David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Based on arch/arm/include/asm/cacheflush.h |
| 4 | * |
| 5 | * Copyright (C) 1999-2002 Russell King. |
| 6 | * Copyright (C) 2012 ARM Ltd. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 7 | */ |
| 8 | #ifndef __ASM_CACHEFLUSH_H |
| 9 | #define __ASM_CACHEFLUSH_H |
| 10 | |
| 11 | #include <linux/kgdb.h> |
| 12 | #include <linux/mm.h> |
| 13 | |
| 14 | /* |
| 15 | * This flag is used to indicate that the page pointed to by a pte is clean |
| 16 | * and does not require cleaning before returning it to the user. |
| 17 | */ |
| 18 | #define PG_dcache_clean PG_arch_1 |
| 19 | |
| 20 | /* |
| 21 | * MM Cache Management |
| 22 | * =================== |
| 23 | * |
| 24 | * The arch/arm64/mm/cache.S implements these methods. |
| 25 | * |
| 26 | * Start addresses are inclusive and end addresses are exclusive; start |
| 27 | * addresses should be rounded down, end addresses up. |
| 28 | * |
| 29 | * See Documentation/core-api/cachetlb.rst for more information. Please note that |
| 30 | * the implementation assumes non-aliasing VIPT D-cache and (aliasing) |
| 31 | * VIPT I-cache. |
| 32 | * |
| 33 | * flush_cache_mm(mm) |
| 34 | * |
| 35 | * Clean and invalidate all user space cache entries |
| 36 | * before a change of page tables. |
| 37 | * |
| 38 | * flush_icache_range(start, end) |
| 39 | * |
| 40 | * Ensure coherency between the I-cache and the D-cache in the |
| 41 | * region described by start, end. |
| 42 | * - start - virtual start address |
| 43 | * - end - virtual end address |
| 44 | * |
| 45 | * invalidate_icache_range(start, end) |
| 46 | * |
| 47 | * Invalidate the I-cache in the region described by start, end. |
| 48 | * - start - virtual start address |
| 49 | * - end - virtual end address |
| 50 | * |
| 51 | * __flush_cache_user_range(start, end) |
| 52 | * |
| 53 | * Ensure coherency between the I-cache and the D-cache in the |
| 54 | * region described by start, end. |
| 55 | * - start - virtual start address |
| 56 | * - end - virtual end address |
| 57 | * |
| 58 | * __flush_dcache_area(kaddr, size) |
| 59 | * |
| 60 | * Ensure that the data held in page is written back. |
| 61 | * - kaddr - page address |
| 62 | * - size - region size |
| 63 | */ |
| 64 | extern void __flush_icache_range(unsigned long start, unsigned long end); |
| 65 | extern int invalidate_icache_range(unsigned long start, unsigned long end); |
| 66 | extern void __flush_dcache_area(void *addr, size_t len); |
| 67 | extern void __inval_dcache_area(void *addr, size_t len); |
| 68 | extern void __clean_dcache_area_poc(void *addr, size_t len); |
| 69 | extern void __clean_dcache_area_pop(void *addr, size_t len); |
| 70 | extern void __clean_dcache_area_pou(void *addr, size_t len); |
| 71 | extern long __flush_cache_user_range(unsigned long start, unsigned long end); |
| 72 | extern void sync_icache_aliases(void *kaddr, unsigned long len); |
| 73 | |
| 74 | static inline void flush_icache_range(unsigned long start, unsigned long end) |
| 75 | { |
| 76 | __flush_icache_range(start, end); |
| 77 | |
| 78 | /* |
| 79 | * IPI all online CPUs so that they undergo a context synchronization |
| 80 | * event and are forced to refetch the new instructions. |
| 81 | */ |
| 82 | #ifdef CONFIG_KGDB |
| 83 | /* |
| 84 | * KGDB performs cache maintenance with interrupts disabled, so we |
| 85 | * will deadlock trying to IPI the secondary CPUs. In theory, we can |
| 86 | * set CACHE_FLUSH_IS_SAFE to 0 to avoid this known issue, but that |
| 87 | * just means that KGDB will elide the maintenance altogether! As it |
| 88 | * turns out, KGDB uses IPIs to round-up the secondary CPUs during |
| 89 | * the patching operation, so we don't need extra IPIs here anyway. |
| 90 | * In which case, add a KGDB-specific bodge and return early. |
| 91 | */ |
| 92 | if (kgdb_connected && irqs_disabled()) |
| 93 | return; |
| 94 | #endif |
| 95 | kick_all_cpus_sync(); |
| 96 | } |
| 97 | |
| 98 | static inline void flush_cache_mm(struct mm_struct *mm) |
| 99 | { |
| 100 | } |
| 101 | |
| 102 | static inline void flush_cache_page(struct vm_area_struct *vma, |
| 103 | unsigned long user_addr, unsigned long pfn) |
| 104 | { |
| 105 | } |
| 106 | |
| 107 | static inline void flush_cache_range(struct vm_area_struct *vma, |
| 108 | unsigned long start, unsigned long end) |
| 109 | { |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * Cache maintenance functions used by the DMA API. No to be used directly. |
| 114 | */ |
| 115 | extern void __dma_map_area(const void *, size_t, int); |
| 116 | extern void __dma_unmap_area(const void *, size_t, int); |
| 117 | extern void __dma_flush_area(const void *, size_t); |
| 118 | |
| 119 | /* |
| 120 | * Copy user data from/to a page which is mapped into a different |
| 121 | * processes address space. Really, we want to allow our "user |
| 122 | * space" model to handle this. |
| 123 | */ |
| 124 | extern void copy_to_user_page(struct vm_area_struct *, struct page *, |
| 125 | unsigned long, void *, const void *, unsigned long); |
| 126 | #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ |
| 127 | do { \ |
| 128 | memcpy(dst, src, len); \ |
| 129 | } while (0) |
| 130 | |
| 131 | #define flush_cache_dup_mm(mm) flush_cache_mm(mm) |
| 132 | |
| 133 | /* |
| 134 | * flush_dcache_page is used when the kernel has written to the page |
| 135 | * cache page at virtual address page->virtual. |
| 136 | * |
| 137 | * If this page isn't mapped (ie, page_mapping == NULL), or it might |
| 138 | * have userspace mappings, then we _must_ always clean + invalidate |
| 139 | * the dcache entries associated with the kernel mapping. |
| 140 | * |
| 141 | * Otherwise we can defer the operation, and clean the cache when we are |
| 142 | * about to change to user space. This is the same method as used on SPARC64. |
| 143 | * See update_mmu_cache for the user space part. |
| 144 | */ |
| 145 | #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 |
| 146 | extern void flush_dcache_page(struct page *); |
| 147 | |
| 148 | static inline void __flush_icache_all(void) |
| 149 | { |
| 150 | if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) |
| 151 | return; |
| 152 | |
| 153 | asm("ic ialluis"); |
| 154 | dsb(ish); |
| 155 | } |
| 156 | |
| 157 | #define flush_dcache_mmap_lock(mapping) do { } while (0) |
| 158 | #define flush_dcache_mmap_unlock(mapping) do { } while (0) |
| 159 | |
| 160 | /* |
| 161 | * We don't appear to need to do anything here. In fact, if we did, we'd |
| 162 | * duplicate cache flushing elsewhere performed by flush_dcache_page(). |
| 163 | */ |
| 164 | #define flush_icache_page(vma,page) do { } while (0) |
| 165 | |
| 166 | /* |
| 167 | * Not required on AArch64 (PIPT or VIPT non-aliasing D-cache). |
| 168 | */ |
| 169 | static inline void flush_cache_vmap(unsigned long start, unsigned long end) |
| 170 | { |
| 171 | } |
| 172 | |
| 173 | static inline void flush_cache_vunmap(unsigned long start, unsigned long end) |
| 174 | { |
| 175 | } |
| 176 | |
| 177 | int set_memory_valid(unsigned long addr, int numpages, int enable); |
| 178 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 179 | int set_direct_map_invalid_noflush(struct page *page); |
| 180 | int set_direct_map_default_noflush(struct page *page); |
| 181 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 182 | #endif |