Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. |
| 4 | * Copyright (c) 2001 Intel Corp. |
| 5 | * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> |
| 6 | * Copyright (c) 2002 NEC Corp. |
| 7 | * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> |
| 8 | * Copyright (c) 2004 Silicon Graphics, Inc |
| 9 | * Russ Anderson <rja@sgi.com> |
| 10 | * Jesse Barnes <jbarnes@sgi.com> |
| 11 | * Jack Steiner <steiner@sgi.com> |
| 12 | */ |
| 13 | |
| 14 | /* |
| 15 | * Platform initialization for Discontig Memory |
| 16 | */ |
| 17 | |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/mm.h> |
| 20 | #include <linux/nmi.h> |
| 21 | #include <linux/swap.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 22 | #include <linux/memblock.h> |
| 23 | #include <linux/acpi.h> |
| 24 | #include <linux/efi.h> |
| 25 | #include <linux/nodemask.h> |
| 26 | #include <linux/slab.h> |
| 27 | #include <asm/pgalloc.h> |
| 28 | #include <asm/tlb.h> |
| 29 | #include <asm/meminit.h> |
| 30 | #include <asm/numa.h> |
| 31 | #include <asm/sections.h> |
| 32 | |
| 33 | /* |
| 34 | * Track per-node information needed to setup the boot memory allocator, the |
| 35 | * per-node areas, and the real VM. |
| 36 | */ |
| 37 | struct early_node_data { |
| 38 | struct ia64_node_data *node_data; |
| 39 | unsigned long pernode_addr; |
| 40 | unsigned long pernode_size; |
| 41 | unsigned long min_pfn; |
| 42 | unsigned long max_pfn; |
| 43 | }; |
| 44 | |
| 45 | static struct early_node_data mem_data[MAX_NUMNODES] __initdata; |
| 46 | static nodemask_t memory_less_mask __initdata; |
| 47 | |
| 48 | pg_data_t *pgdat_list[MAX_NUMNODES]; |
| 49 | |
| 50 | /* |
| 51 | * To prevent cache aliasing effects, align per-node structures so that they |
| 52 | * start at addresses that are strided by node number. |
| 53 | */ |
| 54 | #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) |
| 55 | #define NODEDATA_ALIGN(addr, node) \ |
| 56 | ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ |
| 57 | (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) |
| 58 | |
| 59 | /** |
| 60 | * build_node_maps - callback to setup mem_data structs for each node |
| 61 | * @start: physical start of range |
| 62 | * @len: length of range |
| 63 | * @node: node where this range resides |
| 64 | * |
| 65 | * Detect extents of each piece of memory that we wish to |
| 66 | * treat as a virtually contiguous block (i.e. each node). Each such block |
| 67 | * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down |
| 68 | * if necessary. Any non-existent pages will simply be part of the virtual |
| 69 | * memmap. |
| 70 | */ |
| 71 | static int __init build_node_maps(unsigned long start, unsigned long len, |
| 72 | int node) |
| 73 | { |
| 74 | unsigned long spfn, epfn, end = start + len; |
| 75 | |
| 76 | epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; |
| 77 | spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; |
| 78 | |
| 79 | if (!mem_data[node].min_pfn) { |
| 80 | mem_data[node].min_pfn = spfn; |
| 81 | mem_data[node].max_pfn = epfn; |
| 82 | } else { |
| 83 | mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn); |
| 84 | mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn); |
| 85 | } |
| 86 | |
| 87 | return 0; |
| 88 | } |
| 89 | |
| 90 | /** |
| 91 | * early_nr_cpus_node - return number of cpus on a given node |
| 92 | * @node: node to check |
| 93 | * |
| 94 | * Count the number of cpus on @node. We can't use nr_cpus_node() yet because |
| 95 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been |
| 96 | * called yet. Note that node 0 will also count all non-existent cpus. |
| 97 | */ |
| 98 | static int __meminit early_nr_cpus_node(int node) |
| 99 | { |
| 100 | int cpu, n = 0; |
| 101 | |
| 102 | for_each_possible_early_cpu(cpu) |
| 103 | if (node == node_cpuid[cpu].nid) |
| 104 | n++; |
| 105 | |
| 106 | return n; |
| 107 | } |
| 108 | |
| 109 | /** |
| 110 | * compute_pernodesize - compute size of pernode data |
| 111 | * @node: the node id. |
| 112 | */ |
| 113 | static unsigned long __meminit compute_pernodesize(int node) |
| 114 | { |
| 115 | unsigned long pernodesize = 0, cpus; |
| 116 | |
| 117 | cpus = early_nr_cpus_node(node); |
| 118 | pernodesize += PERCPU_PAGE_SIZE * cpus; |
| 119 | pernodesize += node * L1_CACHE_BYTES; |
| 120 | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| 121 | pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); |
| 122 | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| 123 | pernodesize = PAGE_ALIGN(pernodesize); |
| 124 | return pernodesize; |
| 125 | } |
| 126 | |
| 127 | /** |
| 128 | * per_cpu_node_setup - setup per-cpu areas on each node |
| 129 | * @cpu_data: per-cpu area on this node |
| 130 | * @node: node to setup |
| 131 | * |
| 132 | * Copy the static per-cpu data into the region we just set aside and then |
| 133 | * setup __per_cpu_offset for each CPU on this node. Return a pointer to |
| 134 | * the end of the area. |
| 135 | */ |
| 136 | static void *per_cpu_node_setup(void *cpu_data, int node) |
| 137 | { |
| 138 | #ifdef CONFIG_SMP |
| 139 | int cpu; |
| 140 | |
| 141 | for_each_possible_early_cpu(cpu) { |
| 142 | void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start; |
| 143 | |
| 144 | if (node != node_cpuid[cpu].nid) |
| 145 | continue; |
| 146 | |
| 147 | memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start); |
| 148 | __per_cpu_offset[cpu] = (char *)__va(cpu_data) - |
| 149 | __per_cpu_start; |
| 150 | |
| 151 | /* |
| 152 | * percpu area for cpu0 is moved from the __init area |
| 153 | * which is setup by head.S and used till this point. |
| 154 | * Update ar.k3. This move is ensures that percpu |
| 155 | * area for cpu0 is on the correct node and its |
| 156 | * virtual address isn't insanely far from other |
| 157 | * percpu areas which is important for congruent |
| 158 | * percpu allocator. |
| 159 | */ |
| 160 | if (cpu == 0) |
| 161 | ia64_set_kr(IA64_KR_PER_CPU_DATA, |
| 162 | (unsigned long)cpu_data - |
| 163 | (unsigned long)__per_cpu_start); |
| 164 | |
| 165 | cpu_data += PERCPU_PAGE_SIZE; |
| 166 | } |
| 167 | #endif |
| 168 | return cpu_data; |
| 169 | } |
| 170 | |
| 171 | #ifdef CONFIG_SMP |
| 172 | /** |
| 173 | * setup_per_cpu_areas - setup percpu areas |
| 174 | * |
| 175 | * Arch code has already allocated and initialized percpu areas. All |
| 176 | * this function has to do is to teach the determined layout to the |
| 177 | * dynamic percpu allocator, which happens to be more complex than |
| 178 | * creating whole new ones using helpers. |
| 179 | */ |
| 180 | void __init setup_per_cpu_areas(void) |
| 181 | { |
| 182 | struct pcpu_alloc_info *ai; |
| 183 | struct pcpu_group_info *uninitialized_var(gi); |
| 184 | unsigned int *cpu_map; |
| 185 | void *base; |
| 186 | unsigned long base_offset; |
| 187 | unsigned int cpu; |
| 188 | ssize_t static_size, reserved_size, dyn_size; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 189 | int node, prev_node, unit, nr_units; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 190 | |
| 191 | ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids); |
| 192 | if (!ai) |
| 193 | panic("failed to allocate pcpu_alloc_info"); |
| 194 | cpu_map = ai->groups[0].cpu_map; |
| 195 | |
| 196 | /* determine base */ |
| 197 | base = (void *)ULONG_MAX; |
| 198 | for_each_possible_cpu(cpu) |
| 199 | base = min(base, |
| 200 | (void *)(__per_cpu_offset[cpu] + __per_cpu_start)); |
| 201 | base_offset = (void *)__per_cpu_start - base; |
| 202 | |
| 203 | /* build cpu_map, units are grouped by node */ |
| 204 | unit = 0; |
| 205 | for_each_node(node) |
| 206 | for_each_possible_cpu(cpu) |
| 207 | if (node == node_cpuid[cpu].nid) |
| 208 | cpu_map[unit++] = cpu; |
| 209 | nr_units = unit; |
| 210 | |
| 211 | /* set basic parameters */ |
| 212 | static_size = __per_cpu_end - __per_cpu_start; |
| 213 | reserved_size = PERCPU_MODULE_RESERVE; |
| 214 | dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; |
| 215 | if (dyn_size < 0) |
| 216 | panic("percpu area overflow static=%zd reserved=%zd\n", |
| 217 | static_size, reserved_size); |
| 218 | |
| 219 | ai->static_size = static_size; |
| 220 | ai->reserved_size = reserved_size; |
| 221 | ai->dyn_size = dyn_size; |
| 222 | ai->unit_size = PERCPU_PAGE_SIZE; |
| 223 | ai->atom_size = PAGE_SIZE; |
| 224 | ai->alloc_size = PERCPU_PAGE_SIZE; |
| 225 | |
| 226 | /* |
| 227 | * CPUs are put into groups according to node. Walk cpu_map |
| 228 | * and create new groups at node boundaries. |
| 229 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 230 | prev_node = NUMA_NO_NODE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 231 | ai->nr_groups = 0; |
| 232 | for (unit = 0; unit < nr_units; unit++) { |
| 233 | cpu = cpu_map[unit]; |
| 234 | node = node_cpuid[cpu].nid; |
| 235 | |
| 236 | if (node == prev_node) { |
| 237 | gi->nr_units++; |
| 238 | continue; |
| 239 | } |
| 240 | prev_node = node; |
| 241 | |
| 242 | gi = &ai->groups[ai->nr_groups++]; |
| 243 | gi->nr_units = 1; |
| 244 | gi->base_offset = __per_cpu_offset[cpu] + base_offset; |
| 245 | gi->cpu_map = &cpu_map[unit]; |
| 246 | } |
| 247 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 248 | pcpu_setup_first_chunk(ai, base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 249 | pcpu_free_alloc_info(ai); |
| 250 | } |
| 251 | #endif |
| 252 | |
| 253 | /** |
| 254 | * fill_pernode - initialize pernode data. |
| 255 | * @node: the node id. |
| 256 | * @pernode: physical address of pernode data |
| 257 | * @pernodesize: size of the pernode data |
| 258 | */ |
| 259 | static void __init fill_pernode(int node, unsigned long pernode, |
| 260 | unsigned long pernodesize) |
| 261 | { |
| 262 | void *cpu_data; |
| 263 | int cpus = early_nr_cpus_node(node); |
| 264 | |
| 265 | mem_data[node].pernode_addr = pernode; |
| 266 | mem_data[node].pernode_size = pernodesize; |
| 267 | memset(__va(pernode), 0, pernodesize); |
| 268 | |
| 269 | cpu_data = (void *)pernode; |
| 270 | pernode += PERCPU_PAGE_SIZE * cpus; |
| 271 | pernode += node * L1_CACHE_BYTES; |
| 272 | |
| 273 | pgdat_list[node] = __va(pernode); |
| 274 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| 275 | |
| 276 | mem_data[node].node_data = __va(pernode); |
| 277 | pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); |
| 278 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| 279 | |
| 280 | cpu_data = per_cpu_node_setup(cpu_data, node); |
| 281 | |
| 282 | return; |
| 283 | } |
| 284 | |
| 285 | /** |
| 286 | * find_pernode_space - allocate memory for memory map and per-node structures |
| 287 | * @start: physical start of range |
| 288 | * @len: length of range |
| 289 | * @node: node where this range resides |
| 290 | * |
| 291 | * This routine reserves space for the per-cpu data struct, the list of |
| 292 | * pg_data_ts and the per-node data struct. Each node will have something like |
| 293 | * the following in the first chunk of addr. space large enough to hold it. |
| 294 | * |
| 295 | * ________________________ |
| 296 | * | | |
| 297 | * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first |
| 298 | * | PERCPU_PAGE_SIZE * | start and length big enough |
| 299 | * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. |
| 300 | * |------------------------| |
| 301 | * | local pg_data_t * | |
| 302 | * |------------------------| |
| 303 | * | local ia64_node_data | |
| 304 | * |------------------------| |
| 305 | * | ??? | |
| 306 | * |________________________| |
| 307 | * |
| 308 | * Once this space has been set aside, the bootmem maps are initialized. We |
| 309 | * could probably move the allocation of the per-cpu and ia64_node_data space |
| 310 | * outside of this function and use alloc_bootmem_node(), but doing it here |
| 311 | * is straightforward and we get the alignments we want so... |
| 312 | */ |
| 313 | static int __init find_pernode_space(unsigned long start, unsigned long len, |
| 314 | int node) |
| 315 | { |
| 316 | unsigned long spfn, epfn; |
| 317 | unsigned long pernodesize = 0, pernode; |
| 318 | |
| 319 | spfn = start >> PAGE_SHIFT; |
| 320 | epfn = (start + len) >> PAGE_SHIFT; |
| 321 | |
| 322 | /* |
| 323 | * Make sure this memory falls within this node's usable memory |
| 324 | * since we may have thrown some away in build_maps(). |
| 325 | */ |
| 326 | if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn) |
| 327 | return 0; |
| 328 | |
| 329 | /* Don't setup this node's local space twice... */ |
| 330 | if (mem_data[node].pernode_addr) |
| 331 | return 0; |
| 332 | |
| 333 | /* |
| 334 | * Calculate total size needed, incl. what's necessary |
| 335 | * for good alignment and alias prevention. |
| 336 | */ |
| 337 | pernodesize = compute_pernodesize(node); |
| 338 | pernode = NODEDATA_ALIGN(start, node); |
| 339 | |
| 340 | /* Is this range big enough for what we want to store here? */ |
| 341 | if (start + len > (pernode + pernodesize)) |
| 342 | fill_pernode(node, pernode, pernodesize); |
| 343 | |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * reserve_pernode_space - reserve memory for per-node space |
| 349 | * |
| 350 | * Reserve the space used by the bootmem maps & per-node space in the boot |
| 351 | * allocator so that when we actually create the real mem maps we don't |
| 352 | * use their memory. |
| 353 | */ |
| 354 | static void __init reserve_pernode_space(void) |
| 355 | { |
| 356 | unsigned long base, size; |
| 357 | int node; |
| 358 | |
| 359 | for_each_online_node(node) { |
| 360 | if (node_isset(node, memory_less_mask)) |
| 361 | continue; |
| 362 | |
| 363 | /* Now the per-node space */ |
| 364 | size = mem_data[node].pernode_size; |
| 365 | base = __pa(mem_data[node].pernode_addr); |
| 366 | memblock_reserve(base, size); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | static void __meminit scatter_node_data(void) |
| 371 | { |
| 372 | pg_data_t **dst; |
| 373 | int node; |
| 374 | |
| 375 | /* |
| 376 | * for_each_online_node() can't be used at here. |
| 377 | * node_online_map is not set for hot-added nodes at this time, |
| 378 | * because we are halfway through initialization of the new node's |
| 379 | * structures. If for_each_online_node() is used, a new node's |
| 380 | * pg_data_ptrs will be not initialized. Instead of using it, |
| 381 | * pgdat_list[] is checked. |
| 382 | */ |
| 383 | for_each_node(node) { |
| 384 | if (pgdat_list[node]) { |
| 385 | dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; |
| 386 | memcpy(dst, pgdat_list, sizeof(pgdat_list)); |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | /** |
| 392 | * initialize_pernode_data - fixup per-cpu & per-node pointers |
| 393 | * |
| 394 | * Each node's per-node area has a copy of the global pg_data_t list, so |
| 395 | * we copy that to each node here, as well as setting the per-cpu pointer |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 396 | * to the local node data structure. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 397 | */ |
| 398 | static void __init initialize_pernode_data(void) |
| 399 | { |
| 400 | int cpu, node; |
| 401 | |
| 402 | scatter_node_data(); |
| 403 | |
| 404 | #ifdef CONFIG_SMP |
| 405 | /* Set the node_data pointer for each per-cpu struct */ |
| 406 | for_each_possible_early_cpu(cpu) { |
| 407 | node = node_cpuid[cpu].nid; |
| 408 | per_cpu(ia64_cpu_info, cpu).node_data = |
| 409 | mem_data[node].node_data; |
| 410 | } |
| 411 | #else |
| 412 | { |
| 413 | struct cpuinfo_ia64 *cpu0_cpu_info; |
| 414 | cpu = 0; |
| 415 | node = node_cpuid[cpu].nid; |
| 416 | cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + |
| 417 | ((char *)&ia64_cpu_info - __per_cpu_start)); |
| 418 | cpu0_cpu_info->node_data = mem_data[node].node_data; |
| 419 | } |
| 420 | #endif /* CONFIG_SMP */ |
| 421 | } |
| 422 | |
| 423 | /** |
| 424 | * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit |
| 425 | * node but fall back to any other node when __alloc_bootmem_node fails |
| 426 | * for best. |
| 427 | * @nid: node id |
| 428 | * @pernodesize: size of this node's pernode data |
| 429 | */ |
| 430 | static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) |
| 431 | { |
| 432 | void *ptr = NULL; |
| 433 | u8 best = 0xff; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 434 | int bestnode = NUMA_NO_NODE, node, anynode = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 435 | |
| 436 | for_each_online_node(node) { |
| 437 | if (node_isset(node, memory_less_mask)) |
| 438 | continue; |
| 439 | else if (node_distance(nid, node) < best) { |
| 440 | best = node_distance(nid, node); |
| 441 | bestnode = node; |
| 442 | } |
| 443 | anynode = node; |
| 444 | } |
| 445 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 446 | if (bestnode == NUMA_NO_NODE) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 447 | bestnode = anynode; |
| 448 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 449 | ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE, |
| 450 | __pa(MAX_DMA_ADDRESS), |
| 451 | MEMBLOCK_ALLOC_ACCESSIBLE, |
| 452 | bestnode); |
| 453 | if (!ptr) |
| 454 | panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n", |
| 455 | __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode, |
| 456 | __pa(MAX_DMA_ADDRESS)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 457 | |
| 458 | return ptr; |
| 459 | } |
| 460 | |
| 461 | /** |
| 462 | * memory_less_nodes - allocate and initialize CPU only nodes pernode |
| 463 | * information. |
| 464 | */ |
| 465 | static void __init memory_less_nodes(void) |
| 466 | { |
| 467 | unsigned long pernodesize; |
| 468 | void *pernode; |
| 469 | int node; |
| 470 | |
| 471 | for_each_node_mask(node, memory_less_mask) { |
| 472 | pernodesize = compute_pernodesize(node); |
| 473 | pernode = memory_less_node_alloc(node, pernodesize); |
| 474 | fill_pernode(node, __pa(pernode), pernodesize); |
| 475 | } |
| 476 | |
| 477 | return; |
| 478 | } |
| 479 | |
| 480 | /** |
| 481 | * find_memory - walk the EFI memory map and setup the bootmem allocator |
| 482 | * |
| 483 | * Called early in boot to setup the bootmem allocator, and to |
| 484 | * allocate the per-cpu and per-node structures. |
| 485 | */ |
| 486 | void __init find_memory(void) |
| 487 | { |
| 488 | int node; |
| 489 | |
| 490 | reserve_memory(); |
| 491 | efi_memmap_walk(filter_memory, register_active_ranges); |
| 492 | |
| 493 | if (num_online_nodes() == 0) { |
| 494 | printk(KERN_ERR "node info missing!\n"); |
| 495 | node_set_online(0); |
| 496 | } |
| 497 | |
| 498 | nodes_or(memory_less_mask, memory_less_mask, node_online_map); |
| 499 | min_low_pfn = -1; |
| 500 | max_low_pfn = 0; |
| 501 | |
| 502 | /* These actually end up getting called by call_pernode_memory() */ |
| 503 | efi_memmap_walk(filter_rsvd_memory, build_node_maps); |
| 504 | efi_memmap_walk(filter_rsvd_memory, find_pernode_space); |
| 505 | efi_memmap_walk(find_max_min_low_pfn, NULL); |
| 506 | |
| 507 | for_each_online_node(node) |
| 508 | if (mem_data[node].min_pfn) |
| 509 | node_clear(node, memory_less_mask); |
| 510 | |
| 511 | reserve_pernode_space(); |
| 512 | memory_less_nodes(); |
| 513 | initialize_pernode_data(); |
| 514 | |
| 515 | max_pfn = max_low_pfn; |
| 516 | |
| 517 | find_initrd(); |
| 518 | } |
| 519 | |
| 520 | #ifdef CONFIG_SMP |
| 521 | /** |
| 522 | * per_cpu_init - setup per-cpu variables |
| 523 | * |
| 524 | * find_pernode_space() does most of this already, we just need to set |
| 525 | * local_per_cpu_offset |
| 526 | */ |
| 527 | void *per_cpu_init(void) |
| 528 | { |
| 529 | int cpu; |
| 530 | static int first_time = 1; |
| 531 | |
| 532 | if (first_time) { |
| 533 | first_time = 0; |
| 534 | for_each_possible_early_cpu(cpu) |
| 535 | per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; |
| 536 | } |
| 537 | |
| 538 | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; |
| 539 | } |
| 540 | #endif /* CONFIG_SMP */ |
| 541 | |
| 542 | /** |
| 543 | * call_pernode_memory - use SRAT to call callback functions with node info |
| 544 | * @start: physical start of range |
| 545 | * @len: length of range |
| 546 | * @arg: function to call for each range |
| 547 | * |
| 548 | * efi_memmap_walk() knows nothing about layout of memory across nodes. Find |
| 549 | * out to which node a block of memory belongs. Ignore memory that we cannot |
| 550 | * identify, and split blocks that run across multiple nodes. |
| 551 | * |
| 552 | * Take this opportunity to round the start address up and the end address |
| 553 | * down to page boundaries. |
| 554 | */ |
| 555 | void call_pernode_memory(unsigned long start, unsigned long len, void *arg) |
| 556 | { |
| 557 | unsigned long rs, re, end = start + len; |
| 558 | void (*func)(unsigned long, unsigned long, int); |
| 559 | int i; |
| 560 | |
| 561 | start = PAGE_ALIGN(start); |
| 562 | end &= PAGE_MASK; |
| 563 | if (start >= end) |
| 564 | return; |
| 565 | |
| 566 | func = arg; |
| 567 | |
| 568 | if (!num_node_memblks) { |
| 569 | /* No SRAT table, so assume one node (node 0) */ |
| 570 | if (start < end) |
| 571 | (*func)(start, end - start, 0); |
| 572 | return; |
| 573 | } |
| 574 | |
| 575 | for (i = 0; i < num_node_memblks; i++) { |
| 576 | rs = max(start, node_memblk[i].start_paddr); |
| 577 | re = min(end, node_memblk[i].start_paddr + |
| 578 | node_memblk[i].size); |
| 579 | |
| 580 | if (rs < re) |
| 581 | (*func)(rs, re - rs, node_memblk[i].nid); |
| 582 | |
| 583 | if (re == end) |
| 584 | break; |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | /** |
| 589 | * paging_init - setup page tables |
| 590 | * |
| 591 | * paging_init() sets up the page tables for each node of the system and frees |
| 592 | * the bootmem allocator memory for general use. |
| 593 | */ |
| 594 | void __init paging_init(void) |
| 595 | { |
| 596 | unsigned long max_dma; |
| 597 | unsigned long pfn_offset = 0; |
| 598 | unsigned long max_pfn = 0; |
| 599 | int node; |
| 600 | unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| 601 | |
| 602 | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| 603 | |
| 604 | sparse_memory_present_with_active_regions(MAX_NUMNODES); |
| 605 | sparse_init(); |
| 606 | |
| 607 | #ifdef CONFIG_VIRTUAL_MEM_MAP |
| 608 | VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * |
| 609 | sizeof(struct page)); |
| 610 | vmem_map = (struct page *) VMALLOC_END; |
| 611 | efi_memmap_walk(create_mem_map_page_table, NULL); |
| 612 | printk("Virtual mem_map starts at 0x%p\n", vmem_map); |
| 613 | #endif |
| 614 | |
| 615 | for_each_online_node(node) { |
| 616 | pfn_offset = mem_data[node].min_pfn; |
| 617 | |
| 618 | #ifdef CONFIG_VIRTUAL_MEM_MAP |
| 619 | NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; |
| 620 | #endif |
| 621 | if (mem_data[node].max_pfn > max_pfn) |
| 622 | max_pfn = mem_data[node].max_pfn; |
| 623 | } |
| 624 | |
| 625 | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| 626 | #ifdef CONFIG_ZONE_DMA32 |
| 627 | max_zone_pfns[ZONE_DMA32] = max_dma; |
| 628 | #endif |
| 629 | max_zone_pfns[ZONE_NORMAL] = max_pfn; |
| 630 | free_area_init_nodes(max_zone_pfns); |
| 631 | |
| 632 | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); |
| 633 | } |
| 634 | |
| 635 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 636 | pg_data_t *arch_alloc_nodedata(int nid) |
| 637 | { |
| 638 | unsigned long size = compute_pernodesize(nid); |
| 639 | |
| 640 | return kzalloc(size, GFP_KERNEL); |
| 641 | } |
| 642 | |
| 643 | void arch_free_nodedata(pg_data_t *pgdat) |
| 644 | { |
| 645 | kfree(pgdat); |
| 646 | } |
| 647 | |
| 648 | void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) |
| 649 | { |
| 650 | pgdat_list[update_node] = update_pgdat; |
| 651 | scatter_node_data(); |
| 652 | } |
| 653 | #endif |
| 654 | |
| 655 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 656 | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, |
| 657 | struct vmem_altmap *altmap) |
| 658 | { |
| 659 | return vmemmap_populate_basepages(start, end, node); |
| 660 | } |
| 661 | |
| 662 | void vmemmap_free(unsigned long start, unsigned long end, |
| 663 | struct vmem_altmap *altmap) |
| 664 | { |
| 665 | } |
| 666 | #endif |