Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Initialize MMU support. |
| 4 | * |
| 5 | * Copyright (C) 1998-2003 Hewlett-Packard Co |
| 6 | * David Mosberger-Tang <davidm@hpl.hp.com> |
| 7 | */ |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/init.h> |
| 10 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 11 | #include <linux/dma-noncoherent.h> |
| 12 | #include <linux/dmar.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 13 | #include <linux/efi.h> |
| 14 | #include <linux/elf.h> |
| 15 | #include <linux/memblock.h> |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/sched/signal.h> |
| 18 | #include <linux/mmzone.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/personality.h> |
| 21 | #include <linux/reboot.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/swap.h> |
| 24 | #include <linux/proc_fs.h> |
| 25 | #include <linux/bitops.h> |
| 26 | #include <linux/kexec.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 27 | #include <linux/swiotlb.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 28 | |
| 29 | #include <asm/dma.h> |
| 30 | #include <asm/io.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 31 | #include <asm/numa.h> |
| 32 | #include <asm/patch.h> |
| 33 | #include <asm/pgalloc.h> |
| 34 | #include <asm/sal.h> |
| 35 | #include <asm/sections.h> |
| 36 | #include <asm/tlb.h> |
| 37 | #include <linux/uaccess.h> |
| 38 | #include <asm/unistd.h> |
| 39 | #include <asm/mca.h> |
| 40 | |
| 41 | extern void ia64_tlb_init (void); |
| 42 | |
| 43 | unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; |
| 44 | |
| 45 | #ifdef CONFIG_VIRTUAL_MEM_MAP |
| 46 | unsigned long VMALLOC_END = VMALLOC_END_INIT; |
| 47 | EXPORT_SYMBOL(VMALLOC_END); |
| 48 | struct page *vmem_map; |
| 49 | EXPORT_SYMBOL(vmem_map); |
| 50 | #endif |
| 51 | |
| 52 | struct page *zero_page_memmap_ptr; /* map entry for zero page */ |
| 53 | EXPORT_SYMBOL(zero_page_memmap_ptr); |
| 54 | |
| 55 | void |
| 56 | __ia64_sync_icache_dcache (pte_t pte) |
| 57 | { |
| 58 | unsigned long addr; |
| 59 | struct page *page; |
| 60 | |
| 61 | page = pte_page(pte); |
| 62 | addr = (unsigned long) page_address(page); |
| 63 | |
| 64 | if (test_bit(PG_arch_1, &page->flags)) |
| 65 | return; /* i-cache is already coherent with d-cache */ |
| 66 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 67 | flush_icache_range(addr, addr + page_size(page)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 68 | set_bit(PG_arch_1, &page->flags); /* mark page as clean */ |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * Since DMA is i-cache coherent, any (complete) pages that were written via |
| 73 | * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to |
| 74 | * flush them when they get mapped into an executable vm-area. |
| 75 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 76 | void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, |
| 77 | size_t size, enum dma_data_direction dir) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 78 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 79 | unsigned long pfn = PHYS_PFN(paddr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 80 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 81 | do { |
| 82 | set_bit(PG_arch_1, &pfn_to_page(pfn)->flags); |
| 83 | } while (++pfn <= PHYS_PFN(paddr + size - 1)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 84 | } |
| 85 | |
| 86 | inline void |
| 87 | ia64_set_rbs_bot (void) |
| 88 | { |
| 89 | unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; |
| 90 | |
| 91 | if (stack_size > MAX_USER_STACK_SIZE) |
| 92 | stack_size = MAX_USER_STACK_SIZE; |
| 93 | current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * This performs some platform-dependent address space initialization. |
| 98 | * On IA-64, we want to setup the VM area for the register backing |
| 99 | * store (which grows upwards) and install the gateway page which is |
| 100 | * used for signal trampolines, etc. |
| 101 | */ |
| 102 | void |
| 103 | ia64_init_addr_space (void) |
| 104 | { |
| 105 | struct vm_area_struct *vma; |
| 106 | |
| 107 | ia64_set_rbs_bot(); |
| 108 | |
| 109 | /* |
| 110 | * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore |
| 111 | * the problem. When the process attempts to write to the register backing store |
| 112 | * for the first time, it will get a SEGFAULT in this case. |
| 113 | */ |
| 114 | vma = vm_area_alloc(current->mm); |
| 115 | if (vma) { |
| 116 | vma_set_anonymous(vma); |
| 117 | vma->vm_start = current->thread.rbs_bot & PAGE_MASK; |
| 118 | vma->vm_end = vma->vm_start + PAGE_SIZE; |
| 119 | vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; |
| 120 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
| 121 | down_write(¤t->mm->mmap_sem); |
| 122 | if (insert_vm_struct(current->mm, vma)) { |
| 123 | up_write(¤t->mm->mmap_sem); |
| 124 | vm_area_free(vma); |
| 125 | return; |
| 126 | } |
| 127 | up_write(¤t->mm->mmap_sem); |
| 128 | } |
| 129 | |
| 130 | /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ |
| 131 | if (!(current->personality & MMAP_PAGE_ZERO)) { |
| 132 | vma = vm_area_alloc(current->mm); |
| 133 | if (vma) { |
| 134 | vma_set_anonymous(vma); |
| 135 | vma->vm_end = PAGE_SIZE; |
| 136 | vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); |
| 137 | vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | |
| 138 | VM_DONTEXPAND | VM_DONTDUMP; |
| 139 | down_write(¤t->mm->mmap_sem); |
| 140 | if (insert_vm_struct(current->mm, vma)) { |
| 141 | up_write(¤t->mm->mmap_sem); |
| 142 | vm_area_free(vma); |
| 143 | return; |
| 144 | } |
| 145 | up_write(¤t->mm->mmap_sem); |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | void |
| 151 | free_initmem (void) |
| 152 | { |
| 153 | free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end), |
| 154 | -1, "unused kernel"); |
| 155 | } |
| 156 | |
| 157 | void __init |
| 158 | free_initrd_mem (unsigned long start, unsigned long end) |
| 159 | { |
| 160 | /* |
| 161 | * EFI uses 4KB pages while the kernel can use 4KB or bigger. |
| 162 | * Thus EFI and the kernel may have different page sizes. It is |
| 163 | * therefore possible to have the initrd share the same page as |
| 164 | * the end of the kernel (given current setup). |
| 165 | * |
| 166 | * To avoid freeing/using the wrong page (kernel sized) we: |
| 167 | * - align up the beginning of initrd |
| 168 | * - align down the end of initrd |
| 169 | * |
| 170 | * | | |
| 171 | * |=============| a000 |
| 172 | * | | |
| 173 | * | | |
| 174 | * | | 9000 |
| 175 | * |/////////////| |
| 176 | * |/////////////| |
| 177 | * |=============| 8000 |
| 178 | * |///INITRD////| |
| 179 | * |/////////////| |
| 180 | * |/////////////| 7000 |
| 181 | * | | |
| 182 | * |KKKKKKKKKKKKK| |
| 183 | * |=============| 6000 |
| 184 | * |KKKKKKKKKKKKK| |
| 185 | * |KKKKKKKKKKKKK| |
| 186 | * K=kernel using 8KB pages |
| 187 | * |
| 188 | * In this example, we must free page 8000 ONLY. So we must align up |
| 189 | * initrd_start and keep initrd_end as is. |
| 190 | */ |
| 191 | start = PAGE_ALIGN(start); |
| 192 | end = end & PAGE_MASK; |
| 193 | |
| 194 | if (start < end) |
| 195 | printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); |
| 196 | |
| 197 | for (; start < end; start += PAGE_SIZE) { |
| 198 | if (!virt_addr_valid(start)) |
| 199 | continue; |
| 200 | free_reserved_page(virt_to_page(start)); |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * This installs a clean page in the kernel's page table. |
| 206 | */ |
| 207 | static struct page * __init |
| 208 | put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) |
| 209 | { |
| 210 | pgd_t *pgd; |
| 211 | pud_t *pud; |
| 212 | pmd_t *pmd; |
| 213 | pte_t *pte; |
| 214 | |
| 215 | pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ |
| 216 | |
| 217 | { |
| 218 | pud = pud_alloc(&init_mm, pgd, address); |
| 219 | if (!pud) |
| 220 | goto out; |
| 221 | pmd = pmd_alloc(&init_mm, pud, address); |
| 222 | if (!pmd) |
| 223 | goto out; |
| 224 | pte = pte_alloc_kernel(pmd, address); |
| 225 | if (!pte) |
| 226 | goto out; |
| 227 | if (!pte_none(*pte)) |
| 228 | goto out; |
| 229 | set_pte(pte, mk_pte(page, pgprot)); |
| 230 | } |
| 231 | out: |
| 232 | /* no need for flush_tlb */ |
| 233 | return page; |
| 234 | } |
| 235 | |
| 236 | static void __init |
| 237 | setup_gate (void) |
| 238 | { |
| 239 | struct page *page; |
| 240 | |
| 241 | /* |
| 242 | * Map the gate page twice: once read-only to export the ELF |
| 243 | * headers etc. and once execute-only page to enable |
| 244 | * privilege-promotion via "epc": |
| 245 | */ |
| 246 | page = virt_to_page(ia64_imva(__start_gate_section)); |
| 247 | put_kernel_page(page, GATE_ADDR, PAGE_READONLY); |
| 248 | #ifdef HAVE_BUGGY_SEGREL |
| 249 | page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); |
| 250 | put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); |
| 251 | #else |
| 252 | put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); |
| 253 | /* Fill in the holes (if any) with read-only zero pages: */ |
| 254 | { |
| 255 | unsigned long addr; |
| 256 | |
| 257 | for (addr = GATE_ADDR + PAGE_SIZE; |
| 258 | addr < GATE_ADDR + PERCPU_PAGE_SIZE; |
| 259 | addr += PAGE_SIZE) |
| 260 | { |
| 261 | put_kernel_page(ZERO_PAGE(0), addr, |
| 262 | PAGE_READONLY); |
| 263 | put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, |
| 264 | PAGE_READONLY); |
| 265 | } |
| 266 | } |
| 267 | #endif |
| 268 | ia64_patch_gate(); |
| 269 | } |
| 270 | |
| 271 | static struct vm_area_struct gate_vma; |
| 272 | |
| 273 | static int __init gate_vma_init(void) |
| 274 | { |
| 275 | vma_init(&gate_vma, NULL); |
| 276 | gate_vma.vm_start = FIXADDR_USER_START; |
| 277 | gate_vma.vm_end = FIXADDR_USER_END; |
| 278 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
| 279 | gate_vma.vm_page_prot = __P101; |
| 280 | |
| 281 | return 0; |
| 282 | } |
| 283 | __initcall(gate_vma_init); |
| 284 | |
| 285 | struct vm_area_struct *get_gate_vma(struct mm_struct *mm) |
| 286 | { |
| 287 | return &gate_vma; |
| 288 | } |
| 289 | |
| 290 | int in_gate_area_no_mm(unsigned long addr) |
| 291 | { |
| 292 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) |
| 293 | return 1; |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | int in_gate_area(struct mm_struct *mm, unsigned long addr) |
| 298 | { |
| 299 | return in_gate_area_no_mm(addr); |
| 300 | } |
| 301 | |
| 302 | void ia64_mmu_init(void *my_cpu_data) |
| 303 | { |
| 304 | unsigned long pta, impl_va_bits; |
| 305 | extern void tlb_init(void); |
| 306 | |
| 307 | #ifdef CONFIG_DISABLE_VHPT |
| 308 | # define VHPT_ENABLE_BIT 0 |
| 309 | #else |
| 310 | # define VHPT_ENABLE_BIT 1 |
| 311 | #endif |
| 312 | |
| 313 | /* |
| 314 | * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped |
| 315 | * address space. The IA-64 architecture guarantees that at least 50 bits of |
| 316 | * virtual address space are implemented but if we pick a large enough page size |
| 317 | * (e.g., 64KB), the mapped address space is big enough that it will overlap with |
| 318 | * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, |
| 319 | * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a |
| 320 | * problem in practice. Alternatively, we could truncate the top of the mapped |
| 321 | * address space to not permit mappings that would overlap with the VMLPT. |
| 322 | * --davidm 00/12/06 |
| 323 | */ |
| 324 | # define pte_bits 3 |
| 325 | # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) |
| 326 | /* |
| 327 | * The virtual page table has to cover the entire implemented address space within |
| 328 | * a region even though not all of this space may be mappable. The reason for |
| 329 | * this is that the Access bit and Dirty bit fault handlers perform |
| 330 | * non-speculative accesses to the virtual page table, so the address range of the |
| 331 | * virtual page table itself needs to be covered by virtual page table. |
| 332 | */ |
| 333 | # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) |
| 334 | # define POW2(n) (1ULL << (n)) |
| 335 | |
| 336 | impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); |
| 337 | |
| 338 | if (impl_va_bits < 51 || impl_va_bits > 61) |
| 339 | panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); |
| 340 | /* |
| 341 | * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, |
| 342 | * which must fit into "vmlpt_bits - pte_bits" slots. Second half of |
| 343 | * the test makes sure that our mapped space doesn't overlap the |
| 344 | * unimplemented hole in the middle of the region. |
| 345 | */ |
| 346 | if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || |
| 347 | (mapped_space_bits > impl_va_bits - 1)) |
| 348 | panic("Cannot build a big enough virtual-linear page table" |
| 349 | " to cover mapped address space.\n" |
| 350 | " Try using a smaller page size.\n"); |
| 351 | |
| 352 | |
| 353 | /* place the VMLPT at the end of each page-table mapped region: */ |
| 354 | pta = POW2(61) - POW2(vmlpt_bits); |
| 355 | |
| 356 | /* |
| 357 | * Set the (virtually mapped linear) page table address. Bit |
| 358 | * 8 selects between the short and long format, bits 2-7 the |
| 359 | * size of the table, and bit 0 whether the VHPT walker is |
| 360 | * enabled. |
| 361 | */ |
| 362 | ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); |
| 363 | |
| 364 | ia64_tlb_init(); |
| 365 | |
| 366 | #ifdef CONFIG_HUGETLB_PAGE |
| 367 | ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); |
| 368 | ia64_srlz_d(); |
| 369 | #endif |
| 370 | } |
| 371 | |
| 372 | #ifdef CONFIG_VIRTUAL_MEM_MAP |
| 373 | int vmemmap_find_next_valid_pfn(int node, int i) |
| 374 | { |
| 375 | unsigned long end_address, hole_next_pfn; |
| 376 | unsigned long stop_address; |
| 377 | pg_data_t *pgdat = NODE_DATA(node); |
| 378 | |
| 379 | end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; |
| 380 | end_address = PAGE_ALIGN(end_address); |
| 381 | stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)]; |
| 382 | |
| 383 | do { |
| 384 | pgd_t *pgd; |
| 385 | pud_t *pud; |
| 386 | pmd_t *pmd; |
| 387 | pte_t *pte; |
| 388 | |
| 389 | pgd = pgd_offset_k(end_address); |
| 390 | if (pgd_none(*pgd)) { |
| 391 | end_address += PGDIR_SIZE; |
| 392 | continue; |
| 393 | } |
| 394 | |
| 395 | pud = pud_offset(pgd, end_address); |
| 396 | if (pud_none(*pud)) { |
| 397 | end_address += PUD_SIZE; |
| 398 | continue; |
| 399 | } |
| 400 | |
| 401 | pmd = pmd_offset(pud, end_address); |
| 402 | if (pmd_none(*pmd)) { |
| 403 | end_address += PMD_SIZE; |
| 404 | continue; |
| 405 | } |
| 406 | |
| 407 | pte = pte_offset_kernel(pmd, end_address); |
| 408 | retry_pte: |
| 409 | if (pte_none(*pte)) { |
| 410 | end_address += PAGE_SIZE; |
| 411 | pte++; |
| 412 | if ((end_address < stop_address) && |
| 413 | (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) |
| 414 | goto retry_pte; |
| 415 | continue; |
| 416 | } |
| 417 | /* Found next valid vmem_map page */ |
| 418 | break; |
| 419 | } while (end_address < stop_address); |
| 420 | |
| 421 | end_address = min(end_address, stop_address); |
| 422 | end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; |
| 423 | hole_next_pfn = end_address / sizeof(struct page); |
| 424 | return hole_next_pfn - pgdat->node_start_pfn; |
| 425 | } |
| 426 | |
| 427 | int __init create_mem_map_page_table(u64 start, u64 end, void *arg) |
| 428 | { |
| 429 | unsigned long address, start_page, end_page; |
| 430 | struct page *map_start, *map_end; |
| 431 | int node; |
| 432 | pgd_t *pgd; |
| 433 | pud_t *pud; |
| 434 | pmd_t *pmd; |
| 435 | pte_t *pte; |
| 436 | |
| 437 | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); |
| 438 | map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); |
| 439 | |
| 440 | start_page = (unsigned long) map_start & PAGE_MASK; |
| 441 | end_page = PAGE_ALIGN((unsigned long) map_end); |
| 442 | node = paddr_to_nid(__pa(start)); |
| 443 | |
| 444 | for (address = start_page; address < end_page; address += PAGE_SIZE) { |
| 445 | pgd = pgd_offset_k(address); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 446 | if (pgd_none(*pgd)) { |
| 447 | pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node); |
| 448 | if (!pud) |
| 449 | goto err_alloc; |
| 450 | pgd_populate(&init_mm, pgd, pud); |
| 451 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 452 | pud = pud_offset(pgd, address); |
| 453 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 454 | if (pud_none(*pud)) { |
| 455 | pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node); |
| 456 | if (!pmd) |
| 457 | goto err_alloc; |
| 458 | pud_populate(&init_mm, pud, pmd); |
| 459 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 460 | pmd = pmd_offset(pud, address); |
| 461 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 462 | if (pmd_none(*pmd)) { |
| 463 | pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node); |
| 464 | if (!pte) |
| 465 | goto err_alloc; |
| 466 | pmd_populate_kernel(&init_mm, pmd, pte); |
| 467 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 468 | pte = pte_offset_kernel(pmd, address); |
| 469 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 470 | if (pte_none(*pte)) { |
| 471 | void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, |
| 472 | node); |
| 473 | if (!page) |
| 474 | goto err_alloc; |
| 475 | set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 476 | PAGE_KERNEL)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 477 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 478 | } |
| 479 | return 0; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 480 | |
| 481 | err_alloc: |
| 482 | panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n", |
| 483 | __func__, PAGE_SIZE, PAGE_SIZE, node); |
| 484 | return -ENOMEM; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 485 | } |
| 486 | |
| 487 | struct memmap_init_callback_data { |
| 488 | struct page *start; |
| 489 | struct page *end; |
| 490 | int nid; |
| 491 | unsigned long zone; |
| 492 | }; |
| 493 | |
| 494 | static int __meminit |
| 495 | virtual_memmap_init(u64 start, u64 end, void *arg) |
| 496 | { |
| 497 | struct memmap_init_callback_data *args; |
| 498 | struct page *map_start, *map_end; |
| 499 | |
| 500 | args = (struct memmap_init_callback_data *) arg; |
| 501 | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); |
| 502 | map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); |
| 503 | |
| 504 | if (map_start < args->start) |
| 505 | map_start = args->start; |
| 506 | if (map_end > args->end) |
| 507 | map_end = args->end; |
| 508 | |
| 509 | /* |
| 510 | * We have to initialize "out of bounds" struct page elements that fit completely |
| 511 | * on the same pages that were allocated for the "in bounds" elements because they |
| 512 | * may be referenced later (and found to be "reserved"). |
| 513 | */ |
| 514 | map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); |
| 515 | map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) |
| 516 | / sizeof(struct page)); |
| 517 | |
| 518 | if (map_start < map_end) |
| 519 | memmap_init_zone((unsigned long)(map_end - map_start), |
| 520 | args->nid, args->zone, page_to_pfn(map_start), |
| 521 | MEMMAP_EARLY, NULL); |
| 522 | return 0; |
| 523 | } |
| 524 | |
| 525 | void __meminit |
| 526 | memmap_init (unsigned long size, int nid, unsigned long zone, |
| 527 | unsigned long start_pfn) |
| 528 | { |
| 529 | if (!vmem_map) { |
| 530 | memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, |
| 531 | NULL); |
| 532 | } else { |
| 533 | struct page *start; |
| 534 | struct memmap_init_callback_data args; |
| 535 | |
| 536 | start = pfn_to_page(start_pfn); |
| 537 | args.start = start; |
| 538 | args.end = start + size; |
| 539 | args.nid = nid; |
| 540 | args.zone = zone; |
| 541 | |
| 542 | efi_memmap_walk(virtual_memmap_init, &args); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | int |
| 547 | ia64_pfn_valid (unsigned long pfn) |
| 548 | { |
| 549 | char byte; |
| 550 | struct page *pg = pfn_to_page(pfn); |
| 551 | |
| 552 | return (__get_user(byte, (char __user *) pg) == 0) |
| 553 | && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) |
| 554 | || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); |
| 555 | } |
| 556 | EXPORT_SYMBOL(ia64_pfn_valid); |
| 557 | |
| 558 | int __init find_largest_hole(u64 start, u64 end, void *arg) |
| 559 | { |
| 560 | u64 *max_gap = arg; |
| 561 | |
| 562 | static u64 last_end = PAGE_OFFSET; |
| 563 | |
| 564 | /* NOTE: this algorithm assumes efi memmap table is ordered */ |
| 565 | |
| 566 | if (*max_gap < (start - last_end)) |
| 567 | *max_gap = start - last_end; |
| 568 | last_end = end; |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | #endif /* CONFIG_VIRTUAL_MEM_MAP */ |
| 573 | |
| 574 | int __init register_active_ranges(u64 start, u64 len, int nid) |
| 575 | { |
| 576 | u64 end = start + len; |
| 577 | |
| 578 | #ifdef CONFIG_KEXEC |
| 579 | if (start > crashk_res.start && start < crashk_res.end) |
| 580 | start = crashk_res.end; |
| 581 | if (end > crashk_res.start && end < crashk_res.end) |
| 582 | end = crashk_res.start; |
| 583 | #endif |
| 584 | |
| 585 | if (start < end) |
| 586 | memblock_add_node(__pa(start), end - start, nid); |
| 587 | return 0; |
| 588 | } |
| 589 | |
| 590 | int |
| 591 | find_max_min_low_pfn (u64 start, u64 end, void *arg) |
| 592 | { |
| 593 | unsigned long pfn_start, pfn_end; |
| 594 | #ifdef CONFIG_FLATMEM |
| 595 | pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; |
| 596 | pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; |
| 597 | #else |
| 598 | pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; |
| 599 | pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; |
| 600 | #endif |
| 601 | min_low_pfn = min(min_low_pfn, pfn_start); |
| 602 | max_low_pfn = max(max_low_pfn, pfn_end); |
| 603 | return 0; |
| 604 | } |
| 605 | |
| 606 | /* |
| 607 | * Boot command-line option "nolwsys" can be used to disable the use of any light-weight |
| 608 | * system call handler. When this option is in effect, all fsyscalls will end up bubbling |
| 609 | * down into the kernel and calling the normal (heavy-weight) syscall handler. This is |
| 610 | * useful for performance testing, but conceivably could also come in handy for debugging |
| 611 | * purposes. |
| 612 | */ |
| 613 | |
| 614 | static int nolwsys __initdata; |
| 615 | |
| 616 | static int __init |
| 617 | nolwsys_setup (char *s) |
| 618 | { |
| 619 | nolwsys = 1; |
| 620 | return 1; |
| 621 | } |
| 622 | |
| 623 | __setup("nolwsys", nolwsys_setup); |
| 624 | |
| 625 | void __init |
| 626 | mem_init (void) |
| 627 | { |
| 628 | int i; |
| 629 | |
| 630 | BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); |
| 631 | BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); |
| 632 | BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); |
| 633 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 634 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 635 | * This needs to be called _after_ the command line has been parsed but |
| 636 | * _before_ any drivers that may need the PCI DMA interface are |
| 637 | * initialized or bootmem has been freed. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 638 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 639 | #ifdef CONFIG_INTEL_IOMMU |
| 640 | detect_intel_iommu(); |
| 641 | if (!iommu_detected) |
| 642 | #endif |
| 643 | #ifdef CONFIG_SWIOTLB |
| 644 | swiotlb_init(1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 645 | #endif |
| 646 | |
| 647 | #ifdef CONFIG_FLATMEM |
| 648 | BUG_ON(!mem_map); |
| 649 | #endif |
| 650 | |
| 651 | set_max_mapnr(max_low_pfn); |
| 652 | high_memory = __va(max_low_pfn * PAGE_SIZE); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 653 | memblock_free_all(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 654 | mem_init_print_info(NULL); |
| 655 | |
| 656 | /* |
| 657 | * For fsyscall entrpoints with no light-weight handler, use the ordinary |
| 658 | * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry |
| 659 | * code can tell them apart. |
| 660 | */ |
| 661 | for (i = 0; i < NR_syscalls; ++i) { |
| 662 | extern unsigned long fsyscall_table[NR_syscalls]; |
| 663 | extern unsigned long sys_call_table[NR_syscalls]; |
| 664 | |
| 665 | if (!fsyscall_table[i] || nolwsys) |
| 666 | fsyscall_table[i] = sys_call_table[i] | 1; |
| 667 | } |
| 668 | setup_gate(); |
| 669 | } |
| 670 | |
| 671 | #ifdef CONFIG_MEMORY_HOTPLUG |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 672 | int arch_add_memory(int nid, u64 start, u64 size, |
| 673 | struct mhp_restrictions *restrictions) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 674 | { |
| 675 | unsigned long start_pfn = start >> PAGE_SHIFT; |
| 676 | unsigned long nr_pages = size >> PAGE_SHIFT; |
| 677 | int ret; |
| 678 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 679 | ret = __add_pages(nid, start_pfn, nr_pages, restrictions); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 680 | if (ret) |
| 681 | printk("%s: Problem encountered in __add_pages() as ret=%d\n", |
| 682 | __func__, ret); |
| 683 | |
| 684 | return ret; |
| 685 | } |
| 686 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 687 | void arch_remove_memory(int nid, u64 start, u64 size, |
| 688 | struct vmem_altmap *altmap) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 689 | { |
| 690 | unsigned long start_pfn = start >> PAGE_SHIFT; |
| 691 | unsigned long nr_pages = size >> PAGE_SHIFT; |
| 692 | struct zone *zone; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 693 | |
| 694 | zone = page_zone(pfn_to_page(start_pfn)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 695 | __remove_pages(zone, start_pfn, nr_pages, altmap); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 696 | } |
| 697 | #endif |