigned long find_random_phys_addr(unsigned long minimum, |
| 803 | unsigned long image_size) |
| 804 | { |
| 805 | /* Check if we had too many memmaps. */ |
| 806 | if (memmap_too_large) { |
| 807 | debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); |
| 808 | return 0; |
| 809 | } |
| 810 | |
| 811 | /* Make sure minimum is aligned. */ |
| 812 | minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); |
| 813 | |
| 814 | if (process_efi_entries(minimum, image_size)) |
| 815 | return slots_fetch_random(); |
| 816 | |
| 817 | process_e820_entries(minimum, image_size); |
| 818 | return slots_fetch_random(); |
| 819 | } |
| 820 | |
| 821 | static unsigned long find_random_virt_addr(unsigned long minimum, |
| 822 | unsigned long image_size) |
| 823 | { |
| 824 | unsigned long slots, random_addr; |
| 825 | |
| 826 | /* Make sure minimum is aligned. */ |
| 827 | minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); |
| 828 | /* Align image_size for easy slot calculations. */ |
| 829 | image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN); |
| 830 | |
| 831 | /* |
| 832 | * There are how many CONFIG_PHYSICAL_ALIGN-sized slots |
| 833 | * that can hold image_size within the range of minimum to |
| 834 | * KERNEL_IMAGE_SIZE? |
| 835 | */ |
| 836 | slots = (KERNEL_IMAGE_SIZE - minimum - image_size) / |
| 837 | CONFIG_PHYSICAL_ALIGN + 1; |
| 838 | |
| 839 | random_addr = kaslr_get_random_long("Virtual") % slots; |
| 840 | |
| 841 | return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Since this function examines addresses much more numerically, |
| 846 | * it takes the input and output pointers as 'unsigned long'. |
| 847 | */ |
| 848 | void choose_random_location(unsigned long input, |
| 849 | unsigned long input_size, |
| 850 | unsigned long *output, |
| 851 | unsigned long output_size, |
| 852 | unsigned long *virt_addr) |
| 853 | { |
| 854 | unsigned long random_addr, min_addr; |
| 855 | |
| 856 | if (cmdline_find_option_bool("nokaslr")) { |
| 857 | warn("KASLR disabled: 'nokaslr' on cmdline."); |
| 858 | return; |
| 859 | } |
| 860 | |
| 861 | #ifdef CONFIG_X86_5LEVEL |
| 862 | if (__read_cr4() & X86_CR4_LA57) { |
| 863 | __pgtable_l5_enabled = 1; |
| 864 | pgdir_shift = 48; |
| 865 | ptrs_per_p4d = 512; |
| 866 | } |
| 867 | #endif |
| 868 | |
| 869 | boot_params->hdr.loadflags |= KASLR_FLAG; |
| 870 | |
| 871 | /* Prepare to add new identity pagetables on demand. */ |
| 872 | initialize_identity_maps(); |
| 873 | |
| 874 | /* Record the various known unsafe memory ranges. */ |
| 875 | mem_avoid_init(input, input_size, *output); |
| 876 | |
| 877 | /* |
| 878 | * Low end of the randomization range should be the |
| 879 | * smaller of 512M or the initial kernel image |
| 880 | * location: |
| 881 | */ |
| 882 | min_addr = min(*output, 512UL << 20); |
| 883 | |
| 884 | /* Walk available memory entries to find a random address. */ |
| 885 | random_addr = find_random_phys_addr(min_addr, output_size); |
| 886 | if (!random_addr) { |
| 887 | warn("Physical KASLR disabled: no suitable memory region!"); |
| 888 | } else { |
| 889 | /* Update the new physical address location. */ |
| 890 | if (*output != random_addr) { |
| 891 | add_identity_map(random_addr, output_size); |
| 892 | *output = random_addr; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * This loads the identity mapping page table. |
| 897 | * This should only be done if a new physical address |
| 898 | * is found for the kernel, otherwise we should keep |
| 899 | * the old page table to make it be like the "nokaslr" |
| 900 | * case. |
| 901 | */ |
| 902 | finalize_identity_maps(); |
| 903 | } |
| 904 | |
| 905 | |
| 906 | /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ |
| 907 | if (IS_ENABLED(CONFIG_X86_64)) |
| 908 | random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); |
| 909 | *virt_addr = random_addr; |
| 910 | } |