blob: 75483b40fcb13a2e1aadfae448755c5da30816be [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
5
6#include <linux/sched.h>
7#include <linux/mm_types.h>
8#include <linux/memblock.h>
9#include <misc/cxl-base.h>
10
11#include <asm/debugfs.h>
12#include <asm/pgalloc.h>
13#include <asm/tlb.h>
14#include <asm/trace.h>
15#include <asm/powernv.h>
16#include <asm/firmware.h>
17#include <asm/ultravisor.h>
18
19#include <mm/mmu_decl.h>
20#include <trace/events/thp.h>
21
22unsigned long __pmd_frag_nr;
23EXPORT_SYMBOL(__pmd_frag_nr);
24unsigned long __pmd_frag_size_shift;
25EXPORT_SYMBOL(__pmd_frag_size_shift);
26
27#ifdef CONFIG_TRANSPARENT_HUGEPAGE
28/*
29 * This is called when relaxing access to a hugepage. It's also called in the page
30 * fault path when we don't hit any of the major fault cases, ie, a minor
31 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
32 * handled those two for us, we additionally deal with missing execute
33 * permission here on some processors
34 */
35int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
36 pmd_t *pmdp, pmd_t entry, int dirty)
37{
38 int changed;
39#ifdef CONFIG_DEBUG_VM
40 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
41 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
42#endif
43 changed = !pmd_same(*(pmdp), entry);
44 if (changed) {
45 /*
46 * We can use MMU_PAGE_2M here, because only radix
47 * path look at the psize.
48 */
49 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
50 pmd_pte(entry), address, MMU_PAGE_2M);
51 }
52 return changed;
53}
54
55int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56 unsigned long address, pmd_t *pmdp)
57{
58 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
59}
60/*
61 * set a new huge pmd. We should not be called for updating
62 * an existing pmd entry. That should go via pmd_hugepage_update.
63 */
64void set_pmd_at(struct mm_struct *mm, unsigned long addr,
65 pmd_t *pmdp, pmd_t pmd)
66{
67#ifdef CONFIG_DEBUG_VM
68 /*
69 * Make sure hardware valid bit is not set. We don't do
70 * tlb flush for this update.
71 */
72
73 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
74 assert_spin_locked(pmd_lockptr(mm, pmdp));
75 WARN_ON(!(pmd_large(pmd)));
76#endif
77 trace_hugepage_set_pmd(addr, pmd_val(pmd));
78 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
79}
80
81static void do_nothing(void *unused)
82{
83
84}
85/*
86 * Serialize against find_current_mm_pte which does lock-less
87 * lookup in page tables with local interrupts disabled. For huge pages
88 * it casts pmd_t to pte_t. Since format of pte_t is different from
89 * pmd_t we want to prevent transit from pmd pointing to page table
90 * to pmd pointing to huge page (and back) while interrupts are disabled.
91 * We clear pmd to possibly replace it with page table pointer in
92 * different code paths. So make sure we wait for the parallel
93 * find_current_mm_pte to finish.
94 */
95void serialize_against_pte_lookup(struct mm_struct *mm)
96{
97 smp_mb();
98 smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
99}
100
101/*
102 * We use this to invalidate a pmdp entry before switching from a
103 * hugepte to regular pmd entry.
104 */
105pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
106 pmd_t *pmdp)
107{
108 unsigned long old_pmd;
109
110 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
111 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
112 /*
113 * This ensures that generic code that rely on IRQ disabling
114 * to prevent a parallel THP split work as expected.
115 *
116 * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
117 * a special case check in pmd_access_permitted.
118 */
119 serialize_against_pte_lookup(vma->vm_mm);
120 return __pmd(old_pmd);
121}
122
123static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
124{
125 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
126}
127
128pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
129{
130 unsigned long pmdv;
131
132 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
133 return pmd_set_protbits(__pmd(pmdv), pgprot);
134}
135
136pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
137{
138 return pfn_pmd(page_to_pfn(page), pgprot);
139}
140
141pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
142{
143 unsigned long pmdv;
144
145 pmdv = pmd_val(pmd);
146 pmdv &= _HPAGE_CHG_MASK;
147 return pmd_set_protbits(__pmd(pmdv), newprot);
148}
149
150/*
151 * This is called at the end of handling a user page fault, when the
152 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
153 * We use it to preload an HPTE into the hash table corresponding to
154 * the updated linux HUGE PMD entry.
155 */
156void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
157 pmd_t *pmd)
158{
159 if (radix_enabled())
160 prefetch((void *)addr);
161}
162#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
163
164/* For use by kexec */
165void mmu_cleanup_all(void)
166{
167 if (radix_enabled())
168 radix__mmu_cleanup_all();
169 else if (mmu_hash_ops.hpte_clear_all)
170 mmu_hash_ops.hpte_clear_all();
171}
172
173#ifdef CONFIG_MEMORY_HOTPLUG
174int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
175{
176 if (radix_enabled())
177 return radix__create_section_mapping(start, end, nid);
178
179 return hash__create_section_mapping(start, end, nid);
180}
181
182int __meminit remove_section_mapping(unsigned long start, unsigned long end)
183{
184 if (radix_enabled())
185 return radix__remove_section_mapping(start, end);
186
187 return hash__remove_section_mapping(start, end);
188}
189#endif /* CONFIG_MEMORY_HOTPLUG */
190
191void __init mmu_partition_table_init(void)
192{
193 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
194 unsigned long ptcr;
195
196 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
197 /* Initialize the Partition Table with no entries */
198 partition_tb = memblock_alloc(patb_size, patb_size);
199 if (!partition_tb)
200 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
201 __func__, patb_size, patb_size);
202
203 /*
204 * update partition table control register,
205 * 64 K size.
206 */
207 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
208 set_ptcr_when_no_uv(ptcr);
209 powernv_set_nmmu_ptcr(ptcr);
210}
211
212static void flush_partition(unsigned int lpid, bool radix)
213{
214 if (radix) {
215 radix__flush_all_lpid(lpid);
216 radix__flush_all_lpid_guest(lpid);
217 } else {
218 asm volatile("ptesync" : : : "memory");
219 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
220 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
221 /* do we need fixup here ?*/
222 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
223 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
224 }
225}
226
227void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
228 unsigned long dw1, bool flush)
229{
230 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
231
232 /*
233 * When ultravisor is enabled, the partition table is stored in secure
234 * memory and can only be accessed doing an ultravisor call. However, we
235 * maintain a copy of the partition table in normal memory to allow Nest
236 * MMU translations to occur (for normal VMs).
237 *
238 * Therefore, here we always update partition_tb, regardless of whether
239 * we are running under an ultravisor or not.
240 */
241 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
242 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
243
244 /*
245 * If ultravisor is enabled, we do an ultravisor call to register the
246 * partition table entry (PATE), which also do a global flush of TLBs
247 * and partition table caches for the lpid. Otherwise, just do the
248 * flush. The type of flush (hash or radix) depends on what the previous
249 * use of the partition ID was, not the new use.
250 */
251 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
252 uv_register_pate(lpid, dw0, dw1);
253 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
254 dw0, dw1);
255 } else if (flush) {
256 /*
257 * Boot does not need to flush, because MMU is off and each
258 * CPU does a tlbiel_all() before switching them on, which
259 * flushes everything.
260 */
261 flush_partition(lpid, (old & PATB_HR));
262 }
263}
264EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
265
266static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
267{
268 void *pmd_frag, *ret;
269
270 if (PMD_FRAG_NR == 1)
271 return NULL;
272
273 spin_lock(&mm->page_table_lock);
274 ret = mm->context.pmd_frag;
275 if (ret) {
276 pmd_frag = ret + PMD_FRAG_SIZE;
277 /*
278 * If we have taken up all the fragments mark PTE page NULL
279 */
280 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
281 pmd_frag = NULL;
282 mm->context.pmd_frag = pmd_frag;
283 }
284 spin_unlock(&mm->page_table_lock);
285 return (pmd_t *)ret;
286}
287
288static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
289{
290 void *ret = NULL;
291 struct page *page;
292 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
293
294 if (mm == &init_mm)
295 gfp &= ~__GFP_ACCOUNT;
296 page = alloc_page(gfp);
297 if (!page)
298 return NULL;
299 if (!pgtable_pmd_page_ctor(page)) {
300 __free_pages(page, 0);
301 return NULL;
302 }
303
304 atomic_set(&page->pt_frag_refcount, 1);
305
306 ret = page_address(page);
307 /*
308 * if we support only one fragment just return the
309 * allocated page.
310 */
311 if (PMD_FRAG_NR == 1)
312 return ret;
313
314 spin_lock(&mm->page_table_lock);
315 /*
316 * If we find pgtable_page set, we return
317 * the allocated page with single fragement
318 * count.
319 */
320 if (likely(!mm->context.pmd_frag)) {
321 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
322 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
323 }
324 spin_unlock(&mm->page_table_lock);
325
326 return (pmd_t *)ret;
327}
328
329pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
330{
331 pmd_t *pmd;
332
333 pmd = get_pmd_from_cache(mm);
334 if (pmd)
335 return pmd;
336
337 return __alloc_for_pmdcache(mm);
338}
339
340void pmd_fragment_free(unsigned long *pmd)
341{
342 struct page *page = virt_to_page(pmd);
343
344 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
345 if (atomic_dec_and_test(&page->pt_frag_refcount)) {
346 pgtable_pmd_page_dtor(page);
347 __free_page(page);
348 }
349}
350
351static inline void pgtable_free(void *table, int index)
352{
353 switch (index) {
354 case PTE_INDEX:
355 pte_fragment_free(table, 0);
356 break;
357 case PMD_INDEX:
358 pmd_fragment_free(table);
359 break;
360 case PUD_INDEX:
361 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
362 break;
363#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
364 /* 16M hugepd directory at pud level */
365 case HTLB_16M_INDEX:
366 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
367 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
368 break;
369 /* 16G hugepd directory at the pgd level */
370 case HTLB_16G_INDEX:
371 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
372 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
373 break;
374#endif
375 /* We don't free pgd table via RCU callback */
376 default:
377 BUG();
378 }
379}
380
381#ifdef CONFIG_SMP
382void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
383{
384 unsigned long pgf = (unsigned long)table;
385
386 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
387 pgf |= index;
388 tlb_remove_table(tlb, (void *)pgf);
389}
390
391void __tlb_remove_table(void *_table)
392{
393 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
394 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
395
396 return pgtable_free(table, index);
397}
398#else
399void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
400{
401 return pgtable_free(table, index);
402}
403#endif
404
405#ifdef CONFIG_PROC_FS
406atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
407
408void arch_report_meminfo(struct seq_file *m)
409{
410 /*
411 * Hash maps the memory with one size mmu_linear_psize.
412 * So don't bother to print these on hash
413 */
414 if (!radix_enabled())
415 return;
416 seq_printf(m, "DirectMap4k: %8lu kB\n",
417 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
418 seq_printf(m, "DirectMap64k: %8lu kB\n",
419 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
420 seq_printf(m, "DirectMap2M: %8lu kB\n",
421 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
422 seq_printf(m, "DirectMap1G: %8lu kB\n",
423 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
424}
425#endif /* CONFIG_PROC_FS */
426
427pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
428 pte_t *ptep)
429{
430 unsigned long pte_val;
431
432 /*
433 * Clear the _PAGE_PRESENT so that no hardware parallel update is
434 * possible. Also keep the pte_present true so that we don't take
435 * wrong fault.
436 */
437 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
438
439 return __pte(pte_val);
440
441}
442
443void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
444 pte_t *ptep, pte_t old_pte, pte_t pte)
445{
446 if (radix_enabled())
447 return radix__ptep_modify_prot_commit(vma, addr,
448 ptep, old_pte, pte);
449 set_pte_at(vma->vm_mm, addr, ptep, pte);
450}
451
452/*
453 * For hash translation mode, we use the deposited table to store hash slot
454 * information and they are stored at PTRS_PER_PMD offset from related pmd
455 * location. Hence a pmd move requires deposit and withdraw.
456 *
457 * For radix translation with split pmd ptl, we store the deposited table in the
458 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
459 * move.
460 *
461 * With hash we use deposited table always irrespective of anon or not.
462 * With radix we use deposited table only for anonymous mapping.
463 */
464int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
465 struct spinlock *old_pmd_ptl,
466 struct vm_area_struct *vma)
467{
468 if (radix_enabled())
469 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
470
471 return true;
472}
473
474/*
475 * Does the CPU support tlbie?
476 */
477bool tlbie_capable __read_mostly = true;
478EXPORT_SYMBOL(tlbie_capable);
479
480/*
481 * Should tlbie be used for management of CPU TLBs, for kernel and process
482 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
483 * guest address spaces.
484 */
485bool tlbie_enabled __read_mostly = true;
486
487static int __init setup_disable_tlbie(char *str)
488{
489 if (!radix_enabled()) {
490 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
491 return 1;
492 }
493
494 tlbie_capable = false;
495 tlbie_enabled = false;
496
497 return 1;
498}
499__setup("disable_tlbie", setup_disable_tlbie);
500
501static int __init pgtable_debugfs_setup(void)
502{
503 if (!tlbie_capable)
504 return 0;
505
506 /*
507 * There is no locking vs tlb flushing when changing this value.
508 * The tlb flushers will see one value or another, and use either
509 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
510 * invalidated as expected.
511 */
512 debugfs_create_bool("tlbie_enabled", 0600,
513 powerpc_debugfs_root,
514 &tlbie_enabled);
515
516 return 0;
517}
518arch_initcall(pgtable_debugfs_setup);