Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _ASM_EFI_H |
| 3 | #define _ASM_EFI_H |
| 4 | |
| 5 | #include <asm/boot.h> |
| 6 | #include <asm/cpufeature.h> |
| 7 | #include <asm/fpsimd.h> |
| 8 | #include <asm/io.h> |
| 9 | #include <asm/memory.h> |
| 10 | #include <asm/mmu_context.h> |
| 11 | #include <asm/neon.h> |
| 12 | #include <asm/ptrace.h> |
| 13 | #include <asm/tlbflush.h> |
| 14 | |
| 15 | #ifdef CONFIG_EFI |
| 16 | extern void efi_init(void); |
| 17 | #else |
| 18 | #define efi_init() |
| 19 | #endif |
| 20 | |
| 21 | int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md); |
| 22 | int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md); |
| 23 | |
| 24 | #define arch_efi_call_virt_setup() \ |
| 25 | ({ \ |
| 26 | efi_virtmap_load(); \ |
| 27 | __efi_fpsimd_begin(); \ |
| 28 | }) |
| 29 | |
| 30 | #define arch_efi_call_virt(p, f, args...) \ |
| 31 | ({ \ |
| 32 | efi_##f##_t *__f; \ |
| 33 | __f = p->f; \ |
| 34 | __efi_rt_asm_wrapper(__f, #f, args); \ |
| 35 | }) |
| 36 | |
| 37 | #define arch_efi_call_virt_teardown() \ |
| 38 | ({ \ |
| 39 | __efi_fpsimd_end(); \ |
| 40 | efi_virtmap_unload(); \ |
| 41 | }) |
| 42 | |
| 43 | efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...); |
| 44 | |
| 45 | #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT) |
| 46 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 47 | /* |
| 48 | * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not. |
| 49 | * And EFI shouldn't really play around with priority masking as it is not aware |
| 50 | * which priorities the OS has assigned to its interrupts. |
| 51 | */ |
| 52 | #define arch_efi_save_flags(state_flags) \ |
| 53 | ((void)((state_flags) = read_sysreg(daif))) |
| 54 | |
| 55 | #define arch_efi_restore_flags(state_flags) write_sysreg(state_flags, daif) |
| 56 | |
| 57 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 58 | /* arch specific definitions used by the stub code */ |
| 59 | |
| 60 | /* |
| 61 | * AArch64 requires the DTB to be 8-byte aligned in the first 512MiB from |
| 62 | * start of kernel and may not cross a 2MiB boundary. We set alignment to |
| 63 | * 2MiB so we know it won't cross a 2MiB boundary. |
| 64 | */ |
| 65 | #define EFI_FDT_ALIGN SZ_2M /* used by allocate_new_fdt_and_exit_boot() */ |
| 66 | |
| 67 | /* |
| 68 | * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the |
| 69 | * kernel need greater alignment than we require the segments to be padded to. |
| 70 | */ |
| 71 | #define EFI_KIMG_ALIGN \ |
| 72 | (SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN) |
| 73 | |
| 74 | /* on arm64, the FDT may be located anywhere in system RAM */ |
| 75 | static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base) |
| 76 | { |
| 77 | return ULONG_MAX; |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * On arm64, we have to ensure that the initrd ends up in the linear region, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 82 | * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 83 | * guaranteed to cover the kernel Image. |
| 84 | * |
| 85 | * Since the EFI stub is part of the kernel Image, we can relax the |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 86 | * usual requirements in Documentation/arm64/booting.rst, which still |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 87 | * apply to other bootloaders, and are required for some kernel |
| 88 | * configurations. |
| 89 | */ |
| 90 | static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base, |
| 91 | unsigned long image_addr) |
| 92 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 93 | return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 94 | } |
| 95 | |
| 96 | #define efi_call_early(f, ...) sys_table_arg->boottime->f(__VA_ARGS__) |
| 97 | #define __efi_call_early(f, ...) f(__VA_ARGS__) |
| 98 | #define efi_call_runtime(f, ...) sys_table_arg->runtime->f(__VA_ARGS__) |
| 99 | #define efi_is_64bit() (true) |
| 100 | |
| 101 | #define efi_table_attr(table, attr, instance) \ |
| 102 | ((table##_t *)instance)->attr |
| 103 | |
| 104 | #define efi_call_proto(protocol, f, instance, ...) \ |
| 105 | ((protocol##_t *)instance)->f(instance, ##__VA_ARGS__) |
| 106 | |
| 107 | #define alloc_screen_info(x...) &screen_info |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 108 | |
| 109 | static inline void free_screen_info(efi_system_table_t *sys_table_arg, |
| 110 | struct screen_info *si) |
| 111 | { |
| 112 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 113 | |
| 114 | /* redeclare as 'hidden' so the compiler will generate relative references */ |
| 115 | extern struct screen_info screen_info __attribute__((__visibility__("hidden"))); |
| 116 | |
| 117 | static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt) |
| 118 | { |
| 119 | } |
| 120 | |
| 121 | #define EFI_ALLOC_ALIGN SZ_64K |
| 122 | |
| 123 | /* |
| 124 | * On ARM systems, virtually remapped UEFI runtime services are set up in two |
| 125 | * distinct stages: |
| 126 | * - The stub retrieves the final version of the memory map from UEFI, populates |
| 127 | * the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime |
| 128 | * service to communicate the new mapping to the firmware (Note that the new |
| 129 | * mapping is not live at this time) |
| 130 | * - During an early initcall(), the EFI system table is permanently remapped |
| 131 | * and the virtual remapping of the UEFI Runtime Services regions is loaded |
| 132 | * into a private set of page tables. If this all succeeds, the Runtime |
| 133 | * Services are enabled and the EFI_RUNTIME_SERVICES bit set. |
| 134 | */ |
| 135 | |
| 136 | static inline void efi_set_pgd(struct mm_struct *mm) |
| 137 | { |
| 138 | __switch_mm(mm); |
| 139 | |
| 140 | if (system_uses_ttbr0_pan()) { |
| 141 | if (mm != current->active_mm) { |
| 142 | /* |
| 143 | * Update the current thread's saved ttbr0 since it is |
| 144 | * restored as part of a return from exception. Enable |
| 145 | * access to the valid TTBR0_EL1 and invoke the errata |
| 146 | * workaround directly since there is no return from |
| 147 | * exception when invoking the EFI run-time services. |
| 148 | */ |
| 149 | update_saved_ttbr0(current, mm); |
| 150 | uaccess_ttbr0_enable(); |
| 151 | post_ttbr_update_workaround(); |
| 152 | } else { |
| 153 | /* |
| 154 | * Defer the switch to the current thread's TTBR0_EL1 |
| 155 | * until uaccess_enable(). Restore the current |
| 156 | * thread's saved ttbr0 corresponding to its active_mm |
| 157 | */ |
| 158 | uaccess_ttbr0_disable(); |
| 159 | update_saved_ttbr0(current, current->active_mm); |
| 160 | } |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | void efi_virtmap_load(void); |
| 165 | void efi_virtmap_unload(void); |
| 166 | |
| 167 | #endif /* _ASM_EFI_H */ |