David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* IEEE754 floating point arithmetic |
| 3 | * single precision |
| 4 | */ |
| 5 | /* |
| 6 | * MIPS floating point support |
| 7 | * Copyright (C) 1994-2000 Algorithmics Ltd. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 8 | */ |
| 9 | |
| 10 | #include <linux/compiler.h> |
| 11 | |
| 12 | #include "ieee754sp.h" |
| 13 | |
| 14 | int ieee754sp_class(union ieee754sp x) |
| 15 | { |
| 16 | COMPXSP; |
| 17 | EXPLODEXSP; |
| 18 | return xc; |
| 19 | } |
| 20 | |
| 21 | static inline int ieee754sp_isnan(union ieee754sp x) |
| 22 | { |
| 23 | return ieee754_class_nan(ieee754sp_class(x)); |
| 24 | } |
| 25 | |
| 26 | static inline int ieee754sp_issnan(union ieee754sp x) |
| 27 | { |
| 28 | int qbit; |
| 29 | |
| 30 | assert(ieee754sp_isnan(x)); |
| 31 | qbit = (SPMANT(x) & SP_MBIT(SP_FBITS - 1)) == SP_MBIT(SP_FBITS - 1); |
| 32 | return ieee754_csr.nan2008 ^ qbit; |
| 33 | } |
| 34 | |
| 35 | |
| 36 | /* |
| 37 | * Raise the Invalid Operation IEEE 754 exception |
| 38 | * and convert the signaling NaN supplied to a quiet NaN. |
| 39 | */ |
| 40 | union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r) |
| 41 | { |
| 42 | assert(ieee754sp_issnan(r)); |
| 43 | |
| 44 | ieee754_setcx(IEEE754_INVALID_OPERATION); |
| 45 | if (ieee754_csr.nan2008) { |
| 46 | SPMANT(r) |= SP_MBIT(SP_FBITS - 1); |
| 47 | } else { |
| 48 | SPMANT(r) &= ~SP_MBIT(SP_FBITS - 1); |
| 49 | if (!ieee754sp_isnan(r)) |
| 50 | SPMANT(r) |= SP_MBIT(SP_FBITS - 2); |
| 51 | } |
| 52 | |
| 53 | return r; |
| 54 | } |
| 55 | |
| 56 | static unsigned int ieee754sp_get_rounding(int sn, unsigned int xm) |
| 57 | { |
| 58 | /* inexact must round of 3 bits |
| 59 | */ |
| 60 | if (xm & (SP_MBIT(3) - 1)) { |
| 61 | switch (ieee754_csr.rm) { |
| 62 | case FPU_CSR_RZ: |
| 63 | break; |
| 64 | case FPU_CSR_RN: |
| 65 | xm += 0x3 + ((xm >> 3) & 1); |
| 66 | /* xm += (xm&0x8)?0x4:0x3 */ |
| 67 | break; |
| 68 | case FPU_CSR_RU: /* toward +Infinity */ |
| 69 | if (!sn) /* ?? */ |
| 70 | xm += 0x8; |
| 71 | break; |
| 72 | case FPU_CSR_RD: /* toward -Infinity */ |
| 73 | if (sn) /* ?? */ |
| 74 | xm += 0x8; |
| 75 | break; |
| 76 | } |
| 77 | } |
| 78 | return xm; |
| 79 | } |
| 80 | |
| 81 | |
| 82 | /* generate a normal/denormal number with over,under handling |
| 83 | * sn is sign |
| 84 | * xe is an unbiased exponent |
| 85 | * xm is 3bit extended precision value. |
| 86 | */ |
| 87 | union ieee754sp ieee754sp_format(int sn, int xe, unsigned int xm) |
| 88 | { |
| 89 | assert(xm); /* we don't gen exact zeros (probably should) */ |
| 90 | |
| 91 | assert((xm >> (SP_FBITS + 1 + 3)) == 0); /* no excess */ |
| 92 | assert(xm & (SP_HIDDEN_BIT << 3)); |
| 93 | |
| 94 | if (xe < SP_EMIN) { |
| 95 | /* strip lower bits */ |
| 96 | int es = SP_EMIN - xe; |
| 97 | |
| 98 | if (ieee754_csr.nod) { |
| 99 | ieee754_setcx(IEEE754_UNDERFLOW); |
| 100 | ieee754_setcx(IEEE754_INEXACT); |
| 101 | |
| 102 | switch(ieee754_csr.rm) { |
| 103 | case FPU_CSR_RN: |
| 104 | case FPU_CSR_RZ: |
| 105 | return ieee754sp_zero(sn); |
| 106 | case FPU_CSR_RU: /* toward +Infinity */ |
| 107 | if (sn == 0) |
| 108 | return ieee754sp_min(0); |
| 109 | else |
| 110 | return ieee754sp_zero(1); |
| 111 | case FPU_CSR_RD: /* toward -Infinity */ |
| 112 | if (sn == 0) |
| 113 | return ieee754sp_zero(0); |
| 114 | else |
| 115 | return ieee754sp_min(1); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | if (xe == SP_EMIN - 1 && |
| 120 | ieee754sp_get_rounding(sn, xm) >> (SP_FBITS + 1 + 3)) |
| 121 | { |
| 122 | /* Not tiny after rounding */ |
| 123 | ieee754_setcx(IEEE754_INEXACT); |
| 124 | xm = ieee754sp_get_rounding(sn, xm); |
| 125 | xm >>= 1; |
| 126 | /* Clear grs bits */ |
| 127 | xm &= ~(SP_MBIT(3) - 1); |
| 128 | xe++; |
| 129 | } else { |
| 130 | /* sticky right shift es bits |
| 131 | */ |
| 132 | xm = XSPSRS(xm, es); |
| 133 | xe += es; |
| 134 | assert((xm & (SP_HIDDEN_BIT << 3)) == 0); |
| 135 | assert(xe == SP_EMIN); |
| 136 | } |
| 137 | } |
| 138 | if (xm & (SP_MBIT(3) - 1)) { |
| 139 | ieee754_setcx(IEEE754_INEXACT); |
| 140 | if ((xm & (SP_HIDDEN_BIT << 3)) == 0) { |
| 141 | ieee754_setcx(IEEE754_UNDERFLOW); |
| 142 | } |
| 143 | |
| 144 | /* inexact must round of 3 bits |
| 145 | */ |
| 146 | xm = ieee754sp_get_rounding(sn, xm); |
| 147 | /* adjust exponent for rounding add overflowing |
| 148 | */ |
| 149 | if (xm >> (SP_FBITS + 1 + 3)) { |
| 150 | /* add causes mantissa overflow */ |
| 151 | xm >>= 1; |
| 152 | xe++; |
| 153 | } |
| 154 | } |
| 155 | /* strip grs bits */ |
| 156 | xm >>= 3; |
| 157 | |
| 158 | assert((xm >> (SP_FBITS + 1)) == 0); /* no excess */ |
| 159 | assert(xe >= SP_EMIN); |
| 160 | |
| 161 | if (xe > SP_EMAX) { |
| 162 | ieee754_setcx(IEEE754_OVERFLOW); |
| 163 | ieee754_setcx(IEEE754_INEXACT); |
| 164 | /* -O can be table indexed by (rm,sn) */ |
| 165 | switch (ieee754_csr.rm) { |
| 166 | case FPU_CSR_RN: |
| 167 | return ieee754sp_inf(sn); |
| 168 | case FPU_CSR_RZ: |
| 169 | return ieee754sp_max(sn); |
| 170 | case FPU_CSR_RU: /* toward +Infinity */ |
| 171 | if (sn == 0) |
| 172 | return ieee754sp_inf(0); |
| 173 | else |
| 174 | return ieee754sp_max(1); |
| 175 | case FPU_CSR_RD: /* toward -Infinity */ |
| 176 | if (sn == 0) |
| 177 | return ieee754sp_max(0); |
| 178 | else |
| 179 | return ieee754sp_inf(1); |
| 180 | } |
| 181 | } |
| 182 | /* gen norm/denorm/zero */ |
| 183 | |
| 184 | if ((xm & SP_HIDDEN_BIT) == 0) { |
| 185 | /* we underflow (tiny/zero) */ |
| 186 | assert(xe == SP_EMIN); |
| 187 | if (ieee754_csr.mx & IEEE754_UNDERFLOW) |
| 188 | ieee754_setcx(IEEE754_UNDERFLOW); |
| 189 | return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm); |
| 190 | } else { |
| 191 | assert((xm >> (SP_FBITS + 1)) == 0); /* no excess */ |
| 192 | assert(xm & SP_HIDDEN_BIT); |
| 193 | |
| 194 | return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT); |
| 195 | } |
| 196 | } |