David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3 | * |
| 4 | * Copyright IBM Corp. 2007 |
| 5 | * Copyright 2011 Freescale Semiconductor, Inc. |
| 6 | * |
| 7 | * Authors: Hollis Blanchard <hollisb@us.ibm.com> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/jiffies.h> |
| 11 | #include <linux/hrtimer.h> |
| 12 | #include <linux/types.h> |
| 13 | #include <linux/string.h> |
| 14 | #include <linux/kvm_host.h> |
| 15 | #include <linux/clockchips.h> |
| 16 | |
| 17 | #include <asm/reg.h> |
| 18 | #include <asm/time.h> |
| 19 | #include <asm/byteorder.h> |
| 20 | #include <asm/kvm_ppc.h> |
| 21 | #include <asm/disassemble.h> |
| 22 | #include <asm/ppc-opcode.h> |
| 23 | #include "timing.h" |
| 24 | #include "trace.h" |
| 25 | |
| 26 | void kvmppc_emulate_dec(struct kvm_vcpu *vcpu) |
| 27 | { |
| 28 | unsigned long dec_nsec; |
| 29 | unsigned long long dec_time; |
| 30 | |
| 31 | pr_debug("mtDEC: %lx\n", vcpu->arch.dec); |
| 32 | hrtimer_try_to_cancel(&vcpu->arch.dec_timer); |
| 33 | |
| 34 | #ifdef CONFIG_PPC_BOOK3S |
| 35 | /* mtdec lowers the interrupt line when positive. */ |
| 36 | kvmppc_core_dequeue_dec(vcpu); |
| 37 | #endif |
| 38 | |
| 39 | #ifdef CONFIG_BOOKE |
| 40 | /* On BOOKE, DEC = 0 is as good as decrementer not enabled */ |
| 41 | if (vcpu->arch.dec == 0) |
| 42 | return; |
| 43 | #endif |
| 44 | |
| 45 | /* |
| 46 | * The decrementer ticks at the same rate as the timebase, so |
| 47 | * that's how we convert the guest DEC value to the number of |
| 48 | * host ticks. |
| 49 | */ |
| 50 | |
| 51 | dec_time = vcpu->arch.dec; |
| 52 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 53 | * Guest timebase ticks at the same frequency as host timebase. |
| 54 | * So use the host timebase calculations for decrementer emulation. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 55 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 56 | dec_time = tb_to_ns(dec_time); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 57 | dec_nsec = do_div(dec_time, NSEC_PER_SEC); |
| 58 | hrtimer_start(&vcpu->arch.dec_timer, |
| 59 | ktime_set(dec_time, dec_nsec), HRTIMER_MODE_REL); |
| 60 | vcpu->arch.dec_jiffies = get_tb(); |
| 61 | } |
| 62 | |
| 63 | u32 kvmppc_get_dec(struct kvm_vcpu *vcpu, u64 tb) |
| 64 | { |
| 65 | u64 jd = tb - vcpu->arch.dec_jiffies; |
| 66 | |
| 67 | #ifdef CONFIG_BOOKE |
| 68 | if (vcpu->arch.dec < jd) |
| 69 | return 0; |
| 70 | #endif |
| 71 | |
| 72 | return vcpu->arch.dec - jd; |
| 73 | } |
| 74 | |
| 75 | static int kvmppc_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) |
| 76 | { |
| 77 | enum emulation_result emulated = EMULATE_DONE; |
| 78 | ulong spr_val = kvmppc_get_gpr(vcpu, rs); |
| 79 | |
| 80 | switch (sprn) { |
| 81 | case SPRN_SRR0: |
| 82 | kvmppc_set_srr0(vcpu, spr_val); |
| 83 | break; |
| 84 | case SPRN_SRR1: |
| 85 | kvmppc_set_srr1(vcpu, spr_val); |
| 86 | break; |
| 87 | |
| 88 | /* XXX We need to context-switch the timebase for |
| 89 | * watchdog and FIT. */ |
| 90 | case SPRN_TBWL: break; |
| 91 | case SPRN_TBWU: break; |
| 92 | |
| 93 | case SPRN_DEC: |
| 94 | vcpu->arch.dec = (u32) spr_val; |
| 95 | kvmppc_emulate_dec(vcpu); |
| 96 | break; |
| 97 | |
| 98 | case SPRN_SPRG0: |
| 99 | kvmppc_set_sprg0(vcpu, spr_val); |
| 100 | break; |
| 101 | case SPRN_SPRG1: |
| 102 | kvmppc_set_sprg1(vcpu, spr_val); |
| 103 | break; |
| 104 | case SPRN_SPRG2: |
| 105 | kvmppc_set_sprg2(vcpu, spr_val); |
| 106 | break; |
| 107 | case SPRN_SPRG3: |
| 108 | kvmppc_set_sprg3(vcpu, spr_val); |
| 109 | break; |
| 110 | |
| 111 | /* PIR can legally be written, but we ignore it */ |
| 112 | case SPRN_PIR: break; |
| 113 | |
| 114 | default: |
| 115 | emulated = vcpu->kvm->arch.kvm_ops->emulate_mtspr(vcpu, sprn, |
| 116 | spr_val); |
| 117 | if (emulated == EMULATE_FAIL) |
| 118 | printk(KERN_INFO "mtspr: unknown spr " |
| 119 | "0x%x\n", sprn); |
| 120 | break; |
| 121 | } |
| 122 | |
| 123 | kvmppc_set_exit_type(vcpu, EMULATED_MTSPR_EXITS); |
| 124 | |
| 125 | return emulated; |
| 126 | } |
| 127 | |
| 128 | static int kvmppc_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) |
| 129 | { |
| 130 | enum emulation_result emulated = EMULATE_DONE; |
| 131 | ulong spr_val = 0; |
| 132 | |
| 133 | switch (sprn) { |
| 134 | case SPRN_SRR0: |
| 135 | spr_val = kvmppc_get_srr0(vcpu); |
| 136 | break; |
| 137 | case SPRN_SRR1: |
| 138 | spr_val = kvmppc_get_srr1(vcpu); |
| 139 | break; |
| 140 | case SPRN_PVR: |
| 141 | spr_val = vcpu->arch.pvr; |
| 142 | break; |
| 143 | case SPRN_PIR: |
| 144 | spr_val = vcpu->vcpu_id; |
| 145 | break; |
| 146 | |
| 147 | /* Note: mftb and TBRL/TBWL are user-accessible, so |
| 148 | * the guest can always access the real TB anyways. |
| 149 | * In fact, we probably will never see these traps. */ |
| 150 | case SPRN_TBWL: |
| 151 | spr_val = get_tb() >> 32; |
| 152 | break; |
| 153 | case SPRN_TBWU: |
| 154 | spr_val = get_tb(); |
| 155 | break; |
| 156 | |
| 157 | case SPRN_SPRG0: |
| 158 | spr_val = kvmppc_get_sprg0(vcpu); |
| 159 | break; |
| 160 | case SPRN_SPRG1: |
| 161 | spr_val = kvmppc_get_sprg1(vcpu); |
| 162 | break; |
| 163 | case SPRN_SPRG2: |
| 164 | spr_val = kvmppc_get_sprg2(vcpu); |
| 165 | break; |
| 166 | case SPRN_SPRG3: |
| 167 | spr_val = kvmppc_get_sprg3(vcpu); |
| 168 | break; |
| 169 | /* Note: SPRG4-7 are user-readable, so we don't get |
| 170 | * a trap. */ |
| 171 | |
| 172 | case SPRN_DEC: |
| 173 | spr_val = kvmppc_get_dec(vcpu, get_tb()); |
| 174 | break; |
| 175 | default: |
| 176 | emulated = vcpu->kvm->arch.kvm_ops->emulate_mfspr(vcpu, sprn, |
| 177 | &spr_val); |
| 178 | if (unlikely(emulated == EMULATE_FAIL)) { |
| 179 | printk(KERN_INFO "mfspr: unknown spr " |
| 180 | "0x%x\n", sprn); |
| 181 | } |
| 182 | break; |
| 183 | } |
| 184 | |
| 185 | if (emulated == EMULATE_DONE) |
| 186 | kvmppc_set_gpr(vcpu, rt, spr_val); |
| 187 | kvmppc_set_exit_type(vcpu, EMULATED_MFSPR_EXITS); |
| 188 | |
| 189 | return emulated; |
| 190 | } |
| 191 | |
| 192 | /* XXX Should probably auto-generate instruction decoding for a particular core |
| 193 | * from opcode tables in the future. */ |
| 194 | int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| 195 | { |
| 196 | u32 inst; |
| 197 | int rs, rt, sprn; |
| 198 | enum emulation_result emulated; |
| 199 | int advance = 1; |
| 200 | |
| 201 | /* this default type might be overwritten by subcategories */ |
| 202 | kvmppc_set_exit_type(vcpu, EMULATED_INST_EXITS); |
| 203 | |
| 204 | emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst); |
| 205 | if (emulated != EMULATE_DONE) |
| 206 | return emulated; |
| 207 | |
| 208 | pr_debug("Emulating opcode %d / %d\n", get_op(inst), get_xop(inst)); |
| 209 | |
| 210 | rs = get_rs(inst); |
| 211 | rt = get_rt(inst); |
| 212 | sprn = get_sprn(inst); |
| 213 | |
| 214 | switch (get_op(inst)) { |
| 215 | case OP_TRAP: |
| 216 | #ifdef CONFIG_PPC_BOOK3S |
| 217 | case OP_TRAP_64: |
| 218 | kvmppc_core_queue_program(vcpu, SRR1_PROGTRAP); |
| 219 | #else |
| 220 | kvmppc_core_queue_program(vcpu, |
| 221 | vcpu->arch.shared->esr | ESR_PTR); |
| 222 | #endif |
| 223 | advance = 0; |
| 224 | break; |
| 225 | |
| 226 | case 31: |
| 227 | switch (get_xop(inst)) { |
| 228 | |
| 229 | case OP_31_XOP_TRAP: |
| 230 | #ifdef CONFIG_64BIT |
| 231 | case OP_31_XOP_TRAP_64: |
| 232 | #endif |
| 233 | #ifdef CONFIG_PPC_BOOK3S |
| 234 | kvmppc_core_queue_program(vcpu, SRR1_PROGTRAP); |
| 235 | #else |
| 236 | kvmppc_core_queue_program(vcpu, |
| 237 | vcpu->arch.shared->esr | ESR_PTR); |
| 238 | #endif |
| 239 | advance = 0; |
| 240 | break; |
| 241 | |
| 242 | case OP_31_XOP_MFSPR: |
| 243 | emulated = kvmppc_emulate_mfspr(vcpu, sprn, rt); |
| 244 | if (emulated == EMULATE_AGAIN) { |
| 245 | emulated = EMULATE_DONE; |
| 246 | advance = 0; |
| 247 | } |
| 248 | break; |
| 249 | |
| 250 | case OP_31_XOP_MTSPR: |
| 251 | emulated = kvmppc_emulate_mtspr(vcpu, sprn, rs); |
| 252 | if (emulated == EMULATE_AGAIN) { |
| 253 | emulated = EMULATE_DONE; |
| 254 | advance = 0; |
| 255 | } |
| 256 | break; |
| 257 | |
| 258 | case OP_31_XOP_TLBSYNC: |
| 259 | break; |
| 260 | |
| 261 | default: |
| 262 | /* Attempt core-specific emulation below. */ |
| 263 | emulated = EMULATE_FAIL; |
| 264 | } |
| 265 | break; |
| 266 | |
| 267 | case 0: |
| 268 | /* |
| 269 | * Instruction with primary opcode 0. Based on PowerISA |
| 270 | * these are illegal instructions. |
| 271 | */ |
| 272 | if (inst == KVMPPC_INST_SW_BREAKPOINT) { |
| 273 | run->exit_reason = KVM_EXIT_DEBUG; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 274 | run->debug.arch.status = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 275 | run->debug.arch.address = kvmppc_get_pc(vcpu); |
| 276 | emulated = EMULATE_EXIT_USER; |
| 277 | advance = 0; |
| 278 | } else |
| 279 | emulated = EMULATE_FAIL; |
| 280 | |
| 281 | break; |
| 282 | |
| 283 | default: |
| 284 | emulated = EMULATE_FAIL; |
| 285 | } |
| 286 | |
| 287 | if (emulated == EMULATE_FAIL) { |
| 288 | emulated = vcpu->kvm->arch.kvm_ops->emulate_op(run, vcpu, inst, |
| 289 | &advance); |
| 290 | if (emulated == EMULATE_AGAIN) { |
| 291 | advance = 0; |
| 292 | } else if (emulated == EMULATE_FAIL) { |
| 293 | advance = 0; |
| 294 | printk(KERN_ERR "Couldn't emulate instruction 0x%08x " |
| 295 | "(op %d xop %d)\n", inst, get_op(inst), get_xop(inst)); |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | trace_kvm_ppc_instr(inst, kvmppc_get_pc(vcpu), emulated); |
| 300 | |
| 301 | /* Advance past emulated instruction. */ |
| 302 | if (advance) |
| 303 | kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); |
| 304 | |
| 305 | return emulated; |
| 306 | } |
| 307 | EXPORT_SYMBOL_GPL(kvmppc_emulate_instruction); |