David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * |
| 4 | * Common boot and setup code. |
| 5 | * |
| 6 | * Copyright (C) 2001 PPC64 Team, IBM Corp |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 7 | */ |
| 8 | |
| 9 | #include <linux/export.h> |
| 10 | #include <linux/string.h> |
| 11 | #include <linux/sched.h> |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/reboot.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/initrd.h> |
| 17 | #include <linux/seq_file.h> |
| 18 | #include <linux/ioport.h> |
| 19 | #include <linux/console.h> |
| 20 | #include <linux/utsname.h> |
| 21 | #include <linux/tty.h> |
| 22 | #include <linux/root_dev.h> |
| 23 | #include <linux/notifier.h> |
| 24 | #include <linux/cpu.h> |
| 25 | #include <linux/unistd.h> |
| 26 | #include <linux/serial.h> |
| 27 | #include <linux/serial_8250.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 28 | #include <linux/memblock.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 29 | #include <linux/pci.h> |
| 30 | #include <linux/lockdep.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 31 | #include <linux/memory.h> |
| 32 | #include <linux/nmi.h> |
| 33 | |
| 34 | #include <asm/debugfs.h> |
| 35 | #include <asm/io.h> |
| 36 | #include <asm/kdump.h> |
| 37 | #include <asm/prom.h> |
| 38 | #include <asm/processor.h> |
| 39 | #include <asm/pgtable.h> |
| 40 | #include <asm/smp.h> |
| 41 | #include <asm/elf.h> |
| 42 | #include <asm/machdep.h> |
| 43 | #include <asm/paca.h> |
| 44 | #include <asm/time.h> |
| 45 | #include <asm/cputable.h> |
| 46 | #include <asm/dt_cpu_ftrs.h> |
| 47 | #include <asm/sections.h> |
| 48 | #include <asm/btext.h> |
| 49 | #include <asm/nvram.h> |
| 50 | #include <asm/setup.h> |
| 51 | #include <asm/rtas.h> |
| 52 | #include <asm/iommu.h> |
| 53 | #include <asm/serial.h> |
| 54 | #include <asm/cache.h> |
| 55 | #include <asm/page.h> |
| 56 | #include <asm/mmu.h> |
| 57 | #include <asm/firmware.h> |
| 58 | #include <asm/xmon.h> |
| 59 | #include <asm/udbg.h> |
| 60 | #include <asm/kexec.h> |
| 61 | #include <asm/code-patching.h> |
| 62 | #include <asm/livepatch.h> |
| 63 | #include <asm/opal.h> |
| 64 | #include <asm/cputhreads.h> |
| 65 | #include <asm/hw_irq.h> |
| 66 | #include <asm/feature-fixups.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 67 | #include <asm/kup.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 68 | |
| 69 | #include "setup.h" |
| 70 | |
| 71 | #ifdef DEBUG |
| 72 | #define DBG(fmt...) udbg_printf(fmt) |
| 73 | #else |
| 74 | #define DBG(fmt...) |
| 75 | #endif |
| 76 | |
| 77 | int spinning_secondaries; |
| 78 | u64 ppc64_pft_size; |
| 79 | |
| 80 | struct ppc64_caches ppc64_caches = { |
| 81 | .l1d = { |
| 82 | .block_size = 0x40, |
| 83 | .log_block_size = 6, |
| 84 | }, |
| 85 | .l1i = { |
| 86 | .block_size = 0x40, |
| 87 | .log_block_size = 6 |
| 88 | }, |
| 89 | }; |
| 90 | EXPORT_SYMBOL_GPL(ppc64_caches); |
| 91 | |
| 92 | #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) |
| 93 | void __init setup_tlb_core_data(void) |
| 94 | { |
| 95 | int cpu; |
| 96 | |
| 97 | BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); |
| 98 | |
| 99 | for_each_possible_cpu(cpu) { |
| 100 | int first = cpu_first_thread_sibling(cpu); |
| 101 | |
| 102 | /* |
| 103 | * If we boot via kdump on a non-primary thread, |
| 104 | * make sure we point at the thread that actually |
| 105 | * set up this TLB. |
| 106 | */ |
| 107 | if (cpu_first_thread_sibling(boot_cpuid) == first) |
| 108 | first = boot_cpuid; |
| 109 | |
| 110 | paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; |
| 111 | |
| 112 | /* |
| 113 | * If we have threads, we need either tlbsrx. |
| 114 | * or e6500 tablewalk mode, or else TLB handlers |
| 115 | * will be racy and could produce duplicate entries. |
| 116 | * Should we panic instead? |
| 117 | */ |
| 118 | WARN_ONCE(smt_enabled_at_boot >= 2 && |
| 119 | !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && |
| 120 | book3e_htw_mode != PPC_HTW_E6500, |
| 121 | "%s: unsupported MMU configuration\n", __func__); |
| 122 | } |
| 123 | } |
| 124 | #endif |
| 125 | |
| 126 | #ifdef CONFIG_SMP |
| 127 | |
| 128 | static char *smt_enabled_cmdline; |
| 129 | |
| 130 | /* Look for ibm,smt-enabled OF option */ |
| 131 | void __init check_smt_enabled(void) |
| 132 | { |
| 133 | struct device_node *dn; |
| 134 | const char *smt_option; |
| 135 | |
| 136 | /* Default to enabling all threads */ |
| 137 | smt_enabled_at_boot = threads_per_core; |
| 138 | |
| 139 | /* Allow the command line to overrule the OF option */ |
| 140 | if (smt_enabled_cmdline) { |
| 141 | if (!strcmp(smt_enabled_cmdline, "on")) |
| 142 | smt_enabled_at_boot = threads_per_core; |
| 143 | else if (!strcmp(smt_enabled_cmdline, "off")) |
| 144 | smt_enabled_at_boot = 0; |
| 145 | else { |
| 146 | int smt; |
| 147 | int rc; |
| 148 | |
| 149 | rc = kstrtoint(smt_enabled_cmdline, 10, &smt); |
| 150 | if (!rc) |
| 151 | smt_enabled_at_boot = |
| 152 | min(threads_per_core, smt); |
| 153 | } |
| 154 | } else { |
| 155 | dn = of_find_node_by_path("/options"); |
| 156 | if (dn) { |
| 157 | smt_option = of_get_property(dn, "ibm,smt-enabled", |
| 158 | NULL); |
| 159 | |
| 160 | if (smt_option) { |
| 161 | if (!strcmp(smt_option, "on")) |
| 162 | smt_enabled_at_boot = threads_per_core; |
| 163 | else if (!strcmp(smt_option, "off")) |
| 164 | smt_enabled_at_boot = 0; |
| 165 | } |
| 166 | |
| 167 | of_node_put(dn); |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | /* Look for smt-enabled= cmdline option */ |
| 173 | static int __init early_smt_enabled(char *p) |
| 174 | { |
| 175 | smt_enabled_cmdline = p; |
| 176 | return 0; |
| 177 | } |
| 178 | early_param("smt-enabled", early_smt_enabled); |
| 179 | |
| 180 | #endif /* CONFIG_SMP */ |
| 181 | |
| 182 | /** Fix up paca fields required for the boot cpu */ |
| 183 | static void __init fixup_boot_paca(void) |
| 184 | { |
| 185 | /* The boot cpu is started */ |
| 186 | get_paca()->cpu_start = 1; |
| 187 | /* Allow percpu accesses to work until we setup percpu data */ |
| 188 | get_paca()->data_offset = 0; |
| 189 | /* Mark interrupts disabled in PACA */ |
| 190 | irq_soft_mask_set(IRQS_DISABLED); |
| 191 | } |
| 192 | |
| 193 | static void __init configure_exceptions(void) |
| 194 | { |
| 195 | /* |
| 196 | * Setup the trampolines from the lowmem exception vectors |
| 197 | * to the kdump kernel when not using a relocatable kernel. |
| 198 | */ |
| 199 | setup_kdump_trampoline(); |
| 200 | |
| 201 | /* Under a PAPR hypervisor, we need hypercalls */ |
| 202 | if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| 203 | /* Enable AIL if possible */ |
| 204 | pseries_enable_reloc_on_exc(); |
| 205 | |
| 206 | /* |
| 207 | * Tell the hypervisor that we want our exceptions to |
| 208 | * be taken in little endian mode. |
| 209 | * |
| 210 | * We don't call this for big endian as our calling convention |
| 211 | * makes us always enter in BE, and the call may fail under |
| 212 | * some circumstances with kdump. |
| 213 | */ |
| 214 | #ifdef __LITTLE_ENDIAN__ |
| 215 | pseries_little_endian_exceptions(); |
| 216 | #endif |
| 217 | } else { |
| 218 | /* Set endian mode using OPAL */ |
| 219 | if (firmware_has_feature(FW_FEATURE_OPAL)) |
| 220 | opal_configure_cores(); |
| 221 | |
| 222 | /* AIL on native is done in cpu_ready_for_interrupts() */ |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | static void cpu_ready_for_interrupts(void) |
| 227 | { |
| 228 | /* |
| 229 | * Enable AIL if supported, and we are in hypervisor mode. This |
| 230 | * is called once for every processor. |
| 231 | * |
| 232 | * If we are not in hypervisor mode the job is done once for |
| 233 | * the whole partition in configure_exceptions(). |
| 234 | */ |
| 235 | if (cpu_has_feature(CPU_FTR_HVMODE) && |
| 236 | cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| 237 | unsigned long lpcr = mfspr(SPRN_LPCR); |
| 238 | mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Set HFSCR:TM based on CPU features: |
| 243 | * In the special case of TM no suspend (P9N DD2.1), Linux is |
| 244 | * told TM is off via the dt-ftrs but told to (partially) use |
| 245 | * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM] |
| 246 | * will be off from dt-ftrs but we need to turn it on for the |
| 247 | * no suspend case. |
| 248 | */ |
| 249 | if (cpu_has_feature(CPU_FTR_HVMODE)) { |
| 250 | if (cpu_has_feature(CPU_FTR_TM_COMP)) |
| 251 | mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM); |
| 252 | else |
| 253 | mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); |
| 254 | } |
| 255 | |
| 256 | /* Set IR and DR in PACA MSR */ |
| 257 | get_paca()->kernel_msr = MSR_KERNEL; |
| 258 | } |
| 259 | |
| 260 | unsigned long spr_default_dscr = 0; |
| 261 | |
| 262 | void __init record_spr_defaults(void) |
| 263 | { |
| 264 | if (early_cpu_has_feature(CPU_FTR_DSCR)) |
| 265 | spr_default_dscr = mfspr(SPRN_DSCR); |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * Early initialization entry point. This is called by head.S |
| 270 | * with MMU translation disabled. We rely on the "feature" of |
| 271 | * the CPU that ignores the top 2 bits of the address in real |
| 272 | * mode so we can access kernel globals normally provided we |
| 273 | * only toy with things in the RMO region. From here, we do |
| 274 | * some early parsing of the device-tree to setup out MEMBLOCK |
| 275 | * data structures, and allocate & initialize the hash table |
| 276 | * and segment tables so we can start running with translation |
| 277 | * enabled. |
| 278 | * |
| 279 | * It is this function which will call the probe() callback of |
| 280 | * the various platform types and copy the matching one to the |
| 281 | * global ppc_md structure. Your platform can eventually do |
| 282 | * some very early initializations from the probe() routine, but |
| 283 | * this is not recommended, be very careful as, for example, the |
| 284 | * device-tree is not accessible via normal means at this point. |
| 285 | */ |
| 286 | |
| 287 | void __init early_setup(unsigned long dt_ptr) |
| 288 | { |
| 289 | static __initdata struct paca_struct boot_paca; |
| 290 | |
| 291 | /* -------- printk is _NOT_ safe to use here ! ------- */ |
| 292 | |
| 293 | /* Try new device tree based feature discovery ... */ |
| 294 | if (!dt_cpu_ftrs_init(__va(dt_ptr))) |
| 295 | /* Otherwise use the old style CPU table */ |
| 296 | identify_cpu(0, mfspr(SPRN_PVR)); |
| 297 | |
| 298 | /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ |
| 299 | initialise_paca(&boot_paca, 0); |
| 300 | setup_paca(&boot_paca); |
| 301 | fixup_boot_paca(); |
| 302 | |
| 303 | /* -------- printk is now safe to use ------- */ |
| 304 | |
| 305 | /* Enable early debugging if any specified (see udbg.h) */ |
| 306 | udbg_early_init(); |
| 307 | |
| 308 | DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); |
| 309 | |
| 310 | /* |
| 311 | * Do early initialization using the flattened device |
| 312 | * tree, such as retrieving the physical memory map or |
| 313 | * calculating/retrieving the hash table size. |
| 314 | */ |
| 315 | early_init_devtree(__va(dt_ptr)); |
| 316 | |
| 317 | /* Now we know the logical id of our boot cpu, setup the paca. */ |
| 318 | if (boot_cpuid != 0) { |
| 319 | /* Poison paca_ptrs[0] again if it's not the boot cpu */ |
| 320 | memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); |
| 321 | } |
| 322 | setup_paca(paca_ptrs[boot_cpuid]); |
| 323 | fixup_boot_paca(); |
| 324 | |
| 325 | /* |
| 326 | * Configure exception handlers. This include setting up trampolines |
| 327 | * if needed, setting exception endian mode, etc... |
| 328 | */ |
| 329 | configure_exceptions(); |
| 330 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 331 | /* |
| 332 | * Configure Kernel Userspace Protection. This needs to happen before |
| 333 | * feature fixups for platforms that implement this using features. |
| 334 | */ |
| 335 | setup_kup(); |
| 336 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 337 | /* Apply all the dynamic patching */ |
| 338 | apply_feature_fixups(); |
| 339 | setup_feature_keys(); |
| 340 | |
| 341 | /* Initialize the hash table or TLB handling */ |
| 342 | early_init_mmu(); |
| 343 | |
| 344 | /* |
| 345 | * After firmware and early platform setup code has set things up, |
| 346 | * we note the SPR values for configurable control/performance |
| 347 | * registers, and use those as initial defaults. |
| 348 | */ |
| 349 | record_spr_defaults(); |
| 350 | |
| 351 | /* |
| 352 | * At this point, we can let interrupts switch to virtual mode |
| 353 | * (the MMU has been setup), so adjust the MSR in the PACA to |
| 354 | * have IR and DR set and enable AIL if it exists |
| 355 | */ |
| 356 | cpu_ready_for_interrupts(); |
| 357 | |
| 358 | /* |
| 359 | * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it |
| 360 | * will only actually get enabled on the boot cpu much later once |
| 361 | * ftrace itself has been initialized. |
| 362 | */ |
| 363 | this_cpu_enable_ftrace(); |
| 364 | |
| 365 | DBG(" <- early_setup()\n"); |
| 366 | |
| 367 | #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX |
| 368 | /* |
| 369 | * This needs to be done *last* (after the above DBG() even) |
| 370 | * |
| 371 | * Right after we return from this function, we turn on the MMU |
| 372 | * which means the real-mode access trick that btext does will |
| 373 | * no longer work, it needs to switch to using a real MMU |
| 374 | * mapping. This call will ensure that it does |
| 375 | */ |
| 376 | btext_map(); |
| 377 | #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ |
| 378 | } |
| 379 | |
| 380 | #ifdef CONFIG_SMP |
| 381 | void early_setup_secondary(void) |
| 382 | { |
| 383 | /* Mark interrupts disabled in PACA */ |
| 384 | irq_soft_mask_set(IRQS_DISABLED); |
| 385 | |
| 386 | /* Initialize the hash table or TLB handling */ |
| 387 | early_init_mmu_secondary(); |
| 388 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 389 | /* Perform any KUP setup that is per-cpu */ |
| 390 | setup_kup(); |
| 391 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 392 | /* |
| 393 | * At this point, we can let interrupts switch to virtual mode |
| 394 | * (the MMU has been setup), so adjust the MSR in the PACA to |
| 395 | * have IR and DR set. |
| 396 | */ |
| 397 | cpu_ready_for_interrupts(); |
| 398 | } |
| 399 | |
| 400 | #endif /* CONFIG_SMP */ |
| 401 | |
| 402 | void panic_smp_self_stop(void) |
| 403 | { |
| 404 | hard_irq_disable(); |
| 405 | spin_begin(); |
| 406 | while (1) |
| 407 | spin_cpu_relax(); |
| 408 | } |
| 409 | |
| 410 | #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) |
| 411 | static bool use_spinloop(void) |
| 412 | { |
| 413 | if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { |
| 414 | /* |
| 415 | * See comments in head_64.S -- not all platforms insert |
| 416 | * secondaries at __secondary_hold and wait at the spin |
| 417 | * loop. |
| 418 | */ |
| 419 | if (firmware_has_feature(FW_FEATURE_OPAL)) |
| 420 | return false; |
| 421 | return true; |
| 422 | } |
| 423 | |
| 424 | /* |
| 425 | * When book3e boots from kexec, the ePAPR spin table does |
| 426 | * not get used. |
| 427 | */ |
| 428 | return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); |
| 429 | } |
| 430 | |
| 431 | void smp_release_cpus(void) |
| 432 | { |
| 433 | unsigned long *ptr; |
| 434 | int i; |
| 435 | |
| 436 | if (!use_spinloop()) |
| 437 | return; |
| 438 | |
| 439 | DBG(" -> smp_release_cpus()\n"); |
| 440 | |
| 441 | /* All secondary cpus are spinning on a common spinloop, release them |
| 442 | * all now so they can start to spin on their individual paca |
| 443 | * spinloops. For non SMP kernels, the secondary cpus never get out |
| 444 | * of the common spinloop. |
| 445 | */ |
| 446 | |
| 447 | ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop |
| 448 | - PHYSICAL_START); |
| 449 | *ptr = ppc_function_entry(generic_secondary_smp_init); |
| 450 | |
| 451 | /* And wait a bit for them to catch up */ |
| 452 | for (i = 0; i < 100000; i++) { |
| 453 | mb(); |
| 454 | HMT_low(); |
| 455 | if (spinning_secondaries == 0) |
| 456 | break; |
| 457 | udelay(1); |
| 458 | } |
| 459 | DBG("spinning_secondaries = %d\n", spinning_secondaries); |
| 460 | |
| 461 | DBG(" <- smp_release_cpus()\n"); |
| 462 | } |
| 463 | #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ |
| 464 | |
| 465 | /* |
| 466 | * Initialize some remaining members of the ppc64_caches and systemcfg |
| 467 | * structures |
| 468 | * (at least until we get rid of them completely). This is mostly some |
| 469 | * cache informations about the CPU that will be used by cache flush |
| 470 | * routines and/or provided to userland |
| 471 | */ |
| 472 | |
| 473 | static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, |
| 474 | u32 bsize, u32 sets) |
| 475 | { |
| 476 | info->size = size; |
| 477 | info->sets = sets; |
| 478 | info->line_size = lsize; |
| 479 | info->block_size = bsize; |
| 480 | info->log_block_size = __ilog2(bsize); |
| 481 | if (bsize) |
| 482 | info->blocks_per_page = PAGE_SIZE / bsize; |
| 483 | else |
| 484 | info->blocks_per_page = 0; |
| 485 | |
| 486 | if (sets == 0) |
| 487 | info->assoc = 0xffff; |
| 488 | else |
| 489 | info->assoc = size / (sets * lsize); |
| 490 | } |
| 491 | |
| 492 | static bool __init parse_cache_info(struct device_node *np, |
| 493 | bool icache, |
| 494 | struct ppc_cache_info *info) |
| 495 | { |
| 496 | static const char *ipropnames[] __initdata = { |
| 497 | "i-cache-size", |
| 498 | "i-cache-sets", |
| 499 | "i-cache-block-size", |
| 500 | "i-cache-line-size", |
| 501 | }; |
| 502 | static const char *dpropnames[] __initdata = { |
| 503 | "d-cache-size", |
| 504 | "d-cache-sets", |
| 505 | "d-cache-block-size", |
| 506 | "d-cache-line-size", |
| 507 | }; |
| 508 | const char **propnames = icache ? ipropnames : dpropnames; |
| 509 | const __be32 *sizep, *lsizep, *bsizep, *setsp; |
| 510 | u32 size, lsize, bsize, sets; |
| 511 | bool success = true; |
| 512 | |
| 513 | size = 0; |
| 514 | sets = -1u; |
| 515 | lsize = bsize = cur_cpu_spec->dcache_bsize; |
| 516 | sizep = of_get_property(np, propnames[0], NULL); |
| 517 | if (sizep != NULL) |
| 518 | size = be32_to_cpu(*sizep); |
| 519 | setsp = of_get_property(np, propnames[1], NULL); |
| 520 | if (setsp != NULL) |
| 521 | sets = be32_to_cpu(*setsp); |
| 522 | bsizep = of_get_property(np, propnames[2], NULL); |
| 523 | lsizep = of_get_property(np, propnames[3], NULL); |
| 524 | if (bsizep == NULL) |
| 525 | bsizep = lsizep; |
| 526 | if (lsizep != NULL) |
| 527 | lsize = be32_to_cpu(*lsizep); |
| 528 | if (bsizep != NULL) |
| 529 | bsize = be32_to_cpu(*bsizep); |
| 530 | if (sizep == NULL || bsizep == NULL || lsizep == NULL) |
| 531 | success = false; |
| 532 | |
| 533 | /* |
| 534 | * OF is weird .. it represents fully associative caches |
| 535 | * as "1 way" which doesn't make much sense and doesn't |
| 536 | * leave room for direct mapped. We'll assume that 0 |
| 537 | * in OF means direct mapped for that reason. |
| 538 | */ |
| 539 | if (sets == 1) |
| 540 | sets = 0; |
| 541 | else if (sets == 0) |
| 542 | sets = 1; |
| 543 | |
| 544 | init_cache_info(info, size, lsize, bsize, sets); |
| 545 | |
| 546 | return success; |
| 547 | } |
| 548 | |
| 549 | void __init initialize_cache_info(void) |
| 550 | { |
| 551 | struct device_node *cpu = NULL, *l2, *l3 = NULL; |
| 552 | u32 pvr; |
| 553 | |
| 554 | DBG(" -> initialize_cache_info()\n"); |
| 555 | |
| 556 | /* |
| 557 | * All shipping POWER8 machines have a firmware bug that |
| 558 | * puts incorrect information in the device-tree. This will |
| 559 | * be (hopefully) fixed for future chips but for now hard |
| 560 | * code the values if we are running on one of these |
| 561 | */ |
| 562 | pvr = PVR_VER(mfspr(SPRN_PVR)); |
| 563 | if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || |
| 564 | pvr == PVR_POWER8NVL) { |
| 565 | /* size lsize blk sets */ |
| 566 | init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); |
| 567 | init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); |
| 568 | init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); |
| 569 | init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); |
| 570 | } else |
| 571 | cpu = of_find_node_by_type(NULL, "cpu"); |
| 572 | |
| 573 | /* |
| 574 | * We're assuming *all* of the CPUs have the same |
| 575 | * d-cache and i-cache sizes... -Peter |
| 576 | */ |
| 577 | if (cpu) { |
| 578 | if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) |
| 579 | DBG("Argh, can't find dcache properties !\n"); |
| 580 | |
| 581 | if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) |
| 582 | DBG("Argh, can't find icache properties !\n"); |
| 583 | |
| 584 | /* |
| 585 | * Try to find the L2 and L3 if any. Assume they are |
| 586 | * unified and use the D-side properties. |
| 587 | */ |
| 588 | l2 = of_find_next_cache_node(cpu); |
| 589 | of_node_put(cpu); |
| 590 | if (l2) { |
| 591 | parse_cache_info(l2, false, &ppc64_caches.l2); |
| 592 | l3 = of_find_next_cache_node(l2); |
| 593 | of_node_put(l2); |
| 594 | } |
| 595 | if (l3) { |
| 596 | parse_cache_info(l3, false, &ppc64_caches.l3); |
| 597 | of_node_put(l3); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | /* For use by binfmt_elf */ |
| 602 | dcache_bsize = ppc64_caches.l1d.block_size; |
| 603 | icache_bsize = ppc64_caches.l1i.block_size; |
| 604 | |
| 605 | cur_cpu_spec->dcache_bsize = dcache_bsize; |
| 606 | cur_cpu_spec->icache_bsize = icache_bsize; |
| 607 | |
| 608 | DBG(" <- initialize_cache_info()\n"); |
| 609 | } |
| 610 | |
| 611 | /* |
| 612 | * This returns the limit below which memory accesses to the linear |
| 613 | * mapping are guarnateed not to cause an architectural exception (e.g., |
| 614 | * TLB or SLB miss fault). |
| 615 | * |
| 616 | * This is used to allocate PACAs and various interrupt stacks that |
| 617 | * that are accessed early in interrupt handlers that must not cause |
| 618 | * re-entrant interrupts. |
| 619 | */ |
| 620 | __init u64 ppc64_bolted_size(void) |
| 621 | { |
| 622 | #ifdef CONFIG_PPC_BOOK3E |
| 623 | /* Freescale BookE bolts the entire linear mapping */ |
| 624 | /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ |
| 625 | if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) |
| 626 | return linear_map_top; |
| 627 | /* Other BookE, we assume the first GB is bolted */ |
| 628 | return 1ul << 30; |
| 629 | #else |
| 630 | /* BookS radix, does not take faults on linear mapping */ |
| 631 | if (early_radix_enabled()) |
| 632 | return ULONG_MAX; |
| 633 | |
| 634 | /* BookS hash, the first segment is bolted */ |
| 635 | if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| 636 | return 1UL << SID_SHIFT_1T; |
| 637 | return 1UL << SID_SHIFT; |
| 638 | #endif |
| 639 | } |
| 640 | |
| 641 | static void *__init alloc_stack(unsigned long limit, int cpu) |
| 642 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 643 | void *ptr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 644 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 645 | BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 646 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 647 | ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE, |
| 648 | MEMBLOCK_LOW_LIMIT, limit, |
| 649 | early_cpu_to_node(cpu)); |
| 650 | if (!ptr) |
| 651 | panic("cannot allocate stacks"); |
| 652 | |
| 653 | return ptr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 654 | } |
| 655 | |
| 656 | void __init irqstack_early_init(void) |
| 657 | { |
| 658 | u64 limit = ppc64_bolted_size(); |
| 659 | unsigned int i; |
| 660 | |
| 661 | /* |
| 662 | * Interrupt stacks must be in the first segment since we |
| 663 | * cannot afford to take SLB misses on them. They are not |
| 664 | * accessed in realmode. |
| 665 | */ |
| 666 | for_each_possible_cpu(i) { |
| 667 | softirq_ctx[i] = alloc_stack(limit, i); |
| 668 | hardirq_ctx[i] = alloc_stack(limit, i); |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | #ifdef CONFIG_PPC_BOOK3E |
| 673 | void __init exc_lvl_early_init(void) |
| 674 | { |
| 675 | unsigned int i; |
| 676 | |
| 677 | for_each_possible_cpu(i) { |
| 678 | void *sp; |
| 679 | |
| 680 | sp = alloc_stack(ULONG_MAX, i); |
| 681 | critirq_ctx[i] = sp; |
| 682 | paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; |
| 683 | |
| 684 | sp = alloc_stack(ULONG_MAX, i); |
| 685 | dbgirq_ctx[i] = sp; |
| 686 | paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; |
| 687 | |
| 688 | sp = alloc_stack(ULONG_MAX, i); |
| 689 | mcheckirq_ctx[i] = sp; |
| 690 | paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; |
| 691 | } |
| 692 | |
| 693 | if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) |
| 694 | patch_exception(0x040, exc_debug_debug_book3e); |
| 695 | } |
| 696 | #endif |
| 697 | |
| 698 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 699 | * Stack space used when we detect a bad kernel stack pointer, and |
| 700 | * early in SMP boots before relocation is enabled. Exclusive emergency |
| 701 | * stack for machine checks. |
| 702 | */ |
| 703 | void __init emergency_stack_init(void) |
| 704 | { |
| 705 | u64 limit; |
| 706 | unsigned int i; |
| 707 | |
| 708 | /* |
| 709 | * Emergency stacks must be under 256MB, we cannot afford to take |
| 710 | * SLB misses on them. The ABI also requires them to be 128-byte |
| 711 | * aligned. |
| 712 | * |
| 713 | * Since we use these as temporary stacks during secondary CPU |
| 714 | * bringup, machine check, system reset, and HMI, we need to get |
| 715 | * at them in real mode. This means they must also be within the RMO |
| 716 | * region. |
| 717 | * |
| 718 | * The IRQ stacks allocated elsewhere in this file are zeroed and |
| 719 | * initialized in kernel/irq.c. These are initialized here in order |
| 720 | * to have emergency stacks available as early as possible. |
| 721 | */ |
| 722 | limit = min(ppc64_bolted_size(), ppc64_rma_size); |
| 723 | |
| 724 | for_each_possible_cpu(i) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 725 | paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 726 | |
| 727 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 728 | /* emergency stack for NMI exception handling. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 729 | paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 730 | |
| 731 | /* emergency stack for machine check exception handling. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 732 | paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 733 | #endif |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | #ifdef CONFIG_SMP |
| 738 | #define PCPU_DYN_SIZE () |
| 739 | |
| 740 | static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) |
| 741 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 742 | return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS), |
| 743 | MEMBLOCK_ALLOC_ACCESSIBLE, |
| 744 | early_cpu_to_node(cpu)); |
| 745 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 746 | } |
| 747 | |
| 748 | static void __init pcpu_fc_free(void *ptr, size_t size) |
| 749 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 750 | memblock_free(__pa(ptr), size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 751 | } |
| 752 | |
| 753 | static int pcpu_cpu_distance(unsigned int from, unsigned int to) |
| 754 | { |
| 755 | if (early_cpu_to_node(from) == early_cpu_to_node(to)) |
| 756 | return LOCAL_DISTANCE; |
| 757 | else |
| 758 | return REMOTE_DISTANCE; |
| 759 | } |
| 760 | |
| 761 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
| 762 | EXPORT_SYMBOL(__per_cpu_offset); |
| 763 | |
| 764 | void __init setup_per_cpu_areas(void) |
| 765 | { |
| 766 | const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; |
| 767 | size_t atom_size; |
| 768 | unsigned long delta; |
| 769 | unsigned int cpu; |
| 770 | int rc; |
| 771 | |
| 772 | /* |
| 773 | * Linear mapping is one of 4K, 1M and 16M. For 4K, no need |
| 774 | * to group units. For larger mappings, use 1M atom which |
| 775 | * should be large enough to contain a number of units. |
| 776 | */ |
| 777 | if (mmu_linear_psize == MMU_PAGE_4K) |
| 778 | atom_size = PAGE_SIZE; |
| 779 | else |
| 780 | atom_size = 1 << 20; |
| 781 | |
| 782 | rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, |
| 783 | pcpu_fc_alloc, pcpu_fc_free); |
| 784 | if (rc < 0) |
| 785 | panic("cannot initialize percpu area (err=%d)", rc); |
| 786 | |
| 787 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| 788 | for_each_possible_cpu(cpu) { |
| 789 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
| 790 | paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; |
| 791 | } |
| 792 | } |
| 793 | #endif |
| 794 | |
| 795 | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE |
| 796 | unsigned long memory_block_size_bytes(void) |
| 797 | { |
| 798 | if (ppc_md.memory_block_size) |
| 799 | return ppc_md.memory_block_size(); |
| 800 | |
| 801 | return MIN_MEMORY_BLOCK_SIZE; |
| 802 | } |
| 803 | #endif |
| 804 | |
| 805 | #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) |
| 806 | struct ppc_pci_io ppc_pci_io; |
| 807 | EXPORT_SYMBOL(ppc_pci_io); |
| 808 | #endif |
| 809 | |
| 810 | #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF |
| 811 | u64 hw_nmi_get_sample_period(int watchdog_thresh) |
| 812 | { |
| 813 | return ppc_proc_freq * watchdog_thresh; |
| 814 | } |
| 815 | #endif |
| 816 | |
| 817 | /* |
| 818 | * The perf based hardlockup detector breaks PMU event based branches, so |
| 819 | * disable it by default. Book3S has a soft-nmi hardlockup detector based |
| 820 | * on the decrementer interrupt, so it does not suffer from this problem. |
| 821 | * |
| 822 | * It is likely to get false positives in VM guests, so disable it there |
| 823 | * by default too. |
| 824 | */ |
| 825 | static int __init disable_hardlockup_detector(void) |
| 826 | { |
| 827 | #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF |
| 828 | hardlockup_detector_disable(); |
| 829 | #else |
| 830 | if (firmware_has_feature(FW_FEATURE_LPAR)) |
| 831 | hardlockup_detector_disable(); |
| 832 | #endif |
| 833 | |
| 834 | return 0; |
| 835 | } |
| 836 | early_initcall(disable_hardlockup_detector); |
| 837 | |
| 838 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 839 | static enum l1d_flush_type enabled_flush_types; |
| 840 | static void *l1d_flush_fallback_area; |
| 841 | static bool no_rfi_flush; |
| 842 | bool rfi_flush; |
| 843 | |
| 844 | static int __init handle_no_rfi_flush(char *p) |
| 845 | { |
| 846 | pr_info("rfi-flush: disabled on command line."); |
| 847 | no_rfi_flush = true; |
| 848 | return 0; |
| 849 | } |
| 850 | early_param("no_rfi_flush", handle_no_rfi_flush); |
| 851 | |
| 852 | /* |
| 853 | * The RFI flush is not KPTI, but because users will see doco that says to use |
| 854 | * nopti we hijack that option here to also disable the RFI flush. |
| 855 | */ |
| 856 | static int __init handle_no_pti(char *p) |
| 857 | { |
| 858 | pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); |
| 859 | handle_no_rfi_flush(NULL); |
| 860 | return 0; |
| 861 | } |
| 862 | early_param("nopti", handle_no_pti); |
| 863 | |
| 864 | static void do_nothing(void *unused) |
| 865 | { |
| 866 | /* |
| 867 | * We don't need to do the flush explicitly, just enter+exit kernel is |
| 868 | * sufficient, the RFI exit handlers will do the right thing. |
| 869 | */ |
| 870 | } |
| 871 | |
| 872 | void rfi_flush_enable(bool enable) |
| 873 | { |
| 874 | if (enable) { |
| 875 | do_rfi_flush_fixups(enabled_flush_types); |
| 876 | on_each_cpu(do_nothing, NULL, 1); |
| 877 | } else |
| 878 | do_rfi_flush_fixups(L1D_FLUSH_NONE); |
| 879 | |
| 880 | rfi_flush = enable; |
| 881 | } |
| 882 | |
| 883 | static void __ref init_fallback_flush(void) |
| 884 | { |
| 885 | u64 l1d_size, limit; |
| 886 | int cpu; |
| 887 | |
| 888 | /* Only allocate the fallback flush area once (at boot time). */ |
| 889 | if (l1d_flush_fallback_area) |
| 890 | return; |
| 891 | |
| 892 | l1d_size = ppc64_caches.l1d.size; |
| 893 | |
| 894 | /* |
| 895 | * If there is no d-cache-size property in the device tree, l1d_size |
| 896 | * could be zero. That leads to the loop in the asm wrapping around to |
| 897 | * 2^64-1, and then walking off the end of the fallback area and |
| 898 | * eventually causing a page fault which is fatal. Just default to |
| 899 | * something vaguely sane. |
| 900 | */ |
| 901 | if (!l1d_size) |
| 902 | l1d_size = (64 * 1024); |
| 903 | |
| 904 | limit = min(ppc64_bolted_size(), ppc64_rma_size); |
| 905 | |
| 906 | /* |
| 907 | * Align to L1d size, and size it at 2x L1d size, to catch possible |
| 908 | * hardware prefetch runoff. We don't have a recipe for load patterns to |
| 909 | * reliably avoid the prefetcher. |
| 910 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 911 | l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2, |
| 912 | l1d_size, MEMBLOCK_LOW_LIMIT, |
| 913 | limit, NUMA_NO_NODE); |
| 914 | if (!l1d_flush_fallback_area) |
| 915 | panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n", |
| 916 | __func__, l1d_size * 2, l1d_size, &limit); |
| 917 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 918 | |
| 919 | for_each_possible_cpu(cpu) { |
| 920 | struct paca_struct *paca = paca_ptrs[cpu]; |
| 921 | paca->rfi_flush_fallback_area = l1d_flush_fallback_area; |
| 922 | paca->l1d_flush_size = l1d_size; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | void setup_rfi_flush(enum l1d_flush_type types, bool enable) |
| 927 | { |
| 928 | if (types & L1D_FLUSH_FALLBACK) { |
| 929 | pr_info("rfi-flush: fallback displacement flush available\n"); |
| 930 | init_fallback_flush(); |
| 931 | } |
| 932 | |
| 933 | if (types & L1D_FLUSH_ORI) |
| 934 | pr_info("rfi-flush: ori type flush available\n"); |
| 935 | |
| 936 | if (types & L1D_FLUSH_MTTRIG) |
| 937 | pr_info("rfi-flush: mttrig type flush available\n"); |
| 938 | |
| 939 | enabled_flush_types = types; |
| 940 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 941 | if (!no_rfi_flush && !cpu_mitigations_off()) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 942 | rfi_flush_enable(enable); |
| 943 | } |
| 944 | |
| 945 | #ifdef CONFIG_DEBUG_FS |
| 946 | static int rfi_flush_set(void *data, u64 val) |
| 947 | { |
| 948 | bool enable; |
| 949 | |
| 950 | if (val == 1) |
| 951 | enable = true; |
| 952 | else if (val == 0) |
| 953 | enable = false; |
| 954 | else |
| 955 | return -EINVAL; |
| 956 | |
| 957 | /* Only do anything if we're changing state */ |
| 958 | if (enable != rfi_flush) |
| 959 | rfi_flush_enable(enable); |
| 960 | |
| 961 | return 0; |
| 962 | } |
| 963 | |
| 964 | static int rfi_flush_get(void *data, u64 *val) |
| 965 | { |
| 966 | *val = rfi_flush ? 1 : 0; |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); |
| 971 | |
| 972 | static __init int rfi_flush_debugfs_init(void) |
| 973 | { |
| 974 | debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); |
| 975 | return 0; |
| 976 | } |
| 977 | device_initcall(rfi_flush_debugfs_init); |
| 978 | #endif |
| 979 | #endif /* CONFIG_PPC_BOOK3S_64 */ |