blob: 9fc6db0bcbad0636f2ee6919cc2a04d5f8bd4127 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008 */
9
David Brazdil0f672f62019-12-10 10:32:29 +000010#include <linux/acpi.h>
11#include <linux/bitfield.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012#include <linux/extable.h>
13#include <linux/signal.h>
14#include <linux/mm.h>
15#include <linux/hardirq.h>
16#include <linux/init.h>
17#include <linux/kprobes.h>
18#include <linux/uaccess.h>
19#include <linux/page-flags.h>
20#include <linux/sched/signal.h>
21#include <linux/sched/debug.h>
22#include <linux/highmem.h>
23#include <linux/perf_event.h>
24#include <linux/preempt.h>
25#include <linux/hugetlb.h>
26
David Brazdil0f672f62019-12-10 10:32:29 +000027#include <asm/acpi.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000028#include <asm/bug.h>
29#include <asm/cmpxchg.h>
30#include <asm/cpufeature.h>
31#include <asm/exception.h>
David Brazdil0f672f62019-12-10 10:32:29 +000032#include <asm/daifflags.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000033#include <asm/debug-monitors.h>
34#include <asm/esr.h>
David Brazdil0f672f62019-12-10 10:32:29 +000035#include <asm/kasan.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000036#include <asm/sysreg.h>
37#include <asm/system_misc.h>
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <asm/traps.h>
41
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000042struct fault_info {
43 int (*fn)(unsigned long addr, unsigned int esr,
44 struct pt_regs *regs);
45 int sig;
46 int code;
47 const char *name;
48};
49
50static const struct fault_info fault_info[];
David Brazdil0f672f62019-12-10 10:32:29 +000051static struct fault_info debug_fault_info[];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000052
53static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
54{
David Brazdil0f672f62019-12-10 10:32:29 +000055 return fault_info + (esr & ESR_ELx_FSC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000056}
57
David Brazdil0f672f62019-12-10 10:32:29 +000058static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000059{
David Brazdil0f672f62019-12-10 10:32:29 +000060 return debug_fault_info + DBG_ESR_EVT(esr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000061}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000062
63static void data_abort_decode(unsigned int esr)
64{
65 pr_alert("Data abort info:\n");
66
67 if (esr & ESR_ELx_ISV) {
68 pr_alert(" Access size = %u byte(s)\n",
69 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
70 pr_alert(" SSE = %lu, SRT = %lu\n",
71 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
72 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
73 pr_alert(" SF = %lu, AR = %lu\n",
74 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
75 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
76 } else {
77 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
78 }
79
80 pr_alert(" CM = %lu, WnR = %lu\n",
81 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
82 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
83}
84
85static void mem_abort_decode(unsigned int esr)
86{
87 pr_alert("Mem abort info:\n");
88
89 pr_alert(" ESR = 0x%08x\n", esr);
David Brazdil0f672f62019-12-10 10:32:29 +000090 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
91 ESR_ELx_EC(esr), esr_get_class_string(esr),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000092 (esr & ESR_ELx_IL) ? 32 : 16);
93 pr_alert(" SET = %lu, FnV = %lu\n",
94 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
95 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
96 pr_alert(" EA = %lu, S1PTW = %lu\n",
97 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
98 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
99
100 if (esr_is_data_abort(esr))
101 data_abort_decode(esr);
102}
103
David Brazdil0f672f62019-12-10 10:32:29 +0000104static inline bool is_ttbr0_addr(unsigned long addr)
105{
106 /* entry assembly clears tags for TTBR0 addrs */
107 return addr < TASK_SIZE;
108}
109
110static inline bool is_ttbr1_addr(unsigned long addr)
111{
112 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
113 return arch_kasan_reset_tag(addr) >= PAGE_OFFSET;
114}
115
116static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
117{
118 /* Either init_pg_dir or swapper_pg_dir */
119 if (mm == &init_mm)
120 return __pa_symbol(mm->pgd);
121
122 return (unsigned long)virt_to_phys(mm->pgd);
123}
124
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000125/*
126 * Dump out the page tables associated with 'addr' in the currently active mm.
127 */
David Brazdil0f672f62019-12-10 10:32:29 +0000128static void show_pte(unsigned long addr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000129{
130 struct mm_struct *mm;
131 pgd_t *pgdp;
132 pgd_t pgd;
133
David Brazdil0f672f62019-12-10 10:32:29 +0000134 if (is_ttbr0_addr(addr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000135 /* TTBR0 */
136 mm = current->active_mm;
137 if (mm == &init_mm) {
138 pr_alert("[%016lx] user address but active_mm is swapper\n",
139 addr);
140 return;
141 }
David Brazdil0f672f62019-12-10 10:32:29 +0000142 } else if (is_ttbr1_addr(addr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000143 /* TTBR1 */
144 mm = &init_mm;
145 } else {
146 pr_alert("[%016lx] address between user and kernel address ranges\n",
147 addr);
148 return;
149 }
150
David Brazdil0f672f62019-12-10 10:32:29 +0000151 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000152 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
David Brazdil0f672f62019-12-10 10:32:29 +0000153 vabits_actual, mm_to_pgd_phys(mm));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000154 pgdp = pgd_offset(mm, addr);
155 pgd = READ_ONCE(*pgdp);
156 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
157
158 do {
159 pud_t *pudp, pud;
160 pmd_t *pmdp, pmd;
161 pte_t *ptep, pte;
162
163 if (pgd_none(pgd) || pgd_bad(pgd))
164 break;
165
166 pudp = pud_offset(pgdp, addr);
167 pud = READ_ONCE(*pudp);
168 pr_cont(", pud=%016llx", pud_val(pud));
169 if (pud_none(pud) || pud_bad(pud))
170 break;
171
172 pmdp = pmd_offset(pudp, addr);
173 pmd = READ_ONCE(*pmdp);
174 pr_cont(", pmd=%016llx", pmd_val(pmd));
175 if (pmd_none(pmd) || pmd_bad(pmd))
176 break;
177
178 ptep = pte_offset_map(pmdp, addr);
179 pte = READ_ONCE(*ptep);
180 pr_cont(", pte=%016llx", pte_val(pte));
181 pte_unmap(ptep);
182 } while(0);
183
184 pr_cont("\n");
185}
186
187/*
188 * This function sets the access flags (dirty, accessed), as well as write
189 * permission, and only to a more permissive setting.
190 *
191 * It needs to cope with hardware update of the accessed/dirty state by other
192 * agents in the system and can safely skip the __sync_icache_dcache() call as,
193 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
194 *
195 * Returns whether or not the PTE actually changed.
196 */
197int ptep_set_access_flags(struct vm_area_struct *vma,
198 unsigned long address, pte_t *ptep,
199 pte_t entry, int dirty)
200{
201 pteval_t old_pteval, pteval;
202 pte_t pte = READ_ONCE(*ptep);
203
204 if (pte_same(pte, entry))
205 return 0;
206
207 /* only preserve the access flags and write permission */
208 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
209
210 /*
211 * Setting the flags must be done atomically to avoid racing with the
212 * hardware update of the access/dirty state. The PTE_RDONLY bit must
213 * be set to the most permissive (lowest value) of *ptep and entry
214 * (calculated as: a & b == ~(~a | ~b)).
215 */
216 pte_val(entry) ^= PTE_RDONLY;
217 pteval = pte_val(pte);
218 do {
219 old_pteval = pteval;
220 pteval ^= PTE_RDONLY;
221 pteval |= pte_val(entry);
222 pteval ^= PTE_RDONLY;
223 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
224 } while (pteval != old_pteval);
225
226 flush_tlb_fix_spurious_fault(vma, address);
227 return 1;
228}
229
230static bool is_el1_instruction_abort(unsigned int esr)
231{
232 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
233}
234
David Brazdil0f672f62019-12-10 10:32:29 +0000235static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
236 struct pt_regs *regs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000237{
238 unsigned int ec = ESR_ELx_EC(esr);
239 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
240
241 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
242 return false;
243
244 if (fsc_type == ESR_ELx_FSC_PERM)
245 return true;
246
David Brazdil0f672f62019-12-10 10:32:29 +0000247 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000248 return fsc_type == ESR_ELx_FSC_FAULT &&
249 (regs->pstate & PSR_PAN_BIT);
250
251 return false;
252}
253
David Brazdil0f672f62019-12-10 10:32:29 +0000254static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
255 unsigned int esr,
256 struct pt_regs *regs)
257{
258 unsigned long flags;
259 u64 par, dfsc;
260
261 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
262 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
263 return false;
264
265 local_irq_save(flags);
266 asm volatile("at s1e1r, %0" :: "r" (addr));
267 isb();
268 par = read_sysreg(par_el1);
269 local_irq_restore(flags);
270
271 /*
272 * If we now have a valid translation, treat the translation fault as
273 * spurious.
274 */
275 if (!(par & SYS_PAR_EL1_F))
276 return true;
277
278 /*
279 * If we got a different type of fault from the AT instruction,
280 * treat the translation fault as spurious.
281 */
282 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
283 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
284}
285
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000286static void die_kernel_fault(const char *msg, unsigned long addr,
287 unsigned int esr, struct pt_regs *regs)
288{
289 bust_spinlocks(1);
290
291 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
292 addr);
293
294 mem_abort_decode(esr);
295
296 show_pte(addr);
297 die("Oops", regs, esr);
298 bust_spinlocks(0);
299 do_exit(SIGKILL);
300}
301
302static void __do_kernel_fault(unsigned long addr, unsigned int esr,
303 struct pt_regs *regs)
304{
305 const char *msg;
306
307 /*
308 * Are we prepared to handle this kernel fault?
309 * We are almost certainly not prepared to handle instruction faults.
310 */
311 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
312 return;
313
David Brazdil0f672f62019-12-10 10:32:29 +0000314 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
315 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
316 return;
317
318 if (is_el1_permission_fault(addr, esr, regs)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000319 if (esr & ESR_ELx_WNR)
320 msg = "write to read-only memory";
321 else
322 msg = "read from unreadable memory";
323 } else if (addr < PAGE_SIZE) {
324 msg = "NULL pointer dereference";
325 } else {
326 msg = "paging request";
327 }
328
329 die_kernel_fault(msg, addr, esr, regs);
330}
331
David Brazdil0f672f62019-12-10 10:32:29 +0000332static void set_thread_esr(unsigned long address, unsigned int esr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000333{
David Brazdil0f672f62019-12-10 10:32:29 +0000334 current->thread.fault_address = address;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000335
336 /*
337 * If the faulting address is in the kernel, we must sanitize the ESR.
338 * From userspace's point of view, kernel-only mappings don't exist
339 * at all, so we report them as level 0 translation faults.
340 * (This is not quite the way that "no mapping there at all" behaves:
341 * an alignment fault not caused by the memory type would take
342 * precedence over translation fault for a real access to empty
343 * space. Unfortunately we can't easily distinguish "alignment fault
344 * not caused by memory type" from "alignment fault caused by memory
345 * type", so we ignore this wrinkle and just return the translation
346 * fault.)
347 */
David Brazdil0f672f62019-12-10 10:32:29 +0000348 if (!is_ttbr0_addr(current->thread.fault_address)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000349 switch (ESR_ELx_EC(esr)) {
350 case ESR_ELx_EC_DABT_LOW:
351 /*
352 * These bits provide only information about the
353 * faulting instruction, which userspace knows already.
354 * We explicitly clear bits which are architecturally
355 * RES0 in case they are given meanings in future.
356 * We always report the ESR as if the fault was taken
357 * to EL1 and so ISV and the bits in ISS[23:14] are
358 * clear. (In fact it always will be a fault to EL1.)
359 */
360 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
361 ESR_ELx_CM | ESR_ELx_WNR;
362 esr |= ESR_ELx_FSC_FAULT;
363 break;
364 case ESR_ELx_EC_IABT_LOW:
365 /*
366 * Claim a level 0 translation fault.
367 * All other bits are architecturally RES0 for faults
368 * reported with that DFSC value, so we clear them.
369 */
370 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
371 esr |= ESR_ELx_FSC_FAULT;
372 break;
373 default:
374 /*
375 * This should never happen (entry.S only brings us
376 * into this code for insn and data aborts from a lower
377 * exception level). Fail safe by not providing an ESR
378 * context record at all.
379 */
380 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
381 esr = 0;
382 break;
383 }
384 }
385
386 current->thread.fault_code = esr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000387}
388
389static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
390{
391 /*
392 * If we are in kernel mode at this point, we have no context to
393 * handle this fault with.
394 */
395 if (user_mode(regs)) {
396 const struct fault_info *inf = esr_to_fault_info(esr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000397
David Brazdil0f672f62019-12-10 10:32:29 +0000398 set_thread_esr(addr, esr);
399 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
400 inf->name);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000401 } else {
402 __do_kernel_fault(addr, esr, regs);
403 }
404}
405
406#define VM_FAULT_BADMAP 0x010000
407#define VM_FAULT_BADACCESS 0x020000
408
409static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
David Brazdil0f672f62019-12-10 10:32:29 +0000410 unsigned int mm_flags, unsigned long vm_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000411{
David Brazdil0f672f62019-12-10 10:32:29 +0000412 struct vm_area_struct *vma = find_vma(mm, addr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000413
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000414 if (unlikely(!vma))
David Brazdil0f672f62019-12-10 10:32:29 +0000415 return VM_FAULT_BADMAP;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000416
417 /*
418 * Ok, we have a good vm_area for this memory access, so we can handle
419 * it.
420 */
David Brazdil0f672f62019-12-10 10:32:29 +0000421 if (unlikely(vma->vm_start > addr)) {
422 if (!(vma->vm_flags & VM_GROWSDOWN))
423 return VM_FAULT_BADMAP;
424 if (expand_stack(vma, addr))
425 return VM_FAULT_BADMAP;
426 }
427
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000428 /*
429 * Check that the permissions on the VMA allow for the fault which
430 * occurred.
431 */
David Brazdil0f672f62019-12-10 10:32:29 +0000432 if (!(vma->vm_flags & vm_flags))
433 return VM_FAULT_BADACCESS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000434 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000435}
436
437static bool is_el0_instruction_abort(unsigned int esr)
438{
439 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
440}
441
David Brazdil0f672f62019-12-10 10:32:29 +0000442/*
443 * Note: not valid for EL1 DC IVAC, but we never use that such that it
444 * should fault. EL0 cannot issue DC IVAC (undef).
445 */
446static bool is_write_abort(unsigned int esr)
447{
448 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
449}
450
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000451static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
452 struct pt_regs *regs)
453{
David Brazdil0f672f62019-12-10 10:32:29 +0000454 const struct fault_info *inf;
455 struct mm_struct *mm = current->mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000456 vm_fault_t fault, major = 0;
457 unsigned long vm_flags = VM_READ | VM_WRITE;
458 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
459
David Brazdil0f672f62019-12-10 10:32:29 +0000460 if (kprobe_page_fault(regs, esr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000461 return 0;
462
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000463 /*
464 * If we're in an interrupt or have no user context, we must not take
465 * the fault.
466 */
467 if (faulthandler_disabled() || !mm)
468 goto no_context;
469
470 if (user_mode(regs))
471 mm_flags |= FAULT_FLAG_USER;
472
473 if (is_el0_instruction_abort(esr)) {
474 vm_flags = VM_EXEC;
David Brazdil0f672f62019-12-10 10:32:29 +0000475 mm_flags |= FAULT_FLAG_INSTRUCTION;
476 } else if (is_write_abort(esr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000477 vm_flags = VM_WRITE;
478 mm_flags |= FAULT_FLAG_WRITE;
479 }
480
David Brazdil0f672f62019-12-10 10:32:29 +0000481 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000482 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
483 if (regs->orig_addr_limit == KERNEL_DS)
484 die_kernel_fault("access to user memory with fs=KERNEL_DS",
485 addr, esr, regs);
486
487 if (is_el1_instruction_abort(esr))
488 die_kernel_fault("execution of user memory",
489 addr, esr, regs);
490
491 if (!search_exception_tables(regs->pc))
492 die_kernel_fault("access to user memory outside uaccess routines",
493 addr, esr, regs);
494 }
495
496 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
497
498 /*
499 * As per x86, we may deadlock here. However, since the kernel only
500 * validly references user space from well defined areas of the code,
501 * we can bug out early if this is from code which shouldn't.
502 */
503 if (!down_read_trylock(&mm->mmap_sem)) {
504 if (!user_mode(regs) && !search_exception_tables(regs->pc))
505 goto no_context;
506retry:
507 down_read(&mm->mmap_sem);
508 } else {
509 /*
510 * The above down_read_trylock() might have succeeded in which
511 * case, we'll have missed the might_sleep() from down_read().
512 */
513 might_sleep();
514#ifdef CONFIG_DEBUG_VM
David Brazdil0f672f62019-12-10 10:32:29 +0000515 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
516 up_read(&mm->mmap_sem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000517 goto no_context;
David Brazdil0f672f62019-12-10 10:32:29 +0000518 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000519#endif
520 }
521
David Brazdil0f672f62019-12-10 10:32:29 +0000522 fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000523 major |= fault & VM_FAULT_MAJOR;
524
525 if (fault & VM_FAULT_RETRY) {
526 /*
527 * If we need to retry but a fatal signal is pending,
528 * handle the signal first. We do not need to release
529 * the mmap_sem because it would already be released
530 * in __lock_page_or_retry in mm/filemap.c.
531 */
532 if (fatal_signal_pending(current)) {
533 if (!user_mode(regs))
534 goto no_context;
535 return 0;
536 }
537
538 /*
539 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
540 * starvation.
541 */
542 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
543 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
544 mm_flags |= FAULT_FLAG_TRIED;
545 goto retry;
546 }
547 }
548 up_read(&mm->mmap_sem);
549
550 /*
551 * Handle the "normal" (no error) case first.
552 */
553 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
554 VM_FAULT_BADACCESS)))) {
555 /*
556 * Major/minor page fault accounting is only done
557 * once. If we go through a retry, it is extremely
558 * likely that the page will be found in page cache at
559 * that point.
560 */
561 if (major) {
David Brazdil0f672f62019-12-10 10:32:29 +0000562 current->maj_flt++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000563 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
564 addr);
565 } else {
David Brazdil0f672f62019-12-10 10:32:29 +0000566 current->min_flt++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000567 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
568 addr);
569 }
570
571 return 0;
572 }
573
574 /*
575 * If we are in kernel mode at this point, we have no context to
576 * handle this fault with.
577 */
578 if (!user_mode(regs))
579 goto no_context;
580
581 if (fault & VM_FAULT_OOM) {
582 /*
583 * We ran out of memory, call the OOM killer, and return to
584 * userspace (which will retry the fault, or kill us if we got
585 * oom-killed).
586 */
587 pagefault_out_of_memory();
588 return 0;
589 }
590
David Brazdil0f672f62019-12-10 10:32:29 +0000591 inf = esr_to_fault_info(esr);
592 set_thread_esr(addr, esr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000593 if (fault & VM_FAULT_SIGBUS) {
594 /*
595 * We had some memory, but were unable to successfully fix up
596 * this page fault.
597 */
David Brazdil0f672f62019-12-10 10:32:29 +0000598 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
599 inf->name);
600 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
601 unsigned int lsb;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000602
David Brazdil0f672f62019-12-10 10:32:29 +0000603 lsb = PAGE_SHIFT;
604 if (fault & VM_FAULT_HWPOISON_LARGE)
605 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
606
607 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
608 inf->name);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000609 } else {
610 /*
611 * Something tried to access memory that isn't in our memory
612 * map.
613 */
David Brazdil0f672f62019-12-10 10:32:29 +0000614 arm64_force_sig_fault(SIGSEGV,
615 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
616 (void __user *)addr,
617 inf->name);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000618 }
619
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000620 return 0;
621
622no_context:
623 __do_kernel_fault(addr, esr, regs);
624 return 0;
625}
626
627static int __kprobes do_translation_fault(unsigned long addr,
628 unsigned int esr,
629 struct pt_regs *regs)
630{
David Brazdil0f672f62019-12-10 10:32:29 +0000631 if (is_ttbr0_addr(addr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000632 return do_page_fault(addr, esr, regs);
633
634 do_bad_area(addr, esr, regs);
635 return 0;
636}
637
638static int do_alignment_fault(unsigned long addr, unsigned int esr,
639 struct pt_regs *regs)
640{
641 do_bad_area(addr, esr, regs);
642 return 0;
643}
644
645static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
646{
647 return 1; /* "fault" */
648}
649
650static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
651{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000652 const struct fault_info *inf;
David Brazdil0f672f62019-12-10 10:32:29 +0000653 void __user *siaddr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000654
655 inf = esr_to_fault_info(esr);
656
657 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000658 * Return value ignored as we rely on signal merging.
659 * Future patches will make this more robust.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000660 */
David Brazdil0f672f62019-12-10 10:32:29 +0000661 apei_claim_sea(regs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000662
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000663 if (esr & ESR_ELx_FnV)
David Brazdil0f672f62019-12-10 10:32:29 +0000664 siaddr = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000665 else
David Brazdil0f672f62019-12-10 10:32:29 +0000666 siaddr = (void __user *)addr;
667 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000668
669 return 0;
670}
671
672static const struct fault_info fault_info[] = {
673 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
674 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
675 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
676 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
677 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
678 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
679 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
680 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
681 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
682 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
683 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
684 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
685 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
686 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
687 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
688 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
689 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
690 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
693 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
694 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
695 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
696 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
697 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
701 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
702 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
703 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
704 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
706 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
711 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
712 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
714 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
715 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
716 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
718 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
719 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
720 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
721 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
722 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
723 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
724 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
725 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
726 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
727 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
728 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
729 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
730 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
731 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
732 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
733 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
734 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
735 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
736 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
737};
738
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000739asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
740 struct pt_regs *regs)
741{
742 const struct fault_info *inf = esr_to_fault_info(esr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000743
744 if (!inf->fn(addr, esr, regs))
745 return;
746
747 if (!user_mode(regs)) {
748 pr_alert("Unhandled fault at 0x%016lx\n", addr);
749 mem_abort_decode(esr);
750 show_pte(addr);
751 }
752
David Brazdil0f672f62019-12-10 10:32:29 +0000753 arm64_notify_die(inf->name, regs,
754 inf->sig, inf->code, (void __user *)addr, esr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000755}
756
757asmlinkage void __exception do_el0_irq_bp_hardening(void)
758{
759 /* PC has already been checked in entry.S */
760 arm64_apply_bp_hardening();
761}
762
763asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
764 unsigned int esr,
765 struct pt_regs *regs)
766{
767 /*
768 * We've taken an instruction abort from userspace and not yet
769 * re-enabled IRQs. If the address is a kernel address, apply
770 * BP hardening prior to enabling IRQs and pre-emption.
771 */
David Brazdil0f672f62019-12-10 10:32:29 +0000772 if (!is_ttbr0_addr(addr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000773 arm64_apply_bp_hardening();
774
David Brazdil0f672f62019-12-10 10:32:29 +0000775 local_daif_restore(DAIF_PROCCTX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000776 do_mem_abort(addr, esr, regs);
777}
778
779
780asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
781 unsigned int esr,
782 struct pt_regs *regs)
783{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000784 if (user_mode(regs)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000785 if (!is_ttbr0_addr(instruction_pointer(regs)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000786 arm64_apply_bp_hardening();
David Brazdil0f672f62019-12-10 10:32:29 +0000787 local_daif_restore(DAIF_PROCCTX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000788 }
789
David Brazdil0f672f62019-12-10 10:32:29 +0000790 arm64_notify_die("SP/PC alignment exception", regs,
791 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000792}
793
794int __init early_brk64(unsigned long addr, unsigned int esr,
795 struct pt_regs *regs);
796
797/*
798 * __refdata because early_brk64 is __init, but the reference to it is
799 * clobbered at arch_initcall time.
800 * See traps.c and debug-monitors.c:debug_traps_init().
801 */
802static struct fault_info __refdata debug_fault_info[] = {
803 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
804 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
805 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
806 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
807 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
808 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
809 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
810 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
811};
812
813void __init hook_debug_fault_code(int nr,
814 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
815 int sig, int code, const char *name)
816{
817 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
818
819 debug_fault_info[nr].fn = fn;
820 debug_fault_info[nr].sig = sig;
821 debug_fault_info[nr].code = code;
822 debug_fault_info[nr].name = name;
823}
824
David Brazdil0f672f62019-12-10 10:32:29 +0000825/*
826 * In debug exception context, we explicitly disable preemption despite
827 * having interrupts disabled.
828 * This serves two purposes: it makes it much less likely that we would
829 * accidentally schedule in exception context and it will force a warning
830 * if we somehow manage to schedule by accident.
831 */
832static void debug_exception_enter(struct pt_regs *regs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000833{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000834 /*
835 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
836 * already disabled to preserve the last enabled/disabled addresses.
837 */
838 if (interrupts_enabled(regs))
839 trace_hardirqs_off();
840
David Brazdil0f672f62019-12-10 10:32:29 +0000841 if (user_mode(regs)) {
842 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000843 } else {
David Brazdil0f672f62019-12-10 10:32:29 +0000844 /*
845 * We might have interrupted pretty much anything. In
846 * fact, if we're a debug exception, we can even interrupt
847 * NMI processing. We don't want this code makes in_nmi()
848 * to return true, but we need to notify RCU.
849 */
850 rcu_nmi_enter();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000851 }
852
David Brazdil0f672f62019-12-10 10:32:29 +0000853 preempt_disable();
854
855 /* This code is a bit fragile. Test it. */
856 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
857}
858NOKPROBE_SYMBOL(debug_exception_enter);
859
860static void debug_exception_exit(struct pt_regs *regs)
861{
862 preempt_enable_no_resched();
863
864 if (!user_mode(regs))
865 rcu_nmi_exit();
866
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000867 if (interrupts_enabled(regs))
868 trace_hardirqs_on();
David Brazdil0f672f62019-12-10 10:32:29 +0000869}
870NOKPROBE_SYMBOL(debug_exception_exit);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000871
David Brazdil0f672f62019-12-10 10:32:29 +0000872#ifdef CONFIG_ARM64_ERRATUM_1463225
873DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
874
875static int __exception
876cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
877{
878 if (user_mode(regs))
879 return 0;
880
881 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
882 return 0;
883
884 /*
885 * We've taken a dummy step exception from the kernel to ensure
886 * that interrupts are re-enabled on the syscall path. Return back
887 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
888 * masked so that we can safely restore the mdscr and get on with
889 * handling the syscall.
890 */
891 regs->pstate |= PSR_D_BIT;
892 return 1;
893}
894#else
895static int __exception
896cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
897{
898 return 0;
899}
900#endif /* CONFIG_ARM64_ERRATUM_1463225 */
901
902asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
903 unsigned int esr,
904 struct pt_regs *regs)
905{
906 const struct fault_info *inf = esr_to_debug_fault_info(esr);
907 unsigned long pc = instruction_pointer(regs);
908
909 if (cortex_a76_erratum_1463225_debug_handler(regs))
910 return;
911
912 debug_exception_enter(regs);
913
914 if (user_mode(regs) && !is_ttbr0_addr(pc))
915 arm64_apply_bp_hardening();
916
917 if (inf->fn(addr_if_watchpoint, esr, regs)) {
918 arm64_notify_die(inf->name, regs,
919 inf->sig, inf->code, (void __user *)pc, esr);
920 }
921
922 debug_exception_exit(regs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000923}
924NOKPROBE_SYMBOL(do_debug_exception);